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MULTIPLICATION OF DISTRIBUTIONS 

J. F. COLOMBEAU 

Physics often puts in evidence products which look meaningless 
in a mathematical sense and appear under the form of "heuris­
tic multiplication of distributions." The most famous example is 
probably quantum electrodynamics founded in 1927; it was soon 
recognized that it led to "infinite quantities" in the form of di­
vergent integrals from which much later (1947) finite predictions 
were extracted, see [4] for instance. Such products appear also 
in elasticity and elastoplasticity (shock waves; their importance is 
presently emphasized in elasticity and elastoplasticity by the need 
for numerical simulations of collisions), in acoustics (sound prop­
agation in a medium with discontinuous characteristics), and in 
other domains, see [1-3, 10, 13, 14, 16]. 

These examples provide motivation for mathematical attempts 
to define and study the multiplication of distributions. The prob­
lem is difficult since L. Schwartz (1954) proved the impossibility 
of a straightforward extension of the product of continuous func­
tions, see [8, 26]. 

Strictly speaking, the reader of this text does not need to know 
anything about distributions in order to follow our discussion. If 
Q is a nonvoid open set of the space R" we denote by ^°°(Q) 
or by 3f(Çl) the space of all ^°° functions on Q which are null 
outside of a variable compact subset of Q ; such functions exist: 
to provide an example consider the auxiliary function of one real 
variable f(x) = exp(l/(x2 - 1)) if |JC| < 1, f(x) = 0 if \x\ > 1. 
^°°(Q) is endowed with a topology and the distributions on Q 
are defined as the continuous linear maps from ^°°(Q) into C. 
Any locally integrable function ƒ on Q defines a distribution, 

V-> f(x)tp(x)dx, 0>€g^°(Q). 
JQ 

Received by the editors October 12, 1988. 
1980 Mathematics Subject Classification (1985 Revision). Primary 46F10, 

35D05, 35D10. 

©1990 American Mathematical Society 
0273-0979/90 $1.00+ $.25 per page 

251 



252 J. F. COLOMBEAU 

If T is a distribution on Q, then its partial derivative dT/dx{, 
1 < i < n9 is defined by dT/dxx{(p) = -T{d(pldxt) which is 
nothing else than a formal integration by parts formula. The con­
cept of distribution provides a convenient setting in which one can 
freely differentiate functions which are not derivable in the classi­
cal sense. In the sequel we shall limit ourselves to the case Q, = R ; 
this is done to simplify the notation. 

1. THE ORIGIN OF OUR CONCEPT OF GENERALIZED FUNCTIONS 

The aim of this section is to sketch the original idea which led 
us to define a general multiplication of distributions. For this we 
use the nonelementary concept of differentiable functions defined 
on an infinite-dimensional vector space. Since we shall only sketch 
the idea the reader does not need to know this concept [6]; some 
analogy with the case of differentiable functions defined on R" is 
enough. We denote by I? or W°° the space of all C°° functions 
on R (with a natural topology), by I?' the space of all linear 
continuous maps from I? into C and by 2 the space 2(R). 
I? and 2 are infinite-dimensional vector spaces and have natural 
topologies. We denote by W00^') and ^°°{2) the respective 
spaces of all C°° functions on &' and 2 . In distribution theory 
one proves that any element of I?' can be approximated (in the 
topology of I?' ) by a sequence of elements of 2 ; i.e. 2 is a 
dense subspace of %'. This implies that ^00(ê?f) is contained in 
W°°{2) through the map (p -+ <p^ if <p e <^00{^') and if g>^ 
is its restriction to 2 . Let Sx denote the Dirac measure at the 
point x G R, i.e. Sx{cp) = cp(x), cp e 2 . If 9JI is the map 

gr700^') _ g?00 

tp x ^ (p(ôx) 

then one shows easily that the algebras W°° and ^ ( I f ^ / K e r a t t 
are isomorphic. The conclusion is that certain quotients of spaces 
of C°° functions over certain locally convex spaces can be inter­
preted as very nice algebras of functions. An idea is: extend Ker DJl 
to an ideal JIT of W°°(2) (or of a subalgebra sf of W°°(2) as 
large as possible) and try to interpret the elements of the quotient 
algebra 

as "generalized functions." This approach has been developed in 
[7, 8]. Fortunately it soon became clear that one can drop the 
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sophisticated concept of C functions over 31. This gives a very 
elementary construction which we expose in Appendix 1. One can 
go on reading this text just by keeping in mind that the elements 
of & have essentially the main properties of the C°° functions. 
We have the inclusions 

^°° is a subalgebra; & induces on 3f' the partial derivatives in 
the sense of distributions. 

2. COHERENCE WITH THE CLASSICAL MULTIPLICATION 

From Schwartz's impossibility result it follows that the algebra 
fê of all continuous functions on R cannot be a subalgebra of 
&. The following simple calculation shows that the algebra 8y 
of all piecewise continuous functions on R is not a subalgebra of 
9. Let Y e &f be the Heaviside function (Y(x) = 0 if x < 0, 
Y(x) = 1 if x > 0). In the algebra ^ one has if n = 2, 3, . . . 

(1) Yn = Y. 

Thus by differentiation 

(2) Y
n~XY' = -Y'. 

n 
Multiplication by Y gives 

n 
Use of (2) gives 

(3) -J—Yf = ^-Yf 

v J n + 1 In 
which is absurd ( Y1 is the Dirac delta mass). The study of a shock 
wave with an elastic-plastic phase transition shows that in physics 
one needs several different Heaviside functions: they are identical 
to 0 for x < 0, to 1 for x > 0 and differ by their "microscopic" 
behavior at the point 0, see [3, 10, 14]. Therefore we interpret the 
absurd result (3) as a consequence of (1), which should be replaced 
by 

(1 ' ) Yn^Y iîn^X. 

The classical product in g^, i.e. (1), cannot be used for calcula­
tions involving multiplications of distributions. Indeed in & one 
has ( l ' ) . The algebra 8^ is not a subalgebra of &. Schwartz's 
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result has been interpreted negatively; for us the same fact is in­
terpreted positively: since physics imposes the need for several 
different Heaviside functions it is very fortunate that mathematics 
leads to the same conclusion. 

It is fortunate also that the classical product in 9^ is very close 
to the new product in «̂  : in order to formulate this we introduce 
the concept of "association": an element G of & is said to be 
associated with 0 iff for any y/ e ^°°(Q) the integral 

/ G(x)i//(x)dx 
JR 

is null in a natural sense, see Appendix 1. 
We say that G{ and G2 e & are associated with each other 

iff G{ - G2 is associated with 0 ; we write G{ « G2. One proves 
easily that [7, 8]: 

Proposition 1. Two distributions are associated iff they are equal 

Proposition 2. The classical product of piecewise continuous func­
tions (when considered as an element of & through the inclusion 
2y c & ) is associated with their product in &. 

A similar result holds for most classical multiplications of dis­
tributions, see [3, 8, 22, 26]. Thus the association is an extension 
of the equality of distributions and through it one obtains coherence 
of the new product in & with the classical products when the latter 
exist, 

3. "SAFETY BARRIERS," OR REGULARITY RESULTS 

In order to manipulate freely one must leave the ordinary world 
of classical functions. Then one finds "abstract objects" that are 
solutions of equations. The genuine difficulty is shifted to the fi­
nal task of ascertaining whether the solutions thus obtained are 
indeed "classical objects" which are capable of representing phys­
ical quantities. This has been done in the context of the present 
theory [3, 5, 23-25]. Note that for certain equations which have 
sufficiently many classical solutions the abstract solutions are auto­
matically classical solutions; these results are welcome and beau­
tiful from the mathematical viewpoint. They are all the more 
useful in the present setting as there are "wild objects" in 9 : for 
instance if ô is the Dirac distribution at the origin the "pointval-
ues" ô(0), ô2(0), . . . can be considered as constant generalized 
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functions (one defines pointvalues of elements of 9 as "general­
ized numbers" by following, for fixed x, the pattern of the defi­
nition of & ). Their classes in & are solutions of G' = 0. They 
are eliminated at once by classical initial or boundary conditions 
(which hold in a physical context); one proves easily 

Proposition 3. Let G G 9. Assume G' = 0 and assume there is 
x0 G R such that G(x0) is a classical number. Then G is identical 
to this constant. 

If G' « 0 one obtains a similar result, see [3]. 
In many nonlinear problems these wild constants are eliminated 

even without initial or boundary conditions [21]: 

Theorem 1. Let P(x, y) be a nonzero polynomial in two variables. 
Let I be an open interval. Then if G e S? (I), P(x, G) = 0 if and 
only if G is a classical C°° solution on I. 

Direct proofs of Corollaries 1, 2 and 3 are easy and given in 
Appendix 2. 

Corollary 1. If P is a nonzero polynomial in one variable, then 
P(G) = 0 if and only if G is identical to a classical root of P. 

Corollary 2. The equation xG = 0, G e &, implies G = 0 on 
the whole of R (i.e. the singularity x = 0 does not allow new 
solutions). 

Corollary 3. The equation G2 = x2, G e &, implies G equals 
one of the two C°° solutions +x or -x (the classical solutions 
\x\ and -\x\ are excluded). The equation G — x has no solution 
on the whole of R. 

Note that the classical solutions ô, ±\x\ and combinations of 
± \ / W a r e recovered with the association (as solutions of xy « 0, 
y - x « 0 and y — x « 0, respectively). From Proposition 2: 

Proposition 4. The classical continuous solutions are recovered if 
one states the equation in the association sense, i.e. P(x, G) « 0. 

Algebraic differential equations (ADE) provide a setting in 
which multiplication and derivation are combined. An ADE is an 
equation of the form 

(4) P(x,y(x),y'(x),...,y{m)(x)) = 0 

where P is a nonzero polynomial in m + 2 variables. 
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Problems. Let G e & and let us assume there is x0 E R such 
that the pointvalues G(xQ), G'(x0), . . . , G(m_1)(x0) are classical 
numbers. If (4) holds in 3? with y = G, in which conditions is 
G a classical solution? (See a counterexample and Corollary 4 in 
Appendix 2.) Is it possible to drop the condition at x0 if G is in 
the algebra spanned by the distributions? 

The study of the nature of different kinds of solutions of ADEs 
in conjunction with the results exposed in [27-29] would clarify the 
"standard" or "nonstandard" character of these contexts; perhaps 
it could also clarify the concept of solution of an ADE; note that 
if y is a function of class Cm then P(x, y(x), . . . , y{m)(x)) « 0 
in & if and only if y is a solution in the classical sense. 

4. GENERALIZED SOLUTIONS OF PARTIAL DIFFERENTIAL 

EQUATIONS I: MATHEMATICS 

For large classes of equations which do not have solutions within 
distribution theory one can obtain existence-uniqueness results in 
the present setting. These new solutions are always associated with 
the classical solutions when the latter exist. We only give one 
typical example [23]. 

Consider the initial value problem for the semilinear hyperbolic 
system in two variables 

(dt + A(x, t)dx)u(x, t) = F(x,t9u(x, t)) (x, t) e R2 

u(x, 0) = uQ(x) x e Rn 

u : R2 —• R" , A(x, t) is a smooth real-valued diagonal n x n 
matrix such that A or dxA is globally bounded; the function 
F : R xR"-^R" is smooth and satisfies the bounded gradient con­
dition: for any compact subset K of Rn and any j = 1, . . . , n 

(6) sup \d F(x, t, u)\ < +oo. 
(x, t)eK J 

u£Rn 

Further, in order to define F(x, t, u(x, t)) for any u e (^(R2))" 
let us assume that the map u —• F(x, t,u), together with all 
derivatives, is polynomially bounded, uniformly for (x, t) in 
compact subsets of R (remark in Appendix 1). 

Theorem 2. For any given u0 e (&(R))n, system (5) has a unique 
global solution u e (^(R2))" . Moreover if u0 e ( L ^ R ) ) " then 
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this solution M G (^(R ))" is associated with the classical Lloc(R ) 
solution. 

Here L\OC denotes as usual the classical space of locally inte­
grate functions for the Lebesgue measure; such a global solution 
is known to exist in this setting. 

One can perform explicit computations, for instance, in the case 
where u is a distribution with support at finitely many points, see 
[23]. 

Other examples are given in [3, 5, 9, 12, 24-26]. 

5. GENERALIZED SOLUTIONS OF PARTIAL DIFFERENTIAL 

EQUATIONS II: PHYSICS 

In many domains the equations of physics put in evidence "mul­
tiplications of distributions" which follow directly from the state­
ment of constitutive equations. In a few cases it appears impos­
sible to avoid this fact and one really needs to deal with it. For 
instance Hooke's law of elasticity is a linear stress-strain relation­
ship [20]; but in strong collisions (such as those occurring between 
projectiles and armour) there is not even a bijective relationship 
between stress and strain. In this case most physicists and engi­
neers state Hooke's law in infinitesimal form in a frame of ref­
erence following the medium; in elastoplasticity this unavoidably 
gives rise to multiplications of distributions in the case of shock 
waves, see [3, 10, 13, 14, 16]. 

The following is a simplified model of elasticity in a one-dimen­
sional homogeneous medium 

(7) (pu)t + (pu2)x = ax, 
2 

°t + uax = k u
x> 

where p = density, u = velocity, a = stress, k > 0 is a con­
stant depending on the medium and obtained from experiments 
(Hooke's law). Often the term uax is dropped in the literature 
(linear approximation) but for numerical simulations of collisions 
it plays a basic role. Numerical codes of engineers have put in 
evidence "solutions" (p, u, a) of (7) which are discontinuous on 
the same curve in the (x, t) space; they represent shock waves 
which have been observed by physicists on the occasion of colli­
sions. Then the term uax appears in the form of a product of a 



258 J. F. COLOMBEAU 

discontinuous function and a derivative of a discontinuous func­
tion, whose singularities overlap: this product does not make sense 
within distribution theory. 

Thus one is led to formulate (7) in the present setting. One can 
prove that (7) has no discontinuous solution if all equations in (7) 
are stated with the (strong) equality in &. On the other hand one 
can prove that, if one states all equations in (7) with the associ­
ation, then (7) admits an infinite number of different solutions, 
depending on an arbitrary real parameter (arising from the term 
uox ) (see Appendix 3). This ambiguity only shows that this weak 
formulation does not contain enough physical information. One 
resolves naturally the ambiguity as follows: 

The two first equations in (7) express the basic physical laws of 
mass and momentum conservation while the third one is a consti­
tutive equation depending on the material and on the conditions 
of the experiment. A natural way to state (7) is: 

(7 ' ) (pu)t + (pu2)x = (Tx, 

ot + uax &k ux. 

The association there expresses that, in the very small width of the 
shock (several times the average distance between molecules) the 
constitutive equation is no longer valid while mass and momentum 
conservation are valid there. One proves that (7') has discontin­
uous solutions and nonambiguous jump conditions on the shocks; 
see [3, 14] and Appendix 3. Our setting gives formulas, numer­
ical methods and justifies existing numerical codes elaborated by 
engineers. Thus it gives the possibility to investigate problems of 
physics which could not be attacked mathematically within distri­
bution theory. This method has been successfully applied to more 
complicated systems of elasticity, elastoplasticity, and acoustics, 
see [1-3, 10, 11, 14, 16-18]. 

Thus our new concepts have permitted us to predict numerical 
results that emerge from experiments. In some cases it was previ­
ously unknown how to obtain them. When some data are available 
the results of our calculations agree qualitatively and quantitatively 
with the expected results [3, 10, 11, 13-16, 18]. Let us pause 
for a minute on this basic achievement, so as to understand its 
mechanism. The ambiguities appearing in equations of physics, 
when these equations involve "heuristic multiplications of distri-
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butions," correspond to the fact that these equations, when stated 
in weak form (i.e. with association), have an infinite number of so­
lutions. This point was essentially known and understood without 
our theory (consider in quantum field theory the Hahn-Banach 
method of Bogoliubov-Parasiuk [4]). The basic point is that our 
new setting has suggested more precise formulations of the equa­
tions, on physical ground, in which there is no more ambiguity. 
To resolve the ambiguity physics and mathematics have been used 
conjointly and simultaneously, each of them playing its natural 
role. 

6. GENERALIZED SOLUTIONS OF PARTIAL DIFFERENTIAL 

EQUATIONS III: SYSTEMS OF CONSERVATION LAWS 

A conservation law is an equation in divergence form 

(8) M, + Div(/(K)) = 0. 

Many physical laws are conservation laws; the more important 
system of conservation laws is certainly the system of fluid dynam­
ics; in one dimension and absence of viscosity, thermal effects and 
external forces it is the system of equations 

Pt + (PU)X = °> 

(9) (pu)t + (pu2+p)x = 0, 

(pe)t + (peu+pu)x = 0, 

where p = density, u = velocity, p = pressure, and e = density 
of total energy. Since (9) is a system of three equations with four 
unknowns it is complemented by a constitutive equation 

(9 ' ) p = <t>(p,e-±u2). 

All these equations are understood in the sense of distribution the­
ory in the case of shock waves. According to the method exposed 
in the above section we state (9), (9') in the more precise form 

Pt + (PU)X = °> 

, 9 / / v (pu)t + {pu2+p)x = 0, 

(pe)t + (peu+pu)x = 0, 

p « 0(/?, e - \u ) . 

It can be easily shown that (9") has travelling wave solutions (i.e. 
solutions which remain constant on both sides of the discontinuity 
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and propagate with constant speed) and that they are solutions of 
the system of equations in nonconservation form 

vt + uvx -vux = 0, 

(10) ut + uux + vpx = 09 

y v ) l % ^ V ' p)) (/?' + UPx) + \P + %{V >p)) Ux * °' 

where v = l/p is the specific volume and where the constitutive 
equation has been stated in the form e - \u2 « <p(v, p). Note 
that (10) has no discontinuous solution in the sense of distribution 
theory, but has discontinuous solutions in our setting. Travelling 
wave solutions of (10) have a very simple form [3, 14] and, from 
this study, one can build numerical schemes for the solution of 
(10) [3, 13, 15, 18]. In certain circumstances this method is very 
efficient (modelling of the behavior of solids submitted to strong 
constraints). 

Note also that solutions in & of systems of conservation laws 
are very closely connected to the measure valued solutions of 
DiPerna [19]. 

7. CONCLUSION 

In conclusion one can stress the basic role played by the dissoci­
ation of the classical concept of equality into the strong equality in 
9 and into the weak equality « . This dissociation permits one 
to circumvent Schwartz's impossibility result, and so to obtain a 
general multiplication of distributions (enjoying all computational 
properties) coherent with classical analysis. From a viewpoint of 
applied mathematics and physics it is at the very basis of the res­
olution of ambiguities and thus of the predictions of results that 
could be checked from experiments. A posteriori one can real­
ize that this dissociation had already been perceived, in the very 
classical setting of ADEs by Rubel [27-29] in his dissociation of 
solutions of ADEs into C°° ones and "pointwise" ones (i.e. only 
differentiable enough to plug into the ADE). We can also retain 
that the theory presented in this paper can be considered as some 
kind of "nonstandard analysis" since it realizes a calculus involv­
ing "infinitesimal quantities." There the concept of "shadow" of a 
nonstandard function might play the role of our association. An 
up to date set of references can be found in the second edition of 
[3]. 
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APPENDIX 1. DEFINITION OF GENERALIZED FUNCTIONS 

If q = 0, 1, 2, . . . we set 

stfq — \(p e 31 such that / (p{X) dk = 1 and 

/

+oo ï 

A>(A)rfA = 0if 1 <i<q\. 
One proves easily that srfq is nonvoid; if cp G 3f and e > 0 we 
set 

Then it is immediate that tp G stfq if and only if cpe e stff . We 
denote by ^ the set of all functions 

F: sf0 xR->R 

<p,x F(cp,x) 

such that for every ^ J G J / 0 the map 

R x ] 0 , l [ x R ^ R 
6 e x F([dyt + {\-0)x\B9x) 

is C°° in the variables (0, e, x). We denote by g^ (where the 
subscript M stands for moderate) the subset of <8̂  of all functions 
F such that Vw, m G N 37V G N such that if p E J ^ there are 
(*) c, r\ > 0 such that 

sup dx' 
îF{(pE,x) < ce if 0 < e < >/. 

The symbol (*) always means that c and r\ can be chosen inde­
pendent of cp when (p ranges in a closed line segment in the set 
s/N (i.e. <p = dv + (l-0)x, V, xes/N,0<6< 1). Clearly %M 

is a subalgebra of <8̂  (for pointwise multiplication). We denote 
by JV the set of all functions F e ë?0 such that 

Vn, m G N Vp E N 3q e N such that if 9? G J^ there are 
(*) c, Y] > 0 such that 

sup dx' îF(VP,x) <cep if 0 < e < f/. 

Clearly A* is an ideal of WM and so the quotient space 
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is an algebra. It is proved that the elements of & have essentially 
the properties of C°° functions (they are local objects, derivation, 
multiplication,... ) see [3, 9, 26]. 

Remark. The bounds defining JV came from the idea of extension 
of the ideal Ker9Jt of ^ ° ° ( r ' ) ; then the bounds defining %M 

came from the idea of finding a subalgebra of <^>00(^) for which 
JV would be an ideal, see [7, 8]. 

To g G £?°° we associate Re%M defined by R(q>, x) = g(x). 
One shows easily that this defines an inclusion ^°° c *&. 

Let us denote by £y the set of all piecewise continuous func­
tions on R (i.e. continuous except on a discrete set, on which they 
have right and left limits). To g € 8} we associate Reê?0 defined 
by 

/

+oo 
g(X)(p(X- x)dk. 

-oo 

One proves at once that Re %M and that this defines an inclusion 
fêr c &. If g e &00 one checks at once that the choice between 
the two above-mentioned functions R is insignificant modulo Jf. 
If T is a distribution one defines R by an immediate extension of 
the above formula and one obtains an inclusion of the set 3t' of 
all distributions into 3f. If one does not know the distributions 
one may define them as those elements of 9 which are, in the 
neighborhood of each real number, some derivative of a continu­
ous function. 
Remarks. In [7, 8] we gave a slightly different definition of the 
ideal Jf ; it has been recognized subsequently [9] that the defini­
tion given above is necessary to provide uniqueness of asymptotic 
expansions, uniqueness of analytic continuation, and also Theo­
rem 1 below. 

In [9] the differentiability of F in 6 and e, which is present 
in [7, 8], was dropped for simplification. It was recognized later 
that this condition is needed to obtain Theorem 1. 

More generally than multiplication, one can define ƒ((?), G e 
&(Rn) arbitrary, provided that ƒ is a C°° function which, to­
gether with all its derivatives, is polynomially bounded. 

The concept of equality in 9 is very strict. We introduce the 
weaker concept of "association": an element G of 9 is said to 
be associated with 0 iff for any y/ G ^°°(Q) the integral 

/ R(q>e, x)y/(x)dx 
JR 
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tends to 0 when e —• 0 ( R is a representative of G, (p is in stfN 

for large enough N ). 
We say that Gt and G2e& are associated with each other iff 

Gx - G2 is associated with 0; we write Gx « G2 . The concept of 
association is a faithful generalization of the classical concept of 
equality of integrable functions and distributions. But it is through 
our concept of equality in 9 that we are able to define the product 
of distributions. 

APPENDIX 2. PROOFS OF REGULARITY RESULTS 

Direct proof of Corollary 1. Let a{, a2, . . . , an be the classical 
roots of P, at ^ a. if i / j . By assumption we have a bound 

\P(R(<pe ,x))\< cqe
a{q) if R is a representative of G ( a(#) tends 

to +oo when q tends to +oo ). Taking into account the multi­
plicity of the roots of P we get 

(11) \R(<Pe > •*) - 0,- I < c'q£
a for some other c , a , 

where a. depends a prion' on e, q> and x ; but from the con-
tinuity of RUpp, x) in e, © and x one has a. independent of 
£, #> and x. It remains necessary to obtain a bound for the x-
derivatives of R(<pe, x). One has 

^P(R(<Pe, x)) = P'(i?(?>e, x)) • R'(cpe, x) 

so that if /''(a,- ) ^ 0 one has at once the required bound for 

\R'(<pp, JC)| . If P\a. ) = 0 and if Pn(a. ) £ 0, the formula 
O tri »n 

d 2 

.2 />(*(?, ,*)) = P"(R((pe, x ) ) . (R'(ç>e, x)) 2 

+ Pf(R((pe,x))-R"((pe,x) 

gives at once the required bound for \R'(ç>e, JC)| using (11) to get 
rid of the last term. By induction on the order of multiplicity 
of a. , we get a bound \R'(<pF, x\ < c"ea ^ . Similarly one gets 
bounds for higher-order derivatives of R. 

Direct proof of Corollary 2. xy = 0 =» j e / + y = 0 => x 2 / = 0 =» 

x2(y')3 = 0. Let ü ( p e , x) be a representative of y. In abbre­

viated notation we have \x2R,3(<pe, x)\ < cqe
a ^ . Since |JC|"~ ' 

is integrable at 0 one finds that \R(<pe9 x)\ < c'sa ^ for some 
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other c, a (if x > 0 use the formula R(cpe, x) = i?(#?e, 1) + 
f*R'(<pe, k)dk\ if x < 0, replace 1 by - 1 ). To get a similar 
bound for R'(<pe, x) start from x y = 0; setting z = y' one 
obtains as at the beginning of this proof that x z'4 = 0. One con­
cludes from the fact that \x\~ /4 is integrable at 0. x2y' = 0 => 
2xy' + x / ' = 0 ^ x 3 / ' = 0, from which one can use the same 
method to get the desired bound for Rf'. And so on. 

Direct proof of Corollary 3. y = x in £?(R) implies y y =x, 
y2y' = yx and so x2y' = xy , i.e. x(xyf -y) = 0. From Corollary 
3, y = xy'. This equality and (y - x)(y + x) = 0 imply x2(y' - 1) x 
(j/ + 1) = 0. Corollary 3 gives (j/ - l)(y' + 1) = 0. Corollary 
2 gives that y is identical to the constant +1 or to the constant 
- 1 . Integration (Proposition 3) gives y - x + cx or y = -x + c2 , 

2 2 

where q , c2 are generalized numbers. From y = x one gets 
cx = 0 = c2. 

Another consequence of Theorem 1 is: 

Corollary 4. Under the conditions on P and I in Theorem 1 let 
us consider the ADE P(x, y^m\x)) = 0 in S?, completed by the 
condition 

y(x0) = a 0 , . . . , y (*o) = a «- i> 
a( € R, 1 < / < m - 1 #«6? x0 e ƒ. 

r/?e« P(x, G(m~l)) = 0 w 5?(7) # G is a classical C°° JO/MÖO/I. 

Proof. Apply Theorem 1 with G ' and integrate (Proposition 3). 

Counterexample. The class of ü(p, x) = f(ç>)exp(l/(x - 1)) if 
- 1 < x < 1 and R(ç>, x) = 0 if x < - 1 or i > 1, where 
f{(P) = S(P (k)dk9 is solution of the equation 2xy+{x - \)y' = 0. 

APPENDIX 3. EXAMPLES OF SHOCK WAVE CALCULATIONS 

We sketch how one can compute shock wave solutions of system 
(7'). First consider the weak formulation 

Pt + (pu)x&0, 

(7") (pu)t + (pu2)x^<jx, 

°t + uax ^ k ux -
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We seek travelling wave solutions of the form 

p(x, t) = ApH(x - vt) + px, 

(12) u(x, t) = AuK(x - vt) + ux, 

a(x, /) = AoL(x - vt) + ax, 

where v (= velocity of the shock), Aw = wr - w{, w (w = 
p, u, a) are real numbers and where H, K, L are three possibly 
different Heaviside generalized functions (i.e. they are associated 
with the classical Heaviside function). Putting (12) into (7/;) one 
obtains at once the three jump formulas 

(v - ux)Ap = (Ap + p{)Au, 

(13) (v - u{ - Au)(ApAu + pxAu + u{Ap) = u{p{Au - Aa, 

(v — u{)Aa = AA uAo — k Au, 

where the real parameter A is defined by Kl! « AS . There is an 
infinite number of possible jump conditions depending on the real 
parameter A. 

Now let us consider the stronger formulation (?). The first 
equation in (?) gives 

/ A ^ N i V Au T^/ rr Au _../ _ 
(-v + u{ + AuK)H + /^ — AT / / + /?! -£-K = 0 

from which one obtains easily H as a function of AT by solving 
as usual the differential equation a(x)y' + b(x)y + c(x) = 0 in 
^ . The second equation in (7') gives L as a function of ƒƒ and 
# . Finally one obtains L^K and thus KL! = ATAT' » ^ ; (by 
differentiation of K2 « AT), i.e. A = \ . (?') has nonambiguous 
jump conditions. In general one finds values of numbers like A 
which are different from j . Various examples of this kind of 
calculations are given in [3, 10, 11, 14, 16, 18]. 

APPENDIX 4. DISTRIBUTIONS IN MATHEMATICS AND IN PHYSICS 

We have a canonical inclusion 3t' c & and, at the same time, 
one is forced in physical applications to consider several Heaviside 
like, Dirac like,... functions. There is no paradox if one thinks 
about the different ways mathematicians and physicists conceive 
and use distributions. 

For mathematicians the space 2' is defined modulo an iso­
morphism (concerning all operations). It is such an isomorphic 
copy of 3J' which is canonically included into &. If permits, via 
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the multiplication in *§ and the association, a synthesis of most 
existing multiplications of distributions. 

For physicists the space «Sr/ is considered as a reservoir of math­
ematical objects used to describe the physical world. In our context 
the use of the above subspace 2' of & as such a reservoir may 
lead to mistakes in some cases involving "multiplications of dis­
tributions." Then the correct reservoir is 9 itself, which contains 
several Heaviside like, Dirac like,... functions. 

In this way a nonambiguous mathematical multiplication of 
distributions can be reconciled with the well-known fact that in 
physics "multiplications of distributions" such as Yô or ô , can 
give different results according to the context. Distributions origi­
nating in physics have to be represented by various elements of &, 
usually not those in the subspace 3f' of &. This reminds one of 
the nonbijective correspondence between quasi-standard functions 
(a subclass of the nonstandard functions) and distributions. This 
suggests that our theory could be considered as some refined (with 
respect to certain properties) version of nonstandard analysis. 
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