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STABLE HARMONIC 2-SPHERES IN SYMMETRIC SPACES 

F. BURSTALL, J. RAWNSLEY AND S. SALAMON 

A map <j>: (M, g) -» ( TV, h) of Riemannian manifolds is harmonic if it ex-
tremizes the energy E: C°° (M, N) —• R given (for compact M) by 

TO = \ I l̂ l'vol. 
* J M 

A harmonic map 0 is said to be stable if the second variation of E at (j> is 
positive semidefinite. That is: for all smooth variations <j)t G C7°°(M, N) with 
0o = 0 we have 

d2/dt2E(<j>t)\t=0 > 0. 
Of particular interest is the case where M is the sphere S2 and N is 

a Riemannian symmetric space G/K. In this setting harmonic maps are 
branched minimal immersions, or the finite action solutions of the Euclidean 
nonlinear cr-model studied by physicists (see e.g. [20] and references cited 
therein). In the case G/K is Hermitian symmetric it follows from an argu
ment of Lichnerowicz [9] that any holomorphic map is energy minimizing in 
its homotopy class and hence stable. The same is true of antiholomorphic 
(or -holomorphic) maps. The iholomorphic maps are the instantons of the 
nonlinear tr-model, and it is important to know if these are the only stable 
solutions. This is clearly not the case, as one sees by taking G/K to be a 
product of Hermitian symmetric spaces and by taking a map which is holo
morphic into one factor and -holomorphic into the other. However, this is 
the only way a stable map can fail to be ± holomorphic, as the following 
theorem shows. 

THEOREM 1. Let <j>\ S2 —• G/K be a stable harmonic map into an irre
ducible Hermitian symmetric space. Then <j> is ±holomorphic. 

This generalizes a result of Siu and Yau [16], who obtained Theorem 1 for 
the complex projective spaces as targets. 

If the target G/K is a general symmetric space <j> can always be lifted 
to a map into the simply connected covering space. A simply connected 
symmetric space then splits as a product of irreducible spaces with <\> given 
by a harmonic map into each factor. As noncompact factors have nonpositive 
curvature the component of <j> going into such a factor must be constant (by 
the results of Eells and Sampson [2], or more simply by the maximum principle 
[4]), which reduces us to the consideration of compact irreducible symmetric 
spaces. Moreover </> is stable if and only if all its components are. We can show 
that stable harmonic maps into irreducible compact Riemannian symmetric 
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spaces always factorize through certain immersed totally geodesic irreducible 
Hermitian symmetric subspaces. This gives 

THEOREM 2. Let <j>:S2 —• G/K be a nonconstant stable harmonic map 
into any Riemannian symmetric space. Then there is a Hermitian symmetric 
space G\/K\ totally geodesically immersed in G/K such that <j> factorizes 
through G\/K\ as a holomorphic map. Moreover any holomorphic map of a 
Riemann surface into G\/K\ gives a stable harmonic map into G/K. 

The spaces G\/K\ are compatible with the decomposition of G/K into 
irreducible factors, and are irreducible when G/K is. Although there are dif
ferent submanifolds and complex structures G\/K\ for different maps, modulo 
the action of the isometry group G, there are only a finite number of possi
bilities for G\/K\ and these can be read off the extended Dynkin diagram of 
G. In fact when G/K is irreducible and not itself Hermitian symmetric, the 
subspaces G\/K\ all turn out to be complex projective spaces. 

Compact irreducible semisimple symmetric spaces can be broken into three 
classes according to their second homotopy groups ^{G/K): we know the 
Hermitian symmetric spaces are characterized completely by ^(G/K) = Z. 
The remaining two possibilities are ^{G/K) = 0 (this includes all the Lie 
groups viewed as symmetric spaces) or ^{G/K) = Z2. In the first case 
there are never any of the Hermitian symmetric subspaces of the G\/K\ type 
available and so we have 

THEOREM 3. Let <j>:S2 —• G/K be a stable harmonic map into a sym
metric space with ^(G/K) = 0. Then <j> is constant. 

In the remaining case where ^(G/K) = Z2, when G/K is irreducible the 
various possible inclusions G\/K\ C G/K induce surjections on 7T2, SO we 
obtain 

THEOREM 4. If G/K is a symmetric space then every homotopy class of 
maps S2 —• G/K has a stable harmonic representative. 

REMARKS. 1. The irreducible symmetric spaces with ^{G/K) = Z2 are 
SU(n)/SO(n), n > 3, SO(p + q)/SO(p) x SOfa), p > q > 3, together with 
the following exceptional spaces, which we list along with the largest of the 
G\/K\ subspaces for each: 

£6/Sp(4)~, CP2; £6/SU(6)Sp(l), CP4; £7/SU(8)~, CP5; 

£7/Spin(12)Sp(l), CP6; £8/Spin(16)~, CP8; £ 8 /£ 7 Sp(l ) , CP7; 

F4/Sp(3)Sp(l), CP2; Ga/SO(4), CP2. 

Here K~ denotes a quotient K/Z2. The spaces in this list where K is not 
simple are the quaternionic Kâhler manifolds studied by Wolf [19]. 

2. Sacks and Uhlenbeck [14] show by general methods that ^{G/K) has a 
set of stable harmonic generators; we can exhibit explicit generators which are 
embedded homogeneous 2-spheres arising from suitably chosen root spaces. 
When 7T2(G/K) = Z2 we can precompose such stable harmonic maps with 
holomorphic maps of S2 of arbitrarily high degree without losing stability and 
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so represent the trivial and nontrivial homotopy classes by nonconstant stable 
harmonie maps of arbitrarily high energy. 

3. The result of Theorem 3 on the nonexistence of nonconstant stable 
harmonic maps follows by case-by-case checking from the work of Howard 
and Wei [6], Ohnita [12], Tyrin [18] (for the classical spaces), and Smith [17], 
since the list of irreducible spaces (of type III) with ^{G/K) = 0 coincides 
with the list 

5 n , SU(2n)/Sp(n), Sp(p + *)/Sp(p) x Spfa), E6/F4, F4/Spin(9) 

of spaces with unstable identity maps. However the Lie groups with stable 
identity maps still have no nonconstant harmonic 2-spheres as a consequence 
of Theorem 3. This is also a consequence of a construction by Uhlenbeck of 
a canonical energy-decreasing variation of a nonconstant harmonic map. See 
also Pluzhnikov [13] for related results on the instability of the identity map. 

4. Micallef [10] has recently shown the existence of nonconstant harmonic 
maps S2 —• G of index < 1. As a consequence of Theorem 3 these maps are 
seen to have index precisely equal to 1. 

5. For maps of S2 the index of the energy agrees with the index of the area, 
so all the above theorems apply with harmonic maps replaced by minimal 2-
spheres. 

6. Our method depends in an essential way on the structure theorem of 
Grothendieck [5] concerning holomorphic bundles over the Riemann sphere. 
For Riemann surfaces of higher genus we can obtain the results of Siu [15] 
and Leung [8] for complex projective spaces or n-spheres respectively, with 
the same restrictions on the branching of the map. By using a twistor space 
over the domain manifold, Burns and De Bartolomeis have recently shown 
that all harmonic maps of a Riemann surface of any genus into a complex 
projective space must be iholomorphic. 

7. The index of unstable maps is not known in general, but Ejiri [3] 
has shown that any full harmonic map from S2 to S2n has index at least 
2n(n + 2) - 6. 

SKETCH OF THE PROOFS. We identify the tangent bundle to G/K with 
the orthogonal [p] of the bundle [t] of Lie algebras of the stability subgroups in 
the trivial bundle g. The Levi-Civita connection in [p] induces a connection 
in [Ï] and so the direct sum connection in g. This may be pulled back to 
S2 by a map </>: S2 —• G/K to give a connection V^ in the trivial bundle 
0 of Lie algebras over S2. The theorem of Koszul and Malgrange [7] gives 
the complexification gc the structure of_a holomorphic bundle of Lie algebras 
with the (0,1) part of V^ being the d-operator. Grothendieck's structure 
theory [5] tells us this bundle contains a holomorphic bundle of parabolic 
subalgebras q compatible with the decomposition gc = <£_1[p]c + 0~x[t]c. 
This bundle of parabolics can be modified as in [1] so that its nilradical 
bundle n is generated by its intersection with «^[p] and this intersection is 
contained in the subbundle of ^"^[p]0 generated by holomorphic sections. On 
the other hand Moore [11] gives the Hessian of the energy as 

Hess(u, v) = 4 ƒ (Viu, V*v) - ([«,u], [£, v])i/2dz A dz, 
Js2 
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where u and v are sections of 0_1[p]c and 6 is </> * d/dz viewed as a section of 
0C . Thus if 4> is stable, taking V^u = 0 we see that S must commute with all 
holomorphic sections of 0_1[p]c and hence with the nilradical bundle n. But 
6 takes its values in n, and hence must be in the center 3 of n. A Lie-theoretic 
argument shows that when G is simple any parabolic has an irreducible action 
on the center of its nilradical. If G/K is Hermitian symmetric the parabolic 
is compatible with the complex structure and so 3 must be contained in either 
the (1,0) or (0,1) vectors giving Theorem 1. Theorem 2 follows by observing 
that 3+3 gives rise to a Lie triple system such that 3 is tangent to an immersed 
totally geodesic Hermitian symmetric subspace G\/K\ through which <$> can 
be shown to factorize holomorphically as a consequence of the vanishing of 
certain holomorphic differentials. The Dynkin diagram of G\ is obtained 
from the extended Dynkin diagram of G by striking out the complementary 
simple roots of q and taking the connected component of the negative of the 
highest root in what remains. Theorem 3 is obtained by showing that when 
7T2(G/K) = 0, 3 is always in the stability subalgebra. This forces S to vanish 
and so <\> is constant. Theorem 4 also follows since we can describe the G\/K\ 
subspaces so explicitly. 
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