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1. INTRODUCTION 

Suppose that E is an elliptic curve defined over Q given by 
the equation 

2 3 2 

(1) y +a{xy + a3y = x + a2x + a4x + a6, 
where we assume that at e. Z . The set E(Q) of solutions (x, y) 
with x , y G Q, together with the point at infinity, forms a finitely-
generated abelian group, the Mordell- Weil group ofE. It is iso­
morphic to Zr 0 F, where F is finite and where r is the rank 
of E. The possibilities for the finite group F are completely 
known [9]. The important question then is to understand the be­
havior of the rank as E varies over elliptic curves. It is still un­
known whether r is unbounded or not. In fact, one opinion is 
that, in general, an elliptic curve might tend to have the smallest 
possible rank, namely 0 or 1, compatible with the rank parity pre­
dictions of Birch and Swinnerton-Dyer [8]. We present evidence 
that this may not be the case. 

Published examples [2, 10] of curves of rank > 2 might suggest 
that such curves are sparsely distributed. Mestre and Oesterlé 
found the 436 modular elliptic curves of prime conductor up to 
13100, using [11]. There were 80 rank 2 curves among the 233 
curves of even rank. This proportion of rank 2 curves seemed too 
large to conform to the conventional wisdom just stated (see also 
[18, pages 254-255]). We decided to investigate the ranks of el­
liptic curves in a systematic way, over a significantly larger range. 
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Curves of prime conductor only were considered for practical and 
theoretical reasons. This collection of curves appears to be a typi­
cal sample of the set of all curves (see §5 for some evidence). 

We studied 310,716 elliptic curves of prime conductor less 
thanlO8. There were 155,658 curves with odd rank, and 155,058 
curves with even rank. We found that 20.06% of all our curves 
have even rank at least 2, or about 40% of all the even rank curves. 
Even more striking is the behavior of the average rank, as discussed 
in §3. An incidental aspect of our computations is a massive cor­
roboration of the standard conjectures on elliptic curves, recalled 
in §2. 

Recent related work is described in [6] and [8]. Contrasts with 
our results are given in §3. 

We expect to publish a fuller account, including the behavior 
of other invariants of interest. This announcement reports mainly 
on ranks. The computations were carried out on Macintosh II 
computers at Fordham University, with the partial support of a 
National Science Foundation grant. We would like to thank our 
colleagues R. Lewis, I. Morrison, and W. Singer for the use of their 
machines. 

2. DEFINITIONS 

We recall standard notations and definitions [15]. Associated 
with equation ( 1 ) is the discriminant A, which we will assume to be 
minimal among all models ( 1 ) of E. The fundamental property of 
the discriminant is that p | A if and only if equation ( 1 ) is singular 
modulo p , and the conductor N of E is a subtler invariant that 
has the same property. 

The Hasse-Weil L-series of E is defined for $t(s) > 3/2 by 

L(E,S)=n (i - apP's)~x n 0 - app~s+pl~2syl > 
p\N p-fN 

where for p\N, ap e { -1 ,0 , 1} and for p \ N, ap = p + 
1 - |2s(F ) | . We shall assume that E is a modular curve, so E 

is a factor of the Jacobian J0(N) of the modular curve X0(N) 
of level TV. (That is, the Taniyama-Weil conjecture for E is 
true.) Hence, L(E, s) can be continued to an entire function 
on C, satisfying a functional equation when s *-+ 2 - s, with a 

Note that Mestre-Oesterlé found their curves by determining the 1 -dimensional 
factors of J0(N). Needless to say, we have the same curves in their range. 
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0 at s = 1 of order p, the analytic rank of E. For square-
free conductor, the sign in the functional equation may be easily 
calculated from an equation of the curve, allowing a conjectural 
prediction of the parity of the analytic rank [1]. We also assume 
that the conjecture of Birch and Swinnerton-Dyer holds, so that 
the analytic rank equals the rank, p = r , and the leading term of 
L(E, s) at s = 1 is given by: 

L(E s) |ffl|det((/>,,P,)) „ 
(2) lim f±^2 = Q^- V l

f2
j/J TT cp. 

s^(s-lY [E(Q):E']2 ^ \ p 

Here Q is the period fE{R) \co\, for œ a Néron differential on 
E, III denotes the conjecturally finite Tate-Shafarevich group 
of E, the P. for 1 < / < r are an independent set of points 
in E(Q) generating the subgroup E', and (P-, P.) denotes the 
height pairing. The fudge factors c are all 1 for the curves we 
consider. Recent work of Rubin [14] confirms the conjecture of 
Birch and Swinnerton-Dyer in many cases of rank r < 1. 

Examples illustrating (2) for the curves of ranks 4 and 5 of least 
known conductor are given in §4. 

3. RANK RESULTS 

Elliptic curves of prime conductor N were conjectured to have 
prime discriminant, except for the Setzer-Neumann curves and for 
five other small conductor curves; see [2, Appendix]. This is now 
known for modular curves by Theorem 2 of [12]. We therefore 
searched for curves of prime discriminant, by looking for integral 
solutions to the equation 

(3) c4
3-c6

2 = 1728A, 

where c4 and c6 are the usual invariants attached to equation (1), 
or more precisely, by fixing a4 , and searching for a6 for which (3) 
has a solution with A prime and less than 10 . This produced 
311, 243 curves, including the 869 expected curves with nontriv-
ial torsion and rank 0. The set of 310,716 curves that we studied 
is most simply described by 

{ E : | A | < 1 0 8 , K | < 2 3 1 - 1 } , 

with |A| prime. 
We will not describe here all the details of the several thousand 

hours of computations, but just say that imitating Mazur's descrip­
tion [17] of "infinite descent," we searched for points by night, and 
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calculated L-series derivatives or regulators by day. We may use 
the infinite series formulas of [3] for the derivatives of the L-series 
at s = 1, since E is assumed modular. Then an upper bound for 
the analytic rank is found by estimating the order of vanishing 
of L(E, s) at s = 1. Using 2000 or 4000 terms of these series 
provided sufficient accuracy for our purposes, since the values are 
either 0 to several places or else are far from 0 in most cases. The 
period Q is easily calculated using the arithmetic-geometric mean 
algorithm of Gauss [7], and the height regulator R = det ( (P., P.) J 
is computed by using the method of Tate, as modified by Silver­
man [16], once points have been found by a search. 

The rank predictions are based on a combination of three calcu­
lations: the rank parity, the analytic rank or order of vanishing of 
the L-series, and the number of independent points found which 
is a lower bound for the algebraic rank r. When the ranks coin­
cide, as they should, we get a prediction from (2) of | III |, which 
should be an integer square. The largest | III | we found was 289, 
for a curve of rank 0. 

For each curve, we keep its discriminant, parity, period, rank, 
the appropriate L-derivative value, a list of x-coordinates of the 
independent points found, and the regulator of these points. 

Of the curves analyzed, 113,969 had positive discriminant, 
and 196,747 had negative discriminant.3 An interesting phe­
nomenon was the systematic influence of the discriminant sign 
on all aspects of the arithmetic of the curve. The rank distribution 
is given in the following table: 

Rank 

~~A > 0 
A < 0 

Totals 
Percents 

0 

31748 
61589 

93337 
30.04 

1 

51871 
91321 

143192 
46.08 

2 

24706 
36811 

61517 
19.80 

3 

5267 
6594 

11861 
3.82 

4 

377 
427 

804 
0.26 

5 

0 
5 

5 

Thus, 20.06% of the curves have even rank at least 2. Note that 
the positive discriminant curves give an even higher percentage! 

Define N(r, X) to be the proportion of curves with conductor 
at most X, and with rank at least r. Our data show that these 
functions are increasing functions of X for r > 3 and X < 

o 

10 . In contrast [6], dealing with quadratic twists of elliptic curves 
suggests a decrease for the analogous functions. 

The quotient is about 1.726 , near \/3 . See §5 for an explanation. 
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Denote the average rank among the curves with discriminant 
sign e and conductor at most X by r€(X). In our data, the 

o 

functions re(X) for X < 10 are quite steadily climbing to the 
numbers 1.04 for A > 0, and to 0.94 for A < 0. In particular, 
the average rank of our curves is not 0.5, as is expected to be the 
case for twists [5, 8]. 

In most cases, the predicted analytic rank matches with the rank 
of points found, and the predicted III is close to a nonzero in­
tegral square. More precisely, this is so for all the curves of rank 
at least 3, and for 95% of the rank 2 curves. There is a very small 
number of rank 2 curves for which the prediction of rank 2 is 
based solely on the vanishing of L-series. Note that in [8], a nu­
merical study of one family of cubic twists, only the analytic rank 
is estimated. For many rank 1 curves (i.e., curves whose rank is 
predicted to be odd for which Lf{E, 1) does not vanish), we have 
found no points by point searches over moderate ranges, and do 
not expect to find any small points. 

4. EXAMPLES 

In the literature, one finds very few verifications of the conjec­
ture of Birch and Swinnerton-Dyer for ranks > 2 . The paper [3] 
on the curve of conductor 5077, found in [2], works out the only 
rank 3 case that we know of. It is perhaps not without interest to 
report the details for the curves4 of smallest known conductor of 
rank 4 and of rank 5. 

The first rank 4 curve is: 

y2 + y = x3 + x2 - 72* + 210, A = 501029. 

For this curve, the predicted parity is even, the period Q = 
2.952580, the value and second derivative of the L-series van­
ish to several places, and L{4)(E, l)/4! = 9.357978. The points 
with x-coordinates 5, 4 , 3 , 6, in order of increasing height, 
form a basis. The regulator is R = 3.169424, which matches the 
quotient of l}A\E, l)/4! and £1, so | HI | appears to be 1. There 
are 2 1 x 2 integral points with |JC| < 106 , while the second curve 
of rank 4 has 28 x 2 . 

The first rank 5 curve is: 

y2 + y = x3 - 19x + 342, A = -19047851. 

These curves are new. The curves of rank 4 reported in [2] and [10] are 
respectively the fifth, seventh, and second curves of rank 4 in our list. 
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The previously found curves of rank 5 have conductors about ten 
times larger [2, 10]. 

The predicted parity is odd, the period Q = 2.047641, and then 
the first and third L-series derivatives are 0 to several places, and 
L{5)(E, l)/5! = 30.285711. Dividing by Q gives 14.790539. 
There are 38 x 2 integral points with |JC| < 106. Those with 
x = 5, 4, 3, 7, 0 form a basis for E(Q) with height regulator 
R = 14.790528 . So III is predicted to be trivial. There are four 
other curves of rank 5 with conductor less than 100 million. The 
next one has discriminant - 6 4 , 921, 931. All turn out to have 
trivial III , if we believe the conjectures. 

Some of the curves found by the search give rise to rather spec­
tacular cancellations. A particular example is the curve of rank 0 

y2+xy+y = x3+x2-12632622*-17287039382, A = 38593. 

Here c4 = 606, 365, 857, and c6= 14, 931, 454, 281, 967, and 
uati 

numbers! 
the equation 1728A = c4 - c 6 involves the difference of two 27 digit 

5. HEURISTICS 

While its connection with the Taniyama-Weil conjecture makes 
the conductor a natural invariant, the discriminant has turned out 
to be more useful in our heuristics. The idea is to arrange the 
curves in order by discriminant size, and then replace lattice-point 
counting problems by area computations. This works well, for 
instance, to count curves. 

Heuristic Estimate. We have the following estimates for the number 
of positive and negative discriminants of absolute value at most N, 

r5/6 

C(IO) ' 1 
A+{N) ~ TTTT^AT 

The C(10) factor arises from taking into account the nonmini-
mal discriminants. Here a+ = 0.4206 and a_ = 0.7285 are given 
by the elliptic integrals 

V3 f V3 f°° du 

±i VU3T 1 
which arise from parameterizing suitably the integrals that replace 
the lattice-point counts. A well-known identity of Legendre, re­
lated to complex multiplication, is a_ = >/3a, . 
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Remark. One should compare this estimate with the results of [4]. 
While the number of elliptic curves grows like N5'6 , the number 
of cubic fields grows like N. 

Assuming the distribution of prime discriminants among dis­
criminants is that of prime numbers among all integers, the num­
ber of prime discriminants of sign e and of size less than N is 
then ae Li(N5' ) , where Li(x) is the logarithmic integral. The ex-

o 

pected number of curves with prime |A| < 10 is then 311, 586, 
comparing rather well with the number 311, 243 found. 

Similar heuristic arguments have been applied to other invari­
ants. For instance, the average period of a curve with positive dis­
criminant is \ /3 /2 times the average period of a curve with negative 
discriminant. This is also confirmed by the data. The fits with the 
experimental data are so good that one could hope for proofs in 
the near future. 

We have not as yet been able to provide heuristics for the growth 
of the functions N(r, X). While our data may seem massive, 

o 

TV = 10 is not sufficient to distinguish growth laws of log log N, 
7V1/12, or iV1/24, from constants. So we have to be cautious in 
formulating conjectures based on the numerical evidence. 
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