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The notion of classification of structure arises in many areas of 
mathematics, and a common classification is "up to homotopy," or 
in terms of "deformation." For this reason, techniques of homo­
topy theory, and in particular the fundamental group and higher 
homotopy groups, are important and have been applied across a 
range of mathematical disciplines. 

Algebraic Homotopy, which we refer to as AH, has in the In­
troduction the following quotation from J. H. C. Whitehead's ad­
dress to the International Congress of Mathematicians at Harvard 
in 1950 [W 7]: 

In homotopy theory, spaces are classified in terms 
of homotopy classes of maps, rather than indi­
vidual maps of one space in another. Thus, us­
ing the word category in the sense of S. Eilen-
berg and Saunders Mac Lane, a homotopy cate­
gory of spaces is one in which the objects are topo­
logical spaces and the 'mappings' are not individ­
ual maps but homotopy classes of ordinary maps. 
The equivalences are the classes with two-sided 
inverses, and two spaces are of the same homo­
topy type if and only if they are related by such 
an equivalence. The ultimate object of algebraic 
homotopy is to construct a purely algebraic the­
ory, which is equivalent to homotopy theory in 
the same sort of way that 'analytic' is equivalent 
to 'pure' projective geometry. 
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One reason for attempting such a problem is of course sim­
ply to understand the homotopy theory of polyhedra. Much of 
Baues's work, in AH and elsewhere, is guided by the overall aim 
of developing algebraic machinery which would, in principle and 
in low-dimensional cases, allow for the translation into algebraic 
problems all of the basic geometric questions in the area, and allow 
for many calculations. Many of these problems occur in geometric 
situations which are of interest in other areas of mathematics. For 
example, a new calculation given on p. 291 of AH, of the group of 
homotopy classes of homotopy equivalences of a connected sum 
(Sl x S3)#(S2 x S2), is relevant to smoothing theory. 

Mathematics of this kind is likely to be interesting not only for 
its own sake or for its immediate applications, but also for the 
insights and techniques which can become appropriate to other 
areas of mathematics. For example, the relation found by Hopf in 
1941 between the second homology group of an aspherical space 
and its fundamental group, the so-called Hopf formula H2G = 
(R n [F, F])/[R, F], was one of the starting points of homologi-
cal algebra, without which the solutions of a number of important 
problems, for example the Weil conjectures, would not have been 
conceivable. Whitehead's study of the algebra underlying geomet­
ric collapsings led to his formulation of the Kx -group of a ring 
[W 5]. Thus the study of the formalities underlying homotopy 
theory has revealed a range of new techniques which were found 
suggestive of development and capable of wide applicability. 

The features of AH which make it an original and important 
contribution to the literature on homotopy theory are as follows: 
(i) the generality of the methods; (ii) the global approach to the 
study of homotopy categories and of approximations to homotopy 
theory; and (iii) the extension of a range of ideas developed by 
Whitehead about 1950, and not previously available in texts. 

(i) Generality of the methods. Experience has shown that to study 
a homotopy category, it is important to study the original category 
and the homotopies, and also higher homotopies. The notion of 
a category with a notion of homotopy arises in so many examples 
and guises that a number of axiomatizations have been introduced 
with a view to yielding one theory covering all cases (Quillen, K. 
S. Brown, Kamps,... ). Baues uses a modification of Quillen's 
methods, which he calls a cofibration category. This is a category 
with a notion of weak equivalence and of cofibration, satisfying 
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suitable axioms. The Introduction to AH states: 

Therefore, the unification due to the abstract de­
velopment possesses major advantages: one proof 
replaces many; in addition, an interplay takes place 
among the various applications. This is fruitful for 
many topological and algebraic contexts. 

As a consequence, roughly two thirds of AH deals either with the 
general situation, or with examples other than topological spaces. 
Even the third or so on the latter case considers often the case 
of spaces over or under another space, so that the general cat­
egorical discussion can be applied. One of the surprises is that 
the final chapter, which deals with Whitehead's classification of 
simply connected four-dimensional polyhedra in terms of his " re­
sequences" [W 6], does this in a context that applies not only to 
CW-complexes but also to localized CW-complexes, to chain al­
gebras, and to chain Lie algebras. G. W. Whithead's famous result 
on the nilpotency of the group of homotopy classes [LX, Y] for 
finite-dimensional X is here proved in a general cofibration cate­
gory, and so is again available in the above examples. 

(ii) The global approach to approximation to homotopy categories. 
The study of the homotopy category Ho(C) of a cofibration cat­
egory C can be very difficult, but it may be possible to study suc­
cessfully some of its subcategories. For example, in the topological 
case there is the full subcategory M" of Ho(Top) whose objects 
are the Moore spaces M (A, n) for various Abelian groups A, i.e., 
simply connected spaces with one nonvanishing homology group 
A in dimension n . For n > 3 , Baues describes this category as a 
linear extension of categories over the category of Abelian groups. 
This is related to work of M. G. Barratt in 1954 describing this 
category in terms of generators and relations. 

This notion of linear extension of categories is a key new idea 
in AH. It generalizes the notion of an extension A >-+ E -» G of 
groups where A is a G-module. (It is well known that there is a 
conflict in the literature as to whether such an extension is of A 
or of G ; Baues calls this an extension of G.) Linear extensions 
of categories should be expected to have general algebraic applica­
tions. They are used in Chapter V of AH to examine a set of three 
approximations to a category of maps of mapping cones, and in 
Chapter VI to examine the pieces of a tower of categories approxi-
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mating the homotopy theory of C W-complexes. This general idea 
of a tower of categories looks to be proving important. For exam­
ple, it is used in Chapter VI to extend work of Whitehead in [W 4] 
on the relation between crossed chain complexes (see below) and 
chain complexes with operators. 

This idea of finding approximations to the homotopy category 
of CW-complexes goes back to Whitehead. He and Spanier intro­
duced stable homotopy theory, which has been actively developed 
by many homotopy theorists. 

Other approximations considered by Whitehead were obtained 
by making restrictions on the dimensions and connectivities of 
the spaces. A space X is called n-coconnected if it is connected 
and ntX = 0 for i > n. The homotopy category of (n + 1)-
coconnected CW-complexes is called the n-type. Part of the prob­
lem of algebraic homotopy is to give algebraic equivalents of n-
types, or of (n - l)-connected (n + /c)-types, or of An , the ho­
motopy category of (n — 1)-connected polyhedra of dimension not 
greater than (n + k). 

Chapter V of AH gives new descriptions of the categories A2
n 

(n > 2) as linear extensions of categories. This allows for com­
putations of homotopy classes of maps. Chapter V also describes 
linear extensions of a category C in terms of the second cohomol-
ogy of C . So there are intriguing questions, discussed elsewhere 
by Baues, of the determination of the cohomology classes of the 
extensions which arise in the description of homotopy categories. 
That really is global homotopy theory! 

(iii) The expression of Whitehead's work. AH is the first text to give 
extensive expression to one major part of the wide range of ideas 
which were developed by Whitehead in this area and published in 
the years around 1950. 

Two of Whitehead's papers of that time are particularly well 
known. "Combinatorial homotopy I" [W 3] laid the foundations 
of CW-complexes. These complexes give a convenient method for 
handling combinatorial decompositions of a space as the union of 
cells, in such a way as to allow proofs by induction over dimen­
sion. "Simple homotopy types" [W 5] laid the basic methods of 
algebraic AT-theory and their geometric applications. These two 
papers, with a third, "Combinatorial homotopy II" [W 4], rewrote 
and extended work Whitehead published about 1940, which itself 
showed a mastery of the combinatorial methods of the 1930s and 
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an amazing insight into the way these methods could be extended. 
"Combinatorial homotopy H" (hereinafter referred to as CHII) 

is clearly the odd man out in terms of the attention it has received. 
However, it does contain an important set of algebraic tools. 

One of these, the cellular chains of 7rj(X)-modules C#(X) of 
the universal covering space X of a connected CW-complex X, 
goes back to Reidemeister. It has been widely used both in sim­
ple homotopy theory, where it is an essential tool, and in low-
dimensional topology. The paper CHII contains results which im­
ply a useful and not so well-known homotopy classification theo­
rem, namely a bijection of homotopy classes 

[X,Y]^[Cm(X),Cm(t)] 
when X is «-dimensional and ntY = 0 for 1 < i < n. This 
contains in essence later work of Olum. See [E] for a recent expo­
sition of applications. The result is a corollary of (4.9) and (6.15) 
of Chapter VI of AH. 

This Chapter VI extends basic results of CHII on what White­
head called homotopy systems. These are now, after dropping the 
freeness assumptions used by Whitehead, called crossed complexes 
or, as in AH, crossed chain complexes. See [Lu], [B 1] for dis­
cussions of their occurrence. In the approach of AH, the homo­
topy category of free crossed chain complexes is the first level in 
the tower of approximations to the homotopy category of CW-
complexes, in which successive levels are related in terms of linear 
extensions of categories. 

A crossed chain complex is like a chain complex C of G-
modules for a group G, except that the part C2 —• Cx has coker-
nel G and is a non-Abelian structure known as a crossed module. 
This element of structure has a wide importance, but is not so well 
known even 44 years after its introduction by Whitehead in [W 2]. 
We therefore give a definition and a wider perspective than in AH. 

A crossed module (of groups) consists of a morphism of groups 
/a: M —• P together with an action of P on (the right of) M, 
written (m, p) »-• mp , satisfying the two rules: 

CM1) ju(mp) = p~ [jum)p, 

CM2) m~~ mxm = m^m , 
for all m, mx e M, p e P. 

Examples of crossed modules are: a normal subgroup M of P 
with the conjugation action; a P-module M, so that ju is constant; 
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the inner automorphism map M -> Aut M for any group M ; an 
epimorphism M -+ P of groups with central kernel. Another 
important example is the free crossed module fi: C(R) -> F(X) 
defined by a presentation (X 9 R) of a group G. Here /i has 
cokernel G and kernel the G-module of identities among the re-
lations R. So this example should be thought of as yielding for G 
the beginning of a free resolution which includes non-Abelian in­
formation and which arises naturally in terms of chains of syzygies 
for the presentation (see the surveys [B-Hu] and [B 1]). 

As might be expected of any good notion, crossed modules oc­
cur in a variety of guises and of analogues. The guises include: 
group objects in the category ofgroupoids [B-S 1]; double groupoids 
with connection [B-S 2]; simplicial groups whose Moore complex is 
of length 1; and cat1-groups [L]. The analogues include: crossed 
modules of Lie algebras; of associative algebras; and of Jordan al­
gebras; indeed, crossed modules may be expected to arise in any 
algebraic situation in which equivalence relations are determined 
by kernels. (See for example [P].) All this gives additional point to 
the occurrence of crossed modules (of groups) in the homotopical 
situation. 

The geometric example is the fundamental crossed module of a 
pair of pointed spaces (X, A, x), or of a pair of pointed objects in 
a cofibration category, namely the boundary map d : n2(X, A, x) 
—> n{{A, x) of the second relative homotopy group, with its usual 
action of nx(A9 x) [W 2]. Because of this example, one should 
think of a crossed module M —• P as a kind of two-
dimensional group with a one-dimensional part, the group P, and 
a two-dimensional part, the group M with the action of P. This 
example arose out of Whitehead's investigations into adding rela­
tions to homotopy groups [W 1,2,4], which attempted to determine 
how the homotopy groups of a space are influenced by the addition 
of a cell. 

There is an extraordinary point to be made here. This last inves­
tigation of Whitehead can be regarded as an attempt to generalize 
to higher dimensions the Van Kampen theorem for the fundamen­
tal group. It tends to be forgotten that a definition of higher homo­
topy groups was given by Cech in 1932, in a paper submitted to the 
International Congress of Mathematicians at Zurich. However, it 
was quickly proved that these groups were Abelian, and Alexan-
droff and Hopf persuaded Cech to withdraw his paper, so that only 
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a small paragraph appeared in the proceedings [C]. It seems that 
they believed that the proposed groups had to be the same as the 
homology groups. Otherwise, how could the higher-dimensional 
invariant be apparently simpler than the one-dimensional invari­
ant? In later years, both Alexandroff and Hopf frankly admitted 
the mistake that had been made [A]. 

Now the argument that the higher homotopy groups are Abelian 
is a special case of the argument that the second relative group 
n2(X, A, x) satisfies axiom CM2 for a crossed module. Further, 
crossed modules model all homotopy 2-types, as shown by Mac 
Lane and Whitehead in [M-W]. (AH is the first text to give a proof 
of this result.) The clincher argument for the role of crossed mod­
ules as two-dimensional groups is that they satisfy a version of the 
Van Kampen theorem, namely that the fundamental crossed mod­
ule functor on pairs of pointed spaces preserves certain colimits 
[B-H 1]. This enables new calculations to be made not only of 
both relative and absolute second homotopy groups, but even of 
homotopy 2-types [B-H 1, B 2]. It also has as a corollary White­
head's result (Theorem VI. 1.12 of AH, which is crucial for much 
of the work of Chapter VI of AH) that the second relative ho-
motopy group n2(X U {ex}, X) is a free crossed ^1(^T)-module 
[W 1,2,4]. I remember Whitehead remarking to J. Milnor that the 
early workers in homotopy theory were fascinated by the action 
of the fundamental group. All this suggests that the initial embar­
rassment with the Abelian nature of homotopy groups, though it 
has come to seem a quirk of history, in fact represented an honest 
and useful mathematical reaction. The algebraic analysis of non-
simply connected homotopy types requires non-Abelian structures, 
of which groups and crossed modules represent the first two stages. 
Indeed, it can be argued that the natural progression is not from the 
fundamental group, but from the fundamental groupoid to higher 
homotopy groupoids, of which the n-cat-groups of [L] form a prin­
cipal example, and which are "highly non-Abelian" structures (see 
[E-S]). 

The generalized Van Kampen theorems ([B-H 1,2], [B-L]) are 
proved by methods different from those in AH, and do not ap­
pear there. It is intriguing that crossed modules are basic to both 
approaches, and that Whitehead's result on free crossed modules 
is stated but not proved in AH. This suggests that relating these 
different methods could prove productive. 
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I have spent a lot of space on one aspect of AH, because of 
its importance and general unfamiliarity. Readers of AH will also 
welcome the accounts of, for example, rational homotopy theory, 
the homotopy spectral sequence, local cohomology, small models, 
and obstructions to finiteness. The book contains much new ma­
terial, is a pointer to future research, and will also form an excel­
lent framework for various courses on homotopy theory, allowing 
students to consider the literature from a new and worthwhile per­
spective. 
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Experts in multidimensional complex analysis will find the title 
of this monograph sufficiently informative, but most other math­
ematicians will probably feel lost, and perhaps not bother to look 
closer at this book. That would be regrettable, because what is 
before us is the first attempt to make accessible to a wider audi­
ence the deep work of A. Andreotti and H. Grauert published in 


