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1. INTRODUCTION 

Geodesic flows and interval maps are two topics in the theory of 
dynamical systems with a long mathematical history. The first of 
these seems to have originated with Jacobi who related the flows 
to the study of Hamiltonian systems (for a detailed description 
of the connection, see [CFS]). The second arises in diverse set­
tings, such as the modelling of population genetics [Ma] and the 
frequency count of digits in continued fraction expansions [Bi]. 
In both subjects the main problem is to describe the distribution 
of orbits. Thus we wish to know how the geodesies spread over 
the manifold containing them and how iterates of points under 
an interval map vary over the interval. Ergodic theory provides 
answers to these questions, particularly the notions of ergodicity 
and invariant measure which will be elaborated below. 

At first sight the two topics seem unrelated, geodesic flow being a 
continuous time action and interval map a discrete one. Neverthe­
less, we shall relate them and their associated symbolic dynamics 
when the flow takes place on a compact surface of constant nega­
tive curvature. In this case we use a graphic approach enabling us 
to find a series of reductions from geodesic flow to interval map. 
In relating the topics, we show how each sheds light on the other. 
We use ergodicity of interval maps to prove ergodicity of flows and 
conversely. Furthermore, explicit formulas for invariant measures 
of interval maps can be derived from invariant measures for flows. 
This fact is interesting as there is a paucity of explicit formulas for 
invariant measures of interval maps. 

The steps in our reduction scheme are known to exist abstractly. 
However, for the dynamical systems considered here, the reduc­
tions are carried out by means of elementary geometry. Our graphic 
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approach puts into evidence certain facts not easily discernible 
otherwise, e.g. the existence of a Markovian partition and of fac­
tors for the cross section map which we associate with the flow. 
An attractive feature of our graphic approach is that it renders 
concrete, by means of simple geometric examples, many abstract 
notions of ergodic theory. However, the method seems intrinsi­
cally two-dimensional and it is not clear how to extend it to higher 
dimensions. 

We describe in detail the main concepts employed in our work, 
obtaining at the same time an overview of the paper. 

Ergodicity. The ergodic theorem describes the long term average 
behavior of certain systems evolving in time. The theorem has 
two versions, a discrete and a continuous one. We first describe 
the discrete one. 

Let X be a measure space—meaning there exists a nonnegative, 
not identically zero, countably additive measure m assigned to 
certain subsets of X which are designated as measurable. We 
assume from now on that all sets under discussion are measurable. 
A transformation T of X to itself is measurable if for any set E, 
so is T~XE = {x: Tx e E}. If, in addition, m{T~lE) = m(E), 
then T is measure preserving. A measurable transformation T is 
ergodic if T~lE = E implies either m(E) = 0 or m(X-E) = 0. 
We assume X to be cr-finite, i.e. X is a countable union of sets 
of finite measure. Let Tn(x) denote the nth iterate of x e X 
under T, with T°(x) = x. The sequence {Tnx} is called the 
T-orbit of x. 

Ergodic theorem (discrete version), (i) Let T be a measure preserv­
ing transformation of X. Then for any integrable function f(x), 

1 N~l 

(1.1) lim — y ^ ƒ ( Tnx) exists for almost all x e X, 

(ii) If in addition, T is ergodic, then the limit in (1.1) equals 
the constant (l/m(X)) ƒ f(x)dm(x). 

In (1.1) the phrase "for almost all" refers to the invariant mea­
sure m (this meaning is adopted throughout the paper). 

The ergodic theorem asserts that if T is ergodic, then for al­
most all x the time average limw_>oo(l/iV)X^^ro

1 f(Tnx) equals 
the space average (l/m(X)) ƒ f(x)dm(x). Ergodicity of T is cru­
cial for this fact. Indeed it is easily shown that (1.1), with right 
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side equaling (l/m(X)) ƒ f(x)dm(x), implies ergodicity. In the 
special case when ƒ is the indicator function XE °f a s e t E of 
finite measure and T is ergodic, (1.1) gives the following formula 
for the frequency of visits of T-iterates to E : 

r \{n: TnxeE,0<n<N}\ m(E) . , , n 

lim ]-± ^—= ^ = ;__; for almost all x e X 
N-+00 N m(X) 

where | • | denotes cardinality of a set. 
We generalize (1.1) to the continuous case. Let {Tt(x)}, 0 < 

t < oo, be a one-parameter family of measure preserving transfor­
mations of X which form a semigroup. This means that T0(x) = 
x and Ts+t(x) = Ts o Tt(x) for s, t > 0, ^ o ^ denoting the 
composition product. {Tt} is a measurable flow on X if, for any 
measurable function ƒ (x) on X, f{Ttx) is measurable on the 
product space R x X, R denoting the real line. If, in addition, 
Tt is measure preserving for all t, then {Tt} is a measure preserv­
ing flow on X. A measurable flow {Tt} is ergodic if T~lE = E 
for all t implies either m(E) = 0 or m(X - E) = 0. For given 
x , the set {rr(x)}, 0 < t < oo, is called the Trorbit or flow 
line through x. Both measurable transformations and flows are 
referred to as measurable dynamical systems. 
Ergodic theorem (continuous version), (i) Let Tt be a measure 
preserving flow on X. Then for any integrable function f(x), 

1 f' 
(1.2) lim - / f(Ttx)du exists for almost all x e X. 

(ii) If in addition, {Tt} is ergodic, then the limit in (1.2) equals 
the constant (l/m(X)) ƒ f(x)dm(x). 

The ergodic theorem asserts that if {Tt} is ergodic, then for al­
most all x, the time average limr-fOO(l/0 ^f(Tux)du equals the 
space average (l/m(X)) ƒ f(x)dm(x). In the special case when 
ƒ = XE> m{E) < °° 9 and T is ergodic, (1.2) gives the following 
formula for the proportion of time spent by Tt -orbits in E : 

r A{u:Tu(x)eE,0<u<t} m(E) , , . lt 

lim -^ *ii_i = ; „ ; for almost all x e X 
r-*oo t m(X) 

where X denotes Lebesgue measure on the real line. 
In practice, ergodicity of transformations and flows becomes 

difficult to check, thus limiting the applications of the ergodic the­
orem. It is therefore of interest to obtain examples for which 
ergodicity can be verified. We describe a class of flows for which 
this is the case. 
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FIGURE 1.1. Geodesic flow. 

Geodesic flows. Let S be a compact «-dimensional Riemannian 
manifold and S its unit tangent bundle. For a given vector u e 
S with base point p e S, let y be the unique geodesic passing 
through p and tangent to u. Parametrize y as y(t), t being arc 
length along y measured from p. Let Gt(u) be the unit tangent 
to y at y{t), -oo < t < oo, as shown in Figure 1.1. 

The set of homeomorphisms of S: u —• Gt(u), -oo < t < oo, is 
called the geodesic flow on S. For given u, the curve y = Gt(u), 
-oo < t < oo, is called a flow line or G,-orbit in S (observe that 
y consists of unit tangents to y and is to be distinguished from 
y). Liouville's Theorem asserts that the geodesic flow preserves 
the measure m on S induced on it by the metric of S. We refer 
to m as the Liouville measure and, for S of constant negative 
curvature, as the hyperbolic measure. 

In the case where S is of negative curvature, Hedlund and Hopf 
have shown the geodesic flow to be ergodic [H, Ho]. 

In the sequel we limit ourselves to S 2-dimensional and of 
constant negative curvature. In this case our graphic approach 
enables us to reduce the subject of geodesic flows to that of interval 
maps. 

Interval maps. This subject deals with the behavior of the iterates 
of a map ƒ(JC) of an interval / to itself. We may assume I to be 
the unit interval. We also assume that f(x) is noninvertible and 
piecewise continuous. The subject centers mainly on two problems 
(i) proving existence of an /-invariant measure m equivalent to 
Lebesgue measure X—equivalence meaning that m and X have 
the same sets of measure 0. (ii) proving ergodicity of ƒ . 

Observe that since m and X are equivalent, the phrase "for 
almost all x " in (1.1) refers to either m or A. It is a simple 
consequence of the ergodic theorem that any finite measure m 
satisfying (i) and (ii) is uniquely determined up to a multiplicative 
constant. 

We give several examples of interval maps. Let (a) f(x) = (2x), 
where (•) denotes the fractional part; (b) f(x) = (fix) where 
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fi = (1 + V5)/2 ; (c) f(x) = (l/x) ; (d) ƒ(*) = (1/1 - x). The 
graphs of these functions are depicted in Figure 1.2. 

The above maps are among those rare cases for which an explicit 
formula is known for the invariant measure. We have (a) m is 
Lebesgue measure; (b) dm = ft dx, 0 < x < fi~l, and dm = dx, 
p~l < x < 1 ; (c) dm = dx/(l + x) ; (d) dm = rfx/x. 

Formulas (a), (b) are easily guessed, (c) is a famous formula 
due to Gauss and (d) is due to Renyi [R]. The measures (a)-(c) 
are finite and (d) is infinite, (c) is called the continued fraction map 
because of its relation to continued fractions (for the relation and 
some interesting consequences about continued fractions, consult 
[Bi]). The graph of (d) is obtained from that of (c) by reflecting 
about the line x = \ . Hence we call it the backward continued 
fraction map. 

In this paper we deal exclusively with Markovian interval maps 
defined below. For this case we prove in Appendix B a theorem 
of obscure origin, which we refer to as the folklore theorem, giving 
conditions guaranteeing that (i), (ii) hold and that m be finite. 

Let X be a one dimensional space—i.e. an interval or a circle— 
and {/J a finite partition of X into subintervals. Let ƒ : X —• X 

V A V À 
l/p 

1/2 

(a) 

l/P 

(b) 

0 1M 1/2 
1/3 

(C) 

1/2 f 3/4 1 
2/3 

(d) 

FIGURE 1.2. Interval maps. 
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h 

h 

h 
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FIGURE 1.3. Markovian interval map. 

satisfy: 
1. piecewise smoothness—i.e. ƒ//,-, the restriction of ƒ to 

I., has a C2 extension to the closure lt of I.. 
2. local invertibility—i.e. fjli is strictly monotone. 
3. Markov property—i.e. ƒ(ƒ.) = union of some 7. 's. 
4. Aperiodicity—i.e. there exists an integer p such that 

f (7.) =7 for all i. 
Figure 1.3 gives a typical example of a map satisfying (l)-(4). 

In this case p = 4. 
If (l)-(3) hold, then {/J is called a Markovian partition for ƒ 

(or ƒ is a Markovian map for {/J). Condition (4) is added to 
guarantee the 

Folklore theorem. Assume that (l)-(4) hold and that ƒ is eventu­
ally expansive—i.e. for some iterate fn, \dfn/dx\ > 6 > 1 for 
all x. Then ƒ has a finite Lebesgue-equivalent measure m and 
is ergodic. Furthermore dm = p(x)dx, where p(x) is piecewise 
continuous and l/D < p < D for some D > 0. 

Under conditions (l)-(4), the converse of the folklore theorem 
also holds. 

For examples (a)-(d) we choose the partition {It} as indicated 
in Figure 1.2, where I. is labeled by /.. It is readily checked that 
examples (a),(b) satisfy the conditions of the folklore theorem. We 
conclude in these cases that ƒ is ergodic. The folklore theorem 
does not cover examples (c), (d) as in these cases {/•} is an infi­
nite partition. There also exists a folklore theorem for eventually 
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expansive Markovian maps when {/J is infinite, but more con­
ditions are required [MVP, Bol]. These conditions cover example 
(c). Note that for (d), f(x) is not eventually expansive because 0 
is a fixed point where the derivative of the map and all its iterates 
is 1. This explains why the invariant measure for (d) does not 
satisfy the conclusions of the theorem. 

Reduction. For the geodesic flows considered in this paper, the mo­
tion is continuous in time and takes place in a three dimensional 
manifold—the unit tangent bundle S. On the other hand, for 
interval maps the motion is discrete in time—the times 1,2, . . . 
refer to the iterates f(x), f2(x), ... —and is taking place in a 1-
dimensional manifold—the unit interval. The connection between 
geodesic flow and interval map is achieved by two successive re­
ductions, each lowering the dimension by one and reducing the 
motion from continuous to discrete. 

The first, attributed to Poincaré, reduces the study of the flow 
to that of a cross section map. Roughly speaking, a cross section is 
a subset C of S meeting all flow lines again and again, both past 
and future. The measurable subsets of C are obtained by inter­
secting the measurable subsets of S with C. The correspondence 
between successive points of return serves to define the map Tc 

of C (Figure 1.4). Tc is called a cross section map for Gt. Con­
versely Gt is called a flow over Tc . As S is three-dimensional, 
C will be two-dimensional. The cross section map Tc preserves 
a measure mc on C inherited from the hyperbolic measure m 
on S preserved by Gt. It is defined by: 

(1.3) mc(B) = lim-rm{Gtu: ueB,0<t<h} 

for any measurable B c C. The set {Gtu: u e B, 0 < t < h) is 
the small cylinder depicted in Figure 1.4 on p. 236. mc(B) is 
the rate at which m flows through B. Ergodicity of Gt can be 
reduced to that of Tc . 

There are many possible choices for C, but we choose one for 
which a second reduction is possible, namely Tc is to have a one-
dimensional factor map. This means that there exists a map n, 
called a projection, from C onto the unit interval I, and a map 
ƒ from I onto I, called the factor map, such that 
(1.4) f on = 7io Tc 

i.e. we have the commuting diagram shown in Figure 1.5 on 
p. 236. 
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W flow line 

Co 
FIGURE 1.4. Cross section of geodesic flow. 

ƒ 

FIGURE 1.5 The factor map ƒ . 

(1.4) may be worded as follows. Call the sets n~lx, x e I, 
- i . fibers of C. Tc maps the fiber n~~ x into the fiber 7r~ ( f{x)). 

The space of fibers is identified with I, the mappings between 
fibers given by x —• ƒ (x). In general ƒ will not be invertible 
even though Tc is. The factor map preserves a measure m, on 
I inherited from the invariant measure mc . It is defined by 

(1.5) mÂE) = mc(n~ E) for any measurable Eel. 

Tc is called an extension of ƒ . Ergodicity of Tc can be reduced 
to that of ƒ . 

The following example serves to illustrate the notion of fac­
tor map. Let T(x, y) be the one-to-one map of the unit square 
S = 1 xl onto itself defined by T(x, y) = ((2JC) , ([2.x] + y)/2), 
where [x], (x) denote the greatest integer less than x and the 
fractional part of x. T can be described geometrically. Contract 
the vertical lines of S by 1/2 and magnify the horizontal ones 
by 2, obtaining the rectangle i ? : 0 < ; c < 2 , 0<y < 1/2. Then 
translate the right half of R to the top half of S. Since these 
actions are reminiscent of the kneading of dough, T is called the 
baker transformation. T is depicted in Figure 1.6 where 1,2 refer 
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0 / 3 c l 1/2 ƒ ji 1 0 x l 

FIGURE 1.6. The Baker transformation. 

to the left and right halves of S. T maps 1,2 respectively to l ' , 
2 ' , the bottom and top halves of S. T{x, y) = (2.x), •) so that 
it has the factor map f(x) = (2x) depicted in Figure 1.2(a) (the 
projection map n of (1.4) is given in this case by n(x, y) = x). 

The fibers are the vertical lines of S, the preimage of the vertical 
line over x consisting of the two verticals over the two points 
f~l(x). The inverse map T~l is given by T~l(x, y) = ((x + 
[2y])/2)9 (2y)). Hence T~l(x, y) also has a factor map given 
by g(y) = (2y), the fibers now being the horizontal lines of S. 
T contracts vertical directions and magnifies horizontal ones and 
preserves the 2-dimensional Lebesgue measure dx dy. 

We remark that in [AF1, 3] we showed that both the continued 
fraction and backward continued fraction maps arise as factors of 
cross section maps for the geodesic flow on the modular surface. 
Using this we obtain another derivation of the formulas for the 
invariant measures of these maps. 

Cross section. With the above reductions in mind, we have found 
it suitable to make a special choice for C. Its description relies on 
some geometrical facts about S. S is assumed to be a compact 
surface of constant negative curvature. It is known that such a 
surface is orientable of genus g > 2, hence realizable as a sphere 
with g handles. On S there exists a system of 2g simple closed 
geodesies yx, ... , y2g as exhibited in Figure 1.7 on p. 238 (we 
illustrate here and later with the typically sufficient case g = 2). 

Speaking loosely yx, y3, ... , y2g-\ go around the "holes" and 
y2, ... , y2g around the "waists" of S. Distinct curves yt, y-
intersect if and only if |/ - j \ = 1, in which case they intersect 
in precisely one point. The existence of such a system of curves 
is intuitive. Less obvious and not so well known is that the yt 's 
can be chosen as geodesies. This fact is a consequence of the 
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FIGURE 1.7. A system of closed geodesies on S. 

curvature assumption. A proof does not seem readily accessible 
and so we provide one in Appendix A. The system of curves can 
also be shown unique; we shall not prove this, as no use of it is 
made in the sequel. 

Let B be the union of yx, ... , y2g and B the set of unit tan­
gents to B. B consists of a finite number of closed flow lines. 
Hence B is a set of measure 0 invariant under Gt, -oo < t < oo. 
S - B is also invariant under Gt. Hence the study of Gt on S is 
equivalent to the study of Ĝ  on S - B . Choose C to be the set 
of unit tangents in S - B having their base point in B. As S is 
compact, it is intuitive that C is a cross section for the geodesic 
flow on S - B. 

Fundamental polygon. The factor map of Tc is obtained by coor-
dinatizing C in a suitable manner. Our coordinatization depends 
on another description of S and S. In the ensuing discussion we 
rely on notions of the hyperbolic plane and its associated discrete 
groups. These will be discussed in detail in §2. 

Let D be the unit disk \z\ < 1 endowed with the metric ds = 
2\dz\/(\ -\z\). D is the hyperbolic plane of constant negative 
curvature - 1 . The orientation preserving isometries of D onto 
itself are the Möbius transformations x(z) = el^(z + a)/(l + az), 
0</?<27T, |a| < 1. The geodesies of ED are the circular arcs or­
thogonal to \z\ = 1. Any compact surface S of constant negative 
curvature -1 can be thought of as an orbit space D/T consisting 
of the T-orbits Tz, z e D, where T is a discrete group1 of sense 

1 There are discrete groups T acting freely on D for which B/T is not compact. 
If D/r is compact then T is called a surface group. We deal exclusively with this 
case. 
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preserving isometries of D acting freely on D—i.e. the elements 
of T have no fixed points in D. D is called the universal cover­
ing space of S. T can be identified as the fundamental group of 
S. Similarly the unit tangent bundle S can be thought to be the 
set of T-orbits Tu, u e U, where U is the unit tangent bundle 
of D. Let n(z) = T(z), z G D, and n(u) = T(u), u e U, be 
the respective projection maps from D onto S and from U onto 
S. The existence of the system {y.} has the following meaning 
for T. 

Theorem 1.1. Let S = D/T be a compact surface of genus g. 
There exists an (8g-4) sided fundamental polygon F whose sides 
are geodesic segments. These satisfy the extension condition: that 
is the geodesic extensions of these segments never pierce the interior 
of the fundamental regions T F , xeT. 

F is depicted in Figure 1.8(i) where the sides are labeled suc­
cessively by 1, . . . , 8# - 4 . The dotted lines indicate the pairing 
of sides, side / mapped into its mate by a unique group element 
T. e T. In general F need not be regular. We choose one which 
is as it can then be constructed by ruler and compass for g = 2 . 
The projection map n takes F onto S and the boundary d F to 

The extension condition of Theorem 1.1 is a reflection of the 
fact that the y. 's are closed geodesies. As shown in §5, this con­
dition plays a crucial role in establishing the existence of the rec­
tilinear map TR discussed below. 

(0 Oi) 

FIGURE 1.8. Fundamental polygon. 
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The cross section C can be thought to be the set of elements 
7f (u), u varying over the unit tangent vectors in U with base point 
in OF and pointing out of F . C partitions into Cx, . . . , CSg_4, 
Ct consisting of the elements n(u) with base point in side i. We 
coordinatize C by assigning (£, q) to It(u), where Ç and r\ are 
respectively the head and tail of the geodesic determined by u, 
as in Figure 1.8(ii). (£, rj) is a point in the 2-dimensional torus 
dB x dB. Identifying Ç and r\ with their arguments, we think of 
these variables as going from 0 to In . The almost everywhere2 

description of C and Tc in these coordinates is given in Figure 
1.9, where Ct and C[ = Tc(Ct) are respectively labeled by / and 
Ï . It seems difficult, if not impossible, to prove the ergodicity of 
Tc from its formula. To remedy the situation, we define another 
set R, also described in ($,rj) coordinates, together with an in-
vertible map TR. The almost everywhere description of R and 
TR is given in Figure 1.10 (here too, there is a more comprehen­
sive description given in §5). R is a straightened out version of 
C. For this reason we call C and R respectively the curvilin­
ear and rectilinear domains, and Tc and TR the curvilinear and 
rectilinear maps. 

Tc and TR are conjugate—meaning there exists a map O :C-+ 
R such that Tc = O o TRo®~x—hence ergodicity of Tc is equiv­
alent to that of TR. The advantage of TR over Tc is that we 

r c « i , i / ) = ( r ^ , r ^ ) , ( { , i ; ) € C / 

FIGURE 1.9. Curvilinear map. 

The description of Tc given by Figure 1.9 becomes ambiguous at the bound­
aries of the Ci 's. To circumvent the ambiguity, we remove all points whose Tc-
orbit hits the boundaries, thus obtaining the almost everywhere description of C 
and Tc . A more comprehensive description including boundaries is given in §4. 
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TR(t,r,) = (T£,Tir1), (* ,*)€* , 

FIGURE 1.10. Rectilinear map. 

have the formulas 

putting into evidence the factor maps ƒ(£), g(rj). ƒ and g are 
maps of the unit circumference |£| = 1 to itself. We call these 
the Bowen-Series maps after Bowen and Series who studied them 
[BoS]. In §6 we show that these maps satisfy the hypothesis of the 
folklore theorem. Hence they are ergodic, which in turn implies 
the ergodicity of TR and Gt, as shown in §7. 

Symbolic sequences. Further insight into the cross section map Tc 

can be obtained via symbolic dynamics. We explain this concept. 
A pair (X, T) consisting of a space X and a transformation T 
from X to itself is called an abstract dynamical system. The spe­
cial case (Z, a), where X is a space of sequences {sn} of symbols 
chosen from a finite alphabet {1, ... , N} and I closed under the 
shift er{sn} = {sn+{} , is called a symbolic dynamical system. We 
consider both two-sided sequences, i.e. -oo < n < oo, and one­
sided ones, i.e. 0 < n < oo. We shall code abstract dynamical 
systems to symbolic ones, meaning that to each point x € X, 
we assign a symbolic sequence </>(x) = {sn(x)} 9 the assignment 
(f) being one-to-one and respecting the rule <\> o T = a o 0. The 
coding reduces the dynamics of T to the more transparent dy­
namics of the shift. For instance, the existence of periodic points 
p of T—i.e. T p = p for some k ^ 0—reduces to the existence 
of sequences {sn} with the periodicity sn+k = sn . Similarly, the 
existence of an everywhere dense T-orbit reduces to the existence 
of a sequence containing every finite admissible block infinitely 
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often. The coding is done as follows. Let & = {X{, ... , XN} be 
a finite partition of X into disjoint sets Xt. For x e X, define 
(f)(x) = {sn(x)} by Tnx e X , where — oo < n < oo for T in-
vertible and 0 < n < oo for T noninvertible. {sn(x)} is called 
the orbit history of x through the partition & . The coding pro­
cedure is illustrated in Figure 1.11. Since {sn(Tx)} = {sn+l(x)} 
we have cj)oT = a o (p. If </> is injective, i.e. distinct points have 
distinct orbit histories, then (X, T) is coded into ( I , a) where 
X is the image of X under <j>. We call {sn(x)} the T-expansion 
of x. In the sequel we write ƒ instead of T when the latter is 
noninvertible, in which case {sn(x)} is called an /-expansion. 

Symbolic coding becomes a useful tool in the study of abstract 
dynamical systems only in case the resulting symbolic system is 
capable of a simple description. In this paper we concentrate on 
two such systems defined as follows. 

Definition 1.1. (i) Let s/ = {1, ... , N} be a finite alphabet and 
3$ a set of pairs of elements (/, j) of J / . The space Z of 
sequences {sn}, sn e srf and (sn, sn+l) e 3§ for all n, is called 
the Markov system defined by s/ and SS . The pairs (/, j) e& 
are called the admissibility rules and we denote these by i -» j . (ii) 
Let Z be a Markov system defined as in (i). Let <f>(i), 1 < / < N, 
be a function on sf . The space l! of sequences {sf

n}, sn = (j>(sn), 
is called a sofic system. 

Thus sofic systems are obtained from Markov ones by amal­
gamation of the alphabet. We discuss both of these systems in 
further detail in Appendix C. 

To code abstract dynamical systems to Markov systems, we re­
quire the notions of Markov partitions and Markov maps. We 

FIGURE 1.11. Obtaining symbolic sequences from par­
titions. 
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need two kinds of Markov maps: noninvertible 1-dimensional and 
invertible 2-dimensional ones. The 1-dimensional partitions and 
maps were introduced earlier in the discussion of noninvertible in­
terval maps. We defer the definition of invertible 2-dimensional 
Markov partitions and maps to Appendix C, where these concepts 
are discussed in greater generality, and just mention here that the 
invertible 2-dimensional maps are typified by the baker transfor­
mation and rectilinear map. Thus 2-dimensional Markov parti­
tions are finite unions of rectangles, each consisting of horizontal 
and vertical fibers. The horizontal fibers are mapped one-to-one 
onto a union of horizontal fibers of various rectangles, a similar 
statement holding for the inverse map applied to vertical fibers. 

Similarly sofic systems can be derived from sofic partitions, 
which are obtained by amalgamating Markov partitions. 

Cutting sequences. To code (C, Tc) into a symbolic system, we 
choose the earlier mentioned partition {C{, . . . , C8^_4} . In Fig­
ure 1.7, label the sides of B = |J y., to conform with the labeling of 
sides of the fundamental polygon F . Ct is the set of unit tangent 
vectors ü of S with base point in B and pointing away from 
side / . The sequences {sn(ü)} corresponding to the partition 
{Cj, . . . , C8 4} are called curvilinear. They have a geometric 
interpretation. Let y(ü) be the geodesic in S determined by ü. 
Then {sn(ü)} is the sequence of labels encountered by y as it cuts 
successively the system of curves B (to obtain {sn(ü)} we always 
choose the first of the two labels encountered by y as it cuts B). 
For this reason curvilinear sequences are called cutting sequences. 
Observe that for y passing through an intersection point yr n ys, 
the definition of cutting sequence becomes ambiguous. Assigning 
a cutting sequence in this case requires a special convention given 
in §9. 

We shall find it is useful to interpret cutting sequences on the 
universal covering surface D. Let N be the union of sets r(ôF), 
T € T (we call these T-translates of 9F) . Label the sides of edges 
in N in T-invariant fashion—i.e. corresponding sides of F and 
TF obtain the same label. Let u = (<*, rf) be the unit tangent vec­
tor with base point in 9F and pointing out of F , and y(£, //) 
the geodesic with end points £, r\. The curvilinear sequence 
{sn(Ç, rj)} is identical with the sequence of labels encountered by 
y as it leaves successive T-translates of F (Figure 1.12 on p. 244). 
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s~l(u)\ | 

FIGURE 1.12. Cutting sequences. 

Unfortunately there is no known useful description of the total­
ity of cutting sequences, and there is good reason to believe that 
none exists by virtue of the comments made in §10. The difficulty 
disappears for the rectilinear map TR . We refer to the partition 
{R{, ... , ^?8£_4} of R, given in Figure 1.10, as the coarse parti­
tion. Splitting each Rt into a left and right rectangle, we obtain the 
fine partition. The sequences {sn(Ç, r])} , (^, rf) e R, correspond­
ing to either partition are called rectilinear. The fine partition is 
Markov. In this case, the rectilinear sequences form a Markov 
system, from which we remove certain sequences specified in §8 
(this removal is due to an inherent difficulty in symbolic represen­
tations of dynamical systems explained in Appendix C, part Ha). 
The coarse partition is sofic. For this case, the rectilinear sequences 
form a sofic system, from which we must again remove certain se­
quences specified in §8. We also obtain sequences corresponding 
to the factor maps ƒ and g, and show that the TR-expansion of 
(<!;, rf) is obtained by splicing the /-expansion of £, to the g-
expansion of Y\ (Artin [A] used splicing to analyze geodesies on 
the modular surface). 

The sofic rectilinear sequence {sn(£9 rf)} 9 where (£, T/) = 0(^, r\) 
and Tc = O o TR o O"1, also has a geometric interpretation due to 
Morse [Mo]. It is the cutting sequence of a curve 7( | , rf) obtained 
by modifying y(Ç, rj) ; we call it the modified cutting sequence. The 
modification is somewhat complicated and we defer its description 
to §9 (see in particular Figure 9.5). 

We conclude with some historical background, a few further 
comments on our work, and a summary of the various sections. 
Historical background. The earlier works on symbolic dynamics 
for geodesic flows deal with specific surfaces of constant negative 
curvature. Artin [A] codes the geodesies on the modular surface 
by the continued fraction expansions of the end points, deduc­
ing from this symbolism the existence of periodic and everywhere 
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dense geodesies. The works of Hedlund and Morse [H, Mo], re­
lating geodesic flows to symbolic sequences, deal exclusively with 
surfaces of genus g > 2 defined by a regular 4g-sided funda­
mental region with interior angles n/2g. Hedlund, using an idea 
of Nielsen, represents orbits by a Markovian system; while Morse 
achieves a characterization of orbits by sofic systems. Morse's 
method was extended to general compact surfaces by Birman and 
Series [BS]. It is unclear whether Hedlund's method can be likewise 
extended. 

The reductions discussed in our paper have previously been 
given general formulation by various authors. Ambrose and Kaku-
tani [AK] prove a general representation theorem for measurable 
flows as one built over a function and over a transformation. Their 
theorem is about the existence of an abstract cross section and cross 
section map. The concepts of factor map and natural extension 
(see §7) were studied by Rohlin [Ro]. The existence of a sym­
bolism with Markovian rules was established for geodesic flows on 
negative curvature surfaces by Ornstein and Weiss [OW]. Thus the 
steps in our reduction scheme are known to exist abstractly from 
these works. However in our present work the reduction is made 
explicit and has a simple geometric interpretation. 

In a series of papers Series [SI-3] also studies the problem of 
representing geodesic flows by symbolic systems. Comparing her 
approach with ours one might say that we have reached more 
or less the same mathematical conclusions from opposite direc­
tions. Generally speaking, her theorems become our definitions 
and vice versa. She first identifies the natural extension Z of the 
/-expansions for the Bowen-Series map as the space of modified 
cutting sequences (the natural extension Z is defined as the space 
of two-sided sequences obeying the same admissibility rules as the 
/-expansions). She then establishes that the geodesic flow can be 
represented as a flow over (£, a), and proves that (Z, a) is con­
jugate to (l!, a'), where l! is the set of cutting sequences. In 
our treatment all this naturally proceeds in the opposite direction. 
In addition our graphic approach puts into evidence a Markovian 
partition leading to Markovian systems rather than to merely sofic 
ones, and to formulas for the invariant measure of the Bowen-
Series maps. 

Comments. To reiterate, the basic ideas of our paper are: we graph 
the curvilinear cross section map, straighten out boundaries in this 
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graph to obtain the nicer rectilinear map, and establish a conjugacy 
between the maps. In this last act we encounter a discovery which 
may be considered the cornerstone of our work—namely "bulges 
fit into corners" (see Theorem 5.1 and Figures 5.3, 5.6). All other 
ideas in the paper follow naturally from this basic observation. 

Our treatment of geodesic flow is based on simple geometric 
ideas, but unfortunately, these carry along with them a quantity of 
forbidding detail. We are confronted with the problem of putting 
geometrical ideas into words ("one picture is worth a thousand 
words provided one uses another thousand words to justify the 
picture" [St, p. 225]). Another difficulty stems from the fact that 
we describe all orbits in the flow. Removal of a set of flow lines 
of measure zero—namely the flow lines of S passing through the 
intersection points of the curves in B = \J y.—would have simpli­
fied the analysis considerably just as in [AF2]; but then we would 
have failed to account for all orbits. 

We remark that the concepts of this paper—i.e. the introduction 
of the rectilinear map and its conjugacy to the curvilinear one— 
can be applied to any fundamental region satisfying the extension 
condition. We have limited our discussion to the (8# - 4)-sided 
regions of Theorem 1.1 for two reasons: 

1. Universality—such a region exists for all surface groups T. 
2. Simplicity—in this case the rectilinear domain has the sim­

plest possible description, traceable to the fact that the number of 
fundamental regions meeting at a vertex equals 4, which is the 
smallest possible number when the extension property holds. 

Summary. We summarize the contents of the various sections. 
Our work relies on various results which seem all but impossible 
to reference. To assist the reader, we include several appendices 
providing the proofs of these results. 

In §2 we introduce some background in hyperbolic geometry 
with notation necessary for our discussion of geodesic flows. 

In §3 we introduce the (8g - 4)-sided fundamental polygon F. 
We use F to read off a set of generators for T and a set of group 
relations these satisfy. The relations are used to establish conju-
ugacy between the curvilinear and rectilinear maps introduced in 
§4.5. 

In §4 we define the cross section C and its associated cross 
section map Tc . C is coordinatized. The coordinate description 
of Tc, also designated by Tc, is called the curvilinear map. The 
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dynamics of Tc is difficult to understand. To remedy the situation 
we introduce in §5 a second map TR , called rectilinear, and show 
that Tc and TR are conjugate. 

In §6 we show that the Bowen-Series maps—the factors of 7^ 
and TR

l—are ergodic. We also derive formulas for the invariant 
measures of these maps. Then in §7 we show how the ergodicity 
of the Bowen-Series maps imply the ergodicity of the flow Gt. 

In §8 we obtain the admissibility rules for the rectilinear se­
quences. The symbolic sequences for TR are obtained by splicing 
the /-expansions of the factors of TR and TR

l. The splicing 
assumes somewhat different forms depending as to whether we 
use Markovian or sofic sequences. In §9 we obtain geometric in­
terpretations of both curvilinear and rectilinear sequences. These 
interpretations lead to rules for coding curvilinear sequences to 
rectilinear ones. 

In §10 we discuss the main unresolved questions suggested by 
our work. 

In Appendix A we prove the existence of the (8#-4)-sided poly­
gon. The proof is based on two theorems which we leave unproved 
but for which we provide findable references: namely, a theorem 
of Poincaré giving conditions for a finite sided polygon to be a 
fundamental region for a discrete group acting on the hyperbolic 
plane, and the theorem of Fenchel-Nielsen on extending homeo-
morphisms between universal covering spaces to their boundaries. 
For another approach, more direct but somewhat lengthier, see 
Stillwell's appendix in [D, pp. 379-386]. 

In Appendix B we prove the folklore theorem and its converse. 
The converse seems to be a new addition to the subject, and we 
make use of it to prove ergodicity of Bowen-Series maps. 

In Appendix C, we discuss symbolic systems. We give several 
definitions of Markovian and sofic systems, illustrating these with 
examples. We then develop the theory of Markov partitions in a 
manner more basic and elementary than found in the literature. 

Finally, in Appendix D, we present an alternate proof to The­
orem 9.7 of §9, which provides further insight to the interplay 
between geometry and the combinatorics of symbolism. 

Acknowledgments. We thank Jeff Lagarias and Henry Landau for 
a critical reading of the introduction and for suggested improve­
ments. 
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2. GEODESIC FLOW 

We begin with a brief review of two-dimensional hyperbolic 
geometry leading to the definition of geodesic flow. We then show 
how this notion carries over to surfaces defined by the hyperbolic 
plane modulo a discrete group (= Fuchsian group). 

The hyperbolic plane may be represented by either of the fol­
lowing two models: the upper-half plane I = { z : « / m z > 0} 
endowed with the metric ds = \dz\l{ty

rmz), or the unit disk 
D = {z: \z\ < 1} endowed with the metric ds = 2\dz\/(l - \z\2). 
The equivalence of the two models is exhibited by the map w = 
(z - z)/(z + i) which is an isometry of M onto D. The resulting 
surface is the hyperbolic plane of constant negative curvature - 1 . 

In [AF 1-3] we used the model H, but in the present paper it 
is more convenient to work with D. The orientation preserving 
isometries of D onto itself are the Möbius transformations x : z —• 
eifi(z + a)/(az + 1), 0 < p < In, |a| < 1. We refer to such 
transformations simply as motions. The geodesies in D are arcs 
of circles orthogonal to the boundary dO = {z : | z | = l } . The unit 
tangent bundle U consists of unit tangent vectors u on D which 
we coordinatize by u = u(x, y, 6), where (x, y) is the base point 
of u and 6 the angle measured in the counter-clockwise direction 
between the positive x-axis and u (see Figure 2.1). 

We call the portion of the geodesic y, tangent to u € U, be­
ginning at its base point and going to the boundary of D in the 
direction of u, the forward geodesic ray at u, and denote it by 
y+(u). We call y - y+{u) the backward geodesic ray at u and 
denote it by y"(u). 

A motion t induces the following map on U: T: w(z, 0) —• 
U(TZ , 0+argT'(z)), where we have written u(z, 6) = u(x + iy, 6) 
for u(x ,y,d). The hyperbolic measures on D and U are defined 
respectively by dA = 4dxdy/(l — \z\) and dAdd. Since T is 
an isometry on D, it preserves the measure dA. Hence, the map 
T , being a skew product of a transformation preserving dA and 
a family of translations preserving dd, must itself preserve the 
measure dAdO. 

There is another coordinate system on U which will prove to 
be more convenient than (je, y, 6) in the ensuing discussion of 
geodesic flows: namely, for each u e U we assign the triple 
(^, r\, s) where Ç, r\ are complex numbers of modulus one and 
s is real. The pair Ç, r\ designate points of intersection of the 
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FIGURE 2.1. Hyperbolic geodesic and unit tangent vec­
tor. 

geodesic, determined by u, with 9B = {z:|z| = l } . ^ is the 
forward end and r\ the backward end as shown in Figure 2.1. The 
third coordinate s is the hyperbolic length parameter along the 
geodesic measured from its midpoint to the base point of M. If 
we let £' = r£ and Y\ = xr\, where T is a Möbius transformation, 
then the relation 

follows from differentiating t(z) = (az + b)/(cz + d) (for some 
a, b, c, d, satisfying ad -bc ^ 0) and elementary algebra. 

In the (£,*/, s)-coordinate system the map r , induced by a 
motion r , becomes 

(2.2) T«f, l | , J) = (T«, Tl| , 5 - ƒ « , If)) 

where ƒ(£, q) corrects for the fact that midpoints of geodesies are 
not preserved under r . The previous remarks about skew products 
apply; and so from (2.1) follows that 

(2.3) rfm-'*"*>!ƒ' 

is another measure preserved by f. 
Because the group of motions acts transitively on U and the 

transformation defining the change of variables from (x, y, 6) 
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to (Ç9ij9s) is nonsingular, the two invariant measures dm and 
dAdd are related by 
(2.4) dm = cdAdO 
for some c> 0 (from a Jacobian computation which we omit one 
can get c = 1/4, a fact which is not used in this paper). 

The geodesic flow Gn -oo < t < oo, consists of the homeomor-
phisms of U defined by u -+ ut9 where u and ut are unit tangent 
vectors to the initial and terminal points of a geodesic segment of 
hyperbolic length t (see Figure 2.2). 

In terms of the (£, rç, s) coordinate system the geodesic flow 
has a particularly simple description: namely, 
(2.5) Gt:{i9fi9s)^(Z,fi,s + t). 
From (2.2) and (2.5), it is clear that Gt and f commute, and 
from (2.5) that Gt preserves the measure dm. 

Let T be a discrete subgroup of motions acting freely on D, 
i.e. T has no elliptic elements (which is equivalent to stating that 
elements of T have no fixed points in D). T acts both on D and 
U. Let S = D/r = {Tz: z e D} denote the set of all T-orbits on 
D and S = U/T = {Tu: u e V} the T-orbits on U. The topolo­
gies on S and S are the smallest ones that render continuous the 
projection maps n(z) = Tz from D to S 9 and lt(u) = Tu from 
U to S. Since T has no elliptic elements, n and ft are locally 

FIGURE 2.2. Geodesic flow. 
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one-to-one; and projections by it and It of neighborhoods of D 
and U form a basis of neighborhoods for S and S. Locally, it 
and 7f are homeomorphisms, and (<!;, rj), (<̂ , r\, s) provide lo­
cal coordinates respectively for S and S. Because the elements 
of T preserve the hyperbolic metric, formulas for ds and dm 
carry over to S and S. We remark that S has constant negative 
curvature -1 (in fact, it is a classical result from differential ge­
ometry that all complete connected two-dimensional Riemannian 
manifolds of constant negative curvature -1 can be realized in 
this manner). We shall assume that S is compact, which implies 
that S is an orientable surface of genus g > 2 (see [Sp, chapter 
9]). 

S inherits the geodesic flow defined by Gt = n o Gt o n 1 . (The 
fact that Gt is well defined—i.e. independent of the choice of 
n~l—is an immediate consequence of the commutativity of Gt 

and T.) ~Gt has an invariant measure that coincides with the m-
measure of any local inverse of It. If we call this measure m, 
then 

(2.6) dm=md^iS. 

We conclude this section with a collection of elementary facts 
concerning geodesies used in this paper. We state these as a theo­
rem and omit the proof. 

Theorem 2.1. (i) Let yx, y2 be distinct geodesies. Then yx, y2 

cannot intersect twice in 5 = D U 9D. 
(ii) Let yx = yx{t), y2 = y2(t) be two geodesies parametrized 

by ty and assume that the end points ^ = lim/-f+ooy1(0, £2 = 
tifl^-H-oo^W are distinct. Then \imt_^+ood{^x{t) y £2(0) = +°°> 
where d{-, •) denotes hyperbolic distance. 

(iii) Let pqr be a triangle whose sides are geodesic segments 
(p ? Q ?

 r £ D). Then pqr has finite hyperbolic area. 

3. FUNDAMENTAL REGIONS 

Let T be a Fuchsian group acting on D. A closed subset F 
of D with interior F° is called a fundamental region of T if and 
only if 

(i) x^0 n T2F° = 0 for Tj £ T2 , Tj, T2 e T. 

(ii) U T € r ' F = »-
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(iii) A(F - Fö) = 0, X denoting two-dimensional Lebesgue 
measure. 

A fundamental region is known to exist for any Fuchsian group 
r [B]. In this paper, we concern ourselves with surface groups— 
i.e. T acts freely on D and S = D/r is compact. For such groups 
there exists a fundamental region with special properties described 
in Theorem 3.1, the proof of which is given in Appendix A. 

Theorem 3.1. Let S = D/r be a compact surface of genus g >2. 
There exists a bounded fundamental polygon F whose boundary 
OF consists of (Sg - 4) geodesic segments. Let s{, ... , $g 4 be 
the consecutive edges of 9F with counterclockwise orientation, and 
a{i) a permutation of order 2 of 1, ... , Sg - 4 defined by 

4g - i mod(8gr - 4), i odd, 
mod(8g - 4), i even. 

(3.1) -»-{£ 
Let st

 l be the same edge as st but with the reverse orientation. 
Then 

(i) for each st there exists a unique element Tt e T such that 

(ii) T^s^i), T.(si+l) are contained respectively in the geodesies 
determined by ^ ( / ) + 1 , s^^ . 

By virtue of (i), a(i) is called a pairing. The content of the the­
orem is illustrated in Figure 3.1 where st is labeled by i. We have 
chosen here a regular polygon—(ii) then forces F to have interior 
right angles—as F can then be constructed by ruler and compass3 

when g = 2. The odd labeled edges are paired off vertically and 
the even ones horizontally. We define st for all integers i by let­
ting st = sj whenever i = j mod(8g-4). Let p. be the intersec-

The ruler and compass construction of a regular n = S g - 4 sided hyperbolic 
polygon with interior right angles involves the construction of a regular Euclidean 
polygon which provides n equally spaced rays emanating from center 0 of D. 
One draws on each ray a circle orthogonal to ÔB with radius y and center at a 
distance x from 0 . In order that neighboring circles intersect at right angles we 
have from plane geometry the formulas x = Wsec 2z anci y - J (sec ?f) - 1 . It 
is well known [V, p. 186] that there is a ruler and compass construction for x, y , 
and angle 2n/n if and only if n — 2spx --pm where the p 's are distinct Fermât 
primes—i.e. primes of the form p = 2 + 1 . Thus, for a ruler and compass 
construction of a regular n = S g - 4 sided fundamental polygon, we require that 
2g - 1 is a product of distinct Fermât primes. Since 3 , 5 , 17 , and 257 are 
Fermât primes, regular 8g - 4 sided fundamental regions can be constructed by 
ruler and compass for g = 2 , 3 , 8, 9, 26, 43, 128, 129, etc. 
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FIGURE 3.1. 12-sided fundamental polygon with pair­
ing. 

tionof st_x and sr Then Tt{pt) = pG{i)+l and Tt{pM) = pa{i). 
Since Tt is angle preserving, (ii) is equivalent to stating that the 
interior angles of F at pt and Pan\+i are supplementary. It is eas­
ily shown that condition (ii) is also equivalent to demanding that 
the geodesies extending the edges of d F be completely in the net 
N , which is defined as the union of all T-translates of dF. We 
shall therefore refer to (ii) as the extension condition. As explained 
later in §5, the extension condition is crucial to our analysis of the 
cross section map associated with the geodesic flow Gt. 

The remaining theorems of this section hold whenever there 
exists a fundamental region satisfying the conditions of Theorem 
3.1. 

Theorem 3.2. The Tt 's satisfy the following relations: (i) Ta^T.= 
1 and (ii) r ^ r ^ r ^ r , = l , where d(i) = a{i) + 1. 

We remark that more is true. Namely, Tx, . . . , TSg_4 generate 
T and (i), (ii) are a complete set of relations for T [M]. We do 
not prove this here as the statement of Theorem 3.2 suffices for 
our purposes. 

Proof (i) Since 7 ^ , ) = ^ , 7 ^ - J , ) =st, we have T^Tfa) 
= s.. A motion which fixes an oriented geodesic segment must be 
the identity. Hence To{i)Ti = 1. 
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(ii) We label both sides of each edge in N as follows. Let st 

be an edge of OF, so that rst is an edge of 5(TF) , T e T. The 
side of xst inner to TF receives the label i. It is readily shown 
that rT~l¥ is the fundamental polygon on the other side of TS( 

and that the label on that side is a{i). We conclude that the four 
fundamental regions meeting at p{ are given as in Figure 3.2. 

Passing from T^T'^T^F into F we obtain 

(3.2) HT * rp—\ rp 1 rp 1 pi -pi 
l i Âû(i) $2(i) $\i) ' 

Hence the composition of the above four transformations is the 
identity, which implies (ii). 

Let 5Z be the geodesic containing st and with the same orien­
tation. Let s( meet 9D at at in the backward direction and bt 

in the forward direction. We define at, bt for all / by requiring 
at = a-, bi = bj wherever i = j mod (Sg - 4). 

Theorem 3.3, The points at, bt 1 < / < 8^ - 4, are all distinct 
and are encountered along 9D in the counterclockwise direction in 
the order ax, b0, a2, bx, ... , a8 4, bs 5. 

5 3 ( i ) i 

Ti" T i ( i ) T * 2 ( i ) 

^ 1 T ; (
1 „ F 

U(i) 

FIGURE 3.2. Fundamental regions at a vertex. 
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The content of Theorem 3.3 is illustrated in Figure 3.1. Another 
way of stating the theorem is that: if st, Sj are distinct noncon-
secutive sides of F, then st, î . don't intersect in D. Even though 
a proof of Theorem 3.3 is given in [BoS], we give one here for the 
sake of completeness. We use the following 

Lemma 3.1. F is convex. 
Proof. The interior angles at pt and P0<i)+X are supplementary. 
Thus all the interior angles are less than n, which implies that F 
is convex [B, p. 154 Theorem 7.16.1]. 

Proof of Theorem 3.3. Suppose that e and e are nonconsecu-
tive edges of F contained respectively in the geodesic 1 and "e 
meeting at p (which may possibly lie in dB). Let q, q be the 
respective end points of e and e closest to p, and ex, ... , en 

the consecutive intermediate edges joining q to q (Figure 3.3 
(i))-

We show that, without loss of generality, we may assume n = 1. 
For suppose n > 1. Since F is convex, the open geodesic segments 
qp 9 qp lie outside F. Hence the curve consisting of the segments 
ex, ... , en , qp, qp is simple and bounds a region R. Let r be 
the end point of en distinct from q , and e* the part of en - en 

starting at r. e* enters R and leaves it at a point t. Since e* 
lies outside F and does not intersect 'e (otherwise en , 1> would 
intersect twice), we conclude that t lies in the open segment qp. 
That is, e, ën intersect and ex, ... , en_x are the consecutive 

P p 

(i) (ü) 
FIGURE 3.3. If edges of F met. 
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edges between e and en . Repetition of the argument eventually 
leads to the case n = 1. 

Let e and e be then separated by ex as in Figure 3.3 (ii). 
Let Fj be the fundamental region adjacent to F on the other 
side of e{. ¥x is inside the triangle qqp. Repeating the argu­
ment of the first paragraph, we obtain a fundamental region F2 

adjacent to F{, inside qqp, which has a pair of nonconsecu-
tive sides whose extensions meet within qqp . Continuing in this 
manner, we obtain an infinite number of distinct fundamental re­
gions inside qqp , which is impossible since qqp has finite area 
(Theorem 2.1 (iii)). 

We conclude this section with Theorem 3.4, which will be used 
later on. 

Theorem 3.4. Ti maps the points at_{t ar bi_x, ai+l, br bi+l 

respectively to aa{i)+l, ba{i), ba(i)+l, ao{i)_{ aa{i), ba{i)_{. 

Proof. The above points are illustrated in Figure 3.4. Theorem 3.4 
follows from the fact that Tt maps circles to circles. For instance, 

FIGURE 3.4. The points of Theorem 3.4. 
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Tt maps s. to s~L . Hence Tt maps bt, the forward end point 

of st, to aa(* , the forward end point of s~^ . Similar reasoning 
applies to the remaining points. 

4. CROSS SECTION 

To study the geodesic flow Vt on S we introduce the notion of 
a cross section map. Roughly speaking, a cross section is a subset 
of S which every G,-orbit hits again and again, both in the future 
and in the past. The correspondence between successive points of 
return to the cross section serves to define the cross section map. 

Let B consist of the ^-projections of vectors tangent to 5F. 
B is the union of 2g closed G,-orbits. B and S0 = S - B are 
both G,-invariant, so that the study of the flow on S reduces to 
the study of the flow on S0 . As a preliminary choice for our cross 
section, we choose Cp to consist of the ^-projections of vectors 
with base point in OF and pointing into the interior of one of 
the fundamental regions bordering on F. Referring to Figure 1.7, 
B is the set of vectors tangent to the system of curves {y.} and 
Cp is the set of vectors not tangent to but with base point in that 
system. Because of the pairing of edges of F, every element in Cp 

is also a H projection of a vector based on dF and pointing into 
F. The geodesic determined by the latter eventually leaves F and 
thus it is clear that Cp is a cross section. 

In order to obtain a simple coordinate description of the cross 
section map, we add to Cp the seemingly artificial sets Cn de­
scribed below. The enlarged cross section C consists of the sets 
Ĉ  , C.., 1 < i < Sg - 4 and j = 0, 1, defined as follows: 

Ĉ  is the set of elements v = n(u), u based at an 
interior point of the edge s( and pointing to the 
exterior of F. 
C.Q is the set of elements v = lï(u), u based 
at the vertex p. and pointing to the interior of 
T~lTZlv, the fundamental region opposite to F 
at pt (see Figure 4.1 (ii)). 

To define C a we choose e > 0 so that the closed disks of radius 
e centered respectively at p{, ... , P8~ 4 are disjoint. Let y be a 
geodesic starting at pt and going into T ^ F . Let u be the unit 
tangent vector to y at the point which is at distance e from p.. 

Cn is the set of elements It(u). 
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In Figures 4.1 (i)-(iii) we depict respectively vectors u for 
which lt(u) e Cp

t , C /0, Cn . We refer to the vectors u as repre­
sentatives of C. 

The sets C^ , C /0, Cn , 1 < i < 8 g - 4 are mutually disjoint. 
Cp is the union of the sets C^, Ci0, and C is obtained from 
Cp by adding the sets Cn . C is coordinatized as follows. For 
v = 7f(u), w = u(£, t], •) chosen as in Figure 4.2, assign to v the 
coordinates (Ç, q). 

We describe the sets Ĉ  , C/y in (£, i/) coordinates and hence­
forth dispense with bold type. For |a| < 1, let ija(z) be the 
fractional linear transformation of period two which fixes a and 
carries dB into itself. For |£| = 1, %(£) can also be described 
as the other end point of the geodesic passing through a and £. 
We write ^(£) for q (£), 1 < i < 8g - 4. 

(i) (ii) (iii) 

FIGURE 4.1. Representatives of the cross-section. 

FIGURE 4.2. Coordinatization of cross section represen­
tatives. 
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We introduce the following notation: for a, b, two points on 
dB, let [a, b], (a, b), [a, b), and (a, £] be the closed, open, 
and half open arcs going from a to 6 in the counter-clockwise 
direction. We refer to these arcs as intervals. 

Theorem 4.1. In (£, f/) coordinates 

Cf = {(t,r,):te (ai9 bt), r, € fo/+1(É), ^ ) ) } 

(4.1) C/0 = { « | , i / ) : « € ( f l / , V i ) ^ = ! ^ « l ) } 
Cn = {« , *):{ €(&•_!, Ô,), * = *,«)}. 

Proo/. We refer to Figure 4.2. 
We show that the (£, ^-coordinate description of Cf is given 

by (4.1). Let v — n(u), u = (£, rç, •) chosen as in Figure 4.2. 
Then £ € (at 9 bt). Fixing £ and varying the base point of u over 
^ , rç varies over the circular arc (fy+1(£)> fy(£))« The arguments 
leading to the coordinate descriptions for C/0, Cn are similar and 
we omit them. 

Let C, = Cf U C/0 UC / P 1 < i < 8# - 4, and Tc the cross 
section map of G, for the cross section C. 

Theorem 4.2. The C. 's are disjoint, C = (J/f Ï"4 c,- > and Tc sat' 
isfies 
(4.2) rc(£,rç) = r,(£,rç), «,if)€C, 
u t o ri«,i;) = (r/«i),r^)). 

Before proving the above, we first sketch C. and C[ = TC(C?). 
The sketches are in the 0, 0 plane where 0 = arg£, <\> = argrç. 
To avoid additional notation, we shall freely interchange Ç with 
arg£ and r\ with arg//. For purposes of visualization, we distort 
distances but preserve order among the points at, bi along the 
£ - f/-axes. Let lt = (a,, &.), ut = (£,, at). We have the following 
graph for Ct. (See Figure 4.3 on p. 260.) 

The sets Cf , Ci0, Cn are respectively the interior, left bound­
ary, and upper boundary of Ct. The corner points I., / /+1, ui_l, 
ut are not in C,, nor are its right and lower boundaries. The 
omissions are indicated in Figure 4.3 by dots and dashed lines. 

By Theorem 3.4, we find that Tt maps the four corner points 
o f Ct:li9 lM, ut_l9 ii. respectively to ua{r)9 lo{i)_X9 uff{i)+l, 
la,fi . Thus, we obtain the following sketch of C\. (See Figure 4.4 
on p. 260.) 

We observe from Figures 4.3, 4.4 that Tc stretches distances 
in the ^-direction and contracts in the ^-direction, reflecting a 
well-known property of the flow G, [Ar]. 
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°i b i-1 °i+1 bi 

FIGURE 4.3. Graph of C{ 

Ucr( i ) + 1 

Jcr(i) 

FIGURE 4.4. Image of Ct under T.. 

Proof of Theorem 4.2. We refer to Figures 4.3 and 4.4. 
For (£, ri) G Cf,let z/ = (£, rj) = n(u), u = (£, rç, •) as in Fig­

ure 4.5 (i). The geodesic ray y+(u), which begins at the base point 
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r+(u') 

<^ïfi> 
i 

F IT, 
I 
I 
I 

F i 
• r+("') \ / ' 
! T i 

JÙ Ĥ 
(i) 

y + ( u ) 

(ü) 

y + ( u ) 

(iii) 

FIGURE 4.5. Action of Tc on vectors. 

of u and leaves F, is identified with the geodesic ray y+{u) = 
7̂ .(y+(M)) which begins at the base point of u = (T.(Ç ,*/),•) and 
enters F. Let u = (Tt(Ç ,*/),•) be the unit tangent to y*{u) at 
the point of exit from F. Then Tc{y) = n{u") = Tt(£, rf). 

The cases C/0, Cn are treated similarly as illustrated in Figures 
4.5 (ii), (iii). In all cases u = (Ç, q) = n(u) and Tc(v) — n(uf) = 

In Figure 4.6 we sketch C both as a union of Ct 's and C,' 's, 
Ct and C- being labeled respectively by i and /'. To facilitate 
the sketching, we have treated the set of (Sg - 4) points ai, bt 

as if they were spaced uniformly over dB. In reality this is not 
so, and the graphs are distortions of the real ones for Ct and C\. 

v\ 
j -

FIGURE 4.6. Action of T, 
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Observe that the set of points {ut} and the lower boundary 
of C are not in C. The first omission reflects the fact that the 
vectors u used to coordinatize C are not tangent to 9 F. The 
second omission reflects the fact that the vectors u, which are the 
tangents to geodesies through pi+l and used to coordinatize C, 
do not point into T~lF. 

We remark that the (^-invariant measure m induces a Tc-
invariant measure of mc on C. The measure is defined as 

_ m(g, („):„ . * , (><,< A» 
C As->0 AS 

for any measurable subset B c C. In the Ç, r\ coordinates dmc 

is obtained by dropping ds from dm, i.e. 

(4.3, *n,c=fM. 
A geometric proof that mc is rc-invariant is given in [AF1]. 

The Tc-invariance also follows from formula (4.3) and the obser­
vation that, in the £, Y\ coordinates, Tc piecewise transforms 
these variables by the same Möbius transformation. 

5. CONJUGACY OF CURVILINEAR AND RECTILINEAR MAPS 

It seems difficult, if not impossible, to obtain the ergodic prop­
erties of TC(Ç, rf) directly from formula (4.2). To do so, we de­
fine an auxiliary map TR(Ç, rj) which will be shown conjugate to 
Tc(t,tl). 

The set R is obtained from C by replacing the boundary curves 
of C by polygonal lines joining successive lt 's and ut 's in the 
manner indicated in Figure 5.1: i.e. lt is joined to lM , and ut 

to ui+l, by moving first up and then right. 
As in the case of C, R does not contain the points lt and 

ut. R contains the boundary curve joining the ut 's and does 
not contain the boundary curve joining the /. 's. Let Rt be the 
part of R for which Ç G [ai9 a/+1) and St the part for which 
r\ G (bt, bi+l], Rt and St are sketched in Figure 5.2. Observe 
that in drawing R. and St we have used the fact that bt_x lies 
between ai and ai+l, and aM between bt and bM . This is a 
consequence of Theorem 3.4, which itself is a consequence of the 
extension condition. Thus the definition if R is intimately tied to 
the extension condition. 

The boundaries of Rj are obtained by passing the appropriate 
horizontal and vertical lines through the points lt, lM , ut__x, ut, 
as indicated in Figure 5.2 (i). Similarly, the boundaries of St are 
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FIGURE 5.1. Action of the rectilinear map on its do­
main. 

\ 

Ri j 

} i+ l t 
"l+2f 

1 + 2 N 1 
S| I 

'i + 1 

a i b i - i a i + i 

FIGURE 5.2. Portion of the rectilinear domain. 

•*i+i 

*i ' ' i+l ' Ui+\ > W/+2 " T„ is obtained with the aid of the points /,., /, 
defined by 

(5.1) TR^,Jj) = T^,rl)9 ( ? , * )€* , . 

Let R't = TR(Rt) = T^Ri). Since Tt maps /., //+1, ut_x, w. 
respectively to i*ff(0 , / f f ( |>1, ua(i)+1, la{i), we get *; = S f f ( / M . 
Thus TR is a one-to-one mapping of R onto itself. 7^ is depicted 
in Figure 5.1, where Rt and R't have been replaced respectively 
by the labels 7 and 7 . 

The R. 's are straightened out versions of the Ct 's. For this rea­
son we call C and R respectively the curvilinear and rectilinear 
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domains. Similarly we call TC(Ç, Y\) and (Ç, tj) the curvilinear 
transformation and coordinates, and TR(Ç,7j) and (Ç,rf) the rec­
tilinear transformation and coordinates. 

Since TR(Ç9 rj) is defined by piecewise transforming the vari­
ables by the same linear transformation, it also preserves the mea­
sure dmc = \d£\ • \drj\l\^ - rj\2 . 

The reason for introducing TR stems from the fact that it has a 
feature which Tc does not have. Namely, TR maps any vertical 
line into part of a vertical line and TR

l maps any horizontal line 
into part of a horizontal line. Thus we have 

TR(t, If) = (ƒ«), •), where ƒ(«) = Ttf), £ € [*,, aM) 

TR\t,rj) = (',gm, where ^(?) = r.(?), ?€(£>,_!>*,]. 

The maps ƒ(£) , g (£) have been studied by Bowen and Series 
[BoS]. We refer to them as the left and right Bowen-Series maps. 
ƒ(£) is called a factor of TR , and TR an extension of ƒ . Sim­
ilarly, g(£) is a factor of TR

l and TR
l an extension of g. In 

§7, we shall derive the ergodic properties of TR from those of ƒ 
and g. 

We set up a conjugacy between Tc and 7^ by constructing a 
one-to-one map <£> from C onto 1? satisfying 

(5.3) r ^oO = O o r c <D= identity on O = C n R . 

Let 

[/. = part of C - i? for which Ç e [at, ai+l), 

77,= part of R-C for which Ç e [bt_{, ^ ) . 

£/,. and T7/ are depicted in Figure 5.3. We refer to the Ui 's and 
Vi 's as "bulges" and "corners." 

Thus C is the union of O and bulges, and R the union of 
O and corners. We obtain a conjugacy map O which maps each 
bulge into a corner. 

Let &c = {OfUl9...9 t/8,_4} , ^ = {O, ^ , ... , F8g_4} . 
Partition C, by &>c V T " 1 ^ , and R. by ^ V 7£ ̂ . The re­
sulting partitions f or Cn R; and their TC9 TR-images are sketched 
in Figures 5.4, 5.5, where we have used the notation D9

t = Tc{Dt), 
etc. Each of the sets appearing in Figures 5.4, 5.5, contains its up­
per and left boundaries but not its lower and right boundaries. 
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>*i+1 

"i-I 

U| 

_^/ 

1J 

R i + 1 

FIGURE 5.3. Bulges and corners. 

m/*er(\) 

FIGURE 5.4. Action of curvilinear map on Dt, etc. 

Figures 5.4, 5.5 put into evidence the following set relations. 
They will be used to prove Theorem 5.1. 

Gi = Gi>Xi = Xi+\ 
?-4 ?-4 

0= CiiGtUXt)- ( J ^ U ^ ' ) 

Ut = Dt_x U E, U Ft, F . = Dt U Et U Tl+1 
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Rt = 

TR - T., 

Ri * 

* i + 1 

*cr(i)-1 

FIGURE 5.5. Action of rectilinear map on D., etc. 

(5.5) - { 

We define the conjugacy map O by 

I = identity on O 
Tp{i)oTt on Ut, l<i<Sg-4 

where p(i) = a (J) - 1. 
We prove that O is a one-to-one map from C onto R satis­

fying (5.3). We have arrived at the formula for <E> from the fol­
lowing considerations. Suppose that O = I on O and O satisfies 
the conjugacy relation of (5.3) on Xt. This forces O = 7 ^ 7 ^ 
on X[, which is the same as 0 = T i,t)T ,t) on X\ (see formula 
(5.11)). By (5.4) X\ is a proper subset of U ^ , and we simply 
guess that O = T i,t)T ^ extends to all of U' ,* . This formula for 
O becomes (5.5) after replacing p(i) by /. We remark that O is 
uniquely determined by (5.5). We omit the proof of uniqueness 
since it is not required later on. 

Theorem 5.1. T ,*oTt is a one-to-one map form Ut onto Ui+4g_{, 
mapping Dt_{, Et, Ft respectively onto Di+4g__{, E i+4g-l > 

i+4g ' 

To prove Theorem 5.1 we first collect some of the mapping 
properties of Ti. We recall from §3 that û(i) = a(i) + 1. 

Lemma 5.1. Let u. = {bi, at), lt = (at, bt), and y. the curve with 
Ui> UM I i - i equation Y\ = ?/,•(£)• Tt maps the points ut_ 

/., lM respectively to um, la{i), up{i), lû{iy uo{i)f lp{i),andthe 
curves y.9 yM respectively to yû{i)) ya{i). 

The lemma follows directly from Theorem 3.4 and the fact that 
T. maps the points (p., pM) to (pm , pa{i)). 
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Proof of Theorem 5.1. We illustrate the decompositions of Un 

Vi in Figure 5.6. The pairs of regions {Di_x,Ei), (E^F^, 
(Dt, ~E.), (Et, F / + 1) are separated respectively by: the curve yt, 
the vertical line £ = T^l(aa^_2), the curve T~l(ya(i)+2), the ver­
tical line Ç = a / + 1 . 

We must show that T ,ï)oTi maps /., yM , //+1 respectively to 

*W-2> J V ^ - i ^ + ^ - i ( h e n c e ^ ( o ° r* m a P s ^ o n t o 

These facts follow readily from Theorem 3.4, Lemma 5.1, and the 
relation 

(5.6) cxp(i) = i + 4 g - 1, 

which is a consequence of (3.1). To illustrate, we give the details 
for lr By Lemma 5.1 

(5.7) TmTt{lt) = Tp(l){ua(i)) = Tp{i){um+l) = uAt). 

By (5.6) 

(5.8) p2(i) = ap{i) - 1 = i + 4g - 2. 

Hence 

(5-9) T^TM = ui+4g_r 

Theorem 5.2. O satisfies the conjugacy relation (5.3). 

Proof. We rewrite (5.3) as 

(5.10) 

and verify it separately on each of the five parts of Ct. In each case 
we draw a commuting diagram and use (5.4) along with Theorem 
5.1 to express the four maps on the left side of (5.10) as products 

' - 1 / 

r^oOoT^oo l =i 

1' «;riW 

U; 

/ v / ^ i+i 

/ / , *+2 

(/. = 

. - " \ 

M. 
ri*L.-' 

V i u i - l 

FIGURE 5.6. Partitions of bulges and comers. 
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of the Tt 's. We work out details for Xt, the other parts being 
treated in similar manner. We find in each case that (5.10) is 
either trivial or becomes the group relation of Theorem 3.2(ii). 
To get (5.10) from the following commutative diagrams we start 
at the lower right corner and proceed counter-clockwise keeping in 
mind that T. 

xr. 
- T 

*l 

o=/ 

Xi+\ 

Jk 

TR= 

> 

*M 

K 
[•-w, 

Since X{ c O and X[ c Up((), we have O = I on X( and <I> = 
Tp2(i)Tp{i) on X\. (5.10) becomes 

(5.11) Ti+l ° Ta(i) ° T<rp(i) ° Tap2(i) = L 

Letting j = ap (i), (5.11) becomes Theorem 3.2 (ii). 
Gt: 

Tr = T; 

0>=/ I-
(5.10) becomes 

(5.12) 

Et: 

T' oT 1 = I . 

E 
i+4g-l rp _rp-l 

'R-'pii) 

<D=7 

rnor.-or.or1 = /. 
p{i) p{i) i * 

(5.10) becomes 

(5.13) 

Observe that on T£i+4 x, 7^ = Ti+4g_x. By (5.6) we rewrite 
TR = Ta (|.v = r ^ l as done in the above diagram. Similar use of 
(5.6) is made in the following diagrams for E. and Ft. 
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Dt: 

(5.10) 

(5.14) 

Fr 

o= 

D
 Tc=Ti) D> 

i i 

Vi+4g , ' 
1R~1 p(i+l) 

becomes 

(5.10) becomes 

TM ° T*(i) ° Tap(i) ° V ( 0 = 7 

rc=r, , 
JT • " t J/ . 

1 I 

f7 > 
/+4g T _ T 

ij?~ i[ff/»(i)+i] 

(5.15) Tapmi o rp ( 0 o r ^ . ^ ^ o Tap(pW_x) = i. 

Letting j = ap2(i) in (5.14), and j - ap(p(i) - 1) in (5.15), they 
both become Theorem 3.2 (ii). 

We conclude this section with an interpretation of both Tc and 
TR as actions on subsets of U. Although it adds nothing new to 
our treatment, Series [S2, S3] makes use of it to establish that 
TR is a cross section map and is conjugate to Tc. The proof of 
Theorem 4.2 shows that we may think of Tc as an action on the set 
of representatives of C given in §4. In this interpretation Tc(u) 
is defined to be the vector u" appearing in the proof of Theorem 
4.2. Similarly, we may think of R as the set of vectors O(w), 
u varying over the set of representatives of C. We then define 
TR(Ou) to be <E>(rcw). Remarkably, the vectors O(w), with the 
exception of those in 0((JCn) , are all based either on dF or 
OF., 1 < i < %g - 4, the dF( 's being the fundamental regions 
opposite to F at its vertices. In all cases these vectors point out 
from the region on whose boundary they are based. R is obtained 
from C by: removing certain vectors based in 9F, and adding 
certain vectors based in OF,., 1 < i < 8g - 4. The removed 
vectors correspond to bulges and the added ones to corners. One 
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can produce a figure for TR analogous to Figure 4.5 for Tc. 

6. BOWEN-SERIES MAP 

In §5, we introduced the left and right Bowen-Series maps of 
dB onto itself. In this section, we describe properties of these 
maps leading to the fact that they both are expansive and ergodic. 

We recall 

Definition 6.1. Let 

M) = T^), te[anaM)9 l < / < 8 * - 4 . 

We call ƒ({), g(Ç) the left and right Bowen-Series maps of dB 
onto itself. Let 

(6 1) ^ = ^ ' * / - i ) ' ^ ^ I ^ J » 
Jix = K+i>*/]> ^ 2 = ( * / _ i 5 ^ + i ] . 

We depict these intervals in Figure 6.1. 
Let ZPj = {7^, / j 2 , . . . ,/ (8^_4)2}, &j = {/li? JÏ2, . . . >J(zg-4)2}' 

&>!, &j are partitions of dB. 

Theorem 6.1. ƒ (£) w Markovian and aperiodic with respect to &t. 
7%w means respectively that: 

(i) 7%e f-image of any interval in &l is a union of intervals 
in 0ö

l. 
(ii) There exists a positive integer n such that dB is the fn-

image of any interval in SPj. 

Similarly\ g is Markovian and aperiodic with respect to &j. 

Proof. The proof of Theorem 6.1 is given in [BoS]. We give it here 
for the sake of completeness. 

FIGURE 6.1. Intervals on dB. 
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(i) From Theorem 3.4 we obtain 

fVi) = Jr((7(/)+l)2
U/((7(0+2)1' 

/ ( 7 / 2 ) = 7(<x(/)+2)2
 U ^(0+3)! U ' 'U / ( (7( / ) -2) 1

U j r ( (T( / ) -2) 2 -

SM) - J(0u)-i)U J,a(i)_ ((7(/)-2). 

S(JiJ = 4,m-2V. U ' ( , (0-3) , U ' ' U ^ ( O + y , U/((7(/)+2)1-

X 0 - i ) 2 

' ( f f ( i ) -2 ) 2 

(6.2) gives (i) for ƒ , and (6.3) gives (i) for £ . 

(ii) We prove (ii) for ƒ , the proof for g being similar. We 
show that for any /, 

(6.4) 9Dc/(/,2)U/(/ ( ,+ 1 ) 2). 

From (3.1) we get 

(6.5) a(i + 1) = <T(I) + 4 ^ - 3 mod(8# - 4). 

From (6.1), (6.2), and (6.5) we get 

(6.6) f{Itj) = [bj+2 , aj) , /(/ ( /+1 )2) = [èy+4-l * ^+4^-3> 

where j = o(i) - 1. 
Going along dB counter-clockwise we encounter successively 

the points a., &.+2 , aj+4g_3, bJ+4g__l. Hence, (6.4) follows from 
(6.6) (see Figure 6.2 on p. 272). 

From (6.2) we get that for any i, ƒ (I. ) contains two intervals 

h > 7(fc+i) f o r s o m e k • lx allows from (6.4) that ÔD c f2(It ). 
From (6.2) we also get that for any i, f {I. ) contains an inter­
val ll , / depending on il9 with a similar statement holding for 

ƒ(ƒ, ) . We conclude that ÖD c f (I ) , 9 B c f{L ). 
'2 '1 '2 

Theorem 6.2. For any Borel subset A of dB, let fi{A) = fA h(Ç)\dÇ\, 
v{A) = JA k(t])\dt]\, where 

ra,-\ 

* ( « = 

(6.7) 

m = { 

( p- 1 \dr,\ 
I 4 + , l£->/l2 

I r> w«\ 
l A , , , i s - > ? r \dti\ 

fai-i dr} 

k \s-n\2 
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FIGURE 6.2. Images of intervals. 

Then 
(i(f-lA) = »(A)9 v(g~lA) = HA). 

We remark that the above integrals can be evaluated in closed 
form. We do not write down the formulas as they are not required 
later. 

Proof. Let *{({, */) = £, n^Ç, rj) = r\, {Ç,ri)eR. Then 

fi(A) = m(7tç A), v(A) = m(7i~ 4̂) 

where rfm = \dÇ\ \dti\/\Ç - */|2 . 
Since fon^ = n^oTR9 

7T̂  ƒ =TR 7Cç . 

Since m is 7^ -invariant, 

fi(f~lA) = m(7tçlf~lA) = m(TR
ln^lA) = m(n^lA) = /i(^l). 

Similarly, we show i/(g_1^4) = i/(4). 

Let f~n&i = {f~nI> I e &>j} and &\n) be the common re­
finement of ^ , Z " 1 ^ , ... , / " ^ . « ^ partitions ÔD into 
intervals. Let ||^(Al)|| = Sup|J|, |/| denoting arc length of I. 
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Similarly we define Sfif1 and ||«^jw)||. The following result is 
needed in §§7,8. It is a consequence of Theorems 6.1, 6.2, and the 
converse to the folklore theorem (Theorem B2 of Appendix B). 

Theorem 6.3. ƒ is expansive. This means that there exists an in­
teger n > 0 and e> 0 such that 

| fn'(x)\ > 1 + e, x e dB but x ^ end point of interval in «^ . 

As a consequence we get 

\\&>{n)\\ = 0(0""") for some 0 < 0 < 1. 

Similar statements hold for g. 
We remark that Series [S2, p. 355] proves the same result by 

a completely different method. Her proof has the interesting fea­
ture that it involves the interior of the disk, whereas the maps ƒ 
and g are defined only on the boundary. The idea is as follows. 
Iterates of the map are piecewise equal to motions—i.e., Möbius 
transformations mapping ED onto itself—specified by words in the 
generators. Upon iteration these motions map a central funda­
mental region to ones which are, in the Euclidean metric, expo­
nentially small and close to the boundary of the disk. Intervals on 
the boundary in a basic partition refined by iteration of the map 
are related to fundamental regions in the interior, and this relation 
forces these intervals also to be exponentially small. Expansiveness 
is then a simple consequence of this fact. 

Opposed to the proof of Series, ours involves only the domain 
of the maps ƒ and g . The ingredients in our proof are Theorem 
B2 and formulas (6.7) for the invariant measures for ƒ and g 
(although we would never have found these if not for their relation 
to the geodesic flow on D/T, a concept related to the interior of 
D). 

As another consequence of Theorems 6.1, 6.2, and B2 we obtain 

Theorem 6.4. ƒ and g are ergodic with respect to Lebesgue mea­
sure. 

7. ERGODIC RELATIONSHIP OF ƒ AND Vt 

We now employ results of [Ro] concerning endomorphisms and 
automorphisms of a Lebesgue space, these terms referring respec­
tively to many-to-one a.e. and one-to-one a.e. measure preserving 
transformations acting on measure spaces that are measure theo­
retically identical with the unit interval. By virtue of the relations 
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fo7tç = 7tçoTR and g°^Yi = ^n°TR
l introduced in §6, the right 

and left Bowen maps ƒ and g are respectively factor maps of TR 

and TR
l. Conversely, TR and TR

l turn out to be the natural 
extensions of ƒ and g. This means: (i) TR is one-to-one onto 
a.e.; (ii) the Borel field generated by (J^l0TR

nsf is B^, where 
stf = 7t^lBdB and B^ , B a D , are respectively the Borel fields of 
measurable subsets of R and dB . (i) is true by definition. To 
prove (ii) it suffices to show that the common refinement of the 
partitions TR(n^lâ^j)9 -n < k < n, consists of rectangles, the 
largest of whose diameters decreases to 0 as n -• oo. This fol­
lows from the fact that vertical and horizontal distances contract 
exponentially under the respective actions of TR and TR

n , which 
in turn is due to the expansiveness of ƒ and g. 

An endomorphism ƒ of a Lebesgue space is called exact if it 
has trivial tail field—i.e. A e Cï^Lo / ~ " B , where B is the Borel 
field of measurable sets, implies /i(A) = 0 or 1. Thus the left 
and right Bowen-Series maps are exact from Theorems 6.1, 6.3 
and Lemma B.4. An automorphism T of a Lebesgue space is 
called Kolmogoroff if there exists a sub a-algebra s/ of B such 
that (i) J / C W , (ii) the Borel field generated by U^Loo r " ^ 
is B, and (iii) fl^L-oo Tn£f is trivial in the sense that it contains 
only sets of measure 0 or 1. 

Theorem 7.1 [Ro]. An automorphism is exact if and only if its nat-
ural extension is Kolmogoroff. 

Corollary 7.1. 7^ is Kolmogoroff In particular, it is ergodic [Ro]. 

Theorem 7.2. The following are equivalent: 

(i) G, is ergodic. 
(ii) Tc is ergodic. 

(iii) TR is ergodic. 

Proof. The equivalence of (i) and (ii) follows from elementary set 
considerations, and that of (ii) and (iii) from conjugacy. 

8. SYMBOLIC DYNAMICS OF THE RECTILINEAR MAP 

Let (X, T) be an abstract dynamical system, i.e. a space X 
and a mapping T of X into itself. Let sf be a finite alphabet 
of symbols and & = {Xa : a e £f} a partition of X into disjoint 
subsets. We associate with each point x e X a sequence {sn) of 
symbols sn = sn(x) e s/ according as Tnx e Xs . The sequences 
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describe the history of orbits through the partition &. They are 
bilateral, -oo < n < oo, or unilateral, 0 < n < oc, depending on 
whether T is invertible or not. We use T to indicate invertible 
maps and ƒ to indicate noninvertible maps. We call respectively 
the sequences {sn} corresponding to T and ƒ , the T- and ƒ-
expansions of x. 

Let Q = Q(T) be the space of sequences {sn(x)}, x varying 
over X. We refer to this description of £2 as the orbit history 
description. Let 0 denote the mapping of X onto Q defined by 
(j)(x) = {sn(x)}, and a the shift on £l(T) defined by cr{sn} = 
{sn+l} . We call the pair (Q(T), a) a symbolic dynamical system. 
Since Tn(Tx) = Tn+l(x) e X , we have sJTx) = sn.Ax) 
or <t>{Tx) = a{(j){x)). For invertible 0 we obtain the conjugacy 
T = cj)-l(j(i). 

The orbit history description of Q is inadequate in that it does 
not give a procedure for deciding which sequences are in it. What 
is needed is another description of Q given by a set of simple 
admissibility rules. Our admissibility rules are specified by forbid­
den blocks of symbols, the finite blocks denoted by Jz^ and the 
infinite ones by Jz?̂  . The symbolic systems defined by the J2 -̂
restrictions are either Markovian or sofic. The further imposed 
«5^-restrictions remove from these symbolic systems a negligible 
set, a concept defined in Appendix C part lib. The sequence space 
defined by the admissibility rules will be denoted by £la(T). 

In order that the two descriptions specify the same sequence 
spaces, i.e. Q,(T) = Qa(T), we must show that y/{sn} = f] T~nXs 

^ 0 if and only if {sn} e Cla(T). i// will be a one-to-one map 
from Qa(T) onto X if and only if *//{sn} consists of a single 
point x e X for all {sn} e Qa(T). 

Let TR be the rectilinear map and ƒ the factor map of TR , i.e. 
the left Bowen-Series map. In the present section, we show that ƒ 
and TR are conjugate to shifts on sequence spaces described by 
simple admissibility rules. For the curvilinear map Tc , we have 
no corresponding result. 

When discussing ƒ , we consider the two partitions of dB: 
{I{, I2, ... , ISg_4} where It = [at, ai+l], referred to as the coarse 
partition,and {1^,1^,..., I{Sg_4h} where /,. = \a{, bt_{), l^ = 
[6/_i > fl,-+1) > referred to as the fine partition (see Figure 6.1). We 
then replace respectively Q(ƒ) by Q(ƒ) and Q(ƒ). Simi­
larly, when discussing TR, consider the two partitions of R again 
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referred to as coarse and fine. {Rx, R2,..., Rig_4} and 
{Rh ,Rh,..., R{Sg-4h}, where R, = TT"1/,. , Rik = njllik and 
ie{l,2,...,Sg-4}, ike{ll,l2,..._L{*g-4)l,J*g-4)2}. 
We then replace respectively £l(TR) by Sl(TR) and Q(TR). Cor­
responding change of notation holds for Qa(f) and Cla(TR). 

We describe the spaces Ua(f), ÏÏa{TR), Ua(f), &a{TR) spec­
ifying in each case sf , &0, -2^, . For U(f), £ïa(TR) the blocks 
of Jz^ are of length two. In these cases, J2£ is equivalent to a set 
ET of Markovian transition rules imposed on the members of $f 
which require sn —• sn+l for all n . 

For economy of notation we drop from now on the bars from 
| , 7 / . We let 

0(i) = <7(i) + 1, p(i) = a{i) - 1, 
a(i) = a(i) + 2, fi{i) = a(i)-2. 

In each of the descriptions given below i varies from 1 to 8 g - 4 . 
I. Q a ( / ) : ^ = { l 1 , l 2 , . . . , ( 8 ^ - 4 ) 1 , ( 8 g - 4 ) 2 } . 

3r:il^(o(i) + l)2,(o(i) + 2)l, 
i2 - (*(/) + 2)2, (ff(i) + 3),, ... , (ff(i) - 2),, (<r(/) - 2)2. 

•%>: *'i- ( « ( 0 ) i , ( « ' ( O ) , . - , 

/ 2 , ( / ? ( / ) ) 2 , ( / ? 2 0 - ) ) 2 , . . . . 

II. 0^(7^) : j / and F same as for Q a(/) . -5^ consists of 
^ for ÏÏa(f) together with 

. . . ( ^ ( 0 ) 2 , W ) ) 2 . « 2 . 

• • • (<*2(0)2. (« (0 ) 2 » h > ( a ( 0 ) 2 » (a2(*'))2 • • • • 

III. n a ( / ) : j / = { l , 2 , . . . , 8 g - 4 } . 

=2£: i, <r(i);/,/>(/); 

i, 0(0, <*#(/), ... , afc0(/), 0afc0(/) ; 0 < k < oo. 

IV. H (7^):J* and ^ same as for ÏÏ (ƒ). -2^, consists of 
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-2^ for Qa(ƒ) together with 

. . . ,P2(i),P(i)>i, 

... , a (/), a(i), i, a(i), a (/), ... = ... , i, a(i'), I, a(i), I, ... . 

Ignoring the . 5 ^ removals, (£2^(7^), a) is a topological Mar­
kov shift and (Qa(TR), a) a sofic system. Indeed the latter is 
strictly sofic (see Appendix C). Although usually one prefers a topo­
logical Markov shift over a sofic system, in some respects the sofic 
system is superior. We shall clarify this point in the concluding 
paragraph of this section. 

We prove a series of theorems to the effect that for each of the 
cases I-IV, £l(T) = Qa(T) and T is conjugate to the action of a 
on Çla(T). This amounts to proving the following proposition: 

(p) 
(i) If Tnx € X. for some x e X and all n, then {s„} e 

(ii) If {s„} e CIJT), then f] T " I consists of a single point 
xeX. 

All proofs of this section routinely use (P), but niggling de­
tails appear making for tedious reading. We include the proof of 
all cases for the sake of completeness. From here through Theo­
rem 8.4, the sequences {sn} consist of symbols from the alphabet 
{li» 12 ( 8* -4 ) 2 } . 

The following lemma is the nested interval theorem modified 
to half-open intervals. As shown later, it explains the -2^-list for 

Lemma 8.1. Let In = [an, bn), an < bn for 0 < n < oo; I{ D 
I2D-DlnD-; l i m ^ l / ^ O (where \In\ = bn-aH). The 
In 's have a common point, which is unique, if and only if not all bn 

agree beyond some n. A similar statement holds for In = (an, bn] 
with an replacing bn. 
Proof Let In = [an, bn), ln = [an, bn]. {7 j is a nested se­
quence of closed intervals with l i m ^ ^ \In\ = 0. By the nested 
interval theorem, there is a unique point p € 7n , 0 < « < o o . 
Since In c ln, the In 's have at most one common point, which 
must then be p. Suppose not all bn agree from some n on. For 
each n choose m > n so that lm c In. Then p e lm c In. 
On the other hand, suppose bn = b for n > n0. Then b e ln, 
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0 < n < oo, so that p = b. Since b £ In for n > n0, the In 's 
have no common point. 

The proof for In = (an, bn] is identical. 

Definition 8.1. A finite consecutive block sm, ... , sn is called both 
ƒ- and TR-admissible if and only if st -> si+l, m < i < n, 
satisfies the transition rules for &a(f) (which are identical with 
the transition rules for £la(TR)). An infinite consecutive block 
{sn} is called both ƒ- and TR-admissible if and only if this is the 
case for every finite consecutive block in {sn} . 

The above notions can be stated in another way. In §6, we 
showed 

/g jx f Wi) = 7(<7(0+l)2
 U /(<r(0+2)1 ' 

I fVi2) = 7(<r(i)+2)2
 U /((T(0+3)1

 U • ' ' U /(a(/)-2)1
 U 7(a(i)-2)2' 

__ From (8.1) we find that k —• / satisfies the transition rules for 
Ua(ƒ) if and only if f{Ik) nll*0. Since ^ ( É , n) = ( ƒ(£), •), 
we have TR(Rk) n i?; ^ 0 if and only if f(Ik) nll£0. Thus 
s„ , • • • > s„ is /-admissible is equivalent to f(L ) C\ L ^ 0 , 
m<i<n, and to 7^(1* ) n R„ / 0 , m<i<n. 

The intervals in (8.1) are listed in the order in which they are en­
countered when f (I. ), k = 1, 2, is traversed counter-clockwise. 
We have chosen thejorder of the elements after the arrow in the 
transition rules for Qa( ƒ) to conform with the order in which they 
appear as indices in (8.1). 

We order the finite /-admissible sequence with the same sQ lex­
icographically, i.e. let s = {sQ,...,sn9 sn+l}, s' = {s'0, ... , sn, 
Vu} wiïk si = s'i> 0 < * < « > and sn+l ^ ^ + 1 . We say that 
s < s' if and only if s'n+l occurs after sn+l in the transition rules, 
i.e. we have sn^-- • ^ 1 - , ^ + 1 - - - . 

We give dB the counter-clockwise orientation, so that it is 
meaningful to speak of left and right end points of intervals in 
dB. 

Lemma 8.2. (i) Let s0, ... , sn be f-admissible. Then I(s0... sn) = 
f\:=o / (̂ s ) *s a nonempty interval closed on the left and open on 
the right 

(ii) If {sn}y 0 < n < oo, is f-admissible, then 
l im^J/(s 0 . . . sM)[ = 0. 



GEODESIC FLOWS, INTERVAL MAPS, AND SYMBOLIC DYNAMICS 279 

(iii)Let s = {sQ...sn,sn+l}<s' = {s0...sn,s'n+l}. I(s0...sn+l), 
I(sQ... s'n+l) are both sub-intervals of I(s0... sn), the first sub-
interval appearing to the left of the second. 
Proof, (i), (iii) are proved by induction on n . They follow readily 
from the fact that ƒ is a one-to-one, continuous, sense preserving 
map on each I., and we omit the details of the proof, (ii) follows 
from Theorem 6.3. 

Lemma 8.2 has the 

Corollary. Let s0, ... , sn, sn+l be f-admissible. I(s0... sn), 
I(s0... snsn+l) have the same right end point if and only if sn = 
h> V i = W))\ or sn = h> V i = (P(*))2 for some 1 < i < 
8 * - 4 . 

Theorem 8.1. S(ƒ) = Ua(f) and ƒ = <fTl o o o <j>. 
Proof We prove (P) for ƒ . (i) Let ƒ"(£) € L , 0 < n < oo, 

n 

which is the same as £ e I(s0 ...sn)9 0 < « < oo. Since f"+l(4) = 
ƒ(ƒ"£) G ƒ (J, ) n L ,{s\ is /-admissible. We show that the 

sn sn+l " ^ 

«5^-blocks of U(f) do not occur in {sn}, so that {sn} e ïia(f). 
By Lemma 8.2, {I(s0...sn)}9 0 < n < oo, satisfies the hypothe­
ses of Lemma 8.1. Since £ G fl^Lo^o • • "O > w e c o n c lud e fr°m 

Lemma 8.1 that these intervals do not have a common right end 
point from some n on. J3y the corollary to Lemma 8.2, this means 
that the <S^-blocks of S a( / ) do not occur in {sn} . 

(ii) Let {sn} e fia(/). Then {sn} is /-admissible. By Lemma 
8.2, {I(s0... sn)}, 0 < n < oo, satisfies the hypotheses of Lemma 
8.1. {sn} does not contain any of the «S^ -blocks of ÏÏa( ƒ). By the 
corollary to Lemma 8.2, this means that the intervals {I(s0... sn)} 
do not have a common right end point from some n on. We 
conclude from Lemma 8.1 that n%s0f~

n(Is ) = CCLo ' C V - ^ J 
consists of a single point £. 

Next, we consider H{TR). In Figures 8.1 (i), (ii) on p. 280, we 
sketch i?, , R. and their rp-images 1?' , R', 

Let Lt = n {R!i ), k = 1, 2. From Figure 8.1, 

(8.2) L, = ( ^ ( / M , aa{i)+l], £<2 = ( f t , ^ , ba{i)] 

From J? = T~l(R'ik) and 7 ^ , i/) = (., g(r,)) we get *(L ) 
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Q( 

a . Ai U i - V 

b i + 1 ' 
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••• 

R i1 % 

UU 

c 

1 
1 

1 

b cr ( i ) 

acr(i)+lt 
b o - ( j ) - l 

I uo-(i) + u 

' ' 

«H I 

> < 

• R î 2 

_ 

> i > 
a i b i - 1 a i -M 

(i) 

bcr(i) b a ( i ) + l a c r ( i ) - i 

(ü) 

FIGURE 8.1. i?; , JR, and R' , i?' . 

We list the sets R's meeting Rt, where s9 t e {ll9 l2> ••• , 
(Sg - 4)2} . As remarked earlier, !?, r\R's^ 0 if and only if s -> t 
satisfies the transition rules of Çla(TR). From these we get 

R. i s m e t b y : ^ ( tT( /+2))2
jR((T(/+3))2 > * ' * > ^ ( i - ^ > ^ ( 1 - 2 ) ) , 

i?/2 is met by: R{a{i+2))2
R(o(i+3))2 > ' ' ' > ^ ( i - ^ (̂<y(/-2))2 '^(/-l)), 

Applying 7r to the sets, we get 
(8.3) 
8(Li) - Lo{i+2)2

 U La{M)2
 U * ' ' U L(tx(*-3))2

 U L{°{i-2)\ 

S(Li2) = La(/+2)2
 U L(j(H-3)2 U • • • U ^((7(/_3))2

 U L(o(i-2))2
 U ^ ( i - l ) ) , 

Formulas (8.2) show that the intervals on the right side of (8.3) 
are disjoint and written in the order in which they are encountered 
when g(L. ) is traversed counter-clockwise. In Figure 8.2, we 

k 

sketch, for fixed t, the intersections Rt n R!s which are labeled by 
s . 

Figure 8.2 puts into evidence 

Lemma 8.3. Let s -+ t satisfy the transition rules of £1{TR). Then 
(8.4) 
R nR' = / ItxLs-iui-\}^ if(t,s) = (i2,(a{i))2) for some i 

1 s \ Itx Ls otherwise, 
and 
(8.5) RtViB>s = Rtr\n-\La). 

In (8.4) we have used a(i) = o(i - 2) which is derivable from 
(3.1). We use later fi(i) = o(i + 2), also derivable from (3.1). 
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( 0 - 0 - 2 ) ) ^ 
I 
1 
I 
I 

,1 
( < r ( i - 3 ) ) 2 l 

I 

I 

(<r(i+2))2l 

u l -4 

« 2 ' 

1 

(CTd-D/J 

((0"(i-2))2j 

(<r(i-3))2| 

(or(i+2))2J 

FIGURE 8.2. The sets R, U R[ 

To study TR-expansions, we find it convenient to first introduce 
the g-expansion (recall g is the right Bowen-Series map) with 
respect to the class of intervals S* = {Lx ,LX , ... , L^ ^ }. 
We are faced with the difficulty that J? is not a partition of ÖD 
as Li <zLt . The usual definition of the ^-expansion {sn} given 
by gn(vi) € L. , 0 < n < oo, is thus ambiguous and must be 
modified. In conformity with (8.3), we introduce the transition 
rules 
(8.6) 

grs. ^ ^ {a{i + 2 ) ) 2 f {a{i + 3 ) )2 ^ ^ ^ {(j{i _ 3 ) )2 ? ((T(/ _ 2 ) ) i 

/ 1 ^ ( ( T ( / + 2))2 , ((7(/ + 3 ) ) 2 , . . . , 

( a ( î - 3 ) ) 2 , ( a ( i - 2 ) ) 2 , (17(1-1))!. 

The transition rules &~g are obtained from the ones for Q,(f) 
(which are the same as the rules for £l(TR)) by reversing the arrow 
direction. 

Definition 8.2. (i) {sn}, 0 < n < oo, is ^-admissible if and only 
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if st —• si+l satisfies the <^-rules for 0 < n < oo. 
(ii) Let gn{r\) € l . , 0 < n < oo, where {s\ is g-admissible. 

{sn} is a modified ^-expansion of r\. 

The notion of ^-admissibility for finite sequences is defined 
in a similar manner. In_view of the relation betwen ZTg and 
the transition rules for Q(/) , {sn} is g-admissible if and only 
if the reversed sequence is /-admissible (= 7^-admissible). The 
modified ^-expansion of r\ is unambiguously defined once s0 is 
prescribed. If r\ e Lt , then s0 can be chosen as ix or i2 and 
r\ has two modified ^-expansions. If r\ e Lt - Lt , then s0 = i2 

and Y\ has one modified g-expansion. 
Examination of the proof of Theorem 8.1 shows that it remains 

valid for modified ^-expansions. We therefore obtain 

Theorem 8.2. Let £l(g) be the space of modified g-expansions. 
Ü(g) = &a{g) where &a(g) is the space of sequences {sn}, 0 < 
n < oo, satisfying the ^8-rules and not containing the infinite 
blocks: 

Theorem 8.3 relates ƒ- and modified g-expansions to TR-
expansions. For any sequence {sn}, -oo < n < oo, let {sn}

+ = 
{sn} , 0 < n < oo, and {sn}~ = {5_„_J , 0 < n < oo. 

Theorem 8.3. Let £, r\ e dB. Then TR(Ç, r\) € R , -oo < n < 
n 

oo, if and only if. (i) (Ç, rj) ̂  ut, 1 < i < &g - 4, (ii) $_1(s0 

w TR-admissiblef (iii) {sn}
+ aw/ {s„}~ are respectively f- and 

modified g-expansions of Ç and Y\ . 
We make the following remarks concerning the above condi­

tions: 
( 1 ) Condition (ii) is equivalent to saying that the two expansions 

{sn}*, {sn}~~ yield a 7^-admissible sequence {sn} when spliced 
together. 

(2) Theorem 8.3 becomes false without condition (i). For let 
i = bt_x G / ^ r\ = at_x e L(a{i))2, and choose {sn}

+ , {sn}~ as in 
(iii). Then (ii) also holds as s__xs0 = (a(i))2 , i2 is 7^-admissible, 
yet ut_x = (£, i/) £ £ . 

(3) Let */ have two modified g-expansions. At most one of 
these will satisfy (ii) for given Ç. Thus the choice of ^-expansion 
for r\ is unambiguous. 
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Proof. Suppose that r!!(£, rj) e R„ , -oo < n < oo. Since 
TR+1{Z, ri)eR's nRs for all n, {sn} is 7^-admissible. Hence 
(i), (ii) hold. For n > 0, T^*, tj) = (ƒ"(£),•) € ^ . Hence 
f"(Ç) € itç(Rs ) = Is , and {sn}

+ is the /-expansion of £. 
7Ï("+1)«I, >/) €RS n+i "is equivalent to T~n^, r\) e R's_n+i . For 
n > 0, r - B « , if) ="(•, *"(*)). Hence *"(>,) € * ( / T ' ) = 
Ls . Furthermore, {s / w + 1 ) } , 0 < n < oo, is ^-admissible, as 

{sn}, -oo < « < oo, is 7^-admissible. Hence, {s„}+ = {s.^+n}, 
0 < n < oo, is a modified ^-expansion of rç. 

Conversely, let (i)-(iii) hold. Then (Z,ri)£ui9 1 < i < 8 g - 4 , 
S^SQ is 7^-admissible, and ( ^ ^ 6 / ^ xL5 . Hence, by (8.4), 

(Ç,ri)€Rs f)R's c R. For n > 0, / ( £ ) G ^ . Hence 
^0 - 1 ^w 

(8.7) 7£« , if) = (f"(i), •) € «7!(/, ) = *, , n > 0. 

We prove by induction that TZn(<£9 rj) e R, , n > 0. By (8.7) 
this holds for n = 0. Assume it holds for n. We must show 
that TR

{n+l)(Ç9 r\) eRs , which is equivalent to TR
n(Ç9 r\) € 

i?' . Since gn(ti) e Lc , we have 
S-(n+l) S~(n+l) 

(8.8) r ; " ( ^ ) 7 ) = (.,g',(J7))e7t-1(L ). 

Since -s_(„+i) > s_n is 7^-admissible, we conclude from (8.8) and 
(8.5) that 

(8.9) T-"(Z,ti) € Rs nn:\Ls ) = RS nR's c R's . 
^ *-n " s-(n+l) *-n 5-{n+l) -(n+1) 

Theorem 8.4. U(TR) = ÏÏa(TR) and TR = <t>~1 o a o <$>. 
Proo/. Again we prove (P). (i) Let TR(Ç9 Y\) e Rs , -oo < « < 
oo. Then {sn} is 7^-admissible. We show that the «5^-blocks 
of Ûa(TR) do not appear in { s j , so that {sn} e ÏÏa(TR). By 
Theorem 8.3^ {sn}+ e Ua(f)9 {sn}- e ÏÏa(g). The ^-blocks 
of &a(f), &a(g) then show that the first three Jz^-blocks for 
&a(TR) do not appear in {sn}. We show that the fourth «2^-
block of Q{TR) also does not appear in {sn}. Suppose it does. 
Then s_n = (an(L))2 for 0 < n < oo and some /. It is readily 
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checked that 
(8.10) 

i2, (a(i))2, (o:2(/))2, • • = /-expansion of bt_x, 
2 3 

(a(/))2, (a (i))2, (a (i))2, ••• = modified ^-expansion of at_v 

Since (a(/))2, i2 is 7^-admissible, we conclude from Theorem 
8.2 that (£, Yf) = ( è^ j , a._j) = ut_{. But w^j £ R, a contra­
diction. Hence the fourth «S^-block of Œa(7^) does not appear 
in {sn}. 

(ii) Let {sn} e Qa(TR). Suppose (£, if) € n7^ ^ . By Theo­
rems 8.1, 8.2, {sn}* and {srt}~ are respectively the /-and modi­
fied ^-expansion of £ and //. Thus f)TR

nRs consists of at most 
one point. 

From the admissibility rules for Cla(TR), Qa(f), &a(g) , we 
conclude that {sn}

+ e Ua(f), {sn}~ e Ua(g). Let £ be the 
point with /-expansion {5rt}

+ and rj the point with ^-expansion 
{sn}~ . We show that (£, rç) satisfies conditions (i)-(iii) of The­
orem 8.3, so that (£, i/) is the desired point. {,srt} ^ {(a'I(/))2}, 
1 < i < 8# - ^ , as { s j € ^ ( 7 ^ ) and {(a"(i))2} is a forbid­
den block for Q(TR). We conclude from (8.10) that (<*, */) / w,., 
1 < / < 8g - 4, so that (i) holds, (ii) follows from {sn} being 
7^-admissible, and (iii) from the choice of £, r\. 

We use the description of U(TR) to obtain that of U(TR). To 
distinguish between different symbolic systems, we use from now 
on {sn}, {ln} to denote sequences from the respective alphabets 
{1, 2, ... , Sg - 4}, {1 j , 12, ... , (8g - 4)2} . Thus the sequences 
denoted earlier by {sn} are now denoted by {sn} . 

For (£, ti) e R, let r"(£, ti) e R= c JR- , -oo < n < oo. 
Since R. = R. U R. , {s\ is obtained from {s„\ by dropping 

* It t ^ ** ^ Tl ^ 

subscripts, i.e. 
(8.11) *„ = /, ifïn = i1 , i2 . 
Conversely, we obtain {ïn} from {;?„} by the following 
Theorem 8.5. 

f „ = < ûm(i), #am(/) for some m > 0 aw/ i, 

v (^«)2' otherwise. 
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Proof. The transition rules of Q(TR) imply: 
(8.13) 

i f Sn ' sn+l = ' ' Ô^') ' t h e n S_n = h ' 
i f J« ' J«+l = * ' J'U * d0') ' <*(')) ' t h e n in ~_h ' 
i f *« » Jn+l = * > a ( 0 ' t h e n *« ' V l = 'l » (°(0)i 

or i2, (o(i))2. 

Suppose that sn, ... , I„+ m , J„+m+1 = i, a(i) ,...,am(i), 
ûam(i). Repeated application of (8.13) gives sn+m = (am(j)),, 
5„+TO_, = (am~\i))l,... ,sn = il. The remaining part of Theo­
rem 8.5 is broken up into two cases. If s n, ... , sn+m, sn+m_l = i, 

o ( 0 , . . . , OLm{i), j(j # am+l(i), ûam(i)) for some m > 0 and 
i, then the same reasoning as before gives sn = i2. Otherwise, 
we have sn, 5W+1, sn+2, . . . = / , a(i'), a ( / ) , . . . for some / . 
If Iw = ix 9 then repeated application of (8.13) gives 3n, ïw + 1 , 
fn+2, .. . = ix, (a(z))j, (a2(/))j, . . . which is a forbidden block 
for &a(TR). Hence 3n = i2 . 

Theorem 8.6. Q(TR) = Qa(TR) and ri? = f l o ( j o f 
Proo/. (i) Let T%(Ç, rj) e R= , -oo < « < oo. {sn\ is obtained 
from {î } by dropping subscripts. It follows from the transition 
rules for &(TR) that i,a(i) and i9p(i) do not appear in {sn}. 
We show that the remaining «5^-blocks of Q(7^) do not appear 
in {sn} . Suppose to the contrary that 

(R 141 ^n~l ' S" ' 'S'l+1 ' ' ' SnJrm ' 'y'î+m+1 = l ' ^ ' °^W ' ' • • ' 
a û(i), ûa û(i) 

for some n, m, i. By Theorem 8.5, 5W_!, s„ = ix, (d(O)i which 

is a forbidden block for 0(7^) . Hence (8.14) does not appear in 

{*„> • 
We show next that the «S^-blocks of &(TR) do not appear in 

{sn}, so that {sn} e Ua(TR). Suppose i, £ ( / ) , . . . , 0 m ( i ) . . . ap­
pears in {sw} . By Theorem 8.5, the forbidden block i2, (fi(i))2 

. . . , (fim(i))2 • • • then appears in {!„} , a contradiction. The re­
maining «S^-blocks of Sl(TR) are disposed of in a similar manner. 

(ii) Let {sn} e &a(TR). Define { f j by (8.12). We show that 
{ IJ € 5 , (7^) . Hence r\TR

n(R,) = ^"(Rf) consists of a 
single point. 
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We must prove statments A and B given below. 
A. {$n} satisfies the transition rules of £l(TR). We consider 

several cases: 

Sn ' Sn+1 » * * • ' Sn+m > Sn+m+\ = J ' _^(0 > • • • > 

am(i), ûam(i). If m > 0, then sn, $„+1 = i\ , 
(a(/))j which is 7^-admissible. If m = 0, then 

(Al) J, = i!. Since {sj € B , ^ ) , Tll+1 = û(i) can­
not be followed by the block a#(/) , . . . , ofû(i), 
ûc/û(i) for some p. Hence fn+1 - (&(i))2 > and 
/*!, (#(/))2 is T^-admissible. 

^n > ^n+l ' " • ' Sn+m ' Sn+m+l == *> a ( 0 > • •• > 

f*m(0 , jl JÏ am+l{i), #a m ( / ) . If m > 0, then 
(A2) sn , 5W+1 = i2 , (a(i))2, which is 7^-admissible. If 

m = 0, then f n , ^w+1 = /2 , j \ or i2 , j 2 , both of 
which are 7^-admissible. 

V V P ' : ' V « ' ' "
 = '> a(/) , . . . , a m ( i ) , 

(A3) . . . . Then sn, sn+l = z2, (a(/))2 which is 7^-
admissible. 

B. {!„} does not contain the «S^-blocks of 0,(TR). 

Dropping indices, the last three «S^-blocks of d(TR) become 
the «2^-blocks of £Ï(TR). Hence these three blocks do not ap­
pear in {§n}, as the corresponding ones do not appear in {sn}. 

Suppose that the first «S^-block of Sl(TR) appears in {Jn}, i.e., 
^n+m = (Qm(z))2 > 0 < m < oo, for some n, m, i. Then sn+m = 
am(i), 0 < m < oo. The conversion rules of (8.12) give 3n+m = 
(am(/))2 , 0 < m < oo, a contradiction. Hence all -2^-blocks of 
&(TR) do not appear in {!„}. 

Let Sl(g) be the space of ^-expansions with respect_to thejpar-
tition {Lx , . . . , £(8£_4) } • We describe the spaces Q(ƒ), Q(g) 
and their relation to £2(7^). 

Definition 8.3. &a(g) is the space of sequences {sn}, 0 < « < oo, 
with the following omitted blocks. 

[I, ö _ 1 (0 , aû~\i), . . . , c / t f" 1 ^) , Z T V I T ^ / ) ] , 0 < k < oo. 

^ L : [ i , j 8 ( i ) , i » 2 ( i ) , . . . ] . 
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Theorem 8.7. (i)_ Q(ƒ) = Ua(f), 
(ii) a(g) = na{g), 
(iii) Let r*(£, Y\) e R^ , -oo < n < oo. {sn}* is the ƒ-

expansion of Ç with respect to {I{,... , ISg^4}, and r\ is the g-
expansion of r\ with respect to {L{ , ... , L,s ^ }. 

We omit the proof of Theorem 8.7, which is similar to that of 
Theorem 8.6. 

We conclude this section with some remarks comparing the 
above Markovian and sofic expansions. Sofic admissibility rules 
are more difficult than Markovian ones which have the virtue of 
being one-step rules. However, a price must be paid in the Marko­
vian case. In order to get a TR-expansion of (£, rj) e R by splicing 
an /-expansion of Ç with a ^-expansion of rj, we cannot use the 
ordinary ^-expansion and must modify the notion. The sofic case 
is easier in this respect as the ordinary ^-expansion will do. The 
Markovian case has an additional difficulty over the sofic one. To 
get the 7^-expansion of (£, rj) e R, we must resolve the ambigu­
ity concerning the modified ^-expansion of r\ before attaching it 
to the /-expansion of £ (it is removed by Theorem 8.3(ii)). 

9. GEOMETRIC INTERPRETATION OF SYMBOLIC SEQUENCES 

Let {C.} and {Rt} be the respective partitions of C and R 
introduced in §§4,5. For (£, r\) e C, let T£(£, rj) e Cs , -oo < 
n < oo, and for (J, rj) e R, let r"(£, rj) e R- , -oo < n < 
oo . {sn} and {sn} are referred to respectively as curvilinear and 
rectilinear sequences. We obtain in the present section a geometric 
interpretation to these sequences. 

We begin with {sn} . Label the sides of the edges of the net N 
with the symbols {1, 2, ... , 8^-4}, according to the prescription 
of §3 (see the proof of Theorem 3.2), and assume throughout that 
the geodesies under discussion do not lie in N. 

Definition 9.1. (i) Let y be a geodesic passing successively through 
the fundamental regions Fn=Fn(y), -oo < n < oo, with F = F0 . 
Assume that y leaves Fn through the interior of an edge whose 
Fw-side is labeled sn(y). {sn{y)} is called the cutting sequence of 
y (Figure 9.1 (i) on p. 288). 

(ii) The above definition becomes ambiguous if y leaves a fun­
damental region through a vertex. In that case, let / be a geodesic 
slightly to the left of y (Figure 9.1 (ii) on p. 288) which meets 
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(i) (ü) 

FIGURE 9.1. Cutting sequences. 

successively Fn, Fw + 1 , Fn+2. Then y is also said to meet suc­
cessively F„, F n + 1 , F w + 2 , and stt(y)9 sn+l(y) are defined to be 
respectively sn(y)9 5B + 1 ( / ) . 

We remark that if the vertex in (ii) is the intersection of the sides 
of Fw with labels i - 1 and i , then sn(y) = i and sn+l(y) = û(i), 
as made evident by Figure 9.1 (ii). 

We observe that the boundary of (J Fn consists of two simple 
curves yL and yR, lying respectively to left and right of y. We 
orient these curves so as to agree with the orientation of y. 

Theorem 9.1. Let (£, rf) be the forward and backward end points of 
the geodesic y = y(£,ri). Then {sn{y)} = {sn(Ç, rj)} for (Ç,rj)e 
C and -oo < n < oo. 

Theorem 9.1 is evident from the definitions of {sn(y)} and 
{sn(Ç, tj)} except for the case when y passes through a vertex of 
some Fn . The following is a formal proof covering all cases. 

Proof Suppose that y passes through the interior of Fn . Let un 

be the unit tangent vector to y at the point where it leaves Fn . If 
y leaves the interior of Fn through a vertex, let un+l be the unit 
tangent vector to y at the point obtained by moving distance e 
away from the vertex (e is the number appearing in the definition 
of Cn in §4). We have thus chosen un so that n(un) = r£(£, rj) 
for -oo < n < oo . 

Assume first that y leaves the interior of Fn through a non-
vertex point on the side labeled i. Then sn(y) = i. The el­
ement of T, which maps Fn to F , maps un to a unit vector 
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based at a nonvertex point of st and pointing out of F. Hence 
T£(Ç, n) = n(un) e Cf c Ct, so that sn{$, rç) = ' = sn{y). 

Assume next that y leaves the interior of Fn through the vertex 
which is the intersection of the sides with labels / - 1 , i. Then, as 
remarked above, sn(y) = i and sn+l = û(i). The elements of T, 
which map F n , Fw+1 to F, respectively map un , ww+1 to vectors 
w depicted in Figures 4.1 (ii),(iii), except that in the latter case 
pt must be replaced by pd ( / ) . Hence Tç(Ç, tj) = n(un) e Ci0 c 
Cn r£+1(£, >/) = TC(WW+1) E Cû{ihl c Cd(0. We conclude that 
sn(Z, */) = / = sn(y), $n+1(É, i/) = d(i) = VfiM • 

Let Q(rc) be the space of sequences {sn(Ç, r\)}, (£, rç) e C. 
We obtain from Theorem 9.1 the 

Corollary. The mapping (£, rf) -• {sn{Ç, rf)} is one-to-one from C 
onto il(Tc). 
Proof. Let {sn(il9 rj{)} = {sn(Ç2, f|2)>, where ({,, //,.) e C, i = 
1, 2. By Theorem 9.1, {sn(y{)} = {^(y2)}, where yt = y(£,, ^ ) . 
Let öf(-, •) denote hyperbolic distance. yx, y2 have identical 
cutting sequences, and hence Fn(y{) = F^C^)' "~°° < n < °°-
It follows that y{, y2 can be parametrized so that yt = ^(f), 
-oo < t < oo, and ^(^(O* 72(0) *s uniformly bounded for 
-oo < J < oo. We conclude from Theorem 2.1 (ii) that y{, y2 

have identical end points, i.e. Ç{ = £2 and rj{= rj2. 

Next we consider {<Q. To motivate the work to follow, we 
make a brief digression and discuss Morse's method for coding 
geodesies [Mo]. 

[Mo] considers only the special class of surfaces of genus g > 2 
defined by a regular 4g-sided fundamental region with interior 
angles n/2g, but the method used can be adapted readily to the 
fundamental regions treated in this paper. The method produces 
a geometric modification of the cutting sequence {sn(y)}. 

Let {Fn(y)}, -oo < n < oo, be the sequence of fundamental 
regions of Definition 9.1. In general some of the interior angles 
of \JFn(y) along the left boundary yL will be obtuse, in which 
case we say that yL is not convex. As illustrated in Figure 9.5, we 
add to UFn(y) fundamental regions bordering on the left side of 
yL

 4 so that the left boundary of the resulting set R is (i) convex 
and (ii) does not contain infinitely long geodesic arcs (condition 

Morse chooses the right side of the right boundary yR ; we chose the left side 
of yL to reconcile our work with his. 
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(ii) is inserted to guarantee that the modification procedure be 
injective on cutting sequences). Let y be a path in R passing 
through the successive fundamental regions bordering on the left 
side of R. A portion of y is illustrated in Figure 9.5, where it 
is denoted by YB • Jus t a s f° r 7 > w e define the cutting sequence 
of y. We call it the modified cutting sequence and denote it by 
{sn(y)} (a special convention is required for singling out the 0th 
term I0(y) : this is done right after Theorem 9.8). By geometric 
reasoning using the convexity of the left l?-boundary, Morse shows 
that the modified cutting sequences can be described by a list of 
forbidden finite and infinite blocks [Mo, p. 77]. Surprisingly to us, 
Morse's list of forbidden blocks, or rather its analogue as applied 
to our surfaces, coincides with our list for Qa(TR) given in §8. 
Thus the collection of sequences {?„(?, */)} is identical with the 
collection of sequences {sn(y)}. This led us to speculate that even 
more is true: namely, sn(Ç,rj) = sn(y)9 for y = y(£, Y\) and 
({, jf) = 0(< ,̂ t]). This turns out to be the case, and we shall prove 
it as follows, (i) We reinterpret Morse's geometric modification in 
terms of the coding rules of Theorem 9.9 converting sn(y) into 
Sn(y). (ii) We show in Theorem 9.8 that identical coding rules 
convert {$„(£, if)} into {sn(£9rj)}. That sn{Ç9rj) =sn(y) then 
follows from Theorems 9.1, 9.8, and 9.9. 

The proof of Theorem 9.9 follows readily from the way the sides 
of the edges of F receive their labels. The proof of Theorem 9.8 
is difficult, the reason for this being that simple geometric notions 
are replaced by combinatorial ones—particularly the notions of 
component and block defined later on. Indeed the conversion rules 
of Theorem 9.8 seem artificial and, undoubtedly, we never would 
have guessed them if not for the speculation sn(Ç, rj) = sn(y). To 
prove Theorem 9.8, we require some preliminary results concern­
ing admissibility rules satisfied by the sequences {sn}. 

Let Ct = Dt U Et U Ft U Gt U Xt as in §5. We also write (D, i) 
and (Di) for Dt, with a similar notation for Er.. . Let &' be 
the partition {(Di), (Ei) (Fi)9 (Gi), (Xi): 1 < i < Sg - 4} 
of C. Define {s'n} = {s'n(Ç9 r,)}, n e Z, by T^tf, ti)es'n,s'ne 
&1, and denote the space of sequences {s'n} by Cl'(Tc). Thus 
sn = (ln, sn), where {sn} is the curvilinear sequence and {ln} is 
a sequence of symbols from the alphabet {D, E, F, G, X} . 
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Theorem 9.2. 

(9.1) sn = < 

' S n > 

s„ + *g, 

ifln = G> 
if ln = X, 
if ln=DorF, 

[sn + Ag - 1, if ln=E. 

Proof. By (5.4), (5.5), and Theorem 5.1, O maps the sets {Gt, 
Xi9Di9EnFt} respectively onto the sets {(?,., XM , Di+4g, 
^ + 4 «- i » ^+4#} ' fr°m W^ich Theorem 9.2 follows. 

In view of Theorem 9.2, we will have converted {sn} into {£„} 
if we can determine {ln} from {sn} . This will be achieved by 
obtaining certain restrictions on Q'(!TC). 

Theorem 9.3. Let {s} G Q (7C). For sn -* s x, —oo < n < oo, 
zY zs necessary (but not sufficient) that it be included in the following 
table of successor rules: 

Di ~^ Do(i)-2 > Eo{i)-\ > Fo{i)-\ 

*i "* ^a{i)-2 > Ea{i)-\ ' -*a(i)-l 

^ "^ ^<J(0-3 > Ea{i)-2 > F<j{i)-2 

&i ""* ^<T(I)+1 ' ^<j(i)+2 ' • ' • > ^ ( J ( J ) - 4 ' *Mi)+ l ' 

^i "-> Xa(i)+l 9 ^a(i)+2 ' * • ' ' ^(7(/)-4 ' -*îx(i)-3 

^W)-3 > ^a{i)-2 

G<r(i)+2 ' ' " * ' ^ C J ( I ) - 3 

» ^<7(/)+l> G(T(/)+2' " • 

The proof of Theorem 9.3 is made evident by Figures 5.4 and 
9.2 (see p. 292), the latter exhibiting the intersection of the sets 
c; = rc(c.) with Cj. 

For instance, 

Tc{Dt) C Uom_x = Da(i)_2 U Ea({)_x U Fa(ti_, 

which gives the first of the above rules. 
Due to the manner in which a(i) appears in the rules, it proves 

convenient to restate Theorem 9.3 in terms of the sequences 
{(ln, Sn)}, where Sn = a{sn_x) -sn. We give a geometrical in­
terpretation to {ôn} used later on. Let the geodesic y enter and 
leave ¥n through the edges whose Fn-side carry the respective la­
bels s and s' ; thus s = v(sn-\) > s' = sn . s is the Sn th side of 
Fn after s in the clockwise direction (see Figure 9.3 on p. 292 
where ôn = 4). 



292 ROY ADLER AND LEOPOLD FLATTO 

FIGURE 9.2. Intersection of C\ with C.. 

FIGURE 9.3. Geometric interpretation of ôn . 

In terms of (ln, Sn), Theorem 9.3 becomes 

Theorem 9.4. For (ln, ôn) -• (/ j , an+l) it is necessary (but not 
sufficient) that it be included in the following table of successor rules. 
(9.2) 

(i) ( / > • ) - ( Z ) 2 ) , ( £ l ) , ( / Ï ) 

(ii) (X.)->(D2),(EI),{F1) 
(iii) (F-) - (D3) , (£2) , (F2) 
(iv) (£•) - (X4), ... , (X, 8* -5 ) ; (G3),... , (G, 8g -5 ) 
(v) (G-) -> (*3), (JT4), ... , (X, Sg-5); (G2),... , 

(G ,8g -5 ) . 
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Inspection of the right side of the above rules shows that 

(vi) (ln,SH)ï(Xl),(X2)ADl)AGl), - o o < « < o o 
The following theorem lists certain forbidden blocks for {ôn} 

and {(/„,*„)}. 
Theorem 9.5. (i) {ôn} does not contain the blocks 

1 2 . . 2 1 
1 2 2 . . . 
. . . 2 2 1 
. . . 2 2 2 . . . 

(ii) {(ln , ôn)} does not contain the blocks 
(G2), (G2),... 

... ,(G2), (G2). 
Proof, (i) Translated into geometric terms, the four blocks of (i) 
become respectively Figures 9.4 (a-d), illustrating how the geodesic 
7 = y(£ » n) passes successively through the sequence of regions 
{F„(y)}. In each of the figures, the two geodesies y and y* in­
tersect twice in D, contradicting Theorem 2.1 (i). Hence Figures 
2 (a-d) are impossible, and so {ôn} does not contain any of the 
four blocks. 

(ii) The appearance of these blocks in {(/„, <5„)} is equivalent 
respectively to the appearance of the following blocks in {{ln, sn)} : 

(G,i),(G,P(i)),(G,p\i)),... 

. . . ,(G,p2(i)),(G,fi(i)),(G,i). 
By Theorem 9.2, the appearance of the above implies respec­

tively the appearance of the following blocks in {sn} 

i,P{ï),fi\ï),~. 
... ,fi\i),fi(i),i 

-r' - x ' 

(a) (b) 

"**/ 

(c) (d) 

FIGURE 9.4. y is not a geodesic. 
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which is impossible by Theorem 8.6. Hence the blocks do not 
appear in {(ln,Sn)}. 

We introduce some concepts seemingly artificial but necessary 
to obtain {ln} from {Sn} (Theorem 9.6). In the sequel n always 
denotes an integer. Let Z = Z u {+oo, - o o } , where Z is the set 
of all integers, and / = {n: ôn = 1} augmented possibly by +oo, 
or -oo . We augment by +oo if ôn = 2 for all sufficiently large 
n, and by -oo if Sn = 2 for all sufficiently small n . 

Definition 9.2. (i) Let a < b be elements of / . We say that a 
and b are connected if and only if: either a = b, or ôn = 3 for 
a unique a < n < b and <5W = 2 for all remaining a < n < b. 

(ii) We call M c J a component of / if and only if for any two 
elements a < b in M, there exists a finite sequence a = a0 < ax < 
^.ak — b in M such that at is connected to ai+l for 0 < i < k. 

It is readily checked that distinct components M{, M2 do not 
overlap: i.e. either Mx < M2 (meaning mx < m2 whenever mx e 
Ml9 m2e M2) or M2< Mx. 

We enlarge any component M to a set B = B(M) c Z, which 
we call the M-block determined by M as follows. Let 

M~ = {x eZ: x < m, m e M, and ô(x) ^ 2} 

M + = {x eZ: x > m, m e M, and <?(*) ^ 2}. 

Let a = -oo if M~ = 0 , a = sup M " if M~ ^ 0 . Similarly 
b = +oo if M + = 0 , 6 = infM+ if M + ^ 0 . Then 5 = 
B(M) = {x eZ: a<x <b}. It is readily checked that B(M{) < 
B(M2) when Mx< M2. We remark that / is the union of disjoint 
components; but, in general, Z is not the union of disjoints M-
blocks. 

We illustrate the component and block concepts geometrically. 
Let y be a geodesic with the cutting sequence {sn} , and let Sn+X, 
• • • , Sn+xx be the sequence: 

4 , 2 , 1 , 2 , 2 , 3 , 2 , 1 , 2 , 2 , 5 . 

y passes successively through ¥n+x, . . . , Hn+n and is depicted in 
Figure 9.5. 

The indices n + 3 , «4-8 are connected since ôn+3 = ôn+% = 1 
and all intermediate values of ôk equal 2 , except for ôn+6 which 
equals 3 . n + 3 is not connected to a preceding element as Sn+X = 
4 , ôn+2 = 2. Similarly, n + 8 is not connected to a succeeding 
element as <J 9 = £w+10 = 2 , <Jn+11 = 5 . Hence {n + 3, n + 8} is 



GEODESIC FLOWS, INTERVAL MAPS, AND SYMBOLIC DYNAMICS 295 

a component and { « + 1 , . . . , « +10} is the M-block determined 
by i t 

We observe in Figure 9.5 that the interior angles, along the left 
boundary of \JVn(y), which meet Fw + 3 , Fw+8 are bigger than n, 
and the one which meets ¥n+6 is less than n . This description 
holds in general. Namely, the interior angle meeting Fk is bigger 
than n if ôk = 1, and less than n if ôk = 3 . (As illustrated in 
Figure 9.5, the interior angle lies partially in F^ when Sk = 1, 
and completely in F^ when 6k = 3.) 

Theorem 9.6. (i) Let M be a component of J and a < c successive 
elements of M. Thus there is a unique a < b < c, for which ôb = 3. 
Then 

( F, a < n < b, 

(ii) Let a be the largest element of M and a ^ +oo. By 
Theorem 9.5(i), there exists an integer b such that Sn = 2, a < 
n < b, and ôb^ 1, 2. Then 

( F, a< n <b- 1, 

(iii) Let a be the smallest element of M and a ^ - oc . By 
Theorem 9.5 (i) there exists an integer b such that ôn = 2, 

FIGURE 9.5. M-block and modified geodesic. 
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b < n < a, and Sb ̂  1, 2. Then 

•Hi b::r 
(iv) ln = G, n $ \JB where \JB is the union of all M-blocks. 

Proof. We show that the transition rules satisfied by {(/w, Sn)} 
(Theorem 9.4) and the list of omitted blocks of Theorem 9.5 force 
the values of ln listed above. Though the reasoning is straightfor­
ward, it is tedious and we proved the details for (i) and (ii) only, 
the reasoning for (iii), (iv) being analogous. 

(i) Since a has a successor c, a / +oo. Consider first a ^ 
-oo, so that Sa = 1. By 9.2 (vi), la = E or F . If Sa+l = 2, then 
9.2 (iv) forces la = F. By 9.2 (iii) la+l = E or F. Repeating the 
argument, we get ln = F, a < n < b - 2, and lb_x = E or F. 

Suppose lb_{ = E. Since ôb = 3, 9.2 (iv) forces lb = G. 
Repeated use of 9.2 (v) gives ln = G, b < n < c. If c is finite, 
then Sc = 1 and 9.2 (v) gives lc_x ^ G, a contradiction. If 
c = -foo, then (ln, ôn) = (G, 2), b + 1 < n < oo, which is a 
forbidden block in Theorem 9.5. Hence lb_x = F. By 9.2 (iii), 
lb = D. Repeated use of 9.2 (i) gives ln= D, b <n <c. 

Consider next <2 = -oo, so that ôn = 2 for -oo < n <b. We 
show that for -oo < « < 6, Sn = E or F , the remainder of 
the argument proceeding as before. By 9.2 (vi) ln / X. Suppose 
ôn= D. Repeated use of 9.2 (i) gives lk = D, n < k < b. Since 
Sb = 3, 9.2 (i) gives lb_{ ^ D, a, contradiction. Suppose ln = G. 
From the transition rules of (9.2), ln = G and Jw = 2 force 
ln_{ = G. Repeated use of this argument gives (lk, Sk) = (G, 2), 
-oo < k < n, which is a forbidden block in Theorem 9.5. Hence 
3n=E or F. 

(ii) Duplicating the reasoning of (i) we get ln = F, a < n < b-l 
and lb_x = E or F. Suppose /̂ _j = F . Since ôb^2, 9.2 (iii) 
forces lb = D, Sb = 3. If Sb+l = 1 then a, b+ I are connected, 
contradicting that a is the largest element in M. Hence lb+l / 1 
and 9.2 (i) gives /^+1 = D, ôb+l = 2 . Repeating this argument 
we get lk = D, (5̂  = 2, b < k < oo. But then a, +oo are 
connected, again contradicting that a is the largest element in M. 
Hence lb_x = E. 

In the proofs of (i)—(ii) we have made use of the successor table 
of Theorem 9.4. To prove (iii), (iv) we also require the predecessor 
table derivable from it. 



GEODESIC FLOWS, INTERVAL MAPS, AND SYMBOLIC DYNAMICS 297 

Let bQ, bx be the first and the last integer of a given M-block 
B, when these exist. We conclude from Theorem 9.6 that 

(9.6) /„ = { 

Theorem 9.7. 
G ifni{jB, 
X if n = b0, 
D or F if neB-{b0,b{}> 
E if n — bv 

The proof of Theorem 9.7 is based on the admissibility rules 
of Theorem 9.4. In Appendix D, we give another proof based on 
geometric considerations. Theorems 9.2, 9.7 give 

Theorem 9.8. 
sn if*i\JB> 

(97) s={S» + l ^« = V 

sn + *g-l if n = bv 

We now obtain for {sn} the geometric interpretation mentioned 
earlier in this section. We refer to Figure 9.5. Let yL be the 
left boundary of \JFn(y). Suppose B is a finite M-block with 
smallest integer b0 and largest integer bx. Let F^ = F^ , and 
let F, , be the fundamental region adjacent to Fh and opposite 

^o"1" o 

to Fft + 1 . Fb +2, ... ,Fb are then chosen to be the sequence of 
successive fundamental regions encountered along the left side of 
yL. Choose pB e YC\\, QB

 e yfl^+i a n d connect pB to 
qB by a curve yB passing successively through the interiors of 
F,o, F V 1 , . Vbi, F , + 1 = Fb{+1 (for infinite M-blocks B, the 
definition of yB needs some minor changes which we leave to the 
reader). For each M-block B, replace the portion of y between 
pB and qB by yB and denote the resulting curve by y. We call 
y the modification of y or the modified geodesic. Just as for y, 
we associate to y a cutting sequence {sn(y)} called the modified 
cutting sequence. 
Theorem 9.9. 

(9.8) sn(y) = { 

sn(7) ifn£{JB, 

sn(y) + l if n = b0, 
sn{y) + 4g if neB-ib^bi).. 
sn(7) + 4g- 1 if n = bv 
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Fb°"Fb° *b0(
y> 

(i) 

Y V7> 

1 /»(tb,(r» 

r(sb l(y)) 

(Ü) 

Fn 

•*<*) 

Fn 
sn(y) 

- J1 

y 

Fn sn(y) 

Fn sn(y) 
y 

y 

(iii) (iv) 

FIGURE 9.6. Cutting sequences {sn{y)} and {^(y)}. 

Proo/. The following figures (See Figure 9.6.) depict the position 
of Fn relative to Fn . For b0 < n < b{, we require the two figures 
(iii)—(iv) since both of these will arise. Thus, referring to Figure 
9.5, we observe that Fn+2 , F„+2 appear as in (iii), and F„+4 , Fn+4 

as in (iv). 

From the figures we get (9.8). For instance, from Figure 9.6 (i) 
we obtain sb (y) = sb (y) + 1 ; from Figure 9.6 (ii) and (5.6) we 
obtain ï^(7)°= vpis^y)) = sbi(y) + 4g - 1. 

Theorem 9,10. Let (£,7/) = <D(£,rç), y = y($,ti). Then 
{*„(£> */)} = {*„(7)}. 
Proof. By Theorem 9.1, {sn(t, r\)} = {sn{y)} . Theorems 9.8, 9.9 
show that the rules for converting {sn(Ç, rj)} to {sn(Ç,rj)} are the 
same as for converting {sn(y)} to {Sn(y)}. Hence {sn(Ç,rj)} = 
{ï„(7)}. 

10. EPILOGUE 

Our study has been restricted to compact surfaces because for 
surface groups we have the existence of a fundamental region satis­
fying the crucial extension condition. It might be interesting to see 
to what extent our treatment can be extended to the noncompact 
case. 
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Despite the fact that rectilinear sequences are in one-to-one cor­
respondence with cutting sequences and we have a nice description 
of the former, the question remains: is there a satisfactory specifi­
cation of the latter? It is a striking fact that,for given genus g > 2, 
we get the same set of rectilinear sequences, regardless of the shape 
of the (fig - 4) sided fundamental region. Furthermore, the rules 
for coding cutting sequences to rectilinear ones are also the same. 
Thus, it is impossible to get a description of cutting sequences from 
devising "finitary decoding" rules applied to rectilinear sequences. 

Certain things are known about the set of cutting sequences. For 
each genus g > 2 there is a countable set of universally forbidden 
finite blocks—i.e., they are forbidden for all (Sg - 4) sided fun­
damental regions satisfying the conditions of Theorem 3.1. These 
are the finite blocks containing one of the following as a sub-block: 

(10.1) 

/, p(i), fip(i),..., pkp{i), pfikp(i) ; 

1 < i < 8g - 4 and 0 < k < oo 

(10.2) i, û(i), aû(î), . . . , akû(ï), ûakû(i) ; 

The blocks (10.1) correspond to the curves depicted in Figure 9.4a 
and (10.2) to the reflection of these curves about y* . For a given 
fundamental region there are other forbidden finite blocks aside 
from the universal ones: e.g., let y be a geodesic not passing 
through a vertex of F with sQ(y) = a, sx(y) = b, and define 
the sequence {s'n} , n e Z , by 

f 
Sn = 

c, if n = 0, 

d, if n = 1, 

sn(y), otherwise, 

where a b, c and d are as in Figure 10.1 on p. 300. 
We claim that {sn}, \n\ < N, cannot appear in any cutting 

sequence for iV sufficiently large. For suppose there is a geodesic 
y for which sn(y) = s'n, \n\ < N. Then sn{y) = sn(y) for 
\n\ < N, « / 0 } 1 , The above condition forces y, / to be 
arbitrarily close for N sufficiently large. Hence, when N is suffi­
ciently large, sn(y') = sn(y) for n = 0, 1 as well, a contradiction. 
On the other hand, it is readily checked that {sn} , \n\ < N, does 
not contain any of the universally forbidden blocks prescribed by 
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F»F0(y> c' 
FIGURE 10.1. Suggested alternate geodesic route. 

(10.1), (10.2). We finish with two questions: 

1. Are the blocks described by (10.1), (10.2) the only univer­
sally forbidden ones? 

2. Do the curvilinear sequences determine the fundamental 
region up to conjugacy within the group of motions? 

APPENDIX A. EXISTENCE 

OF THE (Sg - 4)-SIDED FUNDAMENTAL POLYGON 

In this appendix we prove the existence of the (Sg - 4)-sided 
fundamental polygon described in Theorem 3.1. The proof is 
based on classical theorems of Poincaré and Frenchel-Nielsen in 
the theory of Fuchsian groups. We do not state these theorems in 
their entirety, and quote only those parts used to prove Theorem 
3.1. 

Poincaré's theorem gives sufficient conditions for a polygon to 
be a fundamental region of a Fuchsian group. Let F be a bounded 
polygon with an even number of consecutive edges sx, . . . , sn ori­
ented in the counter-clockwise direction, and let pl9 ... 9pn be 
the respective initial points of these edges. Assume that st, s,t), 
1 < i < n, are of equal hyperbolic length, where a(i) is a given 
permutation of 1, . . . , n of order two without fixed elements. Let 
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Tt be the motion carrying st to s~L , i.e. Tt{p^ = p^ , \<i<n. 
Express the permutation i -+ #(*') as a product of disjoint cycles. 
The set of vertices pt, i varying over a cycle, is called a vertex 
cycle. 

Poincaré's theorem. Suppose that the sum of the interior angles of 
F over each vertex cycle equals 2n/mc, where mc is a positive 
integer. Then the group T generated by Tx, ... 9Tn is discrete 
and F is a fundamental region for I \ T acts freely on B if and 
only if mc = 1 for each vertex cycle c. 

A proof of Poincaré's theorem can be found in [M]. As an appli­
cation, consider the regular (8g-4)-sided polygon F' with interior 
angles n/2 centered at 0, with the pairing of Theorem 3.1 (we re­
place st, Tt respectively by st, T-). From formula (3.1) for o(i), 
one readily verifies that i -• d(i) is a product of disjoint cycles, 
all of length four, and that the sum of the angles in each vertex 
cycle equals In . By Poincaré's theorem, the group generated by 
T[, ... , l\ A is a Fuchsian group acting freely on D with F' for 
fundamental region. 

Let Tx, T2 be two surface groups. Suppose that 0/r\ is home-
omorphic to B/T2 , which is equivalent to stating that D/Tj, D/T2 

have the same genus. 

Fenchel-Nielsen theorem. There exists an orientation preserving 
homeomorphism h from D onto B such that T2 = h o T{ o h~l. 

We remark that if we replace D by D, then the above theorem 
follows readily from the theory of covering spaces [Sp, Chapter 
4]. We just choose an orientation preserving homeomorphism cp 
from B/rx onto D/T2 and lift it up to an orientation preserving 
homeomorphism h from B onto B. The Fenchel-Nielsen theo­
rem asserts that h can be extended to a homeomorphism from B 
onto B. A proof of the theorem can be found in [T, §3; see, in 
particular, Proposition 3.5 and its corollary]. 

Proof of Theorem 3.1. Let g be the genus of B/T. Let F' be 
the regular (8# - 4)-sided polygon described above and r ' the 
associated Fuchsian group with generators T[, ... , T^ 4 . Let v 
be the number of vertex cycles and e the number of paired sides. 
Then v — 2g - 1, e = 4g - 2. By Euler's formula, the genus g 
of B/T* is given by 

2 - 2g' = v - e + 1 = 2 - 2g. 
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Thus g = g. By the Fenchel-Nielsen theorem, there exists an ori­
entation preserving homeomorphism h from D onto D such that 
T = hT'hr1. The restriction of h to dB provides an orientation 
preserving homeomorphism from dB onto itself. 

For F ' , let s't be the geodesic containing s[ and with the same 
orientation, and let di, b\ be respectively the backward and for­
ward end points of l\. Let at = h(at), bt = /*(£/). Since h is 
orientation preserving on <9B, we conclude from Theorem 3.3 that 
the points ai9 bi9 I < i <Sg-4 are all distinct and encountered 
along dB in the counter-clockwise direction in the order 

al9b0,a2,bl9... , aSg_49 bSg_y 

Let st be the geodesic from at to br Since at_l9 bi__l separate 
ai9 bt on dB, the geodesies si_l, s( meet in a point pt in D. 
The points pi9 1 < i < 8^ - 4 form the successive vertices of a 
polygon F with edges st, st being the geodesic segment from pt 

to pt {. We show that F is the desired polygon. 

Let Tt = hT{h~l. The map T' —• hxh~x, T' E r 7 , is an 
isomorphism from T7 onto T and hence maps the generators 
T[, . . . , 3r,g^_4 of r ' respectively to the generators Tx, . . . , TSg_4 

of T. If T[x = y9 then 7^(Ax) = hy. It follows from Theorem 
3.4 that T. maps the points a(_l9 bt_X9 a(9 bi9 ai+x bM respec­
tively to am , bm , ba{i), aff(0 , ap(i), ^ ( / ) , i.e. Tt maps the 

geodesies st_l9 si9 si+l respectively to sû{i)9 s~{i)9 sp{i). Hence 

Ti(Pi)=Pm, r /(p.+1)=p (T( / )—i.e., Tt maps j . to ^ and the 
interior angle 6t at pt to the exterior angle at pd( / ) (Figure Al on 
p. 303). 

Since 2̂ . is angle preserving, we conclude that 6i + 0$,* = 7r. 
The sum of the interior angles of a vertex cycle is given by 

(0/ + 0m) + (0d2 ( / ) + öd3( / )) = 7T -h 7T = 27T. 

Thus F satisfies the conditions of Poincaré's theorem, and we 
conclude that F is a fundamental region for T. 

APPENDIX B. THE FOLKLORE THEOREM 

This appendix deals with a topic that we call the "Folklore 
theorem." It is not clear to us to whom it should be credited. 
One could justifiably attribute it to Renyi [R]. His theorem has 
the desired conclusions: yet his work is so heavily influenced by 
the classical presentation of continued fractions that not enough 
emphasis is placed on the fact that his theorem is really about 
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FIGURE Al. Diagram used in proof of Theorem 3.1. 

iteration of a map. Consequently certain important issues such 
as the Markovian property are not made manifest. He recognizes 
a key step in the theorem—namely, the uniform bounding of ra­
tios \fn'(x)lfn\y)\ of derivatives of iterates of a map ƒ ; but he 
assumes it as hypothesis leaving one with the nontrivial task of 
verifying it for particular maps. Even earlier, in the proof of er-
godicity of geodesic flows, Hedlund [H] had employed some of the 
techniques used in the folklore theorem, but he did not single out 
this theorem as an important one in its own right. 

The folklore theorem is about Markovian interval maps. We 
shall recall some of the concepts discussed in the introduction. 
Let X be a one dimensional space, say an interval or circle of 
unit length, and & a finite partition of X into subintervals. More 
specifically, let 30 = {I{, . . . , IN} where X = (j£Li /,- and Ipl. = 
0 , i T£ j , N > 2. We allow intervals to be open, closed, or half 
open without restriction. 

Let ƒ be a map of X onto itself with fn denoting the w-fold 
composition of ƒ with itself. We make the following assumptions. 

(i) (smoothness) f/I. has a C2-extension to the closure 7. of 
It. For economy of notation we designate all these extensions 
again by ƒ . 
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(ii) (local invertibility) ƒ is strictly monotone on 7. and there­
fore determines a one-to-one mapping of 7i onto some closed 
subinterval f(7t) of X. 

(iii) (Markov) For each I e & there is a subset ^(1) of £P 
such that f (I) = U U : J e &>(I)} . 

(iv) (aperiodicity) There exists a positive integer q such that 
ƒ*(/) = X. 

Figure 1.3 of the introduction gives a typical example of a map 
satisfying (i)-(iv). 

We introduce some notation: f~n&> = {f'nI: I €&>}, ^{n) = 
the common refinement of 3° , / _ 1 ^ , . . . , f~n3°, rc > 0. Ac­
cordingly, we use 7(w) to denote a generic member of ^ ( w ) . We 
remark that two points x, y are in the same I^n) iff fx, f y 
lie in the same element of & for 0 < j < n. From (i)—(iii) 
we get that 7(w) is an interval which we call an n th stage interval; 
and most importantly ƒ maps monotonically each ƒ onto some 
7 . Thus fn has a C -extension to 7 n , also denoted by ƒ" , 
which maps 7 monotonically onto some 7 . Let M(/(,ï)) = 
sup J C > y 6 / W | / l /W// , l (y) | and Mn = s u p ^ ^ M ^ ) . Finally, 
let ||<^(w)|| = sup/(W)6^(«)yl(/(w)) where A is Lebesgue measure. 

We call ƒ expansive if there exists a positive integer p such 
that |/*F/(JC)| > 1 + e for some e > 0, all JC e I{p), and all I{p). 
For expansive maps we conclude from the chain rule that 

L = inf | / y ' (x ) |>0 , 

the infimum taken as x varies over Pj', ft* over &>U), and 
0 < j < p ; and 
(Bl) 

inf xelW | ƒ"'(*)! > (1 + e)l"/Pl > L ( l + e) (" / j ,- ! ), n > 1. 

Since for each I(n) there is an I{0) such that f"(i{n)) = 7 (0), we 
have from the mean value theorem that there is an x e / such 
that A(/(n)) = A(/(0))/lfn'(x)\. For expansive maps it follows from 
(Bl) that 

(B2) A(/(n)) < BO" 

where 0 = (1+ e)-1/p < 1 and B = (1+ e)maxA(/(0))/Z<: i.e. 

(B3) ||^ (n) | | = 0(Ö"). 
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Theorem Bl(Folklore), If ƒ satisfies assumptions (i)-(iv) and is 
expansive, then it has an ergodic {hence unique) invariant probabil­
ity measure /u equivalent to X with density function dfi/dX which 
can be chosen piecewise continuous, the discontinuities only at end 
points of intervals in &, and satisfying 

l/D<^<D for some D > 0. 

Theorem B2(Converse). If ƒ satisfies assumptions (i)-(iv) and it 
has an invariant measure /a with d/u/dÀ satisfying the above con­
ditions, then ƒ is expansive (hence ergodic by the Folklore theorem 
itself). 

The proof of the theorem proceeds by a series of lemmas for 
which we make the blanket assumption that ƒ is expansive and 
satisfies assumptions (i)-(iv). The key idea is to obtain certain 
estimates on fn\x) which are independent of n . 

Lemma Bl. There is a c > 0 such that 

(B4) £l/-M|- < c for all n>0. 

Proof. By monotonicity fn'(x) does not vanish on ƒ" and 
so \fn'(x)\ is C1 on I{n). We use the chain rules fk\x) = 
f'(x)f'(fx)...f'(fk-lx) and fn\x) = f{n-k)\fkx)fk\x) along 
with logarithmic differentiation to get 

£l/-MI - 1 = irwr1 

irwr1 

:log|/V)| 
dx 

£^log|/(A)l 

A:=0 

k=0 

r\fkx) fk\x) 
f{fkx) ƒ"'(*) 

n-\ 

< sup | / ' ( x ) / / (x ) | • £ |/"-fc)( A ) f ' 
k=0 

whereupon by (Bl) 

d 
dx i/"w 

n-\ 

sup i A * ) / / w i £ ( l+g)ga-* 

fc=0 

< 00. 

7=1 
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As a corollary we now easily obtain the following 

Lemma B2. There exists M > 0 such that 

Mn<M for all n > 0. 

Proof. For x, y e Z( , we get by monotonicity of f" on 1^ 
and (B4) 

log| fn\x)lf\y)\ = \o%{fn\x)lf\y)) 

= f' fn'\t)lf{t)dt 
Jy 

= -fy
Xf(t)£-t(f(t)y

idt 

ffn\t)dt 
Jy 

'y 
rx 

<c\ 

— c. 

< cfn(Iin)) 

The lemma follows by taking m = ec. 

Lemma B3. There exists D > 0 such that for all I^n) and all sets 
E of positive Lebesgue measure 

(B5) \/D < %l „ j < Z). 

Proof. Since E = \JIe^(E n I) and A is additive it suffices to 
establish (B5) for E c I e 30 . 

Suppose F <z I e &> and / 7 ( / c ) = 7. From the change of 
variables formula for integrals 

|/'WI<" m'Ir ff-kFnl{k) 

we get 

(B6) 1 < KFkF^I{k)) < 1 
maxl/'WI " W ~ min\fk\x)\ 

where max and min are taken over x e r \ Dividing the inequal­
ities obtained from (B4) for k = n + q, F = J? c 7, by the one 
obtained for k = n + q, F = ƒ, we get 

<B7) ' ^ ' ^ V,fA ' 
< K+a/m < "+*' " ' -min / 6 ^A(J) 
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for E c I, fn+^fn+q) = 7 . Since X(f-{n+q)EM(n+q)) = 0 when 
ƒ(«+«) fn+q) ^jthe r i g h t s i d e o f ^B7^ r e m a i n s t r u e {0r Eel and 

all I{n+q). Multiply the right inequality of (B7) by X{E)X{I(n+q)). 
Since each 7(,l) is a union of (n + q) th-stage intervals, we obtain 
the right inequality of (B5) from that of (B7) by additivity of X. 
To obtain the left inequality of (B5) argue as follows. 

For ƒ<»+«> c I(n\ let 7(0) = f"(I{n)) and tq) = f"(fn+q)) c 

7(0). Then /"n7(<?) n T = f"+q). In the left inequality of (B7) 
replace n + q, E, I by n , tq) n 7(0), / ( 0 ) . We get 

ramX(I(q)) ^ mmX{I(q)) ^ X{I(n+q)) 
(B8) 

M ~ M ~ X{I(n)) 

for I(n+9) c I(n). By property (iv) of ƒ , 

J c y _ An+q)j{n) _ j l An+q)j(n+q) 

so we may choose /* e ^("+<?) such that /* c 7(n) and /"+?7* = 
ƒ. Therefore, from (B8) and the left side of (B7), 

X{f~(n+q)E n I(n)) > X(f~{n+q)E n ƒ*) > X(E)X(I*)/M 

>A(E)X(I{n))mmX{I{9))/M2 

for Eel and all I(n), which gives the left inequality of (B5). 

Lemma B4. Tail sets are trivial. 

Proof. Multiplying (B5) by A(/(n)) and summing over 7(n), we get 

(BIO) l/D < X(f~{n+q)E)/X(E) <D, 

for X(E) > 0, n > 0. Now if A is a tail set, which means for 
each n there is an En such that A = f~~nEn, then we have by 
(B5) and (BIO) 

X(Anl^) ^*(f-{n+q)En+qni{n)) 

n+q 

SO 

> \Kf-(n+q)En+q<M^)> i ^ 

" D X{En+a)X{J(n)) ~ & 

D2X(A n 7(n)) > X{A)X{I(n)). 



308 ROY ADLER AND LEOPOLD FLATTO 

Since | |^ ( w ) | | —• 0, we can approximate any set—in particular the 
complement Ac of A—by a union of disjoint n th stage intervals 
from which we conclude 

0 = D2X(A n Ac) > X{A)X{AC) - e 

for any e > 0 . Hence X(A) = 0 or X(AC) = 0. 

Proof of Theorem Bl. From (BIO) we observe that Xfn , n> q, 
is equivalent to X, and its Radon-Nikodym derivative satisfies 

l/D<^p-(y)<D a.e. 

From the change of variables formula, Xf~n(E) = fEhn(y)dX where 

K{y) = E,er-W i r w r 1 • 
As made evident by Figure Bl, ƒ n{y) is a finite set whose 

cardinality is constant for y e int I, I e &. The density func­
tion hn is therefore continuous except possibly at end points of 
intervals of &. The function hn = d(Xf~n)/dX a.e., and hence 
by continuity, 

(Bll) l/D<hn(y)<D, 

for y e int 7(0). Also for y e int 7 (0 ), the derivative of h exists 

X X X X 

FIGURE Bl. Graph of y = fn(x) 
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and 

£w = £ i/"(*)i^i/V)i 
\x€f-"(y) 

By(B4)and(Bll) 

dy-h»{y) <cD. 

We introduce the following average, 

sn(y) = i/n £w, 
k=0 

the advantage of which will become apparent. Sn obeys the same 
inequalities as hn: namely, l/D < Sn{y) < D and \Sn,(y)\ < 
cD for y e int / ( 0 ) . Therefore, {Sn(y)} is an equicontinuous 
family of functions uniformly bounded in n on any I^ . By the 
Ascoli-Arzela theorem, there is a convergent subsequence Sn (y) 
which converges uniformly to a function h(y) which is continuous 
everywhere except possibly at endpoints of intervals I(0). Define 
li(E) = fEh(y)dX. We have 

»(E) = lim(l/ni)Y^*(rkE) 
k=0 
n, 

= l i m ( l / « . ) £ ^ -kE) = n(f-lE), 
k=\ 

i.e. the /-invariance of fi. The measure of fi also obeys À(E)/D< 
fi(E) < D/i(E) which implies that it is equivalent to A. We remark 
that actually pt(E) — limh(f~nE) because 

where B is the Borel field of measurable sets, and the Martingale 
convergence theorem and Lemma B4 imply that the integrand goes 
to 1 as n —> oo. 

Finally, fi is ergodic since invariant sets are tail sets, these have 
Lebesgue measure either 0 or 1, and hence //-measure either 0 
or 1. 

A rate can be obtained directly for the convergence of kf~n{E) 
to fi(E) ; but this takes much more intricate estimates than above. 
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These can be found in [MVP] and are derived from results of 
Doeblin [D] for continued fractions. 

Proof of Theorem B2. Let (p be the homeomorphism of X onto 
itself given by (p{x) = //([0, x]) = f£ ^%dX, and define g(x) = 
9>f<P~l(x) • The function g preserves the measure ii<p~x. How­
ever, fi(p~l = X because Àq>[0,x] = À[0,/u(0,x)] = pi(0,x) 
which extends to Xcp{E) = fi(E) for all E. 

By the fundamental theorem of calculus, cp is differentiate 
except at end points of intervals 7 (0 ), and <p'(x) = dju/dX(x) for 
x e in t / ( 0 ) . On int / ( 0 ) , tp is C1 with ^ > 1/D > 0. Thus ^ 
satisfies conditions (i)-(iv) with respect to (p^0 except that in (i) 
C2 is to be replaced by C 1 . 

Since g preserves Lebesgue measure so does gq. Therefore, 
by the change of variables formula 

xeg~q(y) 

for y e int ç>I°. From (4) we have gq(<pl ) = X so that the cardi­
nality of g~q(y)>N>2. Hence 1 > l/\gq'(x)\ + l/sup\gqf(x)\ ; 
or in other words inf |g^'(.x:)| > 1 for x e intcpl^ . 

From hypothesis 
l/D<\p\<D 

on int I(0), so 

\f9'(x)\ = \gn'"(<px)\\<p'(x)\/\<p'(f'1(x))\ 

> (inf\g'"(x)\)n/D2 

for x e int rnq'. Therefore, we can choose n large enough so that 
inf | f n q \ x ) \ > 1 for x € intI{nq). We can extend this to right and 
left hand derivatives at end points of rnq'. 

APPENDIX C. SYMBOLIC DYNAMICS 

This appendix is split into two parts. The first describes several 
symbolic systems pertinent to this paper. The second applies these 
to the study of abstract dynamical systems. 

I. Symbolic dynamical systems. The main aim of this section is to 
show that the symbolism which we use for rectilinear maps belongs 
to a class of symbolic systems called strictly sofic (Corollary to 
Theorem C7). 
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We begin with a description of the full iV-shift. Let s/ be 
an alphabet, that is a finite set of N symbols: we label these 
0 , 1 , . . . , 7 V - 1 . The full N-shift (LN, a) consists of the space 
"LN of all bi-infinite sequences s = (• • • , sn_x, sn, sn+l ,-•-), sn e 
srf , « G Z , upon which the shift transformation a acts by shift­
ing each coordinate one step to the left: i.e., (<r(s))n = sn+l for 
neZ. 

We develop some of the basic theory for bi-infinite sequences, 
but much of it can be modified to fit the one-sided shift system 
(X^ ,a+). Here X^ is the space of all sequences s+ = (sx, s2, ... ), 
snes/ , acted upon by the shift a+ : (^ , s2, ...)—> (s2, 53, ... ). 

We endow the sequence space X^ with a topology so that no­
tions needed in symbolic dynamics have a dual description: namely, 
they can be stated either in combinatorial or topological terms. 
Even though combinatorial ones are usually more intuitive, the 
topological are often more efficient. 

We define the distance between two distinct sequences to be 
l/(|/i| + l) where n is the coordinate of smallest modulus at which 
they differ. This means that the more two sequences agree around 
the central coordinate the closer they are. Some elementary conse­
quences of this distance function is that X^ is a compact metric 
space (the Cantor discontinuum), the shift a homeomorphism, and 
finite cylinder sets—i.e. sets of sequences where a finite set of coor­
dinates are specified—are closed-open sets. There are a countable 
number of these cylinder sets and they generate the topology. Fur­
thermore, any closed-open subset is compact and hence the union 
of a finite number of finite cylinder sets. 

A subshift (X, a) is defined as a shift-invariant subspace X of 
some X^ together with the restriction to X of a. Unless oth­
erwise specified X is assumed to be closed, hence compact. The 
combinatorial description of X is as follows. The complement of 
X is also shift invariant and is a countable union of finite cylinder 
sets. Without loss of generality we can assume that the cylinder 
sets in question are specified by consecutive coordinates. We call 
a finite string of k consecutive symbols a k-block. A fc-block 
plus a location specifies such a finite cylinder set. However, with­
out reference to location, it specifies the union of all shifts of a 
finite cylinder set. Thus a countable shift-invariant union of finite 
cylinder sets corresponds to a countable list of finite fc-blocks. We 
call members of this list forbidden blocks. So X consists of those 
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sequences that do not contain any forbidden block. This twin de­
scription of Z—as a closed shift invariant subset of Z^ or as 
specified by a list of forbidden blocks—is a sample of the duality 
between topology and combinatorics mentioned above. 

A subshift (Z, a) is said to be a subshift of finite type (SFT) 
if the list of forbidden blocks is finite. Stated another way, the 
complement of Z is the union of all shifts of a finite collection of 
finite cylinder sets. As a simple illustration of a subshift of finite 
type, we mention the Fibonacci shift. It is defined as a subshift Z 
of Z2 consisting of the set of all sequences of 0 's and 1 's with 
no two successive 1 's. 

Given two subshifts (Z, <r), (Z', a') we call a map n of Z 
onto Z' a homomorphism if it is continuous and shift commuting— 
i.e., an = no as illustrated in Figure CI. 

The second shift system is called a factor of the first and the 
first an extension of the second. We call n an isomorphism if 
additionally it is a homeomorphism, in which case we have the 
relation a = nan~l called topological conjugacy. 

Again as an illustration of duality, a homomorphism n 
can be described combinatorial^ as a sliding k-block map by 
which we mean the following. Let (... , yn , y x, ...) = 
7T(. .. , xn, xn+l, ... ) . Because n is continuous, the inverse image 
of a cylinder set specified by a single coordinate is a closed-open 
subset, hence the union of a finite number of finite cylinder sets. 
This implies that there exists functions fn of kn variables, 

k = mn + an + 1, where m„ , an > 0, 
n 

such that yn = fn{xn__m , . . . , xn+a ) for all n e Z . Because n 
commutes with the shift, the functions fn and the parameters kn , 
mn , an do not vary with n . Economizing on notation we abuse 
it slightly and write fn = n . 

The space Z^ can be thought of as all bi-infinite walks on the 
complete directed graph of N vertices which are distinctly labeled. 
The case N = 2 is illustrated in Figure C2. 

Z —°—> Z 

•i 
2' • t 

a' 

FIGURE CI. Commutativity diagram. 
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FIGURE C2. Full 2-shift (vertex labeled). 

FIGURE C3. Fibonacci shift. 

A topological Markov shift (TMS) is defined as the shift re­
stricted to the set of bi-infinite walks on a subgraph derived from 
a complete directed one by possibly removing some edges. A di­
rected subgraph is specified by a matrix A = (a.;) where atj = 1 
or 0 depending on whether or not the rth vertex is connected to 
the j th. We denote a topological Markov shift so specified by 
(LA, a). We write i —• j if atj = 1 and say that 2^ is given by 
the set of l-step admissibility rules i —• j . A topological Markov 
shift (ZA, a) is a subshift of finite type, the list of forbidden 
blocks being the 2-blocks [i, j] where atj = 0. 

Again the Fibonacci shift is a simple example of a topological 
Markov one. 

As depicted in Figure C3, its graph is obtained by removing an 
edge from the one of Figure C2. The matrix which specifies this 
graph is 

" - ( ! * ) • 

and its l-step admissibility rules are 0 -> 0, 0 -> 1, and 1 -• 0. 
For economy we combine the first two rules and write 0 —• 0, 1. 

As just stated, a topological Markov shift can be defined in terms 
of a 0 , 1 matrix. In fact any nonnegative integer matrix serves 
to determine a topological Markov shift. This is done by giving 
distinct labels to edges instead of vertices in a graph. The elements 
atj then specify the number of edges from the / th vertex to the 
7"th. For example, exhibited in Figure C4 on p. 314 is an edge 
labeled graph for the full 2-shift given by the one-by-one matrix 
A = (2). 
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FIGURE C4. Full 2-shift (edge labeled). 

It is easily checked that the symbolic system (Z, a) correspond­
ing to the vertex label of a graph is conjugate to the symbolic system 
corresponding to the edge label of a graph. Indeed, the latter is 
just the higher 2-block presentation of (Z, a) defined below. 

We give a series of theorems about the concepts SFT and TMS 
culminating in Theorem C5 which states that the class of SFT's 
is invariant under isomorphism. Theorem C5 does not hold for 
the class TMS. Indeed SFT is precisely the class of subshifts iso­
morphic to TMS, this fact following from Theorems C2 and C5. 
It is useful to introduce the notion of the higher k-block presen­
tation 1} * of Z. Informally, Z( ' is obtained by reading k 
symbols of Z at a time: i.e. we read xn , xn+l, ... , xn+k_{, 
then we read jcn+1, ... , xn+k, etc. We give a formal definition, 
seemingly pedantic but which facilitates the proofs of theorems to 
come. We first define the k-block presentation (LN 9 o) of the full 
N-shift. This is the topological Markov shift with alphabet con­
sisting of all fc-blocks [ax, a2, ... , ak] of symbols at from the 
alphabet for Z^, and with admissiblity rules [a{, a2, ... , ak] -» 
[b{, b2... , bk] if and only if bx = a2, ... , bk_{ = ak . Observe 

that the A:-block presentation (Z^ , a) of the full shift on N 
symbols is a proper subshift of the full N -shift ÇLNk, o). 

Next we define the /c-block injection cp from Z^ into Z^, 
by <p{xn, xn+x, ... , xn+k_x) = [xn, xn+l, ... , xn+k_x], where the 
latter is the nth coordinate of q>{... , xn , xn+l, ... ). Thus Z ^ = 
<p(LN). We call cp the canonical injection and observe that it has 
a 1-block inverse xn = q>~\[xn, xn+l, ... , xn+k_x]) from Z^} 

to Z. The higher k-block presentation (Z( \o) for a general 
subshift (Z, a) is defined by Z(/c) = <p(L). The following in­
clusions summarize what we have just said: if Z c X^, then 
tpÇL) = Z(/c) c Z^} c Z ^ . (Z, a) is conjugate to (Z w , a) for all 
fc>0. 
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Higher block presentations lead to the following theorem which 
is immediate from their definition. It is useful because in many 
arguments it enables us to replace /c-block maps by 1-block ones. 

Theorem CI. Every k-block map n: Z -• Z' gives rise to a 1-
block map ir . Z( * —• Z' given by TV * — n(p~x where cp is the 
canonical injection from Z onto Ẑ  *. 

As mentioned earlier, TMS's are SFT's. Although SFT's are not 
necessarily Markov, they are conjugate to Markov as shown below. 

Theorem C2. If (Z, a) is a subshift of finite type, then (Z(/:), a) 
is a topological Markov shift for all sufficiently large k. 

Proof. Let (Z, a) be a SFT. Choose a fixed integer k > I - 1 
where / is the length of the longest forbidden block. One merely 
has to observe that the A>block presentation (Z( ) , a), which is 
conjugate to (Z, a) via the canonical injection, is specified by the 
following 1-step admissibility rules: one A>block follows another 
if and only if 

1. the last k - 1 symbols of the predecessor block coincides 
with first k - 1 of the successor, 

2. the (k + l)-block, formed by appending the last symbol of 
the successor block to the predecessor /c-block, does not 
contain a forbidden sub block. 

Theorem C3. A subshift is of finite type if and only if any of its 
higher block presentations is also a subshift of finite type. 

Proof. Both the injection <j> and its inverse map finite cylinder 
sets to closed-open sets—i.e. to finite unions of finite cylinder 
sets. Thus the complement of Z in Z^ is generated by a finite 
number of finite cylinder sets if and only if the same holds for 
the complement of Z(/:) in Z ^ . In addition, since Z ^ is a 
topological Markov shift, its complement in Z ^ is generated by a 
finite number of finite cylinder sets. It follows that the complement 
of Z( ' in Z ^ is generated by a finite number of finite cylinder 
sets if and only if the same holds for the complement of Z(/:) in 
ZNk' 

It follows from the definition that higher block presentations 
of Markov shifts remain Markov, but in general these shifts are 
not preserved under topological conjugacy. However, for 1-block 
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isomorphism we have 

Theorem C4. If a subshift (Z, a) is isomorphic to a topological 
Markov shift ÇLA9 a) via a l-block isomorphism n from Z to 
ZA, then (Z, a) also is a topological Markov shift. 

Proof. Suppose n~l is an m-blockmap. It follows that a symbol 
j follows i in a sequence of Z if and only if 

1. n(i) —• n(j) is admissible in Z^ , 
2. there is an (m + l)-block (s{9 ... 9sm, sm+l) of Z^ such 

that 7t"\sl, . . . , sm) = i and n~\s2, . . . , sm+l) = j . In other 
words Z is specified by a 1-step rule. 

Theorem C5. If a subshift (Z, a) is topological^ conjugate to a 
subshift of finite type (Z', a), then (Z, a) is SFT. 
Proof. By Theorem C2, there is an isomorphism from Z' to the 
space Z^ of some topological Markov shift. Combining this iso­
morphism with that assumed in the hypothesis of the theorem, we 
have an isomorphism ^ of Z onto Z^ , y/ being a fc-block map 
for some k. According to Theorem CI, for (j) the canonical in­
jection from Z to Z( , y/(j)~x is a l-block isomorphism of the 
A:-block presentation Z( * onto Z^ . Hence (Z( ' , a) is a TMS by 
Theorem C4, and (Z, a) a SFT by Theorem C3. 

We can consider a larger more complicated class of dynamical 
systems than SFT's but one that still retains a strong unitary char­
acter. A sofic system is defined as a subshift that is a factor of some 
subshift of finite type. By Theorems CI and C2, we can assume 
it to be a factor under a l-block map of a topological Markov 
shift. Thus one can view a sofic system as the shift acting on the 
space of bi-infinite walks on a directed graph, the vertices (edges) 
of which are not necessarily distinctly labeled. SFT's are clearly 
sofic systems. But the converse is not true. A sofic system which 
is not a SFT is referred to as strictly sofic. 

An example of a strictly sofic system is given in Figure C5 de­
picting the sub-shift that consists of the set of sequences consisting 

FIGURE C5. Even system. 
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of 0 's and 1 's with only even run-lengths of 0 's. This system of 
sequences is called the even system. It can be shown directly or 
as a consequence of Theorem C7 that it is not of finite type. Yet 
the system retains a certain strong finitary character as revealed 
in the graph. Another system which in some sense has a similar 
finitary description is given by allowing only prime run-lengths of 
0 's. However as a result of Theorem C6 below, it turns out not 
to be sofic. These examples are to be constrasted with the system 
of curvilinear sequences encountered in this work which appear to 
defy any sort of finitary description. 

Since SFT's are properly included among sofics, it becomes nat­
ural to distinguish those sofics which are SFT's from those which 
are not. For this a characterization of "sofic" is needed which 
does not depend on a graph representation. This is done with the 
notion of "follower set" defined as follows. Given a left infinite 
sequence s~ = (... , s_2, s_x) we call a right infinite sequence 
s+ = (s0, sx, ... ) a follower sequence of s~ if the bi-infinite se­
quence (... , s_x, s0, sx, ... ) is admissible—i.e. a member of the 
symbolic system. The follower set of s~ is defined to be the set 
F(s~) of all its follower sequences. A sofic system can be defined 
as a subshift in which there are only a finite number of different 
follower sets (this is not to be confused with the fact that each 
follower set usually contains an infinite number of elements). 

Theorem C6. The two definitions of sofic are equivalent. 
Proof. According to the first, we can assume as we have done be­
fore that a sofic system is a 1-block homomorphic image of a topo­
logical Markov shift. Each follower set in a topological Markov 
shift is the set of all one-sided paths from a vertex. Since there are 
only a finite number of vertices, there are only a finite number of 
follower sets in a topological Markov shift. The follower sets in 
the sofic system are just the images of follower sets in the topolog­
ical Markov shift under the 1-block map. There are only a finite 
number of these as well. Therefore, the first definition implies the 
second. 

For the converse, suppose we have a sofic system according to 
the second definition. We construct a directed graph as follows. 
Let the vertices be the pairs (s_19 F(s~)) where s_{ is the right 
most symbol in a left infinite sequence s~ . By virtue of the sec­
ond definition the number of vertices is finite. Draw an edge 
from vertex (s_x, F(s~)) to (t_x, F{t~)) if F(s~) contains 
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a right infinite sequence whose initial symbol is t_{, and t = 
(... , s_2, s_x, t_x). The map n(s_l, F(s~)) - s_x defines a 1-
block homomorphism from a topological Markov shift onto the 
sofic system in question. 

We apply theorem C6 to the prime system—namely, the subshift 
consisting of sequences in which the finite run-lengths of 0 's are 
prime. There are arbitrarily long runs of composite integers as 
substantiated by the numbers n\ + 2, ... , n\ + n . Thus for every 
positive integer n there exists a prime number p(n) such that 
the gap to the next prime q(n) is > n. The follower set of a 
left infinite sequence which ends with a run of p(n) + 1 zeros 
consists of right infinite sequences which begin with runs of m 
zeros, m > n. This follower set includes sequences which begin 
with a run of q(n) - p(n) - 1 zeros. The follower set of a left 
infinite sequence ending in p(q(n) - p(n)) -h 1 zeros then begins 
with a run of m zeros, m > q(n) - p(n), so that it is different 
from the previous one. In this manner one exhibits an infinite 
number of different follower sets. 

Theorem C7. A sofic system is a subshift of finite type, if and only 
if there exists an n such that F(s~) = F(t~) whenever (s_n, ... , 
s_x) = (t_n, ... , t_x). A strictly sofic system is, therefore, one for 
which no such n exists. 
Proof. If such an n exists, then a string of n symbols in the sofic 
system determines a unique vertex on the graph in the proof of 
Theorem C6. This means the homomorphism n is an isomor­
phism, its inverse being an n-block map. By Theorem C5, the 
sofic system is a subshift of finite type. We omit the proof of the 
converse which is easy. 

We apply Theorem C7 to show that the even system is strictly 
sofic because no such n exists. This follows from the fact that for 
arbitrarily large n there exist two left infinite sequences among an 
infinitude of such, which end in a run of 0 's of different parity and 
agree at the right-most n coordinates. Such a pair have different 
follower sets. 

Corollary. The rectilinear system Qa(TR) defined in IV of §8 is 
stricly sofic. 
Proof. Consider left infinite sequences ending in the block j , aû(i), 
... , akû(i). The symbol ûakû(i) is allowed as the first symbol 
of a right follower sequence according as j = / or not. Since k is 
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arbitrarily large, Theorem C6 implies that Qa(TR) is not a SFT. 

II. Application to abstract dynamical systems 

lia. The fundamental complication. The pair (X, T), where T is 
a mapping of a space X onto itself, is called an abstract dynam­
ical system. Additional topological and measurability structure is 
usually assumed. A symbolic representation of such a dynamical 
system is a useful tool in understanding it. By symbolic repre­
sentation we mean that (X, T) is a factor of a subshift (Z, a) 
under a homomorphism n. However, representing an abstract 
dynamical system by a symbolic one involves a fundamental com­
plication. We have two desires: we would like a continuous one-
to-one correspondence between orbits Tnx of the first and orbits 
ff%.. , s__x, s0, sx, ... ) of the second; and we want Z to be a 
closed set, preferably a subshift of finite type. Unfortunately these 
two desires are in conflict: constraints placed by topology must be 
observed. On the one hand a continuous one-to-one correspon­
dence makes X homeomorphic to S. On the other hand X is to­
tally disconnected while X is often a smooth or piecewise smooth 
manifold. By sacrificing one-to-one correspondence we can still 
salvage a satisfactory symbolization of orbits. This is reminiscent 
of the familiar situation in arithmetic: namely, certain rational 
numbers have two decimal expansions. 

We consider two examples, chosen for their simplicity, as illus­
trations of a resolution of the conflict in dynamical systems. The 
first is continuous, the second merely piecewise so. The second, a 
slight variation of the first, exhibits a further complication to be 
resolved. 

Example CI. Let (X, ƒ) be the noninvertible dynamical system 
consisting of X, the unit interval with end points 0 and 1 iden­
tified, acted upon by the continuous map f: x -+ (2x) where (y) 
denotes the fractional part of y . A natural choice of n is the map 
from X2 t 0 % defined by n(s{, s2, ...) = (sl/2 + s2/4H ). It 
is readily verified that n is: (i) commuting—i.e. fn — na+, 
(ii) continuous, (iii) onto, (iv) no more thant «-to-1 (in this case 
n = 2), and (v) one-to-one except on a negligible set.5 Thus we 
have a representation of the dynamical system by a topological 

5 The set in question here consists of binary expansions ending in either an 
infinite run of zeros or ones. An abstract notion of negligibility can be defined 
both measure theoretically and topologically. For us the notion of negligible will 
turn out to be the nondoubly transitive points defined later on. 
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Markov shift such that: every point has at least one symbolic rep­
resentative; there is a finite upper limit to the number of represen­
tatives of any point; and every symbolic sequence represents some 
point. 

We call a map n from one abstract dynamical system to another 
a homomorphism if it satisfies properties (i), (ii), and (iii) above. If 
it further satisfies (iv) and (v) we say it is boundedly finite-to-one 
and essentially one-to-one. An isomorphism theory for abstract 
dynamical systems with continuous T was developed in [AM], 
based on maps satisfying the above five properties. Unfortunately 
in the case where T is merely piecewise continuous, matters are 
not as simple as the next example reveals. 

Example C2. Let X be the unit interval without identification of 
end points. Define 

ƒ (2x)9 0 < x < l 
ƒ(*) = \ 

1 1 , x=l. 
Here ƒ is not continuous but rather piecewise continuous, a situ­
ation shared by the Bowen-Series factor map. A natural choice for 
n is n(sl, s2, ... ) = s{/2 + s2/4-\— . n satisfies (ii)-(v); but we 
lose (i)—namely, f(n(0, 1, 1,...)) ^ 7T(<J(0, 1, 1,...)). 

To restore commutativity, we remove an invariant set of trou­
blesome sequences—namely, all those ending in an infinite run 
of 1 's. This forces us to remove the number 1, which has no 
pre-image under n, from the unit interval. Hence we must also 
remove all pre-images of 1 under ƒ which in turn forces us to 
remove all sequences ending in an infinite run of 0 's. 

Although the two examples above deal with noninvertible ab­
stract dynamical systems symbolized by a one-sided shift, they also 
typify the general problem for the invertible case. The rectilinear 
map TR of §5 is not a homeomorphism: it is only piecewise con­
tinuous. So we are in the situation of Example C2. In a manner 
similar to this example, in order to retain a topological Markov 
shift representation for 7^ we must remove from the subshift an 
invariant continuum of points from a set which has an otherwise 
simple description. Although the description of the removed set 
is somewhat tedious, fortunately for the rectilinear maps it can 
be completely specified. The map TR is piecewise continuous on 
rectangles, the closed side of one abutting on the open side of the 
next. As shown in §8 this property of TR implies the situation is 
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not quite as bad as that of Example C2. Namely, even after re­
moval of symbolic sequences, each point of X still has at least one 
symbolic representative. So we do not have to remove an invariant 
set of points from the space X as well. 

lib. Markov partitions. As mentioned in detail in §8, one asso­
ciates a symbolic sequence with elements of a dynamical (X, T) 
by tracking the history of an orbit through a partition 3P = 
{Ra: a e £f} of J . In order to get a topological Markov shift 
representation ÇLA, a) one must find a partition which satisfies 
certain properties. This type of partition is called Markov, and 
the existence of a boundedly finite-to-one, essentially one-to-one 
homomorphism is a consequence of its properties. 

Before giving a very general version of the theory of Markov 
partitions, we reexamine some dynamical systems for examples of 
them. In example CI, we have an expansive map ƒ and a par­
tition &> = {R0 = [0, 1/2], R{ = [1/2, 1]}. The elements of 
this partition are closed sets equal to the closure of their interiors 
and which overlap only at boundary points. Observe we are de­
viating somewhat from the introduction and §8 where the sets of 
the partition were assumed to be strictly disjoint. The map n of 
that example has an alternate expression in terms of the partition: 
namely, 

oo 

«(5,, s2 , . . . ) = n K n / _ 1 ^y n • • •n f~nK+? 
where R° denotes the interior of Rc . 

The partition 2P is a prototype of a Markov one for a continu­
ous noninvertible map. The partitions encountered in example C2 
and in the hypothesis of the folklore theorem of Appendix B are 
samples of ones for piecewise continuous noninvertible maps; but 
commutativity might fail unless certain symbolic sequences and 
perhaps their images are removed from the discussion. The first 
Markov partitions for diffeomorphisms were constructed by Berg 
[Be]. He discovered them for hyperbolic automorphisms of the 
2-torus. A simple construction of partitions for these maps can be 
found also in the work of Adler and Weiss [AW]. The baker's trans­
formation on the unit square has a Markov partition—namely, the 
partition & consisting of the two sets exhibited in Figure 1.6. 
This map is invertible but only piecewise continuous. The recti­
linear map is another example of this kind, the finer partition of 
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§8 being Markov. Both these cases involve the removal of certain 
symbolic sequences in the associated symbolic extension. 

The partition for a topological Markov shift that consists of 
elementary cylinder sets determined by fixing the 0 th coordinate 
is archetypal of Markov ones. Abstracting certain properties of this 
partition yields a satisfactory general theorem. We treat the case 
of invertible dynamical systems. An analogous discussion holds 
for noninvertible ones. 

Let (X, T) be an abstract dynamical system, where X is a 
compact metric space with distance function d, and T a home-
omorphism. 

The following property of T plays a key role in the theory of 
Markov partitions, and we assume it throughout except in Theo­
rem CIO. 

(1) T is expansive: by which we mean there exists c > 0 such 
that if d(Tnx, Tny) < c for all n € Z then x = y. 

We call a family of sets & = {i?0, R{, ... , RN_{} a Markov 
partition for the pair (X, T) if it satisfies: 

(2) & covers X—i.e. X = R0 (J Rxu, ... , URN_X ; 
(3) Rt = R°', 
(4) R°inR°j=09 iïj; 
(5) l i r n ^ diameter ( n w _ „ r - ^ ) = 0; 

(6) R° n T~lR° Ï 0, -n < i < n- 1 =* r X n • • • n 

r ~ X / 0 , for n > 1. 
Conditions (2), (3), and (4) are about the R. 's and (5) and 

(6) relate the map T to the partition. (6) is called the Markov 
property. It is crucial for getting a TMS representation of a dy­
namical system. Establishing this property is usually nontrivial. A 
useful concept for this purpose is that of local product structure. 
We give an informal discussion of this concept. Call the Rt 's ab­
stract rectangles and think of these to be striated by two families 
of sets, which we call "vertical" and "horizontal" fibers. Each ver­
tical of a rectangle intersects each horizontal in a unique point of 
the rectangle, and each point of a rectangle is the intersection of 
a unique vertical and horizontal. Furthermore, each rectangle is 
canonically homeomorphic to the cartesian product of a vertical 
and horizontal fiber, hence the term "local product structure." Un­
der the action of T the vertical fibers are contracting sets in the 
sense that the image of each is contained in the vertical fiber of 
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possibly another rectangle, and the diameter of the fiber shrinks 
to zero under iteration of T. Similarly, the horizontal fibers are 
expanding sets in the sense that the image of each is a finite union 
of horizontal ones in different rectangles. Their diameters shrink 
to zero under the iteration of T~l. 

Figure C6 illustrates how an image of a rectangle typically inter­
sects another rectangle in a Markov partition. Thus, if TRt meets 
R°. then the image of each horizontal fiber of Rt "goes across" and 
does not "end" in the interior of i? . If x = 

P|„€Z T~nRs , then the vertical fiber through x is identified with 

f\>0 T~nRs , and the horizontal with f] < 0 T~nR . The prop-
— n — n 

erties of vertical and horizontal fibers under the action of T, as 
assumed by local product structure, lead to the Markov property 
(6). We remark that in §8 we got (6) without explicitly mentioning 
local product structure even though it occurs there implicitly. 

For a given Markov partition {i?0, . . . , RN_{}, we define a 
symbolic system Z^ with alphabet {0, . . . , N - 1} and admissi­
bility rules i-*j iff R°. n T~lR°j^ 0 . Thus 

! , = {* = (... ,5_ 1 ,5 0 ,5 1 , . . . ) : i ? 5 ° nT~lR°s ^ 0 , n e Z } . 

We also define a map n : I,A —• X by 

oo 

7c(... ,5_1,50,51,...) = f | r X / i n . - . n r - X / 

That 7t(s) is a well-defined point of X follows from compactness, 
(5), and (6). 

We shall require the following notion in order to define a neg­
ligible set on which n is invertible. A doubly transitive point is 
defined as one whose forward orbit and whose backward orbit are 

FIGURE C6. Image in a partition. 
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both everywhere dense. As we shall see, the set of nondoubly 
transitive points is appropriately negligible. 

Theorem C8. Under the assumptions {I) to (6) the map n is a 
boundedly finite-to-one homomorphism for which each doubly tran­
sitive point has a unique pre-image. 

Proof, (i) n satisfies the commutativity property no = Tn . This 
follows immediately from the definition of n and the fact that T 
is a homeomorphism. 

(ii) n is continuous: hence uniformly continuous. This follows 
from (5). In fact (5) can be strengthened to a uniform version: 
namely, from uniform continuity of n we get that for e > 0 
there exists an integer n (depending only on e) such that diameter 
(nn-nT-kRl)<e. 

(iii) it is onto. Because of (3) and T being a homeomorphism, 
Un € Z Tnd£P is the countable union of closed nowhere dense sets. 
Therefore, by the Baire category theorem, its complement— 
namely, the set of points x which can be expressed by x -
n«ez T~~nR° —is everywhere dense. From the definition of ZA , 
each such point has the unique pre-image {in} under n. Thus 
the range of it is dense in ZA . From the compactness of yLA and 
continuity of n, its range is closed, hence all of ZA . 

We now impose a restriction which we shall later remove. 
(7) diameter (R.) < c/2. 
We remark that under the assumption (7), (5) is automatically 

true and furthermore 
ex» 

n(s) = H T"K n • • • n T-nR° = f l T~nR . 
«=o nez 

(iv) There is a bound on the number of pre-images under n. 
To prove this we first make the following definition. The map n 
is said to have a diamond if there exists s, t e I<A and indices 
k < I < m such that n(s) = n{t), and sk = tk, st£tl9 sm = tm. 
Observe that if the number of pre-images of a point is more than 
TV2 , then by the "pigeon hole principle" n would have a diamond. 
So to establish (iv) we prove 

(*) n has no diamonds. Without loss of generality, we may 
assume k = 1 in the definition of diamond. Assume then that 
x — n(s) = n{t) where 

s = (... , s_2, a, bQ, bx, . . . , bm_x, d, sm+l,...), 
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/ = ( . . . , t_2 , CL, CQ , Cj , . . . , Cm__\ , u , tm+i ? . . . ) • 

We must show that bt = ct for 0 < / < m-1. Because [a9bQ9b{9 

. . . , bm_x, of] is admissible, 77î°nltf nT~lR°h rv--nr~m + 1 i î? 
m i a o0 o{ °m-\ 

n T~mR°d ^ 0 . Choose a point j ; in this open set. Because of 
(iii) there is a sequence r\ = (... , J/_2 , a, è0 , bx, . . . , 6 m - 1 , rf, 
^m+i ' • • • ) e ^A s u c h t h a t n^i) = y • A l s o s i n c e [<z, c0 >

 ci > • • • > 
cm_1?öf] is admissible, C = (••• > */-2> a>co> ci > ••• > cm-i > d> 
>/m+1,...) e z , . Thus TT(C) = z G TRanRcnT-lRc n - . -n 
T~m+lRr n r ~ m i ? , . Because of (7) and rz(;c) e Rh f) Rr 

Cm-\ a ' "/ C/ 

for 0 < / < m - 1, we conclude by the triangle inequality that 
d(Tly9 Tlz) < c. Furthermore, d(Tny9 Tnz) < c/2 for n < 0 
or n > m - 1. Therefore by (1), y = z. Thus iî£ n Rc ^ 0 , and 
we conclude from (3) and (4) that bl = cl. 

(v) A doubly transitive point has a unique pre-image. As re­
marked in the proof of (iii), any point whose T-orbit does not 
meet 33° has a unique pre-image under n. We show that or­
bits of doubly transitive points do not meet d^0. The orbit of 
a doubly transitive point meets the interior of an element of 3P 
infinitely often in the past and future. Consequently, no part of 
its orbit can ever lie in d£P : for then there would be a diamond. 

In order to remove the restriction imposed by (7) we form a 
new partition 

^ = {T»R°s_nn...nT-"Rl:[s_n, s_n+l , . . . , , „ ] 

a finite admissible block}. 

From the fact that n is onto, we have (2)—namely, ^n) is a 
cover. To get (3), (4) and (6), we need the following: 

Lemma. If At = A°, i = 1, . . . , N, then 

Proof. Clearly A° n • • -A°N c (A° n • • • n A°N)° . For the opposite 
inclusion, choose x € {A° n • • • n A°N)° c Ax n • • • n AN, the in­
clusion being a consequence of the hypothesis. Suppose x £ 
A\ n • • • n A°N. Then x £ A° for some i. Since x e A., we 
havex e dAt and every neighborhood of x intersects the com­
plement of At. However, there exists a neighborhood U of x 
such that 1/ c C4j n • • • n ^ ) ° c ^ , a contradiction. 
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We get (5) from uniform convergence of diameters, since we can 
choose n so that diameter (TnR° n • • • n T~~nR° ) < c/2. Thus 

— n n 

&>{n) satisfies (2) through (7). Then Z(2w+1^ is the set of symbolic 
sequences associated with 3°^. Let ft be the map from x(2w+1) 

to X defined by the partition P ( n ) . We have n = n(pan where 
<j> is the canonical injection, which implies that n has at most 
N2{2n+l) pre-images. 

We can obtain a converse of Theorem Dl. To do so we must 
introduce another concept, one that expresses irreducibility of a 
dynamical system. A system (X, T) is said to be topologically 
transitive nonwandering if for every two open sets U and V there 
exists n > 0 such that Tn U n V ^ 0 . For a topological Markov 
shift ÇLA, a) this is equivalent to the reachability of every node 
from every other in the graph of A. It is not difficult to show 
that in a topologically transitive non-wandering dynamical system 
the set of doubly transitive points is a set of the second category. 
Its complement is a set of the first category and is the negligible 
set to which we alluded earlier. In addition to being topologically 
negligible, it is negligible measure theoretically in the sense that, if 
T has a finite ergodic invariant measure which is positive on open 
sets then this set is also one of measure zero. 

Let ZA be based on a finite symbol set sf and denote by Ca the 
elementary cylinder set defined by Ca = {(... , s_{, s0, s{, ... ) : 
s0 = a} for a e s/ . To obtain a converse to Theorem C8, we 
introduce the additional property: 

(vi) (LA , a) is topologically transitive nonwandering. 

Theorem C9. (i), (ii), (iii), (v), and (vi) imply that the partition 
3* = {Ra = nCa: a e stf} satisfies (2), (3), (4), (5) and (6). 

We omit the proof. As an interesting by-product of Theorems 
C8 and C9 we obtain 

Corollary. (1), (i), (ii), (iii), (v), and (vi) imply (iv). 

The general theory of Markov partitions for dynamical systems 
with continuous T can be amended to apply to the expansive 
piecewise continuous case. Let 31 — {i?0, Rx, ... , RN_X} and 
5? = {SQ, Sx, ... , SN_X} be two families of sets satisfying the 
following: 

(2') 31 a n d ^ cover Xj 
(3') *, = * ' and St = S°; 
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(4') *?nn; = S?nsy = 0, i*j. 

Theorem CIO. Let T be a one-to-one mapping of X onto itself 
such that T\R° is a homeomorphism of R° onto S° which has a 
continuous extension, denoted by T., to Rt. Then (1), (2 ' ), (3 ' ), 
(4 ' ), (5), and (6) imply that the map % satisfies (i ' ), (ii), (iii), and 
(v' ), where (i' ) no(s) = Ts n(s), and (v') there is an everywhere 
dense set of points for which n has a unique pre-image, the points 
being of the form x = f]nez T~nR° and the unique pre-image 

being n~\x) = {sn}. 

We omit the proof, it being a more tedious version of Theorem 
C9. Observe that we lost overall commutativity 
because T(TnR° n - n r T ) may not be equal to 

T(TnR° n • • • n T~nR° ) . However, we retain that na(s) = Tn(s) 
— n n 

for the everywhere dense set of points x = n(s) = f]nez T~nR°s . 
Our procedure here is at variance with §8. There it was more 

convenient to choose a partition whose elements were not closed 
(however, their closures satisfy the hypotheses Theorem CIO). For­
tuitously, we were able to describe precisely the sequences which 
had to be removed from a subshift of finite type and where com­
mutativity fails. We got (iv) and (v) directly without recourse to 
the "no-diamonds" argument. It is not clear how to get (iv) and 
(v) in the framework of a general theorem. 

Markov partitions yield topological Markov shifts, whereas par­
titions gotten from Markov ones by amalgamation of elements give 
rise to sofic systems. We call partitions gotten in this manner sofic. 
Conversely, Markov partitions are gotten from sofic ones by re­
finement. The coarse partition of §8 for the rectilinear map is an 
example of a sofic one. 

We conclude this appendix with some background material con­
cerning symbolic dynamics. Linear algebra, especially the Perron-
Frobenius theory of nonnegative matrices, plays an important role 
in the study of topological Markov shifts. For instance, the ratio 
of the number of different «-blocks in sequences of ZA to Xn is 
bounded between two positive constants, where X is the spectral 
radius of A. One can prove that the spectral radius is a topo­
logical conjugacy invariant, the logarithm of which is called chan­
nel capacity [Sh] by engineers and topological entropy [AM, P] by 
mathematicians. It can often be used to show that two subshifts 
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are not isomorphic. R. Williams [Wi] showed that for topological 
Markov shifts topological conjugacy is equivalent to the existence 
of nonnegative integer solutions to certain matrix equations. Even 
so, the main unsolved problem in symbolic dynamics is: does there 
exist an algorithm to tell when two topological Markov shifts are 
topologically conjugate? 

For an entrance into the relevant current literature on symbolic 
dynamics see [BKM, BMT]. For some material on Markov par­
titions see [Bl-4, Si, Sh, Ru] and the forthcoming paper [AKS]. 
Theorems C8, C9 are new results of Kitchens and us, the com­
plete details to be supplied in the future. 

APPENDIX D. GEOMETRIC PROOF OF THEOREM 9.7 

We give here a proof of Theorem 9.7, restated below, which is 
based on geometric considerations. 

Theorem Dl . Let Tn{Ç, rç) e Ct. Then 

T^9r,)eGt <* nt\jB 

T^9r,)eXt # n = b0 

T£(Ç,ri)€Ei <* n = bx 

Tç(Ç, r1)eDiöFi <* neB- {b0, bx}. 

We remark that it suffices to prove Theorem Dl for n = 0. 
For let (£*, rf) = Tn($9 rj). Denote the blocks corresponding to 
(£*, r\*) by B* and let b^ , b\ be the smallest and largest integers 
in J3*, when these exist. Then B* = B-n , b* = bt-n(i = 0, 1). 
We can therefore rewrite Theorem Dl as (£*, //*) e Gt iff 0 ^ 
[JB\ ((m

9f,
m)€Xi iff 0 = 0*, etc. 

We translate the conditions of Theorem Dl on n = 0 into 
conditions on {ôn} . Let {ôn}

+ = {ôn} , 1 < n < oo, and {ôn}~ = 
{ô_n} , 0 < n < oo. Let m, p, r , s, t denote integers such that 
0 < m,p, 3 < r , s < 8 * - 4 , 4 < t < 8 g - 4 . 2 m , 2°° 
denote respectively the finite sequence 2, . . . , 2 (m terms) and 
the infinite sequence 2 , 2 , . . . . 
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Theorem D2. 

0t{jB*ï{ôn}
+ = 2m,r,... 

&{ôn}- = 2\s,... 

0 = bQ&{ôn}
+ = 2m,U... orl°° 

&{ôny = t,... or3,2p,r,... 

0 = bl^{ôn}' = 2 m , 1 , . . . or2°° 

&{ôn}
+ = t,... or3,2p,r,... 

OeB-{b0,b{} 

o either: {Sn} = 2m, 1, . . . or 2°° 

&{Sn}~ = 2 , . . . or3,2\ 1 , . . . or3,2°° 

or: {^}" = 2 W , 1 , . . . or2°° 

&{<?J+ = 2 , . . . or3,2p, 1 , . . . or3 ,2°° . 

Proof. It is readily checked that the above list of conditions on 
{Sn} is exhaustive. That the conditions are mutually exclusive 
follows from the fact that it is impossible to have both {Sn}

+ = 
2m , 1, . . . or 2°° , and {Sn}~ = 2P , 1, . . . or 2°° , as stated in 
Theorem 9.5 (i). 

Therefore, to prove Theorem D2 we must show that each of 
the above conditions on {ôn} implies the corresponding condi­
tion on 0. This follows from the definition of M-block given in 
§9. For instance, let {ôn}

+ = 2m, 1, . . . , {Sn}~ = * , . . . ; i.e. 
{S0,Sl9... ,Sm+l} = { f , 2 , . . . , 2 , 1}. Since ôm+x = 1, m + 1 
lies in a component M. m + 1 is not connected to a preceding el­
ement of / = {«: ôn = 1} since <50 = f and ^ = • • • = ôm = 2. 
Thus m + 1 is the smallest element in M. The integer 0 is the 
biggest k < m + 1 for which 8k j=- 2. It follows that 0 = b0 is the 
smallest integer in B = B (M). 

We give a geometric interpretation of the conditions imposed on 
{ôn} in Theorem D2. In the sequel, when we state that two curves 
do not intersect, we will always mean that they do not intersect in 
D. 

Theorem D3. Let st, s. be the consecutive edges of F . Let y+ be 

a geodesic ray starting from a point of s. and leaving F . Then y+ 

and sj, the geodesic containing Sj, do not intersect. 
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FIGURE Dl . y+ and s, do not intersect. 

The content of Theorem D3 is illustrated in Figure Dl . We 
remark that, by applying the group element T G T, we obtain a 
similiar result for any fundamental region TF . 

Proof. The geodesic I. containing s( separates D into two half-
planes nx and n2, nx closed and containing y + , and n2 open 
and containing Sj. By Theorem 3.3, st and ï . do not intersect. It 
follows that Sj is also contained in n2, and thus does not intersect 

y+. 
Let (£, rf) e Ct. We shall prove Theorem Dl successively for 

(£, Y\) e Xt, isj., Z)̂ . U Ft, the case (£,rç) G (/f. then following 
automatically. We need the following (£, ^-descriptions of the 
sets Xt, etc., which are obtained from Figure 5.4. 

Xt = {(Ç,r,)eCi: £ G [a /+1, bt), q £ (ô /+1 , ô,+2]} 

Z>f = {«[, r,)eCt: He [aM , ft,), i? G (ô,+1, ô/+2]} 

£ . = {(£, , ) e C.: £ £ [ ^ 1 K ( / ) _ 2 ) , a / + 1) , ij G (bi9bM]} 

Ft = {(£, t,) G C.: £ € [T-\aaW_2),aM)9 r, e (bnbM]}. 

Let y = y(£, rç) be the geodesie with end points £, rç, where 
(£,>/) G C,, and u = w(£, r\, •) the outwardly pointing tangent to 
y at the point p where it leaves F . Let y+ = y+(u), y~ = y~(u), 
and assume that y passes successively through the fundamental 
regions {Fn} , -oo < n < oo , with F = F0 . 
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Proof of Theorem Dl . (£, t]) € X. : We give a geometric interpre­
tation to (£, rç) e X. in terms of y+ and y~ . We then show that 
this interpretation is equivalent to the first of the {<Jn}-conditions 
of Theorem D2. 

As made evident by Figure D2, Ç e [ai+l, bt) iff y+ intersects 
5 / + 1 , the intersection being in D if { ^ a/+1 and in dB if <̂  = 
ai+l. Furthermore (£,*/) G AT., i.e. £ e [ai+l,bt) and rç £ 
(bM , ô/+2] » iff 7+ intersects si+l and y~ does not intersect si+2 . 

Suppose {ôn}
+ = 2m , 1, . . . . Then F 0 , . . . , Fm lie on the 

same side of si+l and y+ leaves Fm + 1 through sm+l. Similarly, 
if {Sn}

+ = 2°° , then F 0 , . . . , F m , . . . lie on the same side of 
sM and y+ meets si+l in dB. Finally, if {Sn}

+ = 2 m , r, . . . , 
then y+ leaves Fm + 1 through an edge nonconsecutive to the edge 
contained in s / + 1 . It follows from Theorem D2 that y+ does not 
meet si+l. 

We have thus shown that: y+ meets sM iff {Sn}
+ = 2m, 

1, . . . or 2°° . Similarly, it is shown that: y+ meets si+l and y~ 
does not meet J.+2 iff {^}+ = 2 m , 1, . . . or 2°° and {<?J~ = 
t, . . . or 3, 2P , r, . . . . We conclude from Theorem D2 that 
« : , ! ; )€*, . iff 0 = V 

(£,?/)€ E. : As made evident by Figure D3 on p. 332, (£, rç) e 

J?,., Le. <f £ [ ^ _ 1 K o ) - 2 ) ' ^ + i ) a n d ^ ( f t p ô ^ L i f f y~ meets 
J.+1 and y+ does not intersect ^"1(5C7(l-)_2)- We repeat the argu­
ment employed for X. to show that (£, //) G £, iff 0 = ^ . 

FIGURE D2. Interpretation of Xt in terms of y. 
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FIGURE D3. Interpretation of E. in terms of y . 

(£, 77) e Dt U Ĵ . : Repeating the argument employed for X. we 
show that 

(i,f,)€Di#{Sn}
+ = 2m

9l9... or 2°° 

&{Sn}~ = 2,... or 3 , 2 ' , 1 , . . . or 3,2°° 

(£9r,)eFi*{Snr = 2m,l,... or 2°° 

&{Sn}+ = 29... or 3 , 2 ' , 1 , . . . or 3,2°°. 

We conclude from Theorem D2 that (£, q) e Dt u ̂  iff 0 G 
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