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CIRCLE PACKINGS IN THE APPROXIMATION OF 
CONFORMAL MAPPINGS 

KENNETH STEPHENSON 

Connections between circle packings and analytic functions were 
first suggested by William Thurston [T2], who conjectured that the 
conformai mapping of a simply connected plane domain Q to the 
unit disc A could be approximated by manipulating hexagonal cir­
cle configurations lying in Q. The conjecture was confirmed by 
Rodin and Sullivan [RS]. Their proof relies heavily on the hexag­
onal combinatorics of the circle configurations, a restriction not 
suggested by the underlying intuition. 

The purpose of this note is to announce that Thurston's con­
jecture is true with much weaker combinatoric hypotheses and to 
outline the proof. The main lines of argument are those devel­
oped by Rodin and Sullivan, but the proof is independent. The 
deepest part of their work—a uniqueness result of Sullivan's which 
depends on Mostow rigidity—is replaced here by probabilistic ar­
guments. We work in the setting of hyperbolic geometry and make 
use of the discrete Schwarz-Pick lemma proven in [BS] to under­
stand the behavior of circle configurations. We analyze how cur­
vature distributes itself around a packing as successive differential 
changes are made to boundary circles, ultimately modelling this 
process as a random walk. The proof that a certain limiting ran­
dom walk is recurrent replaces the uniqueness result of Sullivan. 
Details will appear elsewhere. 

The author gratefully acknowledges support of the National Sci­
ence Foundation and the Tennessee Science Alliance. 

STATEMENT OF THE MAIN RESULT 

Let P denote a finite collection of circles in the plane having 
mutually disjoint interiors. Connect centers of tangent circles with 
euclidean line segments. If a triangulation of a simply connected 
closed region of the plane results, we say that P is a circle packing. 
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The triangulation is termed the carrier of P, carr(P) ; the associ­
ated abstract 2-complex, denoted K, encodes the combinatorics. 
Circles on the edge of P are boundary circles; the rest are interior. 
The flower of a circle refers to its star of faces in carr(P). Write 
mesh(P) for the (euclidean) radius of the largest circle in P. 

Given a circle packing P, a theorem of Andreev (see [Tl, Chap­
ter 13]) implies the existence of a combinatorially equivalent circle 
packing P in the unit disk A which has boundary circles internally 
tangent to the unit circle. The combinatorial equivalence means 
that they have the same complex; thus, there is a correspondence 
c <-> c between circles of P and P, so that two circles are tangent 
in P if and only if their counterparts are tangent in P. With 
normalizations to be specified shortly, P is unique and we call it 
the Andreev packing for P. A nonhexagonal example is illustrated 
in Figure 1. 

In the sequel, Q will denote a simply connected open set, with 
0 G Q ç A = {\z\ < 1} and 0 / x G f l a distinguished point. We 
consider circle packings P lying in Q, with 0, x G carr(P) and 
normalize the Andreev packings P so that the circle of P whose 
flower contains 0 corresponds to the circle of P centered at 0, 
while the circle of P whose flower contains x corresponds to a 
circle in P centered on the positive real axis. Define the simplicial 
homeomorphism fp: carr(P) —• carr(P) by mapping the center of 
each circle c of P to the center of its counterpart c in P and 
then extending via euclidean barycentric coordinates (i.e.,. affinely 
on each face of carr(P)). 

FIGURE 1 
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Theorem. Let ƒ: Q —> A &£ //*£ conformai mapping with ƒ(0) = 0 
and f{x) > 0. L ^ {Pn} be a sequence of circle packings in Q, 
with Andreev packings {Pn} and simplicial maps {fn} as defined 
above. Assume that mesh(Pw) —• 0; that the sequence {carr(PJ} 
exhausts Q ; and that there exists a constant ^ a t i o < oo so that 
the ratio of the euclidean radii of any two circles in Pn is no greater 
than ^ a t i o for all n . Conclusion: fn converges to ƒ uniformly on 
compact subsets of Q,. 

OUTLINE OF THE PROOF 

The overall strategy is that of Rodin and Sullivan: One first 
shows that the fn are uniformly /c-quasiconformal on compacta, 
that their domains exhaust Q, and that their ranges exhaust A. 
As a consequence of quasiconformality, the fn are equicontinuous 
on compacta and form a normal family. The additional mapping 
conditions and normalizations ensure that the limit function ƒ 
of any subsequence is a K-quasiconformal homeomorphism of Q, 
onto A. This much follows, by and large, as in [RS], and we will 
not pursue the details here. Instead, we emphasize the 

Key Fact. Given a compact set E c Q and e > 0, there exists N 
so that the restriction of fn to E is (1 + e)-quasiconformal for 
n > N. 

With this, one concludes that the quasiconformal deformation 
of fn goes to 1 on compacta as n —• oo, hence that any limit func­
tion ƒ will be 1-quasiconformal, i.e., conformai, and the proof is 
complete. 

Essential to the proof of the key fact in [RS] is the uniqueness, 
due to Sullivan, of the infinite hexagonal packing in the plane: 
Their circle packings have complexes which are part of one infi­
nite hexagonal complex, and faces deep inside their carriers will be 
approximately equilateral. In our setting, however, the combina­
torics of the packings Pn are infinitely variable—there is not a sin­
gle infinite supercomplex—and we do not expect equilateral faces. 
We argue, instead, that for large n, a triangle deep in carr(P^) 
has approximately the same angles as the corresponding triangle 
in carr(Pn) ; approximate conformality of fn follows. Indeed, we 
work with a fixed circle packing P and investigate closely what 
happens to an individual angle in one of the triangles of its carrier 
as one moves in a certain continuous fashion from P to its An­
dreev packing P. For triangles in a fixed compact subset of Q, 
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there is a bound on the change in any such angle which depends 
on mesh(P). Moreover, this bound goes to zero as mesh(P) —• 0, 
so the key fact and the theorem follow. 

PRELIMINARIES 

In the sequel: 1 ÎÇA is as above; E is a compact subset and 
ô a small positive number with E + S c Q,. P will be a circle 
packing lying in Q, with E + ô ç carr(P). Only later do we need 
the additional hypotheses of the theorem. 

The abstract 2-complex for P (and P) is denoted K ; it has 
k vertices, {v{, v2, . . . , vk} , the first q being boundary vertices, 
the remaininig p interior, k = q+p . We put a structure on K by 
specifying a A:-vector r = [rx, r2, . . . , rk] of hyperbolic radii for 
the vertices, obtaining a hyperbolic complex which we denote by 
K(r). The vector r lies in the set 3i — (0, oo]^ x (0, oof , with 
any infinite boundary radii corresponding to horocycles in A. 

In a hyperbolic complex K(r), each face has three vertices and 
hence three radii from r. There is an essentially unique way to po­
sition three mutually externally tangent circles in A having these 
radii, and the hyperbolic triangle formed by their centers deter­
mines an angle at each vertex. In this manner the radii r de­
termine angles throughout the complex. The sum of those an­
gles determined at a given vertex v. in the various faces of its 
star is termed the angle sum for v. and is denoted 0.(r). We 
call K(r) a packing if OAr) = 2n for all the interior vertices 
vj9{q+\)<j<k. 

The hyperbolic complexes K(r) were studied extensively in 
[BS], and certain results are crucial here. For two radii vectors 
r, r' E & , write r < r if their components satisfy r < r'j., 1 < 
j<k. 

Lemma 1. Assume that the complex K is simplicially equivalent to 
a finite triangulation of a closed disc. Then: 

(a) (Andreev's Theorem) There exists a unique vector R of radii 
so that K(R) is a packing and Rj = oo, 1 < j < q ; that is, 

every boundary radius is infinite. (Note that K(R) is the hyperbolic 
complex associated with the Andreev packing P for K.) 

(b) (Dirichlet Problem) Given boundary radii r., 0 < r. < oo, 
1 < j < q y there exists a unique collection of interior radii so that 
the aggregate r makes K(r) a packing. 
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(c) (Monotonicity) If K(r) and K(r) are packings with r. < r., 
1 < j < q> then r < r and 6j{r) > 6j(r'), 1 < j < q. {That 
is, larger boundary radii imply larger interior radii and smaller 
boundary angle sums.) 

(d) (Discrete Schwarz Lemma) If K(r) is any packing, then r < 
R. 

THE PARAMETERIZATION 

We use the radii vectors of 3$ to parameterize the structures 
on K. Write R = [R{, . . . , Rk] (resp. R = [R{,..., Rk]) for 
the vector of radii associated with P (resp. P). Our aim is a 
certain smooth path of structures, starting from K(R) and ending 
with the Andreev packing K(R). 

Define 0:31 —> R , mapping the /c-vector of radii r to the 
k-vector of angle sums by 0(r) = [9x(r)9 02(r), . . . , 0k(r)] and 
write sf = ®{3%) for its range. We make several observations 
about 0: (1). 0 is smooth. (2). Q:3l -+ s/ is one-to-one 
(by the Perron argument in [BS]) and invertible. (3). K(r) is a 
packing iff 0 .(r) = 2n, (q + 1) < j < k. (4). The vector R of 
Andreev radii is the unique vector for which K(R) is a packing 
with boundary angle sums Oj(R) = 0, 1 < j < q . 

Let S? c 3Î denote the collection of vectors r for which K(r) 
is a packing and let 3S c sf be the associated vectors of angle 
sums, 38 = @{3*). Note that 3B is the intersection with J / 
of the ^-dimensional affine space of vectors in R whose last p 
coordinates are 2n . 5? is a #-dim smooth submanifold of 31, 
with R, ReS*. Let k: [0, 1] -> ^ be the line segment defined 
by k(t) = t&{R) + (1 - O0(#) • If we define r. [0, 1] -• ^ c 31 
as the composition 0 _ 1 ok, then r(f) is a smooth simple path in 
S? starting at R and ending at R ; the map t i-> K(r(t)) is the 
desired continuous evolution of packings from J£(l?) to J^(-R). 

We use differentials to estimate the quantities of interest as we 
move along this path, dk is the constant vector dk = [-0{dt, . . . , 
-®qdt, 0, . . . , 0] , where <Z>. = 9j{R), \<j<q. If dB/dr = 
[(dOJdrj)] denotes the Jacobian matrix of 0 , then the differential 
dr of our path is the vector satisfying 

(1) (§).dr* = dX*. 

The computations can be done using a Markov chain model. How-
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ever, let us set up the precise objective: Denote by KE the subcom-
plex of K associated with faces in carr(P) n E . Fix a face F of 
KE and assume that v{, v2 , and v3 are its vertices. Each vector 
r(t) of radii for K determines a hyperbolic triangle corresponding 
to F and thereby an angle y/(t) at vx . In particular, ^(0) is the 
angle at v{ in carr(P), while ^(1) is the corresponding angle in 
carr(P), and \i//(l) - y/(0)\ < f0 \(di///dt)\ dt. Suppose we prove 

Lemma 2. f0 \(dy//dt)\ dt < ^[mesh(P)], where & is a constant 
independent of P and v{ e KE . 

Then, when mesh(i^) is very small, the angles in those faces 
of Pn lying in E will not change much in going from Pn to Pn . 
This clearly implies that the simplicial map fn will not distort 
these faces much, and the key lemma follows. 

MODELLING WITH A MARKOV PROCESS 

In this final section, we describe briefly the Markov chain model 
which leads to a proof of Lemma 2, emphasizing the underlying 
intuition. Our task splits naturally into two parts: In the first, we 
continue the study of structures on a fixed K, showing how to 
compute dr and dy/ . In the second, we see how the hypotheses 
of the theorem enter as mesh size goes to zero. 

To begin, then, AT is a fixed complex as before; we find ourselves 
at a point r(t) of 5?. The angle y/(t) we are watching depends 
on r(t), so we want to compute the differential dr for which (1) 
holds. By Lemma 1(b), differentials of boundary radii determine 
those of the interior. Our plan is to modify boundary radii (in 
a differential sense) to achieve the desired angle sum decreases 
dX at boundary vertices, and then to watch as the effects of these 
changes ripple through the complex in a sequential fashion. We 
rely on repeated use of an elementary geometric fact: 

Fact. An increase in radius at a vertex will decrease the angle sum 
there, but will increase the angle sums at neighboring vertices. 

Here is the process: To decrease the boundary angle sums, we 
need to increase boundary radii. Start by making the appropri­
ate increases. Any vertex neighboring a boundary vertex will see 
one or more neighbors growing and hence will see its angle sum 
increasing. It will then feel a need to increase its radius, either 
to reestablish an angle sum of 2n if it is an interior vertex or to 
preserve its (new) angle sum if it is a boundary vertex. Assume 
once more that we make appropriate adjustments in radii. Now, 
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the neighbors of these vertices, seeing this growth, will feel up­
ward pressure on their radii. Make the necessary increases again. 
Then the neighbors of these feel upward pressure, and so on and 
so forth ad infinitum. Fortunately, this process finally stops, for in 
addition to putting upward pressure on its neighbors, each radius 
change also contributes to the hyperbolic area of its faces—thus 
as the effects of our original changes at the boundary ripple from 
neighbor to neighbor, they eventually dissipate entirely into area. 
At the end of the day, one looks at each radius to see the accu­
mulated increases it has undergone. These changes comprise the 
vector dr of radius differentials. 

Another elementary feature of hyperbolic geometry explains why 
this rippling process may be modelled as a random walk: Consider 
what happens at an interior vertex v. having m neighbors in the 
scenario above. The angle sum 0. is 2n, so its star of faces is 
a hyperbolic polygon with m sides and m interior angles, say 
o.n , 1 < n < m. The hyperbolic area, A., of this polygon is 
Aj = n(m - 2) - Y^n otn > implying 

m 

(2) Aj + J2<*n = m7c-ej. 
n=\ 

Suppose, now, that there were a small excess (above In) in the an­
gle sum at Vj , as would result if a neighbor had recently increased 
in radius. We refer to this differential excess as curvature—think of 
it as a small quantity of angle. A small increase in r. will return 0. 
to 2n. What happens to the curvature? Well, the angles an will 
each increase slightly, so part of the curvature shifts to the neigh­
bors, resulting in small excesses in each of their angle sums. But 
the area A. will also increase, meaning that part of the curvature 
is absorbed as area. Curvature absorbed as area will stay put and 
can cause no further adjustments, whereas curvature distributed to 
the neighbors will necessitate increases in their radii, continuing 
the ripple effect of the process. Why is this a random walk? By the 
identity (2), 100% of the differential changes in 0. are accounted 
for in differential changes to the angles an of neighbors and in the 
differential change to area A.. This, in fact, suggests the transition 
probabilities: The transition probability from v. to a neighbor vt 

is the proportion of curvature at v. which gets shuttled to v( when 
we adjust the radius at v.. The remainder of the curvature, called 
leakage, contributes to an increase in the area A.. 
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In summary, then, the complex K is treated as a network, very 
much like an electrical circuit. Curvature is pumped in via the 
initial (differential) changes in boundary radii and distributes it­
self about the network as a random walk, propelled by changes 
in radii. The curvature ultimately leaks to ground (is absorbed as 
area) at the various vertices, and the process stops. In the language 
of Markov chains, the vector -dX serves as an initial distribution 
of curvature; from the Markov transition matrix one can compute 
precisely where curvature is absorbed; and it is then a simple mat­
ter to compute the associated vector dr. It should be emphasized 
that this model is not an approximation of how angle differentials 
propagate about the complex, but is absolutely precise, reflecting 
the geometric rigidity of circle packings. 

And how does this all affect the angle y/ of central interest? 
Recall from above that y/ depends only on the radii of vx,v2, 
and v3, that is, only on components dr{, dr2, and dr3 of dr. 
These increments are all positive; however, y/ is monotone de­
creasing in rx and monotone increasing in r2 and r3. Even if all 
the radii were small and comparable, a disproportionate change in 
one could have a large effect on y/. This brings us to the second 
part of our description—namely, what happens as mesh(P) goes 
to zero. Here the hypothesized properties on our packings enter, 
yielding important additional details about the associated Markov 
processes. 

Specifically, we need to understand the distribution, call it U, 
of all the curvature after the random walk. The study of U de­
velops roughly as follows: Transition probabilities for our Markov 
process can be computed using conductances, which not only 
proves that the process is reversible, but also gives explicitly an 
associated equilibrium distribution n. The function V = U/n is 
found to be a nonnegative discrete harmonic function V on the 
network K. The crucial estimates follow from a discrete analogue 
of the classical Harnack inequality for such functions; essentially, 
one shows that 11 - V{Vj)IV{vt)\ is small for neighboring vertices 
Vj, vt G KE . Bounds are obtained via a succession of comparisons 
of our random walk to others, and in these the constant ^ a t i o in 
the hypotheses of the theorem enters. An important distortion the­
orem proven via the discrete Schwarz-Pick lemma of [BS] gives a 
bound on the factor by which circles of P centered in E can grow 
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as the radii move toward their Andreev values R : 

Lemma 3. There exists a constant & depending only on ô and 
^a t io suc,î tiiat 1 - RjlRj - ^ whenever v. e KE. 

This gives some uniformity on conductances and allows use of 
the notions of "irrelevance of bounded twiddling" and " A>fuzz" 
[DSr, Chapter 8] to compare our random walk on K to the simple 
random walk on an infinite square lattice. The latter is known 
to be recurrent by a famous result of Polya. The upshot of the 
comparisons is an estimate of escape probabilities from vertices of 
KE which establishes the desired Harnack inequality. 

We can now suggest intuitively what happens as mesh(P) gets 
small: The leakage probabilities in the random walk are compara­
ble to [mesh(P)]2 ; with mesh(P) small, a quantum of curvature 
will make many transitions from vertex to vertex in its random 
walk before leaking to area. This suggests, via the Harnack in­
equality, that the final distribution U of curvature comes to ap­
proximate the equilibrium distribution n of the process. Now, 
a very pleasing little identity (linking hyperbolic geometry, con­
ductances, and transition probabilities) shows that if the curva­
ture were distributed exactly as n , the competing effects of radius 
changes on y/ would precisely balance, giving dy/ = 0. U ap­
proximates n sufficiently closely that an integration on t and an 
appeal to Lemma 3 completes the proof of Lemma 2. 
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