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Monsieur Jourdain: Par ma foi, il y a plus de quarante ans 
que je dis de la prose, sans que j'en susse rien. 

Molière, Le Bourgeois Gentilhomme, Act II, Scene 4. 

Many of the questions now studied in bifurcation theory can be illustrated 
by means of the following pair of ordinary differential equations for 6 and <f>: 

(1) 2# + <Kos(0 - 6) -<j>2sin(4>- 6) + pxÓ + P2(Ô - <j>) 

+ 20-<f> + A s i n O - 6) = 0, 

ëcos(<t> - 0) + <£ + 02sin(4> -0) + #>(<j> - 0) +<(>- 6 = 0. 

Here the superposed dot denotes the derivative with respect to t, interpreted as 
time. Px, fi2, X are real parameters with /}, > 0, j82 > 0, X > 0. This system of 
equations describes the motion of the double pendulum, shown in Figure 2, 
consisting of two weightless rigid shafts OA and AB of unit length capped by 
particles of unit mass at A and B under the action of a compressive force of 
constant magnitude X acting along the line BA. The rotations of OA from OC 
and of AB from OA are opposed by torsional springs each with spring constant 
1 and by torsional dampers with constants fix and P2- (The plane of this system 
is taken to be horizontal so that effects of gravity do not appear. Any problem 
for a pendulum like that of Figure 2 with equal masses, with shafts of equal 
lengths, and with springs of equal strengths can be reduced to (1) by a suitable 
scaling.) 
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FIGURE 2 

It is easy to see that the only equihbrium solution (i.e., solution independent 
of time) of (1) is the trivial solution 0 = 0 = <J>. (If X were required to act 
parallel to OC, then for X sufficiently large there would be nontrivial equi­
librium solutions, called buckled states, which bifurcate from the trivial branch 
of solutions. In the early twentieth century, the fact that equihbrium solutions 
of systems like (1) do not include buckled states was misinterpreted by some to 
mean that the trivial solution is stable.) 

A traditional approach for studying the stability of the trivial solution, 
hallowed by nearly a century of engineering practice, is to determine whether 
solutions of the linearization of (1) about the trivial solution remain bounded. 
The (formal) linearization of (1) in terms of the new variables 0 and $ is 

20 + (ft + 0 2 )0 + (2 - X)0 + $ - &Ô - (1 - X)<P = 0, 

0 - 020 - 0 + Ö + ft* + O = 0. 

The solutions of (3) are found by taking 0 and 0 proportional to eat. The 
condition that the solution be nontrivial yields the following characteristic 
equation for a: 

(4) a4 + (f t + 5ft)a3 + [ f t f t + 2(3 - X)]a2 + (ft + ft)a + 1 = 0 . 

Classical results from the theory of ordinary differential equations yield the 
following information: If a root a of (4) has a positive real part, then the trivial 
solutions of (3) and (1) can be shown to be unstable (in the sense of 
Lyapunov). If all roots a of (4) have negative real parts, then the trivial 
solutions of (3) and (1) can be shown to be asymptotically stable. If all the 
roots of (4) have nonpositive real parts, with the purely imaginary roots being 
simple, then the trivial solution of (3) is stable. 

In Figure 5 we illustrate the way the roots of (4) move about the complex 
a-plane as X is increased from 0 to oo with ft and ft fixed in the ways 
indicated. For the undamped case, in which Px — 0 = /?2, Figure 5 a shows that 
roots o of (4) lie on the imaginary axis for X G [0,2]. The trivial solution of the 
linear equations (3) remains stable until X reaches the critical value 2 and 
becomes unstable thereafter. From these facts alone we cannot conclude 
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anything definitive about the stability of the trivial solution of (1) for À E [0,2]. 
By introducing damping about the support 0 , we remove this ambiguity. From 
Figure 5b, we conclude that the trivial solutions of (1) and (3) are asymptoti­
cally stable f or X < 2 and are unstable for X > 2. The introduction of further 
damping about the joint A has the striking destabilizing effect shown in Figure 
5c. The critical value of À is reduced to 4/3 -f fi2/2. 

FIGURE 5a. Trajectories of the roots of (4) m the complex a-plane as À 
increases from 0 to oo when fix — 0 = fi2. The circled numbers associated with 
the dots are the corresponding values of X. The circle has radius 1. 

FIGURE 5b. Corresponding trajectories when fix is small and positive and 
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4 
FIGURE 5C. Corresponding trajectories when px — fi2 — P is small and 

positive. A = 4/3 + p2/2 when a = ±i/1/3 . 

The nature of Figures 5b and 5c enables us to deduce further important 
information about (1). We can parametrize each trajectory by A until it hits the 
real axis. Let Ac denote the critical value of A. In each case, there is a complex 
conjugate pair of roots (a(A), a(A)) with a(A) = £(A) + J Î} ( \ ) , £(XC) = 0, 
£'(^c) > 0, y(hc) > 0 and with the real parts of all other roots at Ac being 
negative. These observations form the critical hypotheses of the Hopf Bifurca­
tion Theorem, from which we conclude that at A = Ac a branch of periodic 
solutions of (1) bifurcates from the trivial branch of solutions. A study of the 
perturbation equations, which we do not carry out, then yields information on 
the disposition of the bifurcating branch in the space of (A, (0, <j>)) and on the 
asymptotic stability of the solutions on the branch. Such local results can be 
supplemented by global results on Hopf bifurcation due to Alexander and 
Yorke (1978) and Ize (1976). In this review we limit our attention to the local 
theory. 

A comparison of the three trajectories of Figure 5 suggests that the right way 
to study the problem is to examine the behavior of solutions as (yöl9 yÖ2) ranges 
over the closed first quadrant. (The careful investigator would also examine 
effects of other parameters that we have set equal to 1.) Analyses of this sort 
have been performed by Takens (1974a, b) and for a problem related to (1) by 
Holmes (1977) and Holmes and Marsden (1978). In such cases the dynamical 
response is much richer. (The first two books under review give accounts of 
these questions.) One manifestation of this richness is that if the exponents 
with the largest real parts of a system like (3) consist of a complex conjugate 
pair and a real one that simultaneously cross the imaginary axis as a parameter 
A passes through a critical value, then the corresponding nonlinear system can 
have chaotic motions. 
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A canonical example of a Hopf bifurcation is afforded by the first-order 
system for (x, y) that is converted to 

(6) f = r(\-r), 0=1 

by the change of variables x = rcosO, y = rsinO. The basic ideas of such 
bifurcations were known to Poincaré and were developed by Andronov and 
Vitt in the 1930s. In view of this history, E. Hopf (1942) offered his proof of 
the general theorem with some diffidence. Ruelle and Takens (1971) were 
apparently the first to use the actual terminology "Hopf bifurcation". This 
terminology was employed in the first book completely dedicated to the 
subject, that of Marsden and McCracken (1976). It is now standard in the 
West, and is used in the three books under review. Thus, on confronting Hopf 
bifurcation, the reader who learned ordinary differential equations before the 
1970s could at first glance enjoy the same delight as M. Jourdain in discovering 
that he already knew the subject hiding behind the fancy terminology. A 
second glance shows that there is more to Hopf bifurcation. 

What was Hopf s specific contribution and how did it influence the modern 
development of bifurcation theory? Hopf was able to carry out his proof for 
systems of ordinary differential equations of arbitrary order, when hitherto the 
analyses were restricted to second-order systems. The basic idea of his proof, 
that of projecting the solution of the full system of equations onto the span of 
solutions of a linear second-order system having the characteristic exponents a 
with the largest real parts, can be readily adapted to handle nonlinear 
delay-differential equations and nonlinear parabolic equations. Related bifur­
cation theories, modelled after Hopf s, describe the more complicated phenom­
ena, such as bifurcation from periodic to quasiperiodic or almost periodic 
solutions, that arise when the operator in the linearized equations have more 
complicated spectral properties. Some of the resulting problems involve small 
divisors and require very deep analyses. 

Many of these effects are manifested by the solutions of the equations 
describing the flow of a viscous fluid in the annular region between two 
rotating infinite cylinders. Suppose that the inner cylinder rotates with angular 
velocity X and that the outer cylinder is fixed. The equations possess a trivial 
branch of solutions for all À, corresponding to the steady Couette flow in which 
each fluid particle has a circular path about the axis. At a critical value of À, 
another branch of steady solutions describing Taylor vortices bifurcates from 
the trivial branch. In this process the column of fluid breaks up into cells in 
which each fluid particle has a toroidal motion that is a superposition of a 
circular motion about the axis and a rotation about the circle. At another 
critical value of À, the system undergoes a Hopf bifurcation into one in which 
the cells wobble periodically. (The analysis of this Hopf bifurcation is difficult 
because the fundamental solution, describing the Taylor vortices, is not known 
explicitly.) At higher critical values, there are further bifurcations into families 
of solutions with progressively more complicated behavior until a chaotic state 
called turbulence is attained. Many rigorous results on these questions have 
been obtained in the last fifteen years. (For details and references on this 
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problem consult Rand (1982). For descriptions of related problems, see Joseph 
(1976).) 

The use of the term "Hopf bifurcation" signalizes that bifurcation theory 
has reached a level of development high enough for the subject to be systemati­
cally organized. In such an organization Hopf bifurcation represents the 
simplest process by which steady solutions bifurcate into unsteady solutions. It 
is the generic process by which such bifurcations occur for one-parameter 
problems. 

This development is by no means complete, as is evidenced by the problem 
described by Figure 2. This problem is merely a primitive model for that in 
which the system of mass points, shafts, and springs is replaced by an elastic 
column, described by a system of partial differential equations. One expects 
the usual technical difficulties in raising the dimension of the space of 
solutions from finite to infinite. But the actual difficulties are more than 
merely technical: The most accurate nonlinear models for the undamped 
motion of the column lead to quasilinear hyperbolic systems, which admit 
shocks. The addition of a very strong dissipative mechanism, which is equiva­
lent to replacing the hyperbolic system by a certain parabolic system of higher 
order, woud eliminate the shocks. But the resulting equations cannot be 
subsumed under the available versions of the Hopf Bifurcation Theorem for 
parabolic equation because the operators appearing in these equations do not 
generate analytic semigroups. These difficulties are magnified when the prob­
lem is altered to bring in other kinds of bifurcation. (An inkling of the richness 
of such open problems can be gleaned from Hermann (1967) and Holmes 
(1980).) 

The three books under review, hereafter denoted respectively by C, HKW, 
and IJ, are frankly expository treatments of recent results of local bifurcation 
theory, directed at those interested in applying the theory. As such they attest 
to the systematization of the subject. From the viewpoint of analysis, the 
subjects they treat are merely variations on the theme of the contraction 
mapping principle. But the utilization of this principle often requires great 
ingenuity and the application of the resulting theory often involves serious 
computational difficulties (as even a full analysis of (1) would show). Both C 
and HKW are lecture notes devoted to special but central and important topics 
in bifurcation theory. IJ is a full-blown text with more ambitious goals. 

Center manifolds, the subject of C, are defined for autonomous systems of 
ordinary differential equations in the following way. Consider the system of 
the form 

(7) x = Ax+f(x,y), y = Bx + g(x,y) 

where x has values in Rn, y has values in Rw, A is a constant matrix all of 
whose eigenvalues are imaginary, B is a constant matrix all of whose eigenval­
ues have nonzero real parts, which for simpHcity we take to be negative, ƒ and g 
are twice continuously differentiable, and ƒ, g, and their first derivatives vanish 
at (0,0). A basic theorem is that under these conditions there is a twice 
continuously dif f erentiable function x\-+ h(x) ERm with h and its first deriva­
tives vanishing at 0 such that {(x, y): y — h(x)} is an invariant manifold for 
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(7), called a center manifold. Moreover, the stability of the solution (0,0) of (7) 
is the same as that of the smaller system 

(8) x = Ax+f(x, h(x)). 

Carr furnishes proofs of these results, but the strength of this book lies in the 
consistently interesting set of examples with which he exhibits the richness and 
power of this geometrical version of the implicit function theorem. (Included in 
these applications are Hopf bifurcation problems and singular perturbation 
problems.) Five chapters of the book are devoted to ordinary differential 
equations and one to partial differential equations. 

HKW treats the Hopf bifurcation with a view towards applications. It too 
has a fine collection of examples. It employs center manifolds in its rather 
lengthy derivation of the theory. Naturally HKW has some overlap with C. 
The novelty of HKW is its strong orientation toward the numerical implemen­
tation of the theory for specific examples. Detailed computer programs, their 
virtues discussed in the text, are supplied on a microfiche. 

IJ has a flavor different from that of the other two books. The authors' 
primary interest is in the simplest practical methods for studying different 
kinds of bifurcations. These methods are perturbation methods, which replace 
the local study of a nonlinear problem by the study of a sequence of 
nonhomogeneous linear problems. The computational steps involved are greatly 
simplified by the use of the Fredholm alternative. (The following analogy is 
apt: In proving the implicit function theorem one can use the contraction 
mapping principle or, equivalently, show that a certain iteration scheme 
converges. Once the theorem is proved, however, the local behavior of solu­
tions is most easily found not by implementing the iteration scheme, but by 
differentiating the original equation as many times as are desired and are 
permitted, evaluating these derivatives at the base solution, and directly 
computing the leading terms of the Taylor expansion of the solution. The 
method of Lyapunov and Schmidt and the center manifold theory are used to 
reduce a given problem to one to which the contraction mapping principle can 
be applied.) 

IJ treats bifurcation and stability of steady solutions (including one-parame­
ter imperfection theory), Hopf bifurcation, subharmonic bifurcation, and 
bifurcation into quasiperiodic solutions. There are many examples chosen for 
their ability to illustrate the theory in a simple way, rather than for their 
intrinsic interest. Requisite elementary background material from operator 
theory and from ordinary differential equations is included to make the book 
accessible to the widest possible audience. But this objective may not be fully 
attained because of the operator-theoretic character of much of the exposition, 
a character necessary to exhibit the unity of the authors' approach. Many 
readers may accordingly prefer to use this book as a reference rather than as a 
text. 

Each of these books is, for the most part, well written. No trouble is caused 
by an occasional imprecision. (I was irked, however, by the barbarism "para­
meterize" used in HKW and IJ, by IJ's insistence on classifying periodic 
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solutions as "equilibrium" solutions, and by IPs studied refusal to use "that" 
as a relative pronoun, a refusal that could make H. W. Fowler undergo the 
usual rotational instability in his grave.) 

Each of these books offers an effective entrée into a lively area of research 
and a helpful guide for those who wish to apply the theory. Each book would 
nicely complement the standard texts used in beginning graduate courses in 
ordinary differential equations. 
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The pair have reached that fearful chasm, 
How tempting to bestride! 
For lordly Wharf is there pent in 
With rocks on either side. 
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