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AD AND THE VERY FINE STRUCTURE OF L(R) 

STEVE JACKSON 

ABSTRACT. We announce results concerning the detailed analysis of L(R) 
a considerable distance along its constructibility hierarchy, assuming the 
axiom of determinacy. Our main focus here is on the projective hierar­
chy, and specifically the sizes and properties of the projective ordinals. 
In particular, assuming determinacy, we calculate the values of the pro­
jective ordinals, getting 

* 2 « + i = « r 

2 « - l + l 

1. Introduction. We let R = œœ =: the set of infinite sequences of natu­
ral numbers, called "reals." We let lP{ denote the collection of open subsets 
of R, and IIÇ the closed sets. We further let £* denote the collection of 
continuous images of Hl

n_{ sets (where Tll
0 = nÇ) and II* the collection 

of complements of L^ sets. We say a set is projective if it is £* for some 
n. Classically, with the work of Baire, Borel, Lebesgue, Lusin, Sierpihski, 
Suslin, and others, descriptive set theory emerged as the study of the struc­
tural properties of these sets. The hope here is that important set-theoretic 
problems which seem intractable or for which the answer seems pathologi­
cal in general may become more amenable when restricted to the projective 
sets—these sets being explicitly definable. One such example which de­
rives from the continuum problem is the perfect set problem, which asks 
whether every uncountable set contains a perfect subset (and hence has 
cardinality 2**°). Although the answer is easily seen to be negative assum­
ing the axiom of choice (AC), the construction results in a pathological 
set, not explicitly definable. 

In fact, one might hope that a reasonable theory would exist for a collec­
tion of sets extending considerably the projective sets. We let L(U) denote 
the smallest inner model (i.e., transitive class containing the ordinals) of 
ZF set theory containing the reals, R. Just as every set in GödePs model L 
is definable from an ordinal, every set in L(R) is definable from an ordinal 
and a real, and consequently one might expect a reasonable theory to exist 
for the sets of reals in L(R). The projective sets, in fact, represent the first 
few levels in a natural definability hierarchy for the sets in L(R) (see §3), 
and thus the study of the projective sets embeds into the larger problem 
of obtaining a structural theory for the model L(R). 

Unfortunately, working in ZFC (= ZF + AC; the set theory of "ordinary 
mathematics") there are strong limitations to the results obtainable. The 
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early descriptive set theorists obtained a fairly complete theory of the first 
level of the projective hierarchy (i.e., L} and n} sets) and settled some 
questions even at the second level. For example, they proved the perfect 
set theorem for L{ sets, and the measurability of n{,L} sets. However, 
many questions at the second level and essentially all at the third level are 
undecidable in ZFC, as can be shown using modern metamathematical 
techniques. Thus, to extend the classical theory further one needs to work 
with stronger axioms of set theory. One such axiom which concerns us 
here is the axiom of determinacy, or AD, which we define next. 

To each A C cow we associate a two player game GA: 

I a(0) a(2) 

II a(l) a(3) 

a = (a(0),a(l),...) 
Here, I and II alternately play natural numbers a(i), thereby ultimately 
producing a real a. We say I wins a run of the game G A iff the resulting a 
is in A. The notion of a winning strategy is defined in the usual manner. 
AD asserts that for every A ç œw, GA is determined, that is, one of the 
players has a winning strategy. This axiom was introduced in the 60s by 
Mycielski and Steinhaus, but first became an active subject of investigation 
in the late 60s through the work of Martin, Moschovakis, Solovay, and 
later Kechris, Steel and others. We refer the reader to [7] for an account 
of descriptive set theory, including AD and the structural theory of the 
projective sets which follows from it. 

Although AD contradicts the axiom of choice, and thus fails in the 
universe of all sets, it has been proposed as the "correct" axiom for the 
submodel L(R). Recent results of Martin, Steel, and Woodin in fact show 
that [ZFC -f certain large cardinal axioms] implies "ADL(R)," the assertion 
that all games in L(R) are determined. This result lends further credibility 
to AD as a axiom for the model L(R). 

An extensive theory of L(R)-including a theory of the projective sets— 
has been developed on the basis of AD, buttressing the hope that AD will 
yield a complete and detailed theory of this model. This paper announces 
results which contribute to the development of this theory. We return first, 
however, to the projective case. 

2. The projective hierarchy. Several important questions about projec­
tive sets were left unanswered by the theory previously developed from 
AD. To discuss these, we define a set of distinguished ordinals called the 
projective ordinals. We let A{

n = 2^ n 11̂  and define S„ = the supremum of 
the lengths of the \l

n prewellorderings of R, where a prewellordering is a 
well-ordering on equivalence classes (in the absence of AC we must work 
with prewellorderings rather than well-orderings). We may motivate the 
projective ordinals by considering the continuum problem. In ZFC, 9 =: 
the supremum of the lengths of the prewellorderings of R = (2**°)+. The 
ô\ thus describe a "definable" analog of the continuum problem as they in-
vove restricting theprewellorderings to certain definable pointclasses. The 
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ô* are also important as they give structural information about the pro­
jective sets. For example, every I^+i s e t *s (^2«+i)+"^ore^ (under AD), 
where we recall that a set is /c-Borel if it belongs to the smallest collec­
tion containing the open and closed sets, and closed under unions and 
intersections of length < K. 

The first projective ordinal may be computed in ZFC, the result being 
ô\ = co\. The exciting possibility was raised in the late 60s that, assuming 
AD, all the ô\ could be computed explicitly in terms of the aleph (cardinal) 
function. The idea is to work in L(R) with the axiom AD, and use the fact 
that the ô\ are the same as computed in L{U) or in V (= the universe of 
all sets). Assuming AD, Martin first computed ô\ = 0)2, ô\ = &Wi> and 
Martin-Kunen obtained Si = cow+2. It was also shown (Martin-Kunen) 
that <$2AZ+2 = (<*2«+i)+ an(* (Kechris) S\n+\ = (fan+\)+, the successor of 
some cardinal of cofinality w. Kunen originated a program in the early 
70s for computing the S\. The program stalled, however, and the problem 
of computing S\ became the first Victoria Delfino problem [11]. Using 
the ideas of this program, and building on earlier work of Martin and the 
author, we have now computed these ordinals. We have 

THEOREM (ZF + AD + DC). 

for all n>\ *2„+. = « 

• 2 / I - 1 + ' 

(recall ô>n+2 = (ôl+l)
+). 

Here DC, the axiom of dependent choices, is a weak form of AC which 
asserts that every ill-founded binary relation has an infinite descending 
chain. By a result of Kechris [4], in L(R), AD => DC. In fact, much more 
information about the cardinal structure below N£o = supw 6\ is obtained 
along the way. One such result is that between ô\n+x and ^«+3 there are 
precisely 2n+l - 1 regular cardinals (for n = 1 they are Kw 2+1 and N^+i). 
We state explicitly a classical consequence of this. Recall that successor 
cardinals are regular under ZFC. Hence, under ZFC + ADL(R) there are 
only finitely many cardinals between 6^ and <?,|+1. We get 

COROLLARY (ZFC + ADL(R)). 6\ < Nw. 

Combining this with earlier results, we get 

COROLLARY (ZFC + ADL(R)). Every projective set is the union of fewer 
than ttw Borel sets. 

The bulk of the analysis for the general projective case appears in [1], 
however a second (forthcoming) paper is necessary to finish the analysis. 
Our methods are sketched in §4 below. The reader may also consult [2] 
where the complete proof for 6\ is given, or [3] as an illustration of the 
methods used. 
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3. Beyond the projective hierarchy. Our methods extend considerably 
beyond the projective hierarcy. We consider again L(R). As with L, L(R) 
can be stratified into a hierarchy. In fact, if we define 

Lo(R) = R U {sets of finite rank}, 
^A(R) = UQ<A A*(R) for A a limit ordinal, 
£4+1 (R) = {* : .x is definable over L^(R) using parameters from L^(R)}, 

then we have L(R) = \Jae0NLa(R). The sets of reals in L(R) fall into 
a definability hierarchy, as they are all E„ definable over La(R) for some 
n,a. The projective sets form the first co levels of the hierarchy, as they 
are the sets !!„-definable over L0(R). Steel [6]—has developed a "fine 
structure theory" for L(R) assuming ZF + AD [9]. This suffices to answer 
certain questions about L(R), for example, it gives a complete description 
of the scale property in L(R) (see [7] for the definitions). Other problems, 
however, such as whether every regular cardinal is measurable (recall that 
K is measurable if K carries a K>complete, nontrivial ultrafilter) seem to 
require a more detailed understanding of L(R). 

Our results provide such a detailed analysis for an initial segment of the 
L„(R) hierarchy. Exactly how far this enables one to go is not clear, and 
is the subject of current investigation. However, the author has verified 
that the theory extends through the Kleene ordinal K = o(3E) (see [4] for 
the definition), and in fact, considerably beyond. This analysis is quite 
involved, however, and has not yet been written up. One consequence is 
the solution to a problem of Moschovakis, who conjectured in ZF + AD + 
DC that the Kleene ordinal should be the least inaccessible cardinal (this 
is the seventh Victoria Delfino problem). Steel [10] had shown that the 
Kleene ordinal was the least inaccessible Suslin cardinal. Our methods 
allow one to show that these cardinals coincide. Hence 

THEOREM (ZF + AD + DC), K = o(3E) is the least inaccessible cardinal. 

Certain other conjectures, such as every regular cardinal being measur­
able, can also be verified as far as the theory extends. 

4. Outline of methods used. We consider the projective hierarchy, where 
the results have largely been written up [1], and the ideas are most easily 
seen. 

We proceed by induction on n, and introduce two inductive hypotheses 
which we call hn+i and K2n+y, they assert, among other things, that 

^2n+\ = N I" o) \ 

\2n-l+l 

co 
Leo ) 

For n = 0, these hypotheses reduce to known consequences of determinacy, 
the latter being a theorem of Martin. The plan is to assume /2/1+3, K2n+3 
and prove l2n+3, Kin+s- In [1], the upper bound for «Jjn+s is obtained. This 
argument is divided into three distinct parts. 

In the first part we introduce families of canonical measures on the ^«+1 
and k\n+{ (= the predecessor of ô\n+ï) and prove two embedding theo­
rems which—combined with a result of Kunen—reduce the computation 
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of &2/I+5 t 0 ^ e computation of the ultrapowers of djWH.3 by the canonical 
measures. 

In the second part, we analyze functions F : S%n+3 —• #2/1+3 w ^ respect 
to the canonical measures. To do this, we introduce a set 3 of finitary 
objects called descriptions. Each description gives rise canonically to a 
function F : #2

1«+3 -* #2*«+3 w^ich it "describes." We then prove our main 
theorem which reduces the computation of the ultrapowers of o\n+$ by the 
canonical measures to the computation of the rank of a countable well-
founded relation derived from 3. 

In the third part, we compute the rank of this relation, the result being 

W\ 
• • \2n + 3. 

Via our main theorem, this gives the desired upper bound for &Jn+5-
In a forthcoming paper, we will extend the analysis of functions in the 

second part above to analyze measures on ô\n+y This will allow us to 
complete the induction. 

We recall a definition: we say K —> (K)X if for all partitions & of the 
increasing functions from X into K into two pieces, there is a set of size K 
homogeneous for 30. Along the way, we obtain 

THEOREM (ZF + AD + DC). Each ô\n+x has the strong partition prop­
erty, ô\n+{ —• (̂ 2/z+3 )Ô2n+i> and each ô\n+2 has the weak property, ô\n+2 —• 
^2n+i)X ^ < 2̂/1+2* but not the strong one. 
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