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ABSTRACT. If a function ip(x) is mostly concentrated in a box Q, while 
its Fourier transform $>(£) is concentrated mostly in Q', then we say ijj is 
microlocalized in Q X Q' in (x, £)-space. The uncertainty principle says that 
Q X Q' must have volume at least 1. We will explain what it means for ip 
to be microlocalized to more complicated regions S of volume ~ 1 in (x, £)-
space. To a differential operator P(x, D) is associated a covering of (x, £)-space 
by regions {Ba} of bounded volume, and a decomposition of L2-functions 
u as a sum of "components" i t a microlocalized to Ba- This decomposition 
u —» (uot) diagonalizes P(x,D) modulo small errors, and so can be used to 
study variable-coefficient differential operators, as the Fourier transform is 
used for constant-coefficient equations. We apply these ideas to existence and 
smoothness of solutions of PDE, construction of explicit fundamental solutions, 
and eigenvalues of Schrodinger operators. The theorems are joint work with 
D. H. Phong. 

CHAPTER I: THE SAK PRINCIPLE 

The uncertainty principle says that a function if), mostly concentrated in 
\x — Xo\ < 6X, cannot also have its Fourier transform «0 mostly concentrated in 
l£~~ £o| < % unless 8X -8^ > 1. This simple fact has far-reaching consequences 
for PDE, but until recently it was used only in a very crude form. The 
most significant classical application concerned the eigenvalues of a self adjoint 
differential operator 

A(x,D)= E «-(«(—Y 
\oc\<m \lOXJ 

with symbol A(x, £) = ]C|ai<ma«(x)^a- According to the uncertainty prin­
ciple, each box 

S = { ( x , O I | x - x o | < « , | € - & | < ^ 1 } 

should count for one eigenvalue, so the number of eigenvalues of A(x,D) 
which are less than K should be given approximately as the volume of the 
set S(A,K) = {(£,£) | A(x,£) < K}. If A is elliptic and K -+ oo, then 
this 'Volume-counting" is asymptotically correct (see Weyl [41], Carleman [5], 
Hörmander [23]). However, volume-counting can also produce grossly inac­
curate estimates for systems as simple as two uncoupled harmonic oscillators. 
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We can do much better by taking the uncertainty principle more literally: 
Instead of measuring the importance of a subset E C Rn x Rn by its volume, 
we use instead the number of distorted unit cubes B which can be packed 
disjointly inside E. We shall see many examples in which no distorted unit 
cubes can be packed inside E = S(A,K), even though E has large volume. In 
this case E counts for no eigenvalues, even though the classical approximation 
assigns it many. Packing distorted cubes into S(A, K) rather than taking the 
volume amounts to a sharper form of the uncertainty principle. We shall call 
it the SAK principle. 

Now the SAK principle is also important in questions of existence and 
regularity of solutions of PDE. For, these questions may be reduced by stan­
dard functional analysis to a priori estimates which take the form 

(t) c\\P(x,D)u\\ < \\Q(x,D)u\\ + small error, 

where P and Q are differential (or slightly more general pseudodifferential) 
operators. We would like very much to know whether a given estimate of the 
form (f) holds for u £ L2. The most naïve idea is to compare the symbols 
F(x, £) and Q(x, £) and guess that (f) holds if 

(ft) \P{x, 01 < Q(x, 0 + small error. 

This is true, although the proof is hard. However, the SAK principle suggests 
that we do not need (ft) in order to have the estimate (t). Indeed, a function 
u can be localized in (x, £)-space no further than to a distorted unit box S, 
and therefore the necessary and sufficient condition for (f) will be 

cmax Ipl < max ç + small error for each S, 
B B 

which is weaker than (ft)- From these results we will give a unified discussion 
of some of the main results in linear PDE. 

The application of SAK to differential equations goes beyond a priori 
estimates. Our real goal is to diagonalize a variable-coefficient differential 
operator modulo small errors. Clearly this will give a powerful hold on 
existence, regularity, and a priori estimation of solutions, and on eigenvalues 
in the self adjoint case. Moreover, it should make possible the construction of 
explicit approximate solutions. 

Now the approximate diagonalization proceeds by cutting phase space 
Rn X Rn into suitable distorted boxes {Bu} of volume ~ 1 . We shall write 
an arbitrary u G L2 as a sum of pieces, u = Yl,vu^"> s o ^na^ uv together with 
its Fourier transform uv are somehow "localized" inside Bv. Since the given 
differential operator L, acting on each piece uvi is approximately multiplica­
tion by a scalar kv, our decomposition will approximately diagonalize L. 

To illustrate the ideas we make a first crude attempt to diagonalize 

UX,D)~ E aM\-kT-
\a\<m \10XJ 
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Let L(x, £) = Y^\a\<maoc{x)^a De the symbol of L(x,D). The operator L is 
made up of two ingredients: differentiation; and multiplication by smooth 
functions. To construct an approximate eigenfunction u of L(x, D), we want 
to come as close as possible to diagonalizing these operators simultaneously. 
Now (l/i)(d/dxk) is approximately multiplication by ££ if the operators act 
on a function u with Fourier transform concentrated near £° E Rn. On the 
other hand, u —• a(x)u is approximately multiplication by a(x°) if the operator 
acts on a function u which is concentrated near x°. So our approximate 
eigenfunction u should be concentrated near x°, while its Fourier transform 
û should be concentrated near £°. The uncertainty principle tells us how well 
we can succeed in realizing the two conflicting goals. Basically, the best we 
can do is take (j){{x — XQ)/6)e1^ *x, with <j) a fixed Schwartz function; this is 
"microlocalized" to a box {\x — x°\<6, |£ — £°| < <S-1} = B, and we give our 
localized function u the name 0g. 

Now to diagonalize L(x,D) approximately, we cut phase space Rn X Rn 

into suitable boxes Bv = {{x, £)| \x — xv\ < 6U, |£ — £„| < 6"1} as in Figure 1, 
and to each Sv we associate the typical function 0s„ microlocalized to Bv. 

A 

FIGURE 1 

Roughly speaking, the {(J>BU} are orthogonal and form a basis for L2, while 

(1) L(X,D)<I>BU = L{xv, iv) • 0B„ + Error^ 

with HError^ll < O(|^|m~s)| |0B^||. Here, s depends on the geometry of the 
partition {Bu}. By picking a good partition, we can make 5 = 1/2 (see 
[25, 8]). 

So we have succeeded quite simply in diagonalizing an rath order operator 
L(x,D) modulo errors of order m — 1/2. In the easiest case of an elliptic 
operator (such as the Laplacian), the symbol L(x^,^) is of size | ^ | m , so 
the error in (1) is negligibly small compared to the main term for large |£|. 
This approximate diagonalization easily gives another proof of the standard 
elliptic regularity theorem. The trouble comes when L(x,D) is nonelliptic. 
The interesting phenomena in PDE are governed by the behavior of the symbol 
near the characteristic variety V = {(x, £) | L(x, £) = 0}. If in our approximate 
diagonalization we look at a box Bv that meets V, then in effect the "main" 
term in (1) is zero, and all the interesting phenomena are decided by the 
behavior of the "negligible" Errorj,. Clearly, we have to do better. 

What we will do is to cut phase space differently, using bent boxes Bv as 
in Figure 2. 
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l ^x 

FIGURE 2 

The boxes Bv still have volume ~ 1, but now they are bent into strange shapes, 
and their geometry is related to the characteristic variety V. This time we 
will find that the error terms in the analogue of (1) are small compared to the 
main terms, so the approximate diagonalization has nontrivial applications. 
Note that it isn't immediately clear what it means to say that a given uE L2 

is microlocalized into a curved box $v as in Figure 2. So, given a symbol 
L{x, £), we shall have to answer the following questions: 

How should we cut Rn X Rn into bent boxes S^? 
How can we associate to du a natural projection operator iru whose image 

consists of functions "microlocalized" to S^? 
How does L(x,D) act on functions microlocalized to 8^? 

These questions are not easy. To understand them we need a technique 
for cutting and bending symbols L(x, £). The technique can be understood on 
three different levels, of which the simplest is as follows. 

LEVEL I (Cutting all operators at once into big pieces modulo lower-order 
errors). This is what specialists in PDE usually call microlocal analysis. It 
provides a powerful method, the "algorithm of the '70s" to prove theorems 
on PDE. The method is analogous to studying a nondegenerate vector field 
X by first using a partition of unity to reduce matters to a local question, 
and then straightening out the vector field locally by a smooth change of 
coordinate, so the local question is reduced to the trivial case X = d/dxi. We 
shall make partitions of unity and changes of variable in (x, £)-space by using 
pseudodifferential and Fourier integral operators, which we now briefly recall. 

Pseudodifferential operators. The Fourier inversion formula shows that a 
differential operator L(x,D) with symbol L(x, £) is given by 

L(x,D)u(x) = feix'tL(x, 0 ^ ( 0 <*£• 

This formula makes sense even when L(x, £) is not a polynomial in £, and 
L(x,D) is called the pseudodifferential operator with symbol L(x, £). If the 
symbols L(x, £) satisfy suitable estimates, then the pseudodifferential operators 
L(x,D) can be manipulated just like differential operators. The estimates on 
L(x, £) are important because they determine how finely we can cut up phase 
space. Classically, one says that L(x, £) is an rath order symbol (L G Sm) if 

(2) \d^iL(x,o\<caP(i+mr-w. 
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These estimates hold if m is a positive integer and L is the symbol of an 
mth order differential operator. 

If A G S m i and B e Sm\ then the composed operator A(x,D)B(x,D) is 
again a pseudodifferential operator whose symbol AoB is given asymptotically, 
modulo symbols of arbitrarily large negative order, by Leibnitz' rule 

AoB' 

mmm* while the adjoint A(x,D)* is a pseudodifferential operator with symbol 

In particular, A(x,D)B(x,D) = AB(x,D) modulo terms of lower order, and 
[A(x,D),B(x,D)] = i{A,B}(x,D) modulo terms of lower order. Here 

(A B\ - V (—— - dB dA 

) 

is the Poisson bracket, which we shall meet again many times. 
The above remarks justify the statement that pseudodifferential operators 

can be manipulated like differential operators. Their proofs involve a straight­
forward application of the method of stationary phase to evaluate some in­
tegrals of rapidly oscillating exponentials (see [3]). We should also point out 
that pseudodifferential operators (ipdO) of order zero are bounded on L2. 

The earliest application of ipdO was to invert elliptic differential operators. 
If A(x, £) G Sm is an elliptic symbol, i.e., \A{x, £)| > c(l + |£|)m, then A'^x, £) 
is a symbol in S - m , so the composition law for V>dO yields A(x,D)A~1(x1D) 
= A~1(x,D)A(xJD) = I modulo symbols of order —1. An easy successive 
approximation argument lets us add lower-order corrections to the symbol 
A~1(x, £) so that A(x,D) is inverted modulo symbols of arbitrarily large 
negative order. Thus A(x,D)u = ƒ is solved explicitly, modulo smooth errors. 

Using -0dO we can decompose a differential operator L(x,D) as an ap­
proximate direct sum by cutting phase space into blocks Bv as in Figure 3. 

> 

% 

etc. 

L . . + x 
FIGURE 3 
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Here, each Bv is centered at {xui £„) and has sides 1 in the x-directions, and 
~ \iX + \£A) m the ^-directions. Note that most of the Bv have volume » 1. 
We decompose L(x, D) by means of a partition of unity 1 = Y^u <l*l(.xi 0 m 

phase space, with $v supported essentially on Bu and as smooth as possible. 
The point is that Figure 3 gives exactly the finest possible cutting of phase 

space so that the <j>u belong uniformly to S°; in fact (x, £) —• (</>i,(x, ^))uez 
belongs to S° as a vector-valued symbol. Therefore, the operator u: ƒ —• 
{Muez = (ipv(xjD)f)uez is a vector-valued i/jdO. Now from the formulas 
for composition and adjoints of tpdO's we obtain U*U = I and £/L(x,D) = 
L(x,D)U modulo lower-order errors. Since fu is microlocalized to BU1 we have 
succeeded in approximately splitting L(x, D) as a direct sum of microlocalized 
operators acting on fu. As claimed, ipdO let us use partitions of unity in 
(x, £)-space. Of course, we are still far from diagonalizing L(x,D), since the 
blocks Bu of Figure 3 have large volume. 

In addition to cutting symbols we shall also bend them, using 
Fourier integral operators. These generalize a simple change of variable 

y = 0(x) to allow changes of variable in (x, £) together. Under y = <j)[x), the 
differential equation L(x,D)u = ƒ goes over to L(y,D)u = ƒ, with L given 
modulo lower-order terms by 

(0) L{y,r)) = Lo<b{y,n), <1>: (y,rj) -> (x,rj) withx = 4r\v\ £ = ( f ( z ) )V 

The transformation $ has a very special property: it preserves Poisson brack­
ets, i.e., 

(x) {F ,G}o$ = { F o $ , G o $ } . 

This is natural in view of the formula for commutators of differential operators 
in terms of { , }. Transformations $ which satisfy (x) are called canonical. 
There are many canonical transformations which do not arise from a simple 

change of coordinate y = (j){x). Canonical transformations preserve volume in 
RnxRn. 

To repeat, we know that (0) defines a canonical transformation $, and 
that the equations L{x,D)u = ƒ, L(yyD)u = ƒ are equivalent, where L(y,rj) = 
Lo$(y, rj) modulo lower terms. The equivalence is given by ü — Uu, f = U f, 
L(y,D) = UL{x,D)U~\ and Uf{y) = {detD^-^y^1/2 fo^-^y). (We inserted 
the harmless determinant factor to make U unitary.) 

Now Egorov had the simple, deep idea that the same kind of equivalence 
connects L(x,D) and L(y,D), even when L{y,rj) = L o $ for canonical trans­
formations not arising from a coordinate change y = </>(x). To state the result 
precisely, we work on a block B of size 1 X M taken from Figure 3. Suppose 
the block is centered at (x°, £°) and denote by i the natural change of scale 
^: (x> 0 -• ix — x°y (£ - £°)/M) which carries B to the unit cube. 

A canonical transformation 0 : (y,rj) —• {z,ç) defined on S will be said to 
satisfy "natural estimates" if i<bi~x is a C°° map with derivatives of all orders 
bounded independent of M. 
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THEOREM (EGOROV). Let $ be a canonical transformation satisfying natural 
estimates and carrying B into its double B*. Let A(z,<;) 6 Sm be a symbol sup­
ported in $(B) and define A(y, rj) = A o<I>(y, 77). Then the operators A(z, D) and 
A(y, D) are related by 

A(y,D) = UA{z)D)U~1 + lower-order terms 

for a suitable unitary transformation U. 

For "most" $, the operator U is given explicitly as a Fourier integral 
operator 

Uf(y) = fe(y,t)eiS^f(t)dt withe e 5°, S e S1. 

In case $ arises from y = (j)(x) by (0), we set e(y,<;) = \detD(j)~1(y)\l^2
7 

S{y>Ç) = (t)~1{y) ' C> a n d the Fourier inversion formula yields the familiar 
Uf{y) = Idet(etc)!1/2/ oc/)~1(y). For more general $, the function S is related 
to $ by 

{{y,v,z,ô\Hy,v) = (z,ô} = [(y,v,z,t)\vk = ^^,zk = ^ ^ y 

As in the calculus of i/>d0, proving Egorov's theorem amounts to calculating 
some explicit integrals of rapidly oscillating exponentials, and the argument 
is quite easy. 

So now we know that L(x,D)u = ƒ and L(x,D)u = ƒ are equivalent if the 
symbols are related by a suitable canonical transformation. In other words, 
we can bend symbols as well as cut them. 

Now we can describe the "algorithm of the '70s" for proving theorems 
in PDE. First solve your favorite PDE, say du/dxi = ƒ. Next formulate a 
condition on symbols that locally characterizes the example up to canonical 
transformations. For instance, a real symbol with only simple zeros is locally 
equivalent to £1 after a canonical transformation and multiplication by an 
elliptic symbol. Finally, we conclude that all PDE whose symbols satisfy the 
given condition can be solved. The reason is that we can first use ipdO to cut 
the original problem into pieces microlocalized to the boxes Bv of Figure 3, 
and then in each Bv use Egorov's theorem to bring the problem back to the 
example we started with. The method is remarkably powerful. 

Before leaving standard microlocal analysis, we should point out an anal­
ogy between PDE and quantum mechanics. This makes it plausible that the 
uncertainty principle has something to do with PDE. We start by reviewing 
classical mechanics. The state of a classical system is specified by the coor­
dinates Xi and momenta & = rrii(dxi/dt) of its particles. An observable quan­
tity (e.g. angular momentum) is given by a function F(x, £). If we observe F 
when the system is in state (x°, f °), we get a deterministic answer F(x°, £°). 
Of particular importance is the observable 
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the total energy or Hamiltonian. Here V is the potential in which the particles 
move. Newton's equations of motion say that the classical system evolves by 
rrii(d2Xi/dt2) = —dV/dXi, which we rewrite as 

(3) 
dxi _ 1 £ d£i _ dV 
dt mi %1 dt dxi 

Hamilton's equations. The time evolution of any observable F(x, £) is given 
in terms of the Poisson bracket by 

(4) dF/dt = {H,F}. 

This amounts to Hamilton's equations when F = X{ or &, and then follows 
in general by the chain rule. So (4) provides a complete description of how 
the system moves. The laws of mechanics are now clearly invariant under 
canonical transformations. 

On the other hand, in quantum mechanics, the state of a system is described 
by a vector ij) G L2. An observable quantity is a self adjoint operator A 
on Hubert space. For instance, position corresponds to the operator -0 —> 
Xjij), while momentum corresponds to ip —• (l/i)(d/dxj)il). If we measure the 
observable A when the system is in state ip, then the outcome is probabilistic, 
but the average observed value will be (Aip,ip). In the Schrödinger picture 
(which we have been describing), the state I/J evolves in time according to 
dtp/dt = iHip, where the Hamiltonian operator H specifies the physics of the 
system. In the equivalent Heisenberg picture, the state remains constant, but 
observables A evolve according to dA/dt = i[H,A\. 

Note that the laws of quantum mechanics are invariant under the action 
of a unitary transformation U: L2 —• L2. In fact, sending ^ —> Utjj = ip, 
A —• UAU~1 = A for observables A preserves all the equations and predicts 
the same outcome of any experiment. 

We can summarize this elementary discussion by a table: 

State of system 

Observable 
Result of measuring 
observable 

Object controlling 
dynamics 

Change to equivalent 
viewpoint 

Classical 

F function 
Deterministic; always 

Poisson bracket { , } 

Quantum 
</>GL2 

A operator 
Probabilistic; on 
average (Aip,ip) 

Commutator i\, 1 

Canonical transformation Unitary operator 

Clearly, standard microlocal analysis amounts to quantization. By ipdü we 
pass from functions of (x, £) to operators in such a way that Poisson brackets 
go over to commutators. Fourier integral operators let us pass from canonical 
transformations to unitary operators. It is very natural that the uncertainty 
principle should play an important role in PDE. 
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In particular, we can look ahead to the decomposition of phase space Rn x 
Rn into curved boxes of volume ~ 1. We can now begin to describe what the 
curved boxes look like: They are images of a cube of side ~ 1 under canonical 
transformations. 

Let us return to the techniques of cutting and bending symbols. 
The calculus of </><«) together with Egorov's theorem yield the finest possible 

cutting and bending that work simultaneously on all symbols in Sm. 
LEVEL H {Cutting a single operator into smaller pieces modulo a lower-order 

error). To make further progress we have to cut phase space into much smaller 
pieces than the blocks {B„} of Figure 3. This time the cutting will depend 
on the particular symbol A{x, Ç) we are trying to understand. The idea is to 
bisect repeatedly the Bv until we arrive at a family of blocks {B„,-} on which 
A{x, Ç) is somehow "nondegenerate". So the {Bvj} form a Calderón-Zygmund 
decomposition of ft, as in Figure 4A, and the whole of phase space is cut up 
as in Figure 4B. 

®J 

FIGURE 4A FIGURE 4B 

For a general symbol L{x,i) unrelated to A(x,0, the decomposition of 
Figure 4B would be too fine: If we try to represent L(x,D) as an approximate 
direct sum of operators Lvj(x,D) microlocalized to the boxes of Figure 4B 
then we would find that the error terms are large. However, the decomposition 
is very fine precisely where the symbol A(x,0 is small, and therefore A(x,D) 
is well approximated by a direct sum of microlocalized pieces. In particular 
the error terms are of lower order than the main terms, just as in the stan­
dard rmcrolocalization of Level I. Figure 4B actually gives the finest possible 
microlocahzation of A(x,D) modulo lower-order errors. 

It is strong enough for some useful applications (the Nirenberg-Trèves 
conjecture (P), Hörmander's theorem on squares of vector fields), but we are 
still far from diagonalizing the operator A(x,D), since the pieces Bvj in Figure 
4B still may have large volume. So we pass to 

LEVEL EI (Cutting a single operator into small enough pieces modulo a one-
percent error). In the final picture, phase space R" x Rn is cut into curved 
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boxes Ba of volume ~ 1 which sit inside the Buj of Level II. The family {Ba} 
again depends on the particular symbol A(x, £) to be analyzed. Each Ba is 
essentially the image of the unit cube under a canonical transformation 3>a. 
Corresponding to the decomposition of phase space into boxes of bounded 
volume, we can finally approximate A(x, D) by an operator which is explicitly 
diagonalized. Under natural hypotheses (for instance, if the symbol A(x, £) 
is positive), the eigenvalue corresponding to the box Ba is of magnitude ~ 
MAX(Xj£)Gsa \A(x, £)|. This agrees with the SAK principle as stated at the 
beginning of the chapter. The canonical transformations <3>a are far too wild 
to allow direct use of Egorov's theorem. We could never carry out such violent 
cutting and bending with errors of lower order than the main terms. Instead, 
we are forced to let the error grow as large as a fixed small constant times 
the main term. Fortunately, such errors have no effect on the applications to 
PDE. In particular, we can write an approximate inverse for A(x,D), given 
sharp a priori estimates, and describe the eigenvalues. 

Next we review a few of the main problems and results in linear PDE. 
We have picked out the topics for which approximate diagonalization and the 
SAK principle have immediate applications. 

Existence of solutions of PDE. This question was radically transformed by 
the discovery of H. Lewy that the equation 

(t) u = f 
dx dyj dt\ 

has no solutions for general ƒ G C°°, even if we ask only for distribution 
solutions u defined in a small neighborhood. Equation (f) is not a cooked-up 
example, but arises as an analogue of the Cauchy-Riemann equations on the 
unit sphere in C2. Lewy's work led to a new question: How can we recognize 
those L for which Lu = ƒ has local solutions? 

After some preliminary work by Hórmander [involving commutators of L 
with L*], Nirenberg and Treves found the correct conjectures and gave over­
whelming evidence by proving them in many cases [33, 34]. The Nirenberg-
Trèves conjectures relate local solvability to the geometry of the symbol L(x, £). 
To understand their condition, and to see why an equation can fail to be 
locally solvable, we look at a simple example: 

dt " j dxk 

We can solve Lu — ƒ formally by making a partial Fourier transform in 
the x-variables. Thus our PDE goes over to an elementary ODE 
[d/dt + ̂ kak(t)£,k\û{t, £) = f(t, £), which we solve easily using the integrating 

factor exp[J J2kak(s)£kds]. The trouble is that the integrating factor grows 
exponentially in £, so we may easily end up with a formal solution u(t, £) 
which also grows exponentially. In this case the partial Fourier transform u 
cannot be inverted, and Lu = ƒ has no solutions. Working out the details, we 
arrive at the necessary and sufficient condition for solvability, namely 

(P) For £ T̂  0, the function t —> ]P a,k{t)£k never changes sign. 
k 
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More generally, if L is a differential operator with principal symbol p + iq, one 
associates certain curves to p (the null bicharacteristics), and the Nirenberg-
Trèves condition is 

(P) qnever changes sign on the curves associated top. 

For a large class of PDE (principal type), this is equivalent to local solvability. 
The proof requires microlocal analysis on what we have called Level E, and 
it formed the original motivation for Calderón-Zygmund decomposition of 
symbols. 

Hypoellipticity. Solutions u of Laplace's equation Au = ƒ can be singular 
only where ƒ is singular. On the other hand, solutions of the wave equation 
(d2/dt2 — A)u = ƒ have singularities which propagate from the singularities of 
ƒ along light cones. In general, an equation Lu = ƒ is called hypoelliptic if u 
is always C°° except where ƒ is already not C°°. It is an interesting problem 
to decide whether a given PDE is hypoelliptic, and to understand precisely 
how smooth u must be if we know how smooth ƒ is. 

A basic nontrivial example of a hypoelliptic equation is a sum of squares 
of vector fields. Already in Kohn [26] it was clear that commutators played 
an important role; see also Kolmogorov [28]. Hörmander generalized these 
examples in his celebrated 

THEOREM. L = J2JLIX?+XO is hypoelliptic ifthe vector fields X 0 , . . . ,XN 

and their repeated commutators span the tangent space at each point. 

In view of the connection of L with the Bergman and Szegö kernels in 
complex variables, one wants to write explicitly an approximate inverse for 
L. 

To invert L and give sharp estimates involves not so much the algebra of 
commutators, but rather a geometric study of certain non-Euclidean "balls" 
BL{%, p) associated to L. This key discovery is due to Stein [37, 19, 20] who 
used nilpotent groups as the bridge between commutators and geometry. On 
a nilpotent group N one has natural examples of noncommuting vector fields 
Xj, namely the (left) translation-invariant vector fields that make up the Lie 
algebra n. 

Since L = ^jX? + Xo is then translation-invariant on N, we know that 
L _ 1 is given as a convolution operator on N. Also, the convolution kernel 
K(x) must be homogeneous with respect to the natural dilations 6t which 
act on N. So the nature of L _ 1 is well understood in this case. On the 
other hand, the group N is equipped with a family of non-Euclidean balls: To 
define the ball of radius p about the identity in TV, we just apply the dilation 
8P to a fixed neighborhood of the identity (which serves as a unit ball). The 
fundamental solution of L is intimately tied to the shape of the non-Euclidean 
balls in N. 

Now an arbitrary family of noncommuting vector fields may be recovered 
from the special case of a nilpotent group by using a process called the 
Rothschild-Stein "lifting". 
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As a result, sharp estimates [17] and now also the fundamental solution of 
L can be read off from the geometry of the balls BL(X,P). The fundamental 
solution is due, independently, to Nagel, Stein and Wainger [32] and Sanchez 
[38]. 

We also want to understand second-order operators L not given as sums of 
squares. For an operator 

jtdxJ dx* j dxJ 

with ((ijk) > 0 and a^, bj, c real, Oleinik and Radkevitch [35] gave a condi­
tion in terms of commutators which is sufficient and close to necessary for 
hypoellipticity. The Oleinik-Radkevitch condition is as follows. 

Start with the symbols 

Lo = Y,bj{x)£j, L3=J2ajk{x)£k, LM = £ — ^ - ^ ^ \ - \ 
j k jk dX» 

Next form all repeated Poisson brackets of these symbols up to order /c; say 
Pi,...,PN are the symbols obtained in this way. 

THEOREM [35]. L is hypoelliptic if ^2^ \P3{x, £)| > c|£|. 

This is, of course, analogous to saying that the commutators of vector fields 
span the tangent space. 

The Oleinik-Radkevitch theorem is proved using ipdQ calculus, but now the 
techniques of nilpotent groups are no longer available. So one has neither an 
explicit solution nor sharp estimates. We shall study these problems (and also 
get a simple proof of hypoellipticity of sums of squares) using approximate 
diagonalization and SAK. 

Boundary-value problems. To fix the ideas look at the equation Au = 0 in 
H, Xu = ƒ on dû, where X is a complex vector field. We can suppose dû 
has been straightened out, so Q = {(x,t) G Rn X R1 \ t > 0}. Thus u(x,t) 
is the Poisson integral of u(x) = u(x, 0), and our problem is to find tz(x). At 
the boundary the vector field X splits up into a(x)(d/dt) + XT;ANy where a(x) 
is complex-valued and XTAN is a complex vector field tangent to dû. For 
u(x,i) — Poisson integral of u(x), we compute that — du/dt\t=o = (—A)1/2^, 
where now A denotes the Laplacian on dQ. Therefore, our boundary problem 
reduces to 

[ - a (x ) ( -A) 1 / 2 + x T AN^ = / onH n . 

In other words, a boundary-value problem for the Laplacian on Q reduces to 
a pseudodifferential equation on the boundary dû. This makes it important 
to solve pseudodifferential equations. 

Given a symbol L(x, £) = p + iq, we now ask whether L(x,D)u = ƒ is 
hypoelliptic or locally solvable. A crucial condition here is the analogue of (P) 
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for pseudodifferential operators, namely: 

As we flow along the null bicharacteristics of p, the symbol q can 
W change sign only from minus to plus. 

(This is equivalent to (P) in the special case of differential operators, for then 
p + iq must be even or odd, so any sign change would lead to a forbidden sign 
change.) 

Mover [31] has shown that (\£) is necessary for local solvability of p — iq 
and for hypoellipticity of p + iq. One supposes (#) implies local solvability 
for equations of principle type, but this is unknown and probably quite hard. 
Regarding hypoellipticity under condition (\i>), there is a very strong result of 
Egorov. To state Egorov's theorem we may assume p + iq is first-order, since 
this may be achieved by multiplying by an elliptic symbol. 

THEOREM ([EGOROV [10]; SEE ALSO HÖRMANDER [24]). Suppose p-\-iq 
is a first-order symbol satisfying (^). Let Pi,P2,• • -,PN denote p, q and their 
repeated Poisson brackets up to order m. If Y^\ \Pk{%, 0\ ^ cl£l for ^ar9e f> 
then L = (p + iq){x, D) is hypoelliptic. 

More precisely, L satisfies the sharp subelliptic estimate ||iz|| + ||Lit|| > 
c|Mli/(m+i); this estimate is actually equivalent to the hypotheses of Egorov's 
theorem. 

Egorov's original paper [10] is the first place a problem in PDE is solved by 
cutting phase space into curved boxes Bu. (Egorov's boxes have large volume, 
however, so they do not diagonalize the equation.) Unfortunately, while giving 
a simple solution of the localized problems on the Bv, Egorov provides no 
rigorous discussion of how the microlocalized results can be patched together 
to solve the original problem. This is a highly nontrivial task involving Level 
EQ microlocalization. Later, Hörmander [24] gave a careful justification of 
Egorov's main ideas. 

From our work on approximate diagonalization and SAK, Egorov's theorem 
may be read off as a simple consequence. Approximate diagonalization thus 
gives a clue as to what is really going on in the very complicated arguments 
in [10, 24]. 

This concludes our introduction to the SAK technique. In the next chapter 
we apply our philosophy to the study of eigenvalues of Schrodinger operators 
(which is a natural starting point in view of the connection to quantum 
mechanics). Then we return to general PDE and state precisely our theorems 
on approximate diagonalization. We shall explain how to get the applications 
as consequences of our main theorem. The proof of our main result is very 
hard. Here we will do little more than sketch the ideas. 

It seems to me that these techniques give strong results for a single hypoel­
liptic PDE. For hypoelliptic systems the analogues of our results are com­
pletely open. There are fascinating new geometric questions brought out in 
the context of ~5 by Kohn [27] and Catlin [6]. A natural goal for future study 
is to understand the Bergman and Szegö kernels on weakly pseudoconvex 
domains. The inversion of hypoelliptic scalar operators may be regarded op­
timistically as a first step in attacking this very hard problem. 
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CHAPTER n : SCHRÖDINGER OPERATORS 

To test our philosophy we will study eigenvalues of Schrödinger operators 
L = — A + V(x) on Rn. Our goal will be to relate the eigenvalues and 
eigenfunctions of L to the growth of the symbol |£|2 + V(x) on testing boxes 
B = {(x,OeRnxRn\\x-xo\<6,\t-Ho\<6-1}. 

We begin by studying polynomial potentials V for which the estimates are 
elementary. In this case, the number of eigenvalues of L which are < E is 
essentially the largest number of pairwise disjoint testing boxes B which fit 
inside {|£|2 + V(x) < E}. As a consequence, we can read off the order of 
magnitude of each eigenvalue XJV for nonnegative polynomials V, and our 
philosophy is confirmed. The proofs will form a simple model for our later 
analysis of pseudodifferential operators. 

Next we abandon polynomials and study the eigenvalues of — A + V(x) for 
completely arbitrary potentials V(x) < 0. Remarkably, estimates analogous 
to the easy polynomial case hold for arbitrary V. This time the proofs are 
deep and rely on the techniques of Fourier analysis on Rn developed in the 
1970s. 

Finally, we study the special Schrödinger operator arising from the Coulomb 
forces among N electrons and TV nucleii in R3. Since ordinary objects have 
many electrons and nucleii, we look for estimates independent of N. Classical 
results of Dyson and Lenard [9a] and Lieb and Thirring [30] show that bulk 
matter occupies a volume proportional to the number of particles. In the spirit 
of the SAK principle, we will sharpen these results by proving that ordinary 
matter is made of atoms which bind together to form molecules. 

Before stating our results, we summarize the classical eigenvalue estimates 
and show in several examples that they are not sharp. The standard philosophy 
is that the number AT(X,L) of eigenvalues < X is approximately the phase 
space volume V(\,L) = \{(x,£)\ |£|2 +V(x) < X}|. Thus, the Nth eigenvalue 
should be roughly the smallest X for which Vol(X,L) = N. Is this true? A 
basic theorem of Cwickel, Lieb and Rosenblum [40] is as follows. 

THEOREM 1. In Rn (n > 3) one has the estimate ]V(X,L) < Cn Vol(X,L). 

COROLLARY 1. 7/Vol(X,L) < C'1, then L > X. 

COROLLARY 2. The sum of the absolute values of the negative eigenvalues 
o / - A + V{x) is atmostC'nf{v{x)<0}\V(x)\(n+2y2dx. 

Corollary 2 follows by integrating the estimate of Theorem 1 over all 
negative X; in fact Corollary 2 is much easier than Theorem 1 and was proved 
first in Lieb and Thirring [30]. It has a very important application which we 
shall discuss later. 

We pause to note that Corollary 1 is nothing but Sobolev's inequality. In 
fact, we may assume X = 0 and V < 0. Corollary 1 asserts that 

(Lu,u) = | |Vu | | 2 - / \V\\u\2dx>0 
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if 
Vol(0,l)=( iVixT^dxKC-1. 

That is, 

f\V\\u\2dx<\\Vu\\2 if||V||i.-/a<c(n), 

which simply means Vu G L2 implies \u\2 G Ln^n~2\ So Theorem 1 is really 
a sharpening of Sobolev's inequality. 

From Theorem 1 we see that the real question is whether N(\, L) ~ Vol(X, L) 
or, instead, 7V(X,L) «C Vol(X,L); and in the second case, how big is N(\,L)? 
Now let us look at a few examples. 

EXAMPLE I (Two uncoupled harmonic oscillators). L = —A + [i\x2 + ^y2 

on R2. We fix //i = 1 and take ^ to be very small. The lowest eigenvalue is 
Xi(L) = 1 + y/JÏ2 « 1. On the other hand, given e > 0, N > 1, we can take [i^ 
so small that Vol(e,L) > N. Hence volume-counting predicts huge numbers 
of very small eigenvalues for L, even though the true lowest eigenvalue is 
approximately 1. 

The next two examples are due to B. Simon. 
EXAMPLE E. L = —A+x2y2 on R2. Here, the phase-space volume Vol(X,L) 

= +oo for every X > 0. Nevertheless, L has discrete eigenvalues XJV tending 
to infinity. Our results give the order of magnitude of XAT. For the closely 
related Dirichlet Laplacian on Q = {\xy\ < 1} Q R2, Simon has given precise 
eigenvalue asymptotics. 

EXAMPLE in. Let A be a Lie algebra of compact type, and on RN = 
A 0 A 0 • • • 0 A set L = - A + ^2j<k\\\[Aj,Ak]\\\2. Here, the triple norm is 
given in terms of the Killing form on A. Again Vol(X,L) = +oo, but Simon 
has shown that L has discrete eigenvalues tending to infinity. The example 
arises as a (grossly oversimplified) model of quantum gauge theories. In a 
gauge theory the classical field is given in terms of the potentials Aj by Ejk = 
dAj/dXk — dAk/dxj + [Aj, A/c]. If the potentials are slowly varying, one can 
put Ejk ~ [Ay,Afc], and quantization leads to the Schrödinger operator L. 
Mathematically, L is a more complicated version of Example E. 

So far our potentials have been polynomials. Next we look at potentials 
with a different shape. 

EXAMPLE TV. L = — A — k/\x\2 on Rn (n > 3). This remarkable example is 
well known to people interested in Schrödinger equations. For all finite X one 
has Vol(X,L) = H-oo, so it is natural to guess that L is unbounded below. The 
correct result is that L > 0 for k < kcritical(w)> while L is unbounded below for 
k > k critical (^)- This may be understood in terms of Corollary 1 to Theorem 1 
and a sharper form of Sobolev's inequality due to R. Hunt [21]. Our results on 
singular potentials cover this example, but do not give the value of k critical(w). 

EXAMPLE V (Particle in a box). Let / = I\ X h X • • • X In be a rectan­
gular box in Rn (n > 3) whose sides Ii , h,..., In have lengths 6i < 62 < • • • < 
6n. For E > 0 small enough, the Schrödinger operator L = —A — E\T > 0, 
while for E > ^critical(£1 > #2 j . . . , £n) we find that L has negative eigenvalues, 
so the potential well can capture a particle. We ask how the energy £ ^ ^ ^ 1 
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depends on the sides of the box. Volume-counting leads to the guess ^critical ~ 
(<5jf26^2---6~2)1//n. This is completely wrong. Curiously, the order of mag­
nitude of ^critical depends only on the three shortest sides: 

1 
^critical ' 

<$l£2l0g((£2 + £3)/<$2)' 

Our general results imply 

T~c~ — ^critical > 
Sl62-

 c r i t i ca l- dMhlhY' 

so that ^critical depends strongly on 61, 62, and weakly on £3. 
Hence, volume-counting can lead to gross errors. Later, we will give a kind 

of converse to Theorem 1, which characterizes these potentials V for which 
volume-counting is approximately right. 

Now we can state our eigenvalue estimates for polynomial potentials. Let 
V be a polynomial of degree < d on Rn. We guess that the number AT(X,L) 
of eigenvalues < X for L = — A + V(x) is approximately the number NUP(\,L) 
of pairwise disjoint testing boxes B = {|x — Xo| < #, |£ — £o| <<$-1} which fit 
inside {|£|2 + V(x) < X}. This leads us to estimate the lowest eigenvalue Xi(L) 
by 

\UP{L) = inf max (£2 + V{x)) ~ inf j o " 2 + max V{x)\; 
B (x,£)eB xo,6 ( \x-x0\<6 J 

\UP(L) is the lowest number X for which Njjp{\,L) > 1. 

THEOREM 2. If V > 0 is a polynomial, then C\JJP(L) < Xi(L) < C\up{L). 
Here c depends only on n, d, while C depends only on n. 

To estimate N(\,L) for V > 0, we divide Rn into a grid of cubes {Qu} of 
side X - 1 /2 , and redefine NUP{\, L) as the number of Qu on which MAXç^y < 
X. This is consistent with the earlier, less computable, definition of Njjp. For 
the higher eigenvalues of L we have 

THEOREM 3. If V > 0 is a polynomial, then NUP(c\,L) < N(\,L) < 
NUP{C\,L). Here C depends only on n and d, while c depends only on n. 

This yields the order of magnitude of the iVth eigenvalue uniformly in N. 
There is a significantly sharper form of Theorem 2 for polynomial potentials 
V(x) which are not assumed to be positive at all points x G Rn. 

THEOREM 4. If V is any polynomial on Rn, then 

inf {c8~2 + MAX V{x)\ < Xi(L) < inf {c6~2 + MAX V{x)\. 
x0,6 ( \x—x0\<6 J x0,6 ( \x—x0\<6 ) 

Here C depends only on n, while c depends only on n, d. We forego the 
analogous sharpened form of Theorem 3, though it is true also. Later we will 
give estimates in the spirit of Theorems 2 and 4 with constants independent 
of the dimension. This is of interest because one wants to pass to the limit 
and study infinite-dimensional problems. 
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Now we drop the assumption that y is a polynomial. We take arbitrary 
V < 0 on Rn and attempt to estimate the negative eigenvalues of L = — A + 
V(x). Since V is no longer a polynomial and may be very singular, it is now 
natural to average the symbol £2 + V(x) over a testing box B = {\x — xo\ < 6, 
\€ — £o| < £_1}> rather than maximize the symbol. (For instance, suppose 
V{x) = 0 in \x - x0\ < £/109, V{x) = -6100 in 6/109 < \x - x0\ < $•) This 
leads to a guess 

~ <r2 + AvB{X)6)v = ~(AvB{X)6)\v\ - <r2) 
for Xi(L), rather than 6~2 + MAXB(X,6)V. In fact, the following is true. 

THEOREM 5. For 1 < p < oo and constants depending only on n, p, one has 
the estimates cEsm < —Xi(L) < CE\>ig; where 

E8m = sup[(AvB(x,6)|^|) - Co'2}, 
x,8 

Ehig = Bup[(AvB(îB|«)|^|p)1/p-cfi-2]. 
x,6 

COROLLARY. If {AvB(x,6)\V\p)1/p < c6~2 for every x, 6, then -A + V > 0. 

To estimate the number of negative eigenvalues, we look for collections of 
pairwise disjoint testing boxes on which the symbol |£|2 + V(x) has a negative 
average. This motivates the following result, valid in Rn, n > 3. Again we 
take 1 < p < oo and use constants C, c depending only on n and p. 

THEOREM 6. (A) Let Q\, Q2,..., QN be a collection of cubes whose doubles 
are disjoint. Suppose {AVQ^VD > C(diamQj)~2 for each of the cubes. Then 
L = — A + V has at least N negative eigenvalues. 

(B) Conversely, suppose — A+V has at least CN negative eigenvalues. Then 
there is a collection of pairwise disjoint cubes Q i , . . . , QN for which 

(t) ( A v Q ^ n ^ c C d i a m ^ ) - 2 . 

In practice it is surprisingly easy to find essentially the largest possible 
collection of {Qj} as in Theorem 6. 

Theorems 5 and 6 are somewhat sharp because the upper bounds are of 
roughly the same form as the lower bounds. It would be interesting to give a 
sharp limiting form of Theorems 5 and 6 corresponding to p = 1; we discuss 
this point later. We also put off for later the application to physics, and content 
ourselves here simply with pointing out that Theorem 6 implies Theorem 1. 
In fact, Theorem 6 evidently gets sharper as p decreases, and we shall use 
p = n/2. To prove Theorem 1 we may evidently take X = 0. Also, we may 
suppose V < 0, since changing V to min{V,0} only lowers the eigenvalues 
of L. So we are in the situation of Theorem 6(B), which now produces a 
collection Qi, . . . ,Qiv of disjoint cubes satisfying (f), with CN > 7V(0,L). 
Since p = n/2, estimate (f) takes the form 
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that is, JQ \V\n/2 dx > c'. Summing over j , we find that 

Vol(0, L) = f \V\n'2 dx>jrf \V\n/2 dx > c'N > £ AT(0, L), 

which is the conclusion of Theorem 1. Similarly, the corollary to Theorem 5 
(with p = n/2) immediately implies the Sobolev inequality. 

We now come to the proofs of Theorems 2, 3 and 4 on polynomial poten­
tials.3 These results all rest on the following elementary estimate. 

MAIN LEMMA. Assume V(x) > 0 is a polynomial of degree <d on a cube Q 
in Rn. Suppose (AVQ"^) > (diamQ)"2. Then f or functions u in Q we have 

f {\Vu(x)\2+V(x)\u(x)\2}dx>c(diâmQ)-2 f \u{x)\2dx. 
J Q J Q 

The constant c depends only on n and d. 

First we prove the Main Lemma, then explain how to deduce Theorems 2, 
3 and 4. The analogue of the Main Lemma for operator-valued potentials will 
be important in the later discussion of pseudodifferential operators. 

PROOF OF THE MAIN LEMMA. We exploit the following simple properties 
of polynomials P(x) of degree < d. 

(a) AvQ |P | < MAXQ |P| < CAvQ\P\. 
(b) M A X Q | V P | < CidmrnQ^MAXqlPl. 
(c) Suppose P > 0 on Q. Then there is a subcube Q' ÇQ with (diamQ') > 

c(diamQ) on which we have M I N Q P > ^ M A X Q P . 

To check these we may assume Q = unit cube. 
Property (a) just asserts the equivalence of two norms on a finite-dimension­

al vector space, property (b) says that a linear map of finite-dimensional spaces 
is bounded in norm, while (c) follows from (b) if we pick Q' to include a point 
of Q where P takes its maximum. Thus, (a), (b), (c) are trivial. 

Now let u be a function on Q. We start with the trivial estimate 

fQ i v ^) i 2 dx * cj^rl LQ K*) - « * *• 
Also, 

f V(x)\u(x)\2dx= f V(y)\u(y)\2dy = ±-[ V(y)\u(y)\2 dxdy. 
JQ JQ \Q\ JQXQ 

3Since the results in this lecture haven't appeared before in print, we give the proofs 
now. 
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Putting this together yields 

{\Vu{x)\2 + V{x)\u{x)\2}dx 
Q 

>~f [c(diamQ)-2Kz) - u{y)\2 + V(y)\u(y)\2} dxdy 
\Q\JQXQ 

l- /QxQ(MIN{F(y),C(diamQ)-2}) 

• {\u(x)-u(y)\2 + \u{y)\2]dxdy 

- W\ /Q X Q(M N^^)' c(d i a m^"2}) • [\\<x^} dxdy 

=[w\ L ïMN{y(î/)'c(diam Q)~2} dy\ ' IQ KX)|2 dx-
By property (c) and the hypothesis (AVQV) > (diamQ) -2 , we have 

iMIN{y(2/),c(diamQ)-2} > c(diamQ)-2 

for a fixed portion of the measure of Q. Hence 

^JQ\MIN{%),c(diamQ)~2}dy > c'(diamQ)'2, 

and the Main Lemma follows from (f). Q.E.D. 
See Simon [39] for another proof of the Main Lemma. 

PROOF OF THEOREM 2. The upper bound for \\{L) is trivial, since 

4>#o H0II2 | |0° | | 2 

for any fixed 0° # 0. Letting 0° run over all translates and dilates of a 
fixed smooth function supported in the unit ball, we at once obtain Xi(L) < 
C\UP[L). 

The lower bound for \\{L) amounts to the estimate 

(t) (Lu,u) = ||Vu||2 + (Vu,u) > c\UP(L)\\u\\2 îorue C°°(Rn). 

Cut up Rn into a grid of cubes Q, each having side Ci[\[/p(L)] - 1 /2 . If we take 
C\ large enough, each Q will contain a ball B{XQ18) with 6 = 2[Xt/p(L)]~1/2, 
so, by definition of \JJP, we have 

Thus, 

XC/P < <TJ + MAX V < -zf- +MAX V. 
B(x0,6) 4 Q 

MAX V > |XC/P > ( |C2)(diamQ)-2 . 
Q 

file:///Q/Jqxq
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Since AVQ V ~ M A X Q V, by taking C\ large we may arrange that 

(*) AvQy>(diam<2)- 2 , 

(**) (diamQ)-2 = c'\UP(L). 

Now (*), (**) and the Main Lemma yield 

f {\Vu(x)\2 + V{x)\u{x)\2}dx > c\UP{L) f \u(x)\2dx 
J Q J Q 

for each cube of the grid. Summing over all Q yields the needed estimate (f), 
and Theorem 2 is proved. Q.E.D. 

PROOF OF THEOREM 3. Recall from elementary functional analysis that 
(1) N(\,L) > N if we can find an iV-dimensional subspace H Ç L2 so that 

(Lu,u)<\\\u\\2 for ueH. 
(2) AT(X,L) < N if we can find a codimension N subspace H Ç L2 so that 

(Lu,u)>X|M|2 for u e H. 
We first check that N(\,L) > N = Nup{c\). Corresponding to (cX) is a 

grid {Qu} of cubes of sides (cX) -1/2. Let Qi, . . . ,Q;v be those cubes of the 
grid on which M A X Q V < cX. Translate and dilate a fixed smooth function 
<f> supported in the unit cube to obtain functions 0 I , . . . , 0 J V supported in 
Qij • • • » QAT- Then just define i ï as the span of fa,...,0jy. Evidently H is 
iV-dimensional, and for u = ^ x a i0 i G H we have 

<LW, u) = ||vw||2 + (y«,«> = £{KI2 | |v<y2 + K I 2 < F < ^ > } 
1 

<X:C(diamQ,)-2K|2||^||2<X|M|2. 
1 

These estimates hold because the </>j are translates and dilates of a fixed 
function, while MAXQ.,. V < c\. So we have N(\,L) > NUP(C\,L) by virtue 
of (1). Now we show that N(\,L) < NUP(C\,L) = N. Corresponding to CX 
is a grid of cubes {Qv} of side (CX) -1/2 , and we let Q±,..., QN be those cubes 
on which MAX V < CX. Define H as the space of all u £ I? with integral zero 
over Qi, Q2,. . . , QAT- # has codimension AT, and we shall prove that 

(*) (Lu,u) = \\Vu\\2 + {Vu,u)>\\\u\\2 forti Gif. 

This will follow at once by summing the following estimates over v\ 

(**) f {|Vu|2 + ^ H 2 } d x > X /" \u\2dx ÎOTUGH. 

For v 7̂  1,2,..., N we have MAXQ^ V > CX, so (**) holds for any u by virtue 
of the Main Lemma. 

On the other hand, for v — 1,2,..., N we argue as follows. Any u G L2(Q) 
satisfies 

/ IVu{x)\2 dx > c(diam Qv)~2 ƒ \u(x) - avQ^ u\2 dx 

> X / |u(x) — a v ^ u|2 dx. 
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If u G H, then SVQU U = 0 and (**) follows at once. Thus, (**) holds for all 
v, and now N(\L) < NUP(\,L) by virtue of (2). The proof of Theorem 3 is 
complete. Q.E.D. 

PROOF OF THEOREM 4. The upper bound for Xi(L) is trivial as in Theorem 
2. The lower bound for Xi(L) amounts to the following estimate. 

Suppose y is a polynomial of degree < d on Rn satisfying 

(t) M A X ^ ^ - c ^ d i a m Q ) - 2 

Q 

for every cube Q. Then ||Viz||2 + (Vu,u) > 0. 
To prove this we can suppose that u is supported in a very large cube Q°. 

Except in the trivial case V = constant, we have 

MAX V - M I N V 
Q° Q° 

>C(diamQ0)-

if we start out with Q° large enough. 
Now make a Calderón-Zygmund decomposition of Q° by bisecting Q° into 

2n equal subcubes, bisecting each of these subcubes, etc. We stop cutting 
whenever we arrive at a cube Q satisfying 

(tt) MAX V - M I N V 
Q Q 

<Ci(diamQ)-

This will eventually happen, since each time we bisect Q the left side of (ff) 
shrinks, while the right side grows by a factor of 4. Consequently, the big 
cube Q° is partitioned into subcubes {Qu} each of which satisfies 

(*) cdidi&mQv)-2 < M A X V - M I N V 
Qu Qu 

KdidmmQvY 

Here c depends only on n and d, and the first estimate of (*) holds because Q 
arose by bisecting a cube for which (ff) fails. 

If we take C\ large enough depending on n and d, then the Main Lemma 
applied to V(x) = V(x) - MINQ^ V shows that 

(**) f {\Vu\2+V\u\2}dx>[MlNV + c{dmmQu)-
2) f \u\2dx. 

JQu \ Qu J JQu 

However, if (f) holds with c\ small enough, then we have 

M I N V ^ - c t d i a m Q ^ ) - 2 . 
Qu 

To see this, suppose MINQ^ V occurs at x° G Qv, and let Q be a subcube of 
Qv with diamQ = /^(diamQi,) and x° G Q. By observation (b) in the proof of 
the Main Lemma, we have 

MAX V < MIN V + CP\ M A X V - M I N V 
Qu Qu 

Using (f) on the left and (*) on the right, we get 

-ci(diamQ)"2 < MIN V + C/JC^diamQ,,)-
Qu 
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i.e. 
- d / r ^ d i a m Q , , ) - 2 < MIN V + CCi^diamQ^)- 2 . 

Picking fi « 1/CCi and then picking ci « /32, we see that MLNQuV > 
—c(diamQv)~2 as claimed. Now (**) shows that /o^dV^I2-h y|w|2}dx > 
0. Summing over v yields ||Vu||2 + {Vu,u) > 0, which is the desired es­
timate. Q.E.D. 

Before leaving polynomial potentials, we should mention a version of Theo­
rem 4 with constants independent of the dimension. To motivate the result, 
we look at the 0|-field from quantum field theory. Here 

L=- £ fi + E [-«**+P4+1+6(*» - *»+i)2] 

and a,/3,7,6 depend on N. L describes the quantum-mechanical analogue 
of a classical mechanical system of N particles with positions x i , . . . , XM and 
moving in a potential well 

N 

V{xu...,xN)=Y, l~axl + Pi + 7 + 6{xu -x^+i ) 2 ] , 

If we could pass to the limit as N —• oo, then the classical system goes over 
to a field 0(x) with "potential" V(</>) = f-J^2 + P<t>4 + |V0|2]dx, while L 
goes over to the corresponding quantized field. So estimates independent of 
the dimension are aimed at the passage from ordinary quantum mechanics 
to quantum field theory. We emphasize that so far our estimates are much 
too crude to deal with this problem. Nevertheless, we can pick out from 
the examples of quantum field theory two basic properties of the potential 
y(x!, . . . ,xjv): 

(A) y (x i , . . . , x;v) is a polynomial of degree <d,d independent of N. 
(B) In V{x\1..., XJV) we find that xv is coupled directly only to xv-\ and 

xu+\. That is, d2V/8x/u3xl, = 0 unless \ii — v\< 1. 
More generally, a potential ^ ( x i , . . . , XN) will be called type (d, s) if 
(A') V is a polynomial of degree at most d. 
(B') For each fx we have d2V/dx^,dxu = 0 except for at most s values of v. 
We shall estimate the lowest eigenvalue of L = — A + V(x) in terms of the 

growth of V on boxes I = Ir x h X • • • X IN, where the lengths of the intervals 
II,I2,...,IN need not be equal. Our result is as follows. 

THEOREM 7. Suppose V(XI,...,XN) is of type (d,s). Then the lowest 
eigenvalue Xi(L) may be estimated by 

T h f r { c £ | J ; l ~ 2 + r max ^ l < X i ( L ) 
IIX-XIN [ j IIX-XIN J 

< inf \cT\Ij\~2+ max V). 
IIX-XIN y j IIX-XIN J 

Here C is a universal constant, while c depends on d and s but not on N. 
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For V >0 we obtain the order of magnitude of Xi(L). 
The proof of Theorem 7 is a delicate refinement of the proof of Theorem 

4. Again we start with a huge cube Q° and make a Calderón-Zygmund 
decomposition. This time, however, instead of bisecting a given box into 2^ 
congruent smaller boxes, we cut only one side at a time. Thus, at each stage 
of the Calderón-Zygmund cutting, a box is cut into only two pieces but the 
shape changes. A critical part of the proof is to decide at each stage which side 
to cut. We won't give the details here. Instead, we move on to nonpolynomial 
potentials. 

To prepare for the proofs of Theorems 5 and 6, we introduce some notation 
and background from Euclidean Fourier analysis. For Q a dyadic cube, define 

H% = space of functions supported in Q, and linear + constant 
on each of the dyadic subcubes obtained by bisecting Q. 

H $ = space of functions supported in Q, and linear + constant 
on all of Q. 

HQ = the orthogonal complement ofH^inH^. 

An L2-function u can be expanded in a series u = Ylo^iQ) w ^ n e a c n 

u(Q) E H®. This is a slight variant of a Haar series, and the corresponding 
variant of the dyadic square function is 

S(«) = V IKQ)II2
V I17 ' 

Such functions play an important role in the analysis of singular integral 
operators. It is well known to Fourier analysts that the size of S(u) controls 
very closely the size of u. In particular, we will need the following "weighted-
norm" inequality. 

LEMMA A. Let u be a function supported on a cube Q° and orthogonal to 
Hf. Then fQ0\u\2\V\dx < C fQ0 S2{u)V+ dx, where 

V+(x) = suptAvQl^n1 /?, p > 1. 
QBx 

SKETCH OF PROOF. One checks easily that V+ satisfies Muckenhoupt's 
(Aoo) condition. Therefore the standard theory of weighted-norm inequalities 
tells us for u _L H§° that fQ0 \u* |2V+ dx < C fQ0 S2(u)V+ dx, where u* is the 
dyadic maximal function of u. This is much stronger than the estimate of 
Lemma A, since we can just write 

ƒ o\u\2\V\dx<[ o\u*\2V+dx<cj oS2(u)V+ dx. Q.E.D. 

Next we relate the expansion u = Y2Q Û(Q) to the Laplacian by introducing 
IIHII2 = Ee(diamQ)-2 | |Û(Ç)||2, and proving 

LEMMA B. | | |U | | | 2 < C||Vu||2 for u G C^(Hn). 
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PROOF. Write u = ]Tj u\ with u\(JC) supported in |£| ~ 2l. Thus ui = xi*uu 
where 

fl for |£| ~ 2', 
*, (0 = 10 for |e| < 2 ' - 2 and for |£| > 2<+2, 

^smooth in between. 

We can take \i to satisfy 

(1) |aaXz(*)l < Cas2^\^l(2-l/(\z\ + 2-l))s, 

since this amounts to saying that 2~nlxi{2~lz) is a Schwartz function. Now 
l|û(Q)|| < 12i\\ûi{Q)\\' We study first the case diamQ < 2~l; say diamQ = 
2~l~k, k > 0. For suitable ip = V>P G # Q of unit L2-norm, we have 

1̂ (6)11 = \(xi *y>i,ti>)\ = \J xi{x-y)ui{y)iP(%)dxdy 

(2) / xite - y) - XI(XQ - y) 

\ui(y)^(x)dxdy - X ^ M - X Q J * d»xi{xQ - y) 
M J 

Here XQ with coordinates (ZQM) is the center of Q, and the extra terms in 
brackets don't affect the integral because t/j G H® and, hence, ip annihilates 
constants and linear functions. 

Estimates (1) for the second derivatives of xi show that the term in brackets 
is bounded by Cs(diamQ)22(n+2)'(2-7(|xQ -y\ + 2~z))s, while fQ \xp(x)\ dx < 
IQI1/2 since ^ is supported in Q and has unit L2-norm. So (2) implies 

llûi(Q)||<ClQl1/2(diamQ)22("+2)'/fi^ |^_2^+2_^lui(î/)l% 

= C\Q\^2 • 2-2k(<t>t * |««|)(iQ), whereas) = ^ ( j ^ p ^ l 

Since (J>I{XQ — y) and <j>i(x — y) are of the same order of magnitude for x G Q, 
y eRn, it follows that 

\\ui(Q)\\ < C'\Q\1/2 • 2~2fc(^ * \Ul\)(x) for any x G Q, 

so that 

| |û i(Q)||2<C2-4fc/(^*KI)2^-
J Q 

Summing over all Q of diameter 2~l~k yields 

£ IMQ)II2 < C2-±k f fa * K|)2dx < C2-4fc | |^||2 

diamQ=2~ 

since <fo has bounded L1-norm. Now multiply by 22i+2fc and sum over all 
k > 0 and all I. The result is 

Q 2-i>diamQ Z Q i a m ^ , 
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Since for a fixed Q we have 

E mm)'se E f f » 
^ 2 - l > d i a m Q / 2 - * > d i a m Q L aiding 

it follows that 

(3) Y{ E \\HQ)\\)(à™mQ)-2<C\\Vu\\2. 
Q V 2 - l > d i a m Q / 

On the other hand, suppose 2~l < diamQ, say diamQ = 2~l+k with k > 1. 
For fixed I and k we know that X2diamQ=2*-i ll^(Q)ll2 ^ \\ui\\2' Multiplying 
by 22l~k and summing over all k > 1 and all /, we get 

E E IKQ) | | 2 (d i amQ)- 2 . {2 i d iamQ}<Cj :2 2 i | h | | 2 <C ' | |Vu | | 2 . 
Q 2 - * < d i a m Q I 

Since for fixed Q we have 

( E \\HQ)\\) <c E WUQW-iïài^Q}, 
V 2 - i < d i a m Q / 2 - * < d i a m Q 

it follows that 

E ( E \\HQ)\\){&^Qr2<c\\vutf. 
Q \2-l<di&mQ J 

This and (3) yield 

£ ( ç i l « ) l l ) (diamg)-2< C||Vu||2. 

Since we already noted that ||û(Q)|| < J2t \\ûi(Q)\\, Lemma B is proved. Q.E.D. 
Combining Lemmas A and B it is now easy to prove the corollary to 

Theorem 5. In fact one has 

LEMMA C. Assume (AvQ y?)1/? < ^(diamQ)-2 for all QÇQ0. Then for 
any u orthogonal to H$ we have 

/çoH2|yMx<c7||H||2. 

Lemmas B and C show that 

((-A + V)u,u) = \\Vu\\2 - j \u\2\V\dx > c|||w|||2 - ƒ |u |2 |y |dx > 0 

ÎOTU±H$ ,if we pick 7 small. The set of u £ Co orthogonal to H§ for some 
large Q° is dense in L2, so — A + V > 0, which is the corollary to Theorem 5. 

PROOF OF LEMMA C. First of all we claim that AVQT^+ < C^diamQ) - 2 

for every cube Q. In fact, define 

C (Q)=max(Av Q . | ^n 1 /P , F+(x)= sup (AvQ . |^ |p)1 / p . 
Q ^>Q Q'BX 

Q'QQ 
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The definitions at once yield V+(x) = max[c(Q),y+(x)] < c(Q) + V^(x) for 
x€Q. 

The hypothesis of Lemma C gives c(Q) < ^(diamQ) -2 , while the maximal 
theorem and hypothesis imply 

(Av«y+) < Cp(AvQ\Vn1/p < Cp7(dianiQ)-2; 

these inequalities prove the claim. 
Now for u _L H$ we invoke Lemma A to write 

f \u\2\V\dx<c[ S2(u)V+dx = cf 
JQ° ' - JQO V J JQO 

vIKQ)| |2
v 

.^norX Q V+dx 

= C ^ ||n(Q)|[2(AVQ V+) < CW5^ ||Û(Q)||2(diamQ)-2 

Q Q 

by the claim. That is, 

H 2 | y | d x < C ' 7 | | H | | 2 . Q.E.D. u 
PROOF OF THEOREM 6. Part (A) is trivial, in the spirit of Theorem 3. To 

prove part (B) we shall suppose V is bounded, but make sure our estimates 
don't depend on the bound. 

We can immediately define the cubes Q I , . . . , Q A T of part (B). They are 
simply the minimal dyadic cubes which satisfy (AVQ J . |V |P ) 1 /P < ^(diamQ^) -2. 
Evidently the Qj are pairwise disjoint and satisfy the estimate of part (B). 
The problem is to prove that — A + V has at most CN negative eigenvalues. 
This we do as usual by constructing a space H Ç L2(Rn) of codimension < 
CN so that 

(t) ||Vu||2 + (Vu,u)>0 îorueH. 

To build the subspace H, we first add to the Qi , . . . , QM certain other cubes 
QN+I,--,QMJ taking care that M < CN. We then define H to consist 
of all functions u orthogonal to H^ for j = 1,2,...,M. Evidently H has 
codimension at most CN. It remains to prove the estimate (f). 

Now define sets E(Qj) = Qj\Uj>Qj', where Qj> varies over all cubes 
among Q I , . . . , Q M which are properly contained in Qj. Also set E(Rn) 
= Rn\\J™Qj. Thus, E{Rn), E{QX\...,E(QM) partitions Rn into disjoint 
subsets. We shall prove that 

f^ïïf \y\pdx) P<C7(diamQ)-2 

for all Q and each j . Also 

A/v 

( - [ 
\Q\ JQ 

._. . \V\"dx] <Oy(diamQ)-2 



THE UNCERTAINTY PRINCIPLE 155 

for all Q. Therefore, Lemma C yields the estimates 

f H2|F|dx<C7||H||2 for«±JÏ«', 

(tt) 

f |u |2 |^ |d:r<Oy| | |u | | |2 for all w 6 C^. 
J E(Fin) 

We are in position to prove (|). 
Given a function u = J2o û(Q), define 

Uj= J2 HQl whereQG%if QCQjf but QgQf 
Qeidj 

for anjQjj properly contained inQ^. 

u0 = E u(Q)> where Q Gilo if, for all j , QgQj. 
QGilo 

Since each dyadic cube appears in exactly one of the ilj (j = 0 ,1 , . . . , M), we 
have | |M||2 = £7=0 lll^illI2 f° r a n y u ^ Co- Also, for u G H we note that 
u(x) = S Q C Q Û(Q) for x G Qj (because u _L i/+J')- Therefore u(x) = ^ (x) for 
x G E(Qj). Similarly u(x) = u0(x) for a; G E(Rn). Finally, we apply (ft) to 
the Uj to conclude that 

\uf\V\dx= | u o | 2 | y | d x + E / K | 2 | y | d x 

M 

< C7||K|||2 + C7 £ IIKIH2 = C7||H||2 for u G H. 
i= i 

Taking 7 small enough and applying Lemma B, we get 

[ \u\2\V\dx<\\Vu\\2 ÎOTUEH, 

which is (f). 
To summarize, the key estimate (f) will follow if we can carry out three 

steps: 
(a) Define the additional cubes Qjv+i, • • • ,QM> 
(b) Check that M < CN. 
(c) Prove the estimates 

(i) f-rLf \V\pdx] <C 7 (d iamÇ)- 2 

and 

(ii) {mLEin^Pdx)1/P-Cl{diamQr2-
First we define the extra cubes QN+I, • • • > QM> Let B be the collection of 

all Q satisfying (AVQJV^)1^ > ^(diamQ)-2. For Q G B define D(Q), the 
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"descendents of Q", to consist of the maximal Q' G B which are properly 
contained in Q. We shall say that Q branches if there are at least two cubes 
in D(Q). Now define 

Q° = family of minimal Q, 

Q1 = family of maximal Q, 

Q2 = family of branching Q, 

<23 = \JQ£Q2D(Q), the family of descendents of branching cubes. 

In particular, Q° consists of the cubes Qi , . . . , QN- The family of extra cubes 
is defined as Q1 U Q2 U Q3. Step (a) is now complete. 

Next we carry out step (b). That is, we check that the number of cubes 
in Q} U Q2 U Q3 is at most a constant multiple of the number of cubes in 
Q°. It is immediately clear that l^1! < |<2°|. In fact, we just associate to 
each maximal Q G B some minimal Q' G B contained in Q; note that distinct 
maximal Q are pairwise disjoint and thus give rise to distinct Q'. To show 
that | £ 2 U £ 3 | < C|j2°| is an exercise in graph theory. The collection B of 
"bad" dyadic cubes has the structure of several trees under inclusion as in 
Figure 1. 

Elements of £ marked by 

horizontal slash. 

FIGURE 1 

For any tree graph we may define Q° = minimal elements, Q2 = branching 
elements, and we have 

LEMMA D. 

(t) 
QeQ2 

This means |22U<23 |<5|<2°|, so step (b) is reduced to Lemma D. 
PROOF OF LEMMA D. Grow the tree from the top down. To start with, 

the tree consists of a single point, so <22 is empty and Q° consists of one 
point. The tree grows by repeatedly adding the descendents D(Q) for a point 
Q which is minimal in the part of the tree grown so far. See Figure 2. 
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Before 

D(Q) 

FIGURE 2. How the tree grows 

If |£>(Q)I = 1> then Q2 remains unchanged, while to <2° we add D(Q) and 
remove (?. Thus YlçeQ.2^ + \D{Q)\} — 5| i2°| remains unchanged. On the 
other hand, tf \D(Q)\ > 1, then ~Q is added to £ 2 , while to Q°_we add D(Q) 
and remove Q. Thus, E ç e ^ i 1 * lD09)l} increases by 1 + |D(§)|, while |fi°| 
is increased by \D(jQ)\ - 1. The total change in £ Q € £ 2 { 1 + \D{Q)\} - 5|fi°| 
is [1 + |D@)|] - 5[|D(Ô)| - 1 ] = 6 - 4|D(5)| < 0, since |D($)| > 2. So in either 
case, X ) Q G £ 2 { 1 + l^(Q)l) — 5|fi°| remains constant or decreases as the tree 
grows. Lemma D follows, and step (b) is complete. Q.E.D. 

Now we come to step (c), the proof of estimates (i) and (ii). We start with 
(ii). Let Q be any dyadic cube. If Q £ 8, then already 

I/P 
- 2 {w\L]v{Pdx) ^ d i a m Q ) 

so (ii) is obvious. On the other hand, if Q G 8, then Q C Q' for a maximal 
Q' G 8. Since Q' G 2 1 is among the extra cubes QN+I,-,QM, it follows 
that Q' n £ ( « " ) = 0 , so Q n £ ( # " ) = 0 also, and again (ii) is obvious. 

Next we prove (i). Observe that it is enough to prove (i) when Q is a proper 
subcube of Qj. Indeed, the case Q = Qj will then follow (with a different 
constant) from applying (i) to the 2n subcubes obtained from bisecting Qj. 
Since (i) may be rewritten 

L \V\pdx<[Ci]pc{diamQ)n-2p, 

the case Q D Qj follows from the case Q = Qj as long as p < n/2. (Recall 
E(Qj) Ç Qj.) Theorem 6 only gets stronger as p decreases, and we have n > 3; 
hence we may assume p < n/2. So if (i) holds for Q proper subcubes of Qj, 
then we have checked that (i) follows also for Q D Qj. The only remaining 
dyadic cubes Q are disjoint from Qj, hence also from E(Qj), and so (i) holds 
vacuously. 

So our job is to prove (i) for Q a proper subcube of Qj. We may also 
assume Q G 8, since otherwise (i) is automatic. We consider separately the 
three cases Qj G 2° , Qj G fi2, Qj ^ 2 ° U fi2. 
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If Q3• G Q°, then we cannot have Q G B properly contained in Qj, so there 
is nothing to prove. 

If Qj G Q2, then D(Qj) C £ 3 so E(Qj) C Qj \ U Q ' € D « W Q ' - F o r Q G B 

properly contained in Qj, we must have Q Ç Q' for some Q' G D(Qj). Thus 
Q O E(Qj) = 0 and estimate (i) is trivial. 

Finally, suppose Q3; £ Q°l)Q2. Then some cube in 2° is properly contained 
in Qj. It follows that we can find a maximal element Q* among the cubes 
of Q° U Q2 properly contained in Qj. Since Q* G Q° U £ 2 , we have E(Qj) C 
Q\Q*. Now let Q G S be properly contained in Qj. Then Q must intersect 
Q#. (Otherwise we obtain a contradiction as follows. We have Q, Q# Ç Qj, 
so we can find a minimal element Q among the cubes of B which contain both 
Q and Q#. Since Q, Q# Ç Q, we know that Q <£ £° , and there/ore D(Q) / 0 . 
If -D(Q) consisted of a single element Q, then both Q, Q# Ç Q, contradicting 
the minimal property of Q. Hence D(Q) consists of at least two cubes, i.e. 
Q G Q2. Since Qj £ 2 2 , we must have Q properly contained in Qj. Now since 
Qi Q* Q Q with Q G <22 properly contained in Qj, we get a contradiction to 
the maximal property of Q#.) 

Since Q intersects Q*, we must have Q Ç Q* or Q # Ç Q. If Q Ç Q # , then 
QnE(Qj) = 0 and (i) is trivial. So we may assume Q# C Q. The next step is 
to make a Calderón-Zygmund decomposition of Q. We bisect Q repeatedly, 
stopping at Qa if either Qa = Q* or Qa n Q# = 0 . Thus Q is cut up as a 
union of the Qa. One of the Qa will be Q#; the other Qa are disjoint from 
Q# and therefore cannot belong to S. The situation is as in Figure 3. In 

particular, there are only a bounded number of Qa of a given diameter (2n — 1 
in fact). 

sQ 

FIGURE 3. Decomposition of Q into Qa 

Since the Qa # Q# are not in S, we have 

f \V\pdx< [ \V\pdx= Y f \V\pdx 
jQnEiQi)' JQn[QAQ*} Q^Q#JQ° 

< £ h(diamQa)-2]P|Qa|=cn £ ^(diam Qa) 
Q**Q* QcïQ* 

< c n - ( 2 n - i ) X) y-2fc(n-2p). 
2fc<diamQ 

02 

04 
Cftb 

Cs 
03 
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Again since n > 3 and Theorem 6 gets stronger for decreasing p, we may 
assume p < n/2, so the above geometric series yields 

f \V\pdx < C7p(diam<2)n-2P, 

i.e. 

(ïk\[ MP^<CW(diamQ)-2, 

which is (i). This completes the verification of estimate (i), which was the last 
step in our proof of Theorem 6. Q.E.D. 

The proof of Theorem 6 yields a slightly sharper result which will be 
important for the application to mathematical physics. Let V < 0 and Q° be 
as above and define 

N(E, V) = number of eigenvalues of L = — A -f V which are < — E\ 
NUP(E,V) = number of cubes of Q° with diameter at most CE~1/2. 
Then we have 

THEOREM 6'. 

(t) N(E,V)<CNUP{E,V). 

COROLLARY. The sum of the absolute values of the negative eigenvalues of 
—A + V is at mo5^C2QG^o(diamQ) - 2 . 

The corollary follows from Theorem 6' just by integrating the estimate (f) 
over all E. 

To prove Theorem 6' we cut FT into a grid of cubes Qu of diameter ~ 
E~1/2 and apply to each Qv the proof of Theorem 6. We omit the details. 

Note that Theorem 6' immediately implies the nontrivial part of theorem 
5. There are probably sharp versions of Theorems 5, 6 and 6' in which the 
LlogL norm is used in place of the Lp-norm. Such results (if true) would 
clearly be best possible. A natural way to prove the sharp results would be to 
prove Lemma A with p = 1, possibly with a larger S-function such as 

s ( U ) = ( Ç — T a XQ) " 
This leads to deep questions of Fourier analysis, such as those treated by R. 
Fefferman [18]. 

Now we come to mathematical physics. Our starting point is the Thomas-
Fermi approximation, which deals with iV-body problems in quantum mechan­
ics. Say we have N electrons and N' nucleii fixed at locations y i , . . . , VN'- The 
state of the system is given by a wave function I/>(XI,....,XN) with |IV7!I = L 
We take ip scalar-valued. (Physically, this neglects the fact that electrons can 
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have spin up or down; but it makes no important difference in the mathematics 
to follow.) Electrons satisfy Fermi statistics, which means that ip(xi,...,XN) 
is antisymmetric in the Xj. Now N and N' for macroscopic objects are ~ 1026, 
so xp is a function of many variables. The main problem is to find -0; but even 
if ip is given to us we still have no intuitive sense of what is happening to 
the electrons. What we want are more understandable quantities, such as the 
energy 

EQMM = livvil2 + (VIM> 

with 

^i ^ ) - E ^ + E A - E Zk 
j<k\Xj-xk\ f^k\yj-Vk\ j%\*j-yk\ 

zk = charge of/cth nucleus (1 < zk < 92), 

or the electron density 

p(xi) = N I |V>(xi,x2)...,xN)\2 dx2- - -dxN. 

The interpretation of p is that on the average we expect to find jnp(xi)dxi 
electrons inside a subset Q C R3. 

Now Thomas-Fermi theory is an attempt to approximate EQM(IP) in terms 
of p, and to guess both EQM{^>) and p and -0 is a ground-state eigenvector 
(i.e. -0 is picked to minimize EQM)- If we think of p(x\) as a charge density 
in classical physics, then the electrostatic potential energy associated to p will 

be 

KHJ 2./K3XK3 \x-y\ y 
\x-y\ 

+ y _ ^ [ 
jZiclyj-yd JR3 

= v1+v2-v3. 

Zk 

Ç|s-l/*l 
p(x) dx 

Here V2 and V3 agree exactly with the analogue terms in (Vipjip) if we 
just put in the definition of p in terms of -0. On the other hand, V\ is 
only an approximation to its quantum-mechanical counterpart, and it isn't 
immediately clear how good the approximation is. At least we have some 
expression V(p) which is a candidate to approximate the potential energy 
(Vipjip). In deciding to use V(p), we haven't brought in quantum mechanics. 

Next we come to the kinetic energy ||V^||2. The presence of kinetic 
energy in the lowest-energy state is a purely quantum-mechanical effect, since 
classically a distribution of charge can stay at rest with kinetic energy zero. 
To see how a quantum-mechanical ground state can have kinetic energy, 
we look first at the elementary case of N particles in a box B Ç R3 with 
side S. The state of the N particles is a function 0(xi,...,x;v) defined on 
S = B X B X ••• X B and vanishing at dB. For | |0 | |L2(S) = 1? the kinetic 
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energy is given by T = fB \V<f>\2 dxr-dxpf. The quadratic form is easily 
diagonalized by separation of variables, the eigenfunctions being products 
<t>{xv-X]si) — (j>j1{xi)(j>j2{x2)"'(J>JN{XN)J where <j>j are the eigenfunctions of 
—A with Dirichlet boundary conditions on B. The kinetic energy associated 
to such an eigenfunction is Xjx + XJ2 H h XjN, where \j is the eigenvalue 
corresponding to <j>j. 

Now if the N particles are Fermions, we restrict our attention to an­
tisymmetric functions 0(z i , . . . , XN), SO the eigenfunctions for T are antisym-
metrized products 27r(sgn7r)0J1(a:7r(i))--0:7Ar(a;7r(jv))- This time we must take 
jii 32i • • • )3N distinct or else the antisymmetrized product will vanish. Conse­
quently, the smallest possible kinetic energy of the N Fermions in the box is 
equal to the sum Xi + X2 H f-X;v of the N smallest eigenvalues of —A on 
B. Recalling that B has side 6, we may use volume-counting to estimate the 
eigenvalues for large N: 

( Lowest kinetic energy of I f _ l 9 f ljm 

IN Fermions m B J J\t\2<E 

where E is picked so that 

f Number of eigenvalues! f 

{of-AB<E }"*/5R,**-N-
The result is that the lowest possible kinetic energy of the TV Fermions in the 
box B is asymptotic for large N to (const)(JV/(53)5/363. Note that N/63 may 
be interpreted as a density p of particles per unit volume. 

Let us now return to Thomas-Fermi theory and ask again how to guess 
the kinetic energy ƒ |V^|2dxi« • -dxN in terms of p. Imagine we cut R3 into 
boxes Bj which are small, but not too small. If the boxes are small, then p 
will remain roughly constant = pj in each Bj. If the boxes are not too small, 
then the expected number of electrons in Bj, which is Nj = pjVol(Bj), will be 
large. We computed that the ground-state energy of Nj Fermions in a box 
Bj is given by 

c(iVJ/vol(SJ))5/3vol(S,) = cpWvoliBj), 

so it is natural to guess that the total ground-state energy of all N = £ • Nj 
Fermions should be approximately 

£ c ^ 3 v o l ( B , ) ~ c / f l y / 3 ( * ) d * . 
3 

This is the Thomas-Fermi kinetic energy. Altogether, the energy associated 
to p is 

£TF(p) = cf f<*dx + U 'P^dxdy 
v ' JR3 2JR3XR3 \x-y\ 

+ y^i^ f 
fck\yi-yk\ JR3 Tl*-Vfcl 

p(x) dx. 
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We hope that this gives a good approximation to EQMW- Moreover, it is 
natural to try approximating the electron-density p arising from a ground-
state if) (which is picked to minimize EQM) by a Thomas-Fermi density PTF-
One simply defines PTF as the density which minimizes £TF{P) subject to the 
obvious constraints p > 0, j R 3 p(x) dx = N. 

How well does Thomas-Fermi theory work? In nature the electron density 
of atoms (with z > 20) is concentrated in rather small clouds about the nucleii, 
and these clouds are modeled very well by Thomas-Fermi theory. However, 
a small part of the total charge distribution goes to make up an outer shell 
of valence electrons around each atom. It is, of course, precisely these shells 
which account for chemical bonding, and Thomas-Fermi theory fails to pre­
dict their existence. Thus, atoms do not bind together in Thomas-Fermi 
theory. Remarkably, this can be used to advantage, as we shall see in a 
moment. 

Next we describe a striking application of Thomas-Fermi theory, the so-
called stability of matter. We expect that in the ground-state ip our electrons 
form themselves into atoms with a definite size and binding energy which stay 
essentially unchanged as the numbers AT, AT' of particles tend to infinity. This 
is confirmed by the following result. 

THEOREM 8 (STABILITY OF MATTER; DYSON AND LENARD [9a], LIEB 

AND THIRRING [30]). Let ^ (x i , . . . ,XN) be antisymmetric with \\xp\\ = 1. Then 
(A) EQM(iP) > -CN. 
(B) Assume EQMW < +C\N. Then any set QÇR3 with fnpdx> ^N has 

volume at least C2N. Here C2 depends only on C\. 

Thus it takes a lot of energy per particle to squeeze the N electrons into a 
volume small compared to N. 

We shall sketch the proof of Theorem 8 given by Lieb-Thirring. The main 
idea is to make a rigorous comparison between EQM{^) and E"TF(P)-

LEMMA A (LIEB AND THIRRING). For ^(xi,. . . ,£jv) antisymmetric with 
norm 1, we have ||Vi/>||2 > )/ fR3 ps^3dx. Here U is a positive constant smaller 
than the constant c in the Thomas-Fermi energy. 

Naturally, it would be very interesting to find the best possible M. Maybe 
one can take >/ equal to the Thomas-Fermi value. 

PROOF OF LEMMA A. By a trick one reduces matters to Corollary 2 of 
Theorem 1, which in fact was first proved to establish Lemma A. Set H = 
]C£Li(~~^xj — lP2^3ixj))i where 7 <£ 1 will be picked later. 

Separation of variables lets us diagonalize H in terms of the eigenfunctions 
of Ho = —A — 7p2 /3 on R3. It follows that the lowest eigenvalue for an 
antisymmetric eigenfunction of H is equal to the sum of the N lowest eigen­
values of Ho. (If Ho has < N negative eigenvalues, this must be modified 
slightly, since above zero energy HQ has continuous spectrum.) In particular, 
the lowest antisymmetric eigenvalue of H is greater than or equal to the sum 
of all the negative eigenvalues of HQ. SO Corollary 2 of Theorem 1 yields 

(#(/>,</>) + E\\<j)\\2 > 0 ÎOTE - C ƒ 3[1P
2^2dx = C75 /2 ƒ 3p5 /3dx 



THE UNCERTAINTY PRINCIPLE 163 

and </>(xi,..., XM) antisymmetric. However, plugging in the definitions of p in 
terms of ip yields 

( f f ^ ) = ||V^||2 - JR3lP^3(x1)NJmx1,x
f)\2dx,dx1 

= l |V^ | | 2 - / H 3 7P 2 / 3 (a : i )p(x i )^ 1 . 

Therefore 

0<(HiP,ip)+E\\Tp\\2 = \\Vxp\\2-i f p5/3dx + Ci5'2 [ p5^dx. 
JR3 JR3 

For 7 small enough we have C7 5 / 2 < 7, so the last estimate proves that 
IIV-0II2 > U fRs p5/3dx with M = 7 - C75/2. Q.E.D. 

For simplicity we take Zk = l and N = N'. 

LEMMA B. Ifp>0 and fR3pdx = N, then £TF(P) > —CN. 

REMARKS ON THE PROOF. Set £TF{Î/I , . . . ,2 /JV} = inf{£TF(p) | P > 0 and 
fR3pdx — N}. The fact that atoms do not bind in Thomas-Fermi theory 
means that 

(t) <?TF{yi, • •. ,2/N} > £rF{yi} + £TF{I/2} + • • • + £TF{VN}' 

That is, separating the nucleii to infinity lowers the Thomas-Fermi energy. 
Since <?TF{yfc} is simply a fixed negative constant (the T-F binding energy of 
a hydrogen atom), (f) yields trivially £TF{2/i>--->2Mr} > —CN, which is the 
content of Lemma B. 

The proof of (f), due to E. Teller, appears in [30]. One applies the methods 
of potential theory to the Euler-Lagrange equation for £TF(P)> which is a 
quasi-linear variant of Laplace's equation. We omit the argument. 

LEMMA C. 

-pf p5'3dx-C{j3)N for/3>0. 
JR3 

PROOF. Lemma B shows that 

jR3r 2JR3XR3 \X-y\ j<k 

(t) 
- / 

JR3 
Eiz-^r1 

k 

p(x)dx>-C{P)N. 
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Multiply both sides by \il>{yi,...,yN)\2dyv~dyN and integrate. In view of 
the definition of p in terms of t/>, the result is 

(tt) 

<7<fc 

which is the statement of Lemma C. Q.E.D. 
It is remarkable that the yk are interpreted as the positions of the nucleii 

in (f), while in (ff) they are the positions of the electrons. From Lemmas A, 
B, C the proof of stability of matter is easy. Picking (3 = U/2 in Lemma C, 

we find that 

EQMW = HV ÎI2 + / £ \Xj - Xfcl-1 + £ \Vj - „fc|-* - £ \Xj - yk\~ V, V 

2 J R 3 X R 3 |a: — 2/| y 2 JR*H \2 J 
)N 

j<k JR3 
El^-^l"1 p(x) dx 

4JR*y
 2 J R 3 X R 3 \X-y\ f^k

m yk 
- 1 

+ T/'"3 ' i I- c( i)w-

The term in brackets is > —C(M)N by Lemma B, so 

dx 

(*) EQM(i>) > ^ fR3 p*l* dx - \c{H) + c ( | ) N. 
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Conclusion (A), the lower bound for the total energy, is now obvious with C = 
C(M) + C(M/2). To prove (B) suppose EQM{ip) < CtN. Then fR3 p5 /3 dx < 
C2N by (*). If fQp(x)dx > \N, Holder's inequality yields 

±N> fQpdx< \n\2^np^dx\3 5
 < C 3 \ Q \ 2 / 5 N ^ . 

That is, |Q| > C~5/2N, which proves Theorem 8(B). Q.E.D. 
Ultimately, the proof of stability of matter rests on the volume-counting 

of Corollary 2 of Theorem 1. The much sharper Theorem 6' suggests that 
stability of matter can be improved upon in the spirit of the SAK principle. 
Our goal is to prove that matter does not merely take up a definite volume, 
but is actually made of atoms of a fixed size. We may look at matter on an 
atomic scale by restricting the electron density p(x) to a cube Q of diameter 
~ 1. We then expect to see the following: 

( I ) J Q P ~ I ; 
( 2 ) p > c o n a fixed portion of the volume of Q) 

(4) At least one nucleus, and at most C nucleii, belongs to Q. Although 
lacking in fine detail, these properties capture the idea of an atom as a ball 
of definite size, carrying a nucleus and some electrons, and possibly sharing 
its electron cloud with its neighbors. 

THEOREM 9 (ATOMIC STRUCTURE OF MATTER).4 Let t/>(xi,...,xjv) be a 
Fermion wave function with EQM{^>) < —eN. Then there is a collection of 
at least cN pairwise disjoint cubes Q1 of size c < diamQ7 < C on which the 
electron density satisfies (l)-(4) above. In fact, (3) holds in the stronger form 

m'fQiP
3<c. 

The various constants c, C in Theorem 9 depend on e but are independent 
of N. The e-dependence is unavoidable, as one sees already from the excited 
states of a single hydrogen atom. Theorem 9 would be nonsense without the 
hypothesis EQM{^) < —eN, for then we could disperse the nucleii to infinity 
and take p spread thinly through a large volume. The resulting ip has no cubes 
of diameter ~ 1 with atomic structure (l)-(4), while 0 < EQM{^>) < +eJV, 
where we may take e > 0 arbitrarily small. 

PROOF OF THEOREM 9. Set H = - A + V[x) where 

^ ) = E l ^ - ^ r 1 + Elw-yfcl"1-El^-»l"1-
j<k j<k j,k 

So again we are taking ip scalar-valued and supposing the nucleii have charge 
1. As before, these restrictions may be trivially removed. 

1. Geometry of cubes. Start with a grid of cubes of side R (large const, 
to be picked later). Subdivide the cubes, stopping at Qv of side bv if ZQV 

contains at most K nucleii (K » 1 to be picked later). Two Qu which touch 

4In the version of this article distributed at the Denver meeting, Theorem 9 is given as 
a conjecture. The author subsequently found the proof given here. 
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have comparable 8U1 and the 8V are bounded below. Note that <àQu contains 
at least K nucleii unless 6V = R. Define sets of indices as follows: 

v G B if 9Q^ contains at least one nucleus; 
v G G if v G B and 8^ ~ 8V whenever QM n 9Ql/ # 0 ; 
v EK 'iî Qv contains at least cK nucleii. 

LEMMA 1. 

fc H G H B H 

PROOF. If z/ G G then either ^ = R or else for some ji we have (/i, v) G 
# = {(A*,̂ ) I i> G G, /i G K, QM n 9Q„ 9* 0 } . Since |J3| < CAT, and since 
for each fi there are only < C different v with (/x, v) G if [for, <5M ~ 6̂  and 
Q^ Ç IOOQJJ, we can write 

(a) E^1<^+ E ^1<^+cE*;1^S+cE^ 
G ^ (M,^)GH ^ H ^ K 

Now let u e.B. Either z/ G G or else «^ ̂  8^ for some QM meeting §QV. We 
cannot have 8^^> 8U1 since 9Q^ Ç 3QM, so the cutting procedure would have 
stopped before reaching Qu. Hence <5M < Ó /̂IOO. Note that <5M < R, so // G B. 
Also note that 100QM Ç 100Q„. 

Now set v\ = fj, and repeat the above argument for QUl. Continuing in this 
way, we get a sequence v = z/0, v\,v<i,... so that 8Vk+1 < 6^/100, 100Q^fc+1 Ç 
lOOQ^. The sequence stops at vs when z/s G G. Note that the sequence must 
stop eventually, since the 8V are bounded below. Hence for every v EB there 
is a /i G G so that (//, u)eH' = {(//, z/) | /x G G, i/ G 5 , 100QM Ç 100Q4. So 

B (|i , i /)6if' G 

this last estimate holds because 

^ ( s i d e Q ) - 1 ^ ^ 1 , 

where the sum is taken over all dyadic cubes Q with ÎOOQ^ Ç 100Q. Combining 
the above with (a) yields 

B ** G ** K ^ 

Since K Ç B we also have 

K ^ B ^ 

which completes the proof of Lemma 1. Q.E.D. 
2. Estimates for potential energy. Suppose the electrons are in position x = 

(xi , . . . , XN) G (R3)N. Set L(v, x) = number of electrons in Qv = ̂ f c XQv(xk)-
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Define 

V{x) = ]T \XJ - Zfcl"1 + E \Vi - Vk\~X ~ E \x3 - Vk\~\ 
j<k j<k j,k 

VL{X) = Yl \x3 - xk\~x + J2 \VJ - y*\~x 

j<k j<k 

-J1Y,\X3 -y^xqA^xisQvAy*)' 
v j,k 

VM(z)= Y. Y^-y^XsQÀV^XQÂz), z€R3, 

SU>6Q k 

Vs{z)= £ El*-îfcrW(ïfc)x<3,,(*), z€R3. 
8u<6o k 

Here 6$ is a small const, to be picked later. We have 

V(x) = VL(x)-YVM(xk)-Y,Vs(xk). 
k k 

LEMMA 2. 

VL{x)>cK*YKl+c £ L V . i ^ 1 — . 
B L{v)>LQ

 n 

PROOF. First note that for any complex function (p(x) on R3 we have 

Apply this5 to <p(x) = Y,j Pj(x) ~ J2k Vkfa), where: 

pj{x) is spherically symmetric about Xj, has total integral 

1, is supported in \x — Xj\ < 6j = Su/10 for the Qv 

containing Xj, and is bounded byC(&J)~3. 

rjfç(x) is spherically symmetric about y^, has total integral 

1, is supported in \x — yk\ < 6'^ = 6„/10 for the Qv 

containing y^ and is bounded byC(6'£)~3. 

5 The key idea of replacing point charges by continuous distributions appears already in 
Dyson-Lenard [9a]. 
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Thus, 

_E[p^(y)dxdy 

= i+n+m + iv-v. 

l<Y,CUy,x)6z\ J1KJ2CK6-1 

v v>eB 

[at mostKnucleii always, 
Qu contains < 

I no nucleii unless v E J3. 

Now 

since 

Also, 

m< 
3<k W*3 

by subharmonicity of z\-• \z\~x. Similarly, 

^ ( | y . _ V l | ~ C^'j + 6k) 1X\xj-xk\<{6'j+6'k)/lO ) 
j<k\\X3 Xk\ J 

y of z\-• \z\~x. Similarly, 

Finally, 
v > IZ lxi - 2//cr1X|xJ-2/fc|>6;.+^' 

^ Zl H \XJ - ykl^xQÀ^xisqMyk)' 
v j , k 

Combining our estimates for I-V, we get 

0<VL(X) + CJ2^K1 + C^L(U1X)6-1 

B v 

- c E ^ f t f C î . * ) I Xj,xkeQv,\x3-xk\ < ^ g , j < fcj 

~CJ2KH#C?> f c) 12/i»î/fc ^ <9"> lî/i -2/fcl < jjfi'J < k \ 

Thus 

vL(x) > cECM#(^)]+cEC[#(^)l - cDx «-1 

=c^L(l,Jx)ci 
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with 

Eu = {{j < k) | Xj, xk e QU1 \xj - xk\ < ^ / 1 0 8 } , 

K = {{j < k) | yj9yk e Qv, \Vj - yk\ < ^ / 1 0 8 } . 

Observe that 
#(£„) > cL\v, x) if L(i/, x) > L0, 

#{F„)>cK2 iîueK. 

This follows from the pigeonhole principle. So 

YL(S) > E c ^ 2 ^ + E cLV. *)^x - E ^ c 1 

K L(v,x)>L0 B 

(+) 

- E CLO/ . s )* - 1 - E CUy^Z1. 

Now if we pick if large enough (depending on LQ only), then 

E < ? ^ ; 1 < ^ E c ^ 2 C 1 + ^ by Lemma 1, 
B Z{) K n 

E CL{u,x)6Z
x<^ E c L ^ x ^ + ^ - E ^ ^ 1 ' 

i^€B Z U L(v,x)>L0
 Z U B 

and we know that the right-hand side is 

u^B n v$B n 

Substituting these into (+), we get 

VL{x)>c'Y,KHzx+c E ^ { y ^ Z 1 — . 
K L(v,x)>L0

 U 

Another application of Lemma 1 yields the conclusion of Lemma 2. Q.E.D. 
3. The exclusion principle. 

LEMMA 3. Let ^ (x i , . . . , XN) be antisymmetric. Then 

| |V^| |2>(V r +^,^> whereV+{x)= £ cL5/3{v,x)6-2. 
L(v,x)>2 

PROOF. Let u(x\,..., XL) be antisymmetric on QL, L > 2. Then 

\\Vu\\lHQL)>cL^(sideQr2\\u\\2. 

This follows by expanding u(x\,..., XL) in ^ ( x i ) , . . . , IP\L(XL) with ip\ eigen-
functions for the Neumann problem on Q. We require L > 2 since the lowest 
eigenvalue of the Neumann problem is zero. 
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Consequently, if ip is antisymmetric o n I = Ylv(Qv)Ll/> ^ n e n 

Lu>2 J 

Cut up (.R3)^ into boxes I = QVx X • • • X QUN. Apply the above estimate 
on each I and sum over I to get 

||VV>||2>(̂ +</>,V> w i t h F + = £ C £ L5J*(I)6-2xi, 
I LU(I)>2 

Lv(I) = [number of A; with v^ = v\. Since L(i/, x) = LU(I) for £ £ 7, we see that 
V""1" is the same potential that appears in the statement of Lemma 3. Q.E.D. 

4. The uncertainty principle. 

LEMMA 4. Suppose we pick So small enough, depending on K but not on 
N. Then 

4 k 

where 
VCR(X) = C J2 KUy,x)b-\ 

6U<6Q 

PROOF. SetV^^^^Jz-yi^xtiM Thus, Vs(z) < Y.e„<sMz)-
We shall prove the following estimate for functions u(z) on Qu: 

(A) * | |Vu | |k ( < w - <yvu,u) > -(CK/6v)\\v,\\ln<ivy 

To prove (A) write u = (u — u) + v, with v, — AVQ„ U. Then 

{Vvu, u) < 2(V„%ü) + 2(K(w - w), (u - ü)) 

(+) < 2N2 | |K| |L . (Q l /) + 2| |K| |L3/2 | |«-ü| | i6 ( Q i / ) 

< 2\ü\2\\V„\\Lr{Qv) + CIIKIL^IIVnlli^ 

by Holder and Sobolev. Now HV^HL^Q^) < CK/6U-Sl since the sum defining 
Vu has at most K terms. So the first term on the right of (+) is at most 

{CKI6v)\\u\^(Qvy Also 

l|v„||i,./aWl/)< £ (L \z-yi\-3/2dz)2*<CK60 
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since 6V < <$o and the sum contains at most K terms. Picking 6Q < 1/4CK, 
we dominate the 2nd term on the right of (+) by il|Vu||^2(Q^), completing 
the proof of (A). 

To deduce Lemma 4 from (A) we write 

\\\V1>\\2-E<ys{zk)ll>,tl>)> Z \\\VxMh(Q„)-(Vv(xk)^), 
4 k k,v * 

as follows from 

Vs(z)< Ç V„{z). 

(6v<6o) 

Applying estimate (A), we get 

\ w n 2 - E m**)*, i>) > - E CKKX fXkeQ, w*)i2 dx 
k,u x' arb 

(6v<60) 

8U<60 k 

= - £ CK6-1(L(V1X)ÏP^) = -(VCR(X)M). Q.E.D. 

LEMMA 4'. For 6U >60,ve B, we have 

W\*u\\h{Qu) - (V„u,u) = -E(6o,K)\\u\\l>(Qvy 

PROOF. Subdivide Qu into cubes of side ~ <50 and use the proof of estimate 
(A) above on each of the small cubes. Q.E.D. 

This will be used to control VM, since 

VM{z)< X) Vu{z). 
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5. Stability of matter. Our method gives an alternate proof of Theorem 
8(A), which we now present. As operators on antisymmetric functions, we 

have 

H = - A + V(x) = - A + VL(x) - E Vg(xk) - E VM(zk) 
fc k 

= -\A + VL(X) - 1A + (~\A -T,Vs(xk)\ + (-\A - £ VM(z*)) 

V s L(v,x)>L0
 U J 

+(c £ L5/v,«)^3)-fc E tf^,^1) 

+ (4 A -Ç V M ( a : f c ) ) 
by virtue of Lemmas 2, 3 and 4. Now 8U < 6Q implies v G B, so 

C E KUy,x)6Z
1 < ̂ 2 £ ^ + f E ^'\v,x)S^ 

as long as if > C/§ to take care of the case L(^,x) < 1, and 60 < ^(CK)"1 

to take care of the case L{u,x) > 2. Hence as operators on antisymmetric 
functions 

Hy-i-A + c'K^K'+c' E % ^ - f 
L(i/,x)>Lo 

+ (-\*-1£vM(xk)\ 

If we pick K >LQ, then 

E L V ) x K - 1 < i f 2 E ^ 1 + E L\u,x)6z\ 
B B L{V,X)>LQ 

H>-\A + CY,L\V,X)6Z1 -^f + (-\A-j:VM(xk)\ 

on antisymmetric functions. Lemma 4' yields 

so 

-\AXk-VM(xk)>-E(ô0,K) £ XQÀXk), 
4 6U>60 

vEB 

-\A-J2VM(xk)>-~E(60lK) £ L(z/,x). 
ueB 
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Thus 

(**) H>-1-A + c^L2(iy,x)SZ1'E(60)K) £ L{v,x)-^-
4 B 8U>80

 n 

veB 
as operators on antisymmetric functions. Since ]T^ L(v, x) = N, it follows at 
once that H > — [E(6o,K) + C/R]N on antisymmetric functions. Recall that 
So j K, R are fixed consts. independent of N, so we have proved stability of 
matter. 

6. Bound states. We now make use of the critical hypothesis EQMW < 
—eN. So suppose I/J is antisymmetric, ||^|| = 1, (Hip^i/j) < —eN. Then (**) 
yields 

-eN >\\\Vn2 + cJ2(L2(u1x)i;,xl;)6-1 

4 B 

CN 
-E(60,K) 52 <L(„,x)^)-—-

( # ) «*>*. R 

v£B 

ueB 

Here we have used the identity (L(i/, x)ip, ip) = JU p and the Cauchy-Schwartz 
inequality (L2(i>,x)ip,tp) > (L(v,x)ip,ip)2. (Recall \ip(x)\2 dx is a probability 
measure.) Picking R » 1 so that CN/R < eiV/2, we conclude that 

i.e. 

Also 

E(60,K) £ (7 p)>lN, 
6u>6o \JQ» J Z 

i/GB 

v£B 

E(60,K) £ ( 7 p)<E(6o,K)[ p = N.E(6o,K), 

so (#) implies 

EK'UQ P) <C'N and IIV Î2 < CAT. 

To exploit this last estimate, take arbitrary potentials Wu(z) supported in Qu 

{y G Ö , ^ > 60) with HW^a/Q < c « 1. Sobolev yields 

-Az-^W„(z)>-l 

if c is taken small enough. Hence, 
I I V V I P - D W ^ W N V ^ - A T , 
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i.e. 

Hence 

JV + ||V</>||2> £ (fwA 
„>6n \J J ueB 

£ (JwvP) <C"N 
veB 

whenever Wu supported in Qv has ||Wi, 11̂ 3/2 < c. This means 

§.(/«/) < C"N. 

uEB 

Set B1 = {veB\8u> 60}. We know that 60 < bv < R for v e Bly i.e. all the 
cubes in Bi are roughly the same size. We know from the previous estimates 
that 

(+) 
HN, 

,2 / ,. v l / 3 

where M,C depend on e,60,K,R but not on N. Set 

B2 

We have 

['«'(U^GWMMT-

JJWS£JÜ&')'+(M'>?" 
by (+); hence 

(I) 

Also for v G #2 we have 

5,tt/M JV. 

(n) 

and 

U/HÜW - L>*« 

<"•> {L/T^fiL/} >•«• JL/s<r 
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In view of (I), (E), and the fact that B2 contains at most CN indices (recall 
v G JE?2 implies 9QU contains at least one nucleus, and the Qv have sides 6U of 
roughly fixed size, 6$ < bv < R), we conclude that 

( I P ) > M' for at least a fixed portion W of the i/ G #2-

Otherwise, 

E ( ƒ p) < tf'-(Number of i/€JB2) 

+ C'( Number of v G B2 with j p>X'j 

<CU'N + C'U'N<UNI2. 

Thus there is a subset £3 Ç B2, so that 

# ' < [ P<C' for i /e£3 , 

ƒ p3<C" fori/G £3. 
JQu 

For each v G Ö3 there is a nucleus in 9Q^. There are at least M'N elements 
of B3. The QVi v G Ö3, are pairwise disjoint and have sides bounded above 
and below, independently of N. 

This is almost the conclusion of the theorem. To complete the proof we 
discard all the QV1 v G B3, with more than C nucleii lying within distance 
15diamQ^ of Qv. If C is taken large enough, then we have discarded at most 
M'N/2 cubes Qu, since the total number of nucleii is N and the cubes Qv 

(y G Bz) are all roughly the same size. 
Now the cubes Qv (y G #3, not discarded) are pairwise disjoint, at least 

cN in number, and satisfy the conclusions of Theorem 9. Q.E.D. 
Our next result indicates that atoms bind together chemically. We look 

only at hydrogen, so it is now essential to take the nucleii of charge 1 and the 
electrons to have a two-component spin. (This means the wave function takes 
the form ^(xi,tri,...,xjv,c7jv) with Ok = ±1; see [30].) We have EQMW > 
—Ei AT, where the best constant E\ represents the binding energy per nucleus. 
Simple numerical calculations for a single ^-niolecule prove that E\ is strictly 
greater than the binding energy EQ for a single hydrogen atom. 

THEOREM 10 (CHEMICAL BONDING). Letip(xi,(Ti,...,XN,<rN) be a Fer-
mion wave function with energy EQMW < —(Eo+e)N. Then there are at least 
cN pairs {s/mi, yni},..., {yma,Vna} of nucleii, M distinct, with\ymi-yni\ < C. 

Unless we put in enough energy to make isolated atoms, there must be 
many pairs of nucleii which stay close together. It would be interesting to 
show that under suitable conditions, hydrogen forms a diatomic gas. This is, 
of course, a problem of quantum statistical mechanics. Another interesting 
open problem is to sharpen our estimates enough to make the binding energy 
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Ei computable in principle. (The author has recently solved this; details 
will appear elsewhere.) Theorem 10 is established by combining the proof of 
Theorem 9 with simple estimates for a big Qv containing a single nucleus. 

We close this section by noting a connection between Theorem 6', Theorem 
9, and Thomas-Fermi theory. We ask how it can happen that the Thomas-
Fermi kinetic energy is comparable to the true quantum-mechanical kinetic 
energy, instead of being much too small. There is an obvious example of a 
Fermion wave function ip(x,..., XN) whose quantum and T-F kinetic energies 
are comparable. Given disjoint cubes Qi, . . . ,Qiv Ç R3, we define "bump" 
functions (j)j{x) supported on Qj, with \\<j>j\\ = 1 and ||V0j|| ~ (diamQ^) -1. 
Then we define ^ (z i , . . . , xjy) as the antisymmetrized product of the <j>j\ 

1/>(Z1, . . . , XN) = Yl 010^(1))" ' *0;v(X7r(AO)' 
y/N\ * 

Both the quantum and T-F kinetic energies are ~ ^ ( d i a m Q ^ ) - 2 . 
We have in this example p(x) = X^<^- Both \j) and p represent a situation 

in which we expect to find one particle in each of the Qj, and that particle 
is (roughly) equally likely to be found anywhere in Qj. The Qj are crudely 
analogous to atoms. The next theorem shows that whenever the Thomas-
Fermi and quantum kinetic energies are comparable, the situation is much 
like our simple example. 

THEOREM 11. Let p be the electron density for a Fermion wave function ip 
whose T-F and quantum kinetic energies are comparable: 

(t) \m\2<cfR3p
5/3dx. 

Then there is a family {Qj} ofpairwise disjoint cubes in R3 with the following 
properties. 

(i) fQ.pdx~ 1; 
Wf^pS/Zdx-idmmQj)-*; 

(iii) p ~ (diamQ^) -3 on a subset Ej Ç Qj with | S J | / | Q J | > c; 
{yv)!R3pSI*dx<C'Y,3$QjP*,3dx. 

PROOF OF THEOREM 11. Again we look at 2j=i(~~AXj —1P2^3{XJ)) and 
Ho = —A — 7/92/3(x), but this time take 7 » 1 and use Theorem 6' in place 
of Theorem 1. We obtain a collection {Qj} of disjoint cubes in R3 with the 
properties: 

(a) (AvQj Yp2/3r)1/r > ctdiamQ,-)-2, r = 1 + e. 

(b) The sum of the negative eigenvalues of H0 is dominated in absolute 
value by E = C ' ^ d i a m Q ; ) - 2 . 

It follows as in the proof of Lieb-Thirring that (H</>,</>) > -£||</>||2 for <\> 
antisymmetric; taking 0 = tp and substituting the definition of p in terms of 
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ip, we obtain 

\\Vn2~l Lp5/3dx>-C^(dizmQ3)-
2. 

JR j 

Picking 7 twice as large as the constant C in (f), we now have 

(c) ƒ 3 />
5/3 dx < C" £ (d i am Q-)' 

Separate the Qj into 

TYPE I: 

\ - 2 

By (c) we have 

: f pV3dx>)i{dmmQj)-'
2, 

T Y P E E : f p^dxKMidi&mQj)-2. 

C"Y.{toaa-QjT3> £ / P5/3dx>H £ (diamQ,-)-8. 
j TYPE I J Q' TYPE I 

Taking U > 2C", we get 

£ (diamQ,)-2 > \£(diamQ,)"2. 
TYPE II Z j 

Therefore we may simply drop all the TYPE I cubes from our collection {Qj}, 
and properties (a), (b), (c) still hold. We now also have 

(d) f p5 /3dx<c"(diamQj)-
JQi 

Now (a) and Holder's inequality, together with (d), yields 

c(diamQ,)-2 < (AVQ^3)1'' < (AvQ, pfl3 

< (AvQyp5/3)2/5 < Cidi&mQj)-2. 

Therefore 
(AvQ, p5 /3)2 /5 ~ ( A V Q , ^ 2 / 3 ~ (diam Q,)"2 , 

which amounts to (i) and (ii). Also, (ii) and (c) yield (iv). It remains to check 
(iii). Set 

Ej = {x e Qj | /3(diam Qj)~3 < p{x) < >/(diam Qj)~3}, 

Fj = {xe Qj | p(x) > #(diam Qj)~3}, 

with j3 «C 1 <£ # to be picked later. Property (ii) yields 

C td iamQ;) - 2 ^ f [{dismQj)-3}2/3p{x)dxJ 
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so fjr.pdx < C/M2/3. Therefore (i) implies 

c < f pdx< f [/3(diam Q;)"3 + # (diam Qj)~
3XEj + PXF3] dx 

JQj JQj 

^Cnp + CnWEjl/lQil + C/V2'3. 

For /3 small enough and H large enough, this gives cnU\Ej\l\Qj\ > c/2, which 
is (iii). Q.E.D. 

Theorem 11 is related to atomic structure of matter by virtue of the 
following observation. 

LEMMA D. IJEQM^) < -eN, then \\Vtp\\2 ~ JRs ps/3 dx ~ N. 

PROOF. We know already that HV^H2 > cfR3p
5/3dx. Let us show 

IIWII2 < 7 I R 3 P 5 / 3 dx for a large constant 7. K this were false, Lemmas 
B and C in the proof of Theorem 8, with M = /3 = 7/2, yield 

> - 2C(7/2)iV. 

Recall that (7(7) is the T-F binding energy of an atom; so C(*i) —• 0 as 7 —• 00. 
Hence for large 7 we contradict EQMO>) < —eN. So HV-0H2 ~ ƒ p5 /3 dx. 

A similar argument shows that f p5/3 dx ~ N. Already the proof of 
Theorem 8(B) gives fp5/3dx < CN. If ƒ p>l3dx < 6N for a small constant 6, 
then Lemmas B and C with /? = ) / » 1 imply 

-2M Jpsl3dx-C{H)N 

>-wf P5/3 dx - 2C(M)N > -2[H6 + C{H)]N. 

Picking first H » 1, then 6 <3C U"1, we again contradict EQM(IP) < —eN. So 
l|VV'||2~JV/3dx~./V. Q.E.D. 

Zk dx 
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Now Lemma D and Theorem 11 yield a collection of pairwise disjoint cubes 
{Qj} with the properties: 

{<*) fQjpdx~l; 
(P)fQjP

5/3dx~(dizmQj)->; 

(7) P ~ (diam Qj)~3 on a fixed part of the measure of Q3-\ 
( ^ E . C d i a m Q , ) - 2 - ^ . 
If all the cubes Qj had diameter ~ 1, then (6) would show there are at least 

c\N cubes, while (a), (/?), (7) would become the conditions defining atomic 
structure (except for the nucleii). Now it is easy to get all the diameters of the 
Qj < Ci. In fact, we simply throw out all the Qj with diameters larger than 
C\. Properties (a)-(7) are of course preserved, so we need only check that 
(6) still holds. From (a) we see that there are at most CN cubes altogether, 
so the contribution to the sum in (6) arising from the discarded cubes is at 
most CN • (Ci)~2. Taking C\ large enough, we see that (6) still holds for the 
remaining cubes. So the diameters of the Qj are not too big. However, they 
might easily be too small. Let us look at a simple example: Imagine k <K 
N protons and A; electrons packed together inside a small cube. Their total 
quantum-mechanical energy can be taken to be ~ +cN for a small constant 
c. To these particles we now add N-K hydrogen atoms very far from one 
another and from the original 2k particles. The result is a system satisfying 
EQM{IP) < —c'N, yet we can construct cubes Qj satisfying {ot)-(^) in terms 
of the 2k tightly packed particles, ignoring the real atoms. So (a)-(7) do not 
automatically yield diam Qj > c. 

CHAPTER m: DECOMPOSITIONS OF PHASE SPACE 

So far we know how to cut phase space into blocks {Bj} as in Chapter I, 
Figure 3. Now we shall look inside the blocks Bj. To get a deep understanding 
of a symbol A(x, £) on Bj, we shall make a Calderon-Zygmund decomposition 
of Bj into pieces {Qv} as in Figure 1. 

Qv 

Qv' 

FIGURE 1 
The Qv have large volume, so we aren't yet close to diagonalizing A(x, D), but 
the technique is sharp enough to give interesting applications. In particular, 
we can determine the lowest eigenvalue of a pseudodifferential operator, prove 
sufficiency of the Nirenberg-Treves condition (P) for local solvability, and 
prove hypoellipticity with a sharp estimate for sums of squares of vector fields. 
Let us begin by stating these applications precisely. 

^ 
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To find the lowest eigenvalue, we will work with a nonnegative symbol 
A(x, £) satisfying the second-order estimates 

\d%d%A\ < Ca(3M
2-M (we say A G S2(l X M)). 

This is the estimate satisfied by a classical second-order symbol on a block 
\x\ < 1, |£| ~ M in Chapter I, Figure 3. According to the SAK principle, 
the eigenvalues of A(xyD) should be determined by a covering {Bu} of phase 
space by distorted unit boxes Bu. In fact, we expect that the number of 
eigenvalues < K for A(x, D) will be comparable to the number of Bv contained 
in S(A,K) = {(x, £) e R2n | A(x, £) < K}. This leads us to predict that the 
lowest eigenvalue Xi(A) for A(x,D) is comparable to m i n ^ m a x ^ ) ^ A(x, £). 
We should be a little more specific about what Bv looks like. 

DEFINITION. Let 4>: (z, ç) —• (x, £) be a canonical transformation mapping 
\z\, |f | < M e into H 2 n and satisfying the estimates 

| a ^ x | < M - e H , l a ^ e i ^ M 1 " ^ ! ( | a | > l ) . 

Then the image B = $(Q°) of the unit cube Q° is called a testing box. 

THEOREM 1. To a symbol A E S2(l X M), A>0, we can associate a family 
of testing boxes {Bv} so that 

\\{A) = lowest eigenvalue of A(x,D) and 

fii(A) — mm max A(x, £) 

are related by 

Xi(A) < CefMtiA) + C€M2e, Ml(A) < Ce\t(A) + CeM2e. 

77ms Xi(A) and //i(A) are comparable unless both are < Me. 

Similar results hold for the Nth eigenvalue; see [15]. From Theorem 1 we 
can very easily deduce hypoellipticity of sums of squares of vector fields. 
In fact, we have the following sharp estimate. 

THEOREM 2. Suppose vector fields Xi,... ,Xjsr and their commutators of 
order < m span the tangent space at every point Then for L = ^ X2 we have 

(1) C\\u\\2 + CRe{Luyu)>\\u\\2
1/{m^y 

This implies easily that Lu G Hfoc(n) implies u G H?^ ( 2 / ( m + 1 ) )(fi), so L is 
hypoelliptic. The estimate (1) with l/(ra + 1) replaced by l/(ra +1) — e goes 
back to Hormander [22]; the present sharp form is much harder and is due to 
Rothschild and Stein [37]. 

Regarding local solvability, we work with a partial differential operator 
L(x,D) whose principal symbol p + iq is of principal type, i.e., p + iq and 
grad(p + iq) do not vanish together at any point (x, £), £ ^ 0. This hypothesis 
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ensures that lower-order terms in L(x,D) can be regarded as insignificant 
perturbations. Thus the Laplace equation and wave equation are of principal 
type, but the heat equation and Schródinger equation are not. At a point 
(x°, £°) where p + iq = 0 and (say) Vp ^ 0, we form the null bicharacteristic of 
p through (x°, f °), which is the orbit of (x°, £°) under Hamilton's equations 

dxk/dt = dp/dÇk, dik/dt = ~dp/dxk. 

Condition (P) asserts that q has constant sign on this null bicharacteristic. 
That is, either q > 0 on the whole curve, or q < 0 on the whole curve. 

THEOREM 3. A partial differential equation of principal type is locally 
solvable if and only if its symbol satisfies condition (P). 

Calderón-Zygmund decompositions of phase space play a role in proving 
the sufficiency of (P). 

Now let us study the cutting of symbols. To see the ideas we start with 
the elementary case of a real vector field X = Y^k>ia^(x)(^/^x^) m lxl — *•• 
If |ai(x)| > 1 for all x, then X can be straightened out by a change of variable 
y == (j>{x): In ^-coordinates we have X = d/dyi. A general vector field can 
be localized into pieces that look like d/dyi by virtue of the following simple 
result. 

LEMMA 1. LetX be a real C°° vector field on \x\ < 1. There is a Calderón-
Zygmund decomposition of\x\ < 1 into cubes {Qu} with the properties: 

(a) There is a coordinate change <$>v\ Qu —• unit cube so that in the new 
coordinates X\QU becomes d/dz\ on the unit cube. The map <$>v and its 
derivatives satisfy natural estimates. 

(b) If 1 = Yly ®v is a partition of unity with 9U supported essentially in QV) 

then X commutes with the decomposition operator u —• (uu) — (9uu) 
modulo an error bound on L2. 

So the equation Xu = ƒ is still reduced to du/dzi = ƒ, even without 
assuming X can be globally straightened out. 

PROOF. Bisect {|x| < 1} repeatedly into subcubes, stopping at a cube Q if 
maxxeQmaxfc|a/c(x)| > 2C(diamQ). 

Here the large constant C is picked so that |Vafc(x)| < C for |x| < 1. Now 
the unit cube is cut up into subcubes {Q^}. On each Qv we have 

(2) |a/c0(xo)| > 2C(diamQ) for an xo G Qv and 1 < k0 < n. 

Also, 

(3) |afc(x)| < 4C(diam Q), x G Qu, 

for otherwise the cutting would have stopped before we reached Qv. 
In each Qu we make the change of scale y = (x — yo)/(diam Q^). Thus 

Qv goes over to the unit cube, while X = Y^kâk(y)(d/dyk) with âk(y) = 
(diamQiy)~

1a/c(xo-f(diamQ^)2/). Now âk G C°°(unit cube) with a priori bounds 
on âfc and all its derivatives. In fact, \dyâk\ = (diamQ^)lal~1|3aafc|, which 
takes care of all cases except a — 0, i.e., boundedness of a^ itself. For this 
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we use (3), which immediately gives \àk\ < 4C. So X\QU is a nice vector 
field on the new scale. Moreover, |àfc0| > C throughout the unit cube. The 
reason is that (2) and |Va/c0| < C yield |a/c0(x)| > C(diamQ^) for x G Qv, i.e., 
|ô/c0(x)| > C for |x| < 1. Consequently, X = J^kàk{y){d/dyk) can be brought 
to the form X = d/dzi by a change of coordinates z = ip(y) on the unit cube, 
so part (a) of the lemma is proved. 

Checking part (b) amounts to showing that X9U is uniformly bounded, 
which follows at once from (3) and the natural estimates |V0U\ < C(diamQ l /)

_1. 
Q.E.D. 

Notice that it was essential to have {Qv} fine exactly where X looks 
degenerate. 

The next simplest problem is to understand a second-order equation L = 
— YLjka3k(x)(d2/dxjdxk)i lower-order terms, ( a^x) ) > 0 real. To make the 

discussion easy we will ignore the lower-order errors. We call L nondegenerate 
if aii(x) > 1 for |x| < 1. 

LEMMA 2. A nondegenerate equation may be placed in the following special 
form by a change of variable: 

(4) L = - I —- ) - J2 bjk(yi,y')^—^ h lower-order terms. 

This may be thought of as a Schrödinger operator — {d/dyi)2+V(y\)y where 
V(yi) is an operator in fewer variables. 

PROOF. For simplicity we will show only a slightly weaker result, namely 
that eL can be written in the form (4) for a smooth nonvanishing factor e. 
Take e = l /an(x) and write 

cL = y ajk{x) a2 ( d y oifc 3 
jjf au(x) dxjdxk ydxt i^andxkj ' ^^:dxjdxk 

= Y2+E bjk{x), d" 
j,k>2 dXjdXk 

with 

Y = — -T—— 
dxi fc>2 a n dxk 

Define $ : (xi,x') -> {yl9y') by y± = xu (0,y') = exp(-XiY)(xi,x'). In y-
coordinates we have 

so eL has been placed in the form (4). Q.E.D. 
Now a general second-order equation can be cut into nondegenerate pieces 

as in the case of vector fields. 
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LEMMA 3. Given L = — ]P fc ajk{%)d2 /dxjdxk H with (ajk) > 0, we can 
cut the unit cube \x\ < 1 into Calderon-Zygmund cubes {Qv} so that: 

(a) On each Qv there is a change of variable which carries Qv to the unit 
cube and places L in the form (4). 

(b) If 1 = Y^v &ï î 5 a partition of unity with Ou supported essentially in QV) 

then L = J2^ 6VL0V + {bounded error). 

So the study of general L in n variables is reduced by cutting and bending 
to the case of a Schrödinger operator whose potential is a differential operator 
in (n — 1) variables. 

PROOF. Bisect |x| < 1 repeatedly into subcubes, stopping at Q as soon as 

(5) max max |a.̂ fc(a:)| > 20C(diam Q)2. 
j,k xeQ 

Here C is a large constant depending on 

max max max |d^a7fc(x)|. 
3,k | /5|<2 | x | < l ' 3 

Thus, |x| < 1 is cut into cubes {Qu}, and we know 

(6) \ajk(x)\ < 80C(diam Qu)
2 for x G Q„, 

otherwise we would have stopped cutting before reaching Qv. Also for some 
/ we have 

00 a ^ ^ C l d i a m Q ^ ) 2 îorxeQu. 

This is slightly harder than the analogue for vector fields. We need the 
standard 

REMARK. Assume ƒ > 0 and \f"\ < 1 in |x| < 1, while /(x°) = 62 « 1. 
Then f{x) > S2/S for \x - x°\ < Ö/2. 

Let us check the Remark. If f(x) < ô2/$, \x - x°\ < Ö/2, then f(x -f y) < 
f(x+y)+f{x-y) = F(y). We have F(0) < 62/4, F'(0) = 0, | ƒ "| < 2 everywhere, 
so F{y) < Ô2/4 -h \y\2. Taking y = x° — x, we find that 

f{x°) < F(x°-x) < 62/4-h |x° - x\2 < ô2/4 + 62/4 < S2, 

contradicting the hypothesis. 
Returning to (7), we know by definition (5) of Qu that 

a>u{x°) > 20C(diam Qv)
2 for some x G Q°. 

The reason is that ( a^x 0 ) ) > 0, hence max:?7C|aJ7C(x0)| = max* au(x°). Now 
taking ƒ = an and 6 = (20C)1/2 diam Qu, we obtain (7) as a consequence of 
the Remark. 

We make the change of scale y = (x — xo)/(diam Q^), which carries Qv to 
the unit cube and puts L in the form 

d2 

Z^ °>jk{y) a a -f • • • with àjk{y) = (diam Qv)~
2 • ajk{x). 

jk àyjdyk 
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We can check that àjk € C°°(unit cube) with a priori bounds. In fact 

\d%ajk\ = (dmmQu)W-2\dyjk\, 

which takes care of all a except \a\ = 0,1. The estimate \âjk\ < Const, 
corresponding to a = 0 follows at once from (6). To handle the case |a| = 1, 
we first write àjk(y) — àjk{0) = y • VaJ/c(0) + 0(1) for \y\ < 1, by virtue of our 
estimates for the second derivatives of àjk- Since the left-hand side is also 
0(1), we have IVa^O)! < Const. Again using our estimates on the second 
derivatives, we get IVa^y)! < Const., all \y\ < 1, which is the missing case 
|a| = 1. Equation (7) now shows that L = J2jk âjk(y){d2 / dyjdyk)-\— satisfies 
the hypotheses of Lemma 2. So part (a) of Lemma 3 is proved. 

To check (b) we just note that L — Y^u QvLQv has as its worst term 

ÇÇ^(aCfe)-
Since \a,jk\ < C(diamQ^)2 and \d29/dxjdxk\ < C(diamQ^) -2 on QU1 this term 
is bounded. Q.E.D. 

Again there is an essential balance between the fineness of {Qu} and the 
degeneracy of L. 

Now we shall analyze general pseudodifferential operators by methods anal­
ogous to Lemmas 1-3. We start with a symbol A(x, £) denned on a block 
\x\ < 1, |£| < M. The symbol is said to belong to Sm{|x| < 1, |£| < M} = 
Sm( l X M) if we have \d%d\A\ < CapMm-W. 

These are the estimates satisfied by a classical mth order symbol on the 
blocks of Chapter I, Figure 3. A symbol A £ Sm(l X M) is called mth order 
elliptic if \A(x, £)| > cMm. We can use standard ?/>d0 calculus, including 
Egorov's theorem, to manipulate symbols in Sm(l X M). 

First we have to understand what symbols look like in the nondegenerate 
case. 

LEMMA 4. Let A(x, £) G Sx(l X M) be a real symbol satisfying 

|aaafA| 
(8) max max c > C. 

|a | + |/3|<l I x ^ M " 1 ^ ! ^ ! M 1 _ l ^ l 
Then either A is first-order elliptic or, by a canonical transformation $ : (x, £) —• 
{ViV)) as î n Egorov's theorem, A can be put in the form Ao ^~1(y1r)) = r)\. 

This corresponds to straightening a vector field. 

LEMMA 5. Let A(x, £)>0 belong to S2(l X M) and assume 

|a-afA| 
(9) max max * . > C. 

\a\ + \(3\=2 Ix^M-i lCl^l M 2 H P I 
Then either A is second-order elliptic or, by a canonical transformation 

$ : (x, £) —> (y,rj), as in Egorov's theorem, we may bring A to the form A o 
*-1{y,v) = Vi+V{yi,y',ri'). Thu8,Ao9-1(y,D) = -(d/dy1)

2 + V{y1), where 
V(yi) is a second-order pseudodifferential operator in fewer variables. 
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The proofs of these lemmas are essentially no harder than their analogues 
for vector fields and second order PDE. The ideas are on the level of the 
implicit function theorem. 

Our plan is to cut phase space into blocks {Qu} on which Lemmas 4 and 
5 apply. To do this we have to answer a simple question. Given a symbol 
A G 5 m ( l X M) and a block Q of sides 6 X M6 as in Figure 2, when is it 
reasonable to localize A to Q? 

M 

D MÔ' 

FIGURE 2 

If Q is centered at (x°, £°), then a natural change of scale t: (x, £) —• (y,7?) is 
y = (x—x0)/£, rj = (£—£°)ö. Thus Q goes over to the block \y\ < 1, \rj\ < M62. 
It makes sense to study A localized to Q if Ao t~x G 5 m ( l X M) on \y\ < 1, 
\rj\< M = MS2. This means A\Q satisfies estimates 

(10) \dïdfA\<Cafi{M6r-M{\6\r 

If (10) holds for (x, £) G Q of sides 6 X M6, then we say A belongs to Sm(Q). 
When do the estimates (10) hold on Q? For |a| + |/?| > 2m, they already 

follow from the fact that A G Sm(l X M). For |a| +1/?| < 2m, this is no longer 
the case, and they hold for small Q only if A looks rather degenerate around 
Q-

These remarks suggest how to cut up {|x| < 1, |£| < M}. We bisect this 
block repeatedly into smaller blocks, stopping at Q of sides S X MS if either 

( i i ) 
|^afA| 

max max -,,„„. l o l r , , 
Q |a| + |0|<2m (MS)rn-\f3\ôm-\a\ 

>c 

or Vol(Q) ~ 1. (Certainly if Vol(Q) ^ 1 we had better stop cutting, in view of 
the uncertainty principle.) Thus {|x|,M -1 |£| < 1} is cut into blocks {Qu} of 
sides 8U X Mbu. We have A G Srn{Qv) since otherwise we would have stopped 
cutting before reaching Qv. In particular, A is bounded on the Qu of volume 
~ 1. On the Q» of volume ^> 1, we make the change of scale 6, and (11) then 
gives a kind of nondegeneracy for A o t~x. 
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Specializing to the cases m = 1,2 and invoking Lemmas 4 and 5 now yield 

LEMMA 6. Let A E S'1(l X M) and let Qv be one of the Colderón-Zygmund 
blocks with volume >̂ 1. Either A is elliptic on Qv or else a canonical trans­
formation $ brings A\QU to the formAo$-1(yyrj) = 771. 

LEMMA 7. Let A E S2(l x M) be nonnegative and let Qu be one of the 
C alder ón-Zygmund blocks with volume » 1. Either A is elliptic on Qv or else 
a canonical transformation $ brings A\QU to the special form Ao ^~1(yyr]) = 
VÎ + V{ylty',ri'). 

Although we omit details, it is worth mentioning one point in the proof of 
Lemma 7. The definition (11) of the Qv shows that d%d^A\Q„ must be rather 
large for some |a| + \/3\ < 3. On the other hand, A is nonnegative, so the 
even-order terms in its Taylor expansion must dominate the odd-order terms. 
Hence d^d^A\qu will be rather large either for |a| +1/?| = 0 or 2. This leads to 
the dichotomy between the elliptic case and the case where we apply Lemma 
5. 

In Figures 3 and 4 we have shown how first and second order symbols break 
up according to Lemmas 6 and 7. 

r Small ö„-
Here A 
is bounded. 

£. 

t 
Mô,; 

Nondegenerate Q . 
Here A(y, 17) = 17x after 
change of variables. 

Elliptic Qv. 
Here \A\ ~ MôJ 
throughout Qv> 

FIGURE 3. Analysis of a first-order symbol 
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MÔ, 

Nondegenerate Q 
change of variable, A(y, 77) 
= v!i + V(y1,y'tn') on Qv 

Elliptic Qv. 
Here A ~ M28* 
throughout Qp. 

FIGURE 4. Analysis of a second-order operator 

Now we can break up symbols A(x, £) as in Figures 3 and 4. For this to be 
useful, we have to show that the operator A(x,D) breaks up correspondingly 
as an approximate direct sum. The best way to do this is to introduce the 

Beds calculus of ipdQ. Let {Qu} be the blocks arising from a symbol A e 
Sm( l x M). We say that a symbol p(x, Ç) belongs to S^{QU) if p\Qu e S»(Q„) 
with seminorms bounded uniformly in v. In particular, we saw that A € 
Srn{Q^}' By analogy with ordinary ipdO calculus, we have 

THEOREM 4 (SEE [2]). Ifpe S*{QU} andqeS»'{Qv}, thenp(x,D)q(x,D) 
poq(x,D) 
(a) with 
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Also 
(b) \p(x,D)]* =p#{x,D) wiih 

'-wçw=G*)'(=>""ds*-"'«w-
(c) Ifpe S°{Qv}; thenp(x,D) is bounded on L2. 

The proofs of (a) and (b) basically just repeat the familiar arguments for 
classical symbols, but (c) is deeper than its classical analogue. We can restate 
it in more familiar language as 

THEOREM 5 (CALDERÓN AND VAILLANCOURT [4]). If p(x, f ) satisfies 
\d%dfp(x,£)\ < Ca/3M(H-l/3|)/2; thenp(x,D) is bounded onL2. 

This is proved by cutting p(x,D) = X ^ O ^ P X 2 ^ ) = 2 ^ A/, where 1 = 
Ylv^v a n d <t>u is supported in a box of sides M " 1 / 2 x M 1 / 2 . Each fixed A„ 
is "almost orthogonal" to the other Av> in the sense that 

£||^MI1/2<c, £|KA/||1/2<c, 
(12) 

v' u' 

These estimates hold because Auf(x) — J' Ku(x,y)f(y) dy with distinct Kv 

essentially having either disjoint support or Fourier transforms with disjoint 
support. 

A beautiful lemma by Cotlar and Stein says that abstract operators Av 

which satisfy (12) have a bounded sum. The model case is Au =projection 
from H = Q)aHa into Hu. Details may be found in [11]. The story is by now 
well known. 

Taking Theorems 4 and 5 for granted, we can use Beals calculus to pass 
from analysis of symbols (Lemmas 6 and 7) to decompositions of operators. 
The point is that the functions <j>u from a partition of unity 1 = X^^2» ^ 
supported essentially in Qu, belong uniformly to S°{Ql/}. Hence we can write, 
e.g., for A e S2, 

(13) A{x,D) = "£M^Dy[xuA{x,D)}M^D) + £1 x^ = lon s u p p ^ . 

It is easiest to think of (x, £) —> (</>̂ (x, £)) as a vector-valued symbol in S°{Ql/}. 
Beals calculus shows at once that £ — e(x,D) with e G S°{QU}; in particular, 
£ is bounded on L2. 

So A(x,D) is effectively broken into pieces microlocalized to the Qv. Each 
piece is either trivial (bounded, or else elliptic ~ M2ô^) or else looks like 
—{d/dyi)2 +V(yi), with V(yi) a ipdQ in fewer variables. Similarly, first order 
ipdO are cut into simple pieces (bounded, elliptic ~ +M£ 2 , or d/dyi). At least 
we are in a position to study ipdO using induction on the dimension. 
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Returning now to the applications, we first apply our cutting technique 
to prove Theorem 1. The first order of business is to check that A(x,D) is 
positive. 

PROPOSITION. If A > 0 is a second-order symbol, then A(x,D) > —C. 

This is proved by induction on the dimension. Given a symbol A in n 
dimensions, we apply Lemma 7 and formula (13). Prom (13) we see that 
it is enough to show that (xvA)(x,D) > —C. However, on supp \ v we know 
what A(x, £) looks like. Either it is bounded or elliptic ~ M2§\, (in which case 
positivity of XvA(x,D) is obvious) or else A looks like — {d/dyi)2+V(yi), with 
V(yi) a second-order tpdO with nonnegative symbol. Assuming our Proposition 
holds in (n — 1) dimensions, we get V(y\) > — C for each t/i, so obviously 
-{d/dyxf + V(y±) > -C. The Proposition is proved. Q.E.D. 

So far we have estimated — {d/dyi)2+V{yi) from below simply by dropping 
the second derivative. We can do much better. The Main Lemma of Chapter 
II suggests the following. 

MAIN LEMMA. Let L = —(d/dyi)2 + V(yi), where V(yi) = V(y\,y',Dy>), 
and 0 < V{ylly',rj') G S2(l X M). Then L > cK > Me if and only if 
Avyiei V(y\) > cK for every interval I of length K~xl2. 

We certainly know this if V(y\) is a polynomial scalar potential. The 
condition K > Me lets us treat V{yi) as a polynomial in y\. In fact, Taylor-
expanding the symbol V{yi,y\ri') on y\ G / up to order d leads to an error 
0(M2K~dt2). If K > Me we can pick d > 2/e and the error will be bounded. 
So in effect V(yi) is a polynomial on each / of length ~ K~1^2. The fact 
remains that V{y\) is not a scalar but a pseudodifferential operator. Our 
Main Lemma is a hard theorem, not an elementary exercise. Its proof uses 
induction on the dimension, Lemma 7, and Beals calculus. Details can be 
found in [13]. 

Finally we can explain the ideas in the proof of Theorem 1. The main 
ideas will already be clear in the following easier result, with which we content 
ourselves here. 

COROLLARY 1. Let A(x, £) > 0 be a symbol in S2(l X M). Then the lowest 
eigenvalue of A{x,D) satisfies 

(14) X!(A)>ceinf max A{x, £)-CeM
2e, 

B (x,£)€B 

where B runs over all possible testing boxes. 

PROOF. Set K = infg max(X)^)GB A(x, £). We have to prove A(x,D) > 
cK. We may assume K > Me , since otherwise (14) already follows from the 
Proposition. 

Let us apply Lemma 7 and formula (13). These tools reduce matters to 
three cases: A(x,D) bounded, A{x1D) elliptic, A(x,D) = —(d/dxi)2 + V(x{) 
with V a i/;dO-valued potential. The first two cases are trivial, and the third 
may be analyzed by the Main Lemma. To show that A(x,D) > cK1 it is 
enough to prove that AvyieiV(yi) > cK for any interval I of length ~ K~1^2. 
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To prove this in turn, we assume Corollary 1 holds in (n — 1) variables. 
Therefore it is enough to show that the symbol V(y\r)') = AvyieiV{y\)y\,q') 
satisfies 

(15) max V(y\r)')>cK for each testing boxS 'EH 2 ( n _ 1 ) . 
(y',r7')€S' 

Once this is proved, Corollary 1 follows by induction on the dimension. 
However, (15) is quite easy to see. Suppose instead 

max V(y',rj') < c'K for a testing box B'. 
{y',ri')eh' 

For fixed (y',rj') G B', this means that y\ —• V(yi,y',rj') has average at most 
c'K on the interval I. Since V is essentially a polynomial of bounded degree 
in 2/i, it follows that V(yi,y',ri') < K/4 for y\ G /*, the double of I. Note , 
that |/*| = C1K~1I2. Now we can set up a testing box B = {(yiyy'tViyV') £ 
R2n I Vi e /*, \m\ < i f 1 / 2 A (y ' ,v ' ) e B} in R2n. Evidently 

maxA(y,7?) = max{7y? -f V(yi,y',rj')} = K/4 + max V(yi,y',rç') 
s B 3/iei 

(v',ri')eB 

<K/4 + K/4 = K/2. 

This contradicts the definition of K as infauB maxs A. So (15) must hold, 
and Corollary 1 is proved. Q.E.D. 

Next we come to Theorem 2 on squares of vector fields. As promised, this 
follows easily from Theorem 1. To prove Theorem 2 we first microlocalize to 
a basic box \x\ < 1, |£| ~ M as in Chapter I, Figure 3. The theorem asserts 
that L > cM2 / (m + 1) . Corollary 1 above reduces this to an estimate on the 
symbol 

max L(x, Ç) > c M 2 / ( m + 1 ) for any testing box S. 

Now L = J2jPji where pj is the symbol of the vector field Xj, and the 
hypothesis on commutators says that some repeated Poisson bracket is elliptic: 

\{P3i>{Ph>'-->{P3m'-i>P3m'}'-'}}\^cM on\x\<l,\t\~ M,m' <m. 
Also, the testing box arises as the image $(Q°) of the unit cube under a 
canonical transformation satisfying "good bounds". 

Setting Pj = pj o $, we can rewrite the hypothesis as 

(!6) |{Pji> {P;2> • • • > {Pjn'^Pjn'} • • • }}| > cM on the unit cube. 

The repeated Poisson bracket is an (ra' + l)rst degree polynomial in the 
derivatives {daPj)\a\<m>. So (16) implies 

max\\pj\\Cm-(Q0)>c'M1'lm+1\ 

This in turn yields the seemingly stronger estimate 

(17) max max \pi(zf()\>c"M1^m+1\ 
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The reason is that the estimates for $ and Sx(l X M) for pj together show that 
pj = PJO$ has its high-order derivatives very small. Hence \\pj: — PJ\\C™(Q°) < 
1 for polynomials Pj of bounded degree. Since ||-Pj||cm(Q°) ^ CmaxQo|Pj| 
for polynomials of bounded degree, (17) follows from (16). Recalling that 
pj = pj o $, we rewrite (17) in the form max., m a x s ^ > cM1^m+1\ which 
is what we had to prove. Q.E.D. 

We have seen in the proof of Theorem 2 that it can be easy to show that 
S(A,K) = {A(x, £) < K} contains no testing box. The reason is that the 
canonical transformations $ by which we distort the unit cube are restricted 
by certain estimates. If we drop those estimates and think about imbeddings 
by arbitrary canonical transformations, we immediately arrive at some inter­
esting and possibly quite difficult questions. 

Question I. Can the unit cube in JR4 be imbedded by a canonical transfor­
mation into Tg = {{x,y, £iV)\ \x\> l£l < ô',y,rjarbitrary}? Here 6 <£ 1. 

There is a natural motivation for this question in terms of the uncertainty 
principle. 

Question II. Can T$ above be imbedded by a canonical transformation into 
T6> with 6' < 6? 

Before leaving Theorems 1 and 2, we set down an important consequence 
of the Main Lemma which will be used in Chapter IV. 

COROLLARY TO MAIN LEMMA. Let L = —(d/dyij2 + V(y\), where V(y\) 
— V{yiiy'iDy>) is a polynomial of degree < d in y±, and 0 < V(yi}y',rj') G 
S 2 ( l x M ) . / / F = A v M < i y ( y i ) > c M e , then 

(Lu,u) > cMe \\u\\2 f or u(y\,y') supported in\y\\ < 1. 

PROOF. According to the Main Lemma, it is enough to show that Vj — 
AvyieI V{yt) > cMe' for intervals I c {\yi\ < 1} of length M" e ' / 2 . 

However, V'i > c(M~e l2)dV as symbols, since y is a polynomial on y\. So 
the Proposition on positivity implies the operator estimate 

Vi > cM-^'d^2V-C> cM-^'d^2Me -C. 

Picking e < c/(d+ 1), we get F 7 > cMe' as needed. Q.E.D. 
Next we sketch the proof of sufficiency of (P) in Theorem 3. For necessity, 

see Moyer [31]. First we cut up the problem by standard microlocal analysis, 
and restrict attention to a block |x| ~ 1, |£| ~ M from Chapter I, Figure 3. 
On that block we can straighten out (say) the imaginary part of the symbol. 
So L = ir + a(£,x, £), with a G S'1(l X M). Condition (P) says that for fixed 
(x, £), t —• a(t, x, £) never changes sign. Nirenberg and Treves [34] had the 
idea to regard 

(18) [d/dt + a(t, x, Dx))u = ƒ, -T<t< +T, 

as an evolution equation. The equation can be solved in three easy cases. 
Case I. Suppose a > 0. Then (18) can be solved with time flowing forward, 

with initial condition u\t=-r = 0. The analogue of this fact can easily be 
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checked for scalar evolution equations [d/dt + a(t)]u = ƒ, a > 0. To make a 
proof in the ipdO context, we can exploit the simple estimate 

jt\\u{tr)\\
2 = 2Re{utlu)==2Re{f -a{t,x,Dx)u,u) 

< 2Re(f{t, •), w(t, •)) + C\\u{t, -)||2 (by the Proposition) 

<\\f(tr)\\
2 + c'\\u(tr)\\

2. 

If u(-T, •) = 0, we get 

l l^OI^/^e^-5) ! ! /^, .) ! !2^, 

so solutions of (18) are well behaved. It would be a diastrous mistake to try 
instead to impose the initial condition on u(+T, •), as one sees already for 
scalar evolution equations. 

Suppose now a < 0. Then (18) can be solved just as simply, but this time 
we must impose the initial condition at t = 4-T. 

Case E. Suppose a(t, x, £) > 0 for x\ > 0, a(t, x, £) < 0 for x\ < 0. Now we 
have trouble whether we put an initial condition at +T or at —T. However, 
we could regard L2(Rn) = L2{xi > 0} 0 L2{xx < 0} = H+ 0 # _ , and hope 
that a(t, XjDx) breaks up modulo bounded errors as A+ 0 A_ with A+ > 0, 
A- < 0. In that case, (18) breaks up into two uncoupled evolution equations, 
each of which can be treated as in Case I. This remarkable idea was carried 
out in Nirenberg and Treves [34]. 

Case IE. If A(t,x,Dx) is bounded, then (18) is a trivial ODE in Hilbert 
space. 

To prove sufficiency of (P), Beals and Fefferman [1, 2] cut up the problem 
into microlocal equations which fall into Cases I-III. We make a Calderon-
Zygmund decomposition of the initial block |x| ~ 1, |£| ~ M by repeated 
bisection, stopping at Q of sides 6 X MS if either Vol(Q) ~ 1, or 

|a-afa(t,x,oi 
m a X / W C M IrtlC I I ^ C f 0 r S O m e t ' 

|a|+|/?|<i (M6y-\P\6-\a\ 
Thus |x|, M~" 1 | ^ | ^ l i s cut into blocks {Qu}. This is a slight variant of the 
cutting of Lemma 6 because of the extra parameter t. We still get a(t, x, £) G 
S^IQj,}, so Beals calculus reduces (18) to a family of microlocal problems 

(19) [d/dt + x^a(^>x) Dx)\uu — fv, with \v essentially supported in Q„. 

However, these problems all come under the easy Cases I-III. For the blocks 
Qv of volume ~ 1 we have ||xi/a(£,£,Dx)|| < C, so we are in Case ILL For the 
blocks Qu of volume >̂ 1, a canonical transformation brings about either 

(a) a(to, x, £) \QU is first-order elliptic for some t0 G [—T, +T], or 
(b) a[to,x,£) \QU= (M6l)xi for some t0. 
In case (a), the symbol a(£o,v) is always positive (or always negative) in 

supp(xiy). Condition (P) shows that x^a(^> ^ 0 ^ 0 for all t, x, ^ (or else < 0 
for all t, x, ^), so we are in Case I. 
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Finally, in case (b) we know that 

a{to,x,£)>0 forxi>0, 

a(to,s,O<0 forxi<0, l X , U W l" 

Condition (P) implies 

X„a(t, x, 0 > 0 for xi > 0, 
Xi/ö(t, x, £) < 0 fo rx i<0 , 

So this time we are in Case II. 
Hence the microlocalized problems are all solvable. The proof of sufficiency 

of (P) is complete. 
We close this Chapter by discussing the implications of Theorem 1 for 

second-order equations 

a2 
L = E aô^x)dx.dx + * * *' (M*)) > o. 

First let us suppose L is self adjoint with real coefficients. All the properties 
of L as a PDE are determined by the geometry of a family of "balls" BL[X, p) 
associated to L. This fundamental idea was brought to light by Stein and 
his collaborators in [19, 20, 32, 37]. To define JBL(X,P) we can suppose first 
that (ojfc(x)) > 0. Thus L is the Laplacian in a metric, and we know what 
the ball BL(X, p) means. Now suppose L is degenerate, and we perturb L to 
make it positive definite: Say, Le = L-heA. As e —> 04-, much of the geometry 
of the Le will change wildly. For instance, the length of a typical curve 7 
measured in the e-metric will tend to infinity as e -> 0. However, the ball 
BL€{

XIP) shrinks to a definite limit BL(X,P) as e —• 0. Usually BL is an open 
neighborhood of x, even though L is degenerate at + near x. It is interesting 
to see in examples how the shortest path from x to y changes as e —• 0. 

In all but pathological examples, Lu = ƒ is hypoelliptic because it satisfies 
a subelliptic estimate 

(20) (-Lu,u) + C\\u\\*>c\\u\\ly 

THEOREM 6. Estimate (20) holds if and only if BA(X,P) Ç BL(x,Cpe) for 
all x and some constant C. 

Compare with Oleinik and Radkevitch [35], who give necessary and suffi­
cient conditions for the existence of an e > 0 with (20). We will give much 
sharper results in Chapter IV. 

THEOREM 7. Suppose L is subelliptic and selfadjoint on a compact manifold 
M with smooth measure JX. Then the number N(\,L) of eigenvalues of —L 
which are < X is given by 

dpi{x) 
(21) i V ( X , L ) « / 

M M S L ( X , X - 1 / 2 ) ) * 

For some purposes this formula is to be preferred to the obvious phase 
space volume even for the Laplacian. Already in the elementary example of 
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flat tori, (21) holds uniformly for all X and all tori, while the phase space 
volume is asymptotically correct for large X for each fixed torus. It would be 
interesting to prove (21) for the Laplacian under weak assumptions on M. 

To prove Theorems 6 and 7, we combine the Main Lemma with some control 
on the geometry of BL- The key result may be stated roughly as follows. (See 
[16] for the technical details.) 

GEOMETRIC LEMMA. Suppose L = {d/dyi)2 + L(yi,y', dy>). Then BL(0,p) 
looks essentially like a product {\yi\< p}x 1^(0, p), where 

1 = AY\yi\<pUyi>y'> ày>). 

Together with Lemma 3, this lets us compute what JBL(X, p) looks like. In 
particular, we see that BL{X,P) is essentially the image of a rectangle {|x/c| < 
6k} under a map </> with |0|, |(</>')_1| < C. 

The proof of the Geometric Lemma is a curious repetition of the proof of 
the Main Lemma, with L°°-norms replacing the L2-norms. 

Geometric ideas closely related to the BL{X,P) wil play a role in the ultra-
fine cutting in Chapter IV. 

CHAPTER IV: APPROXIMATE DIAGONALIZATION 

At last we present the approximate diagonalization of pseudodifiFerential 
operators. Let us begin by explaining what kind of approximate diagonaliza­
tion we are trying to achieve. We want to write a ipdO L(x, £) as a sum A+£, 
where 

\A1A1 

A2A2 
0 

A3A3I 

\̂  0 [etcT J 

Here A& is a scalar, the blocks are bounded in size, and ||A*|| < Const. The 
error £ is small in the sense that \\£u\\2 < 6]CaA2 | | t ia | |2 , where Ô <£ 1 and 
ua is the component of the vector u belonging to the block h^A^. By com­
parison, the main term A satisfies ||Au||2 < CX)aA2 | |^a | |2. If the matrix Aa 
satisfies | |Aaua | |2 > c\\ua\\

2 with c » 6, then ||f tx|| « ||Ati||, so ||L(x,D)u||2 ~ 
2 a A 2 | |na | |2. Thus, we understand ||L(X,JD)ÎX||. Also, L(x,D)_ 1 is well ap­
proximated by A - 1 , which again breaks up into blocks of bounded size. So we 
understand L(x,£>)-1 also. In effect we have "approximately diagonalized" 
L(x,D). The numbers Aa play the role of eigenvalues. Note that the error 
term is as bad as a small constant times the main term. 

Next we fill in a little detail about the way L(x,D) can be brought into 
the above form. We will cut phase space into boxes Ba of bounded volume. 
Each Ba may be straightened out by a canonical transormation $ a : J —• fla, 
with ƒ = {|x| < 1,|£| < B}, B a large constant. Using a partition of unity 
1 = ^2a <j)a with <f)a supported in Sa , we can cut the symbol L(x, £) into a sum 
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of symbols La(x, £) = </><*£(£, £)• Formally, we can apply Egorov's theorem to 
write 

(1) L(x, D)^J^ U*a(La o *a)(x, D)Ua 
ot 

for suitable Fourier integral operators Ua associated to $ a . The symbol La = 
La o $a is localized to a straightened block 7; but unfortunately La is much 
too big to belong to a good symbol class S™ (I). To get around this, we simply 
introduce a large constant A& comparable to maxj|La | ~ maxBa|L(x,£)|, so 
that Da = La(x, £)/Aa = (j>aL/Aa o $a is a good symbol on / . Thus, (1) goes 
over to 

(2) L(x,D) « ^AairMxtDpa 
a 

with L*, a good symbol on ƒ. Now Üa is a good symbol localized to a block I 
of bounded volume ~ Bn. So in effect L^ acts on a finite-dimensional vector 
space of functions microlocalized to ƒ. If we use the Fourier integral operators 
Ua to split u into its "components" ua = Uau, then we are in the situation of 
the opening paragraphs with Aa — L^(x,D). The error term S arising from 
(2) will satisfy \\£u\\2 < <$]Ca^<*||^a||2 with S a negative power of B because 
symbolic calculus on the block I works modulo errors dominated by lower 
powers of B. 

A few points should be clarified. First of all, the symbols (j)a and canonical 
transformations $ a don't belong to any standard classes. Therefore it is 
not trivial to define the Fourier integral operators Ua or to prove (2); this 
is actually the main technical problem. On the other hand, we saw that 
L^(x, £) is a good symbol in a standard class Sm(I). We shall prove theorems 
about L(x,D) by studying the Üa(x,D). We saw that an estimate | |Aana | | > 
c£m~2+€ | | ' ita | | is needed to make the appropriate diagonalization work. This 
amounts to a subelliptic estimate of the form 

(3) \\Ll(x,D)u\\>cB™-2+e\\u\\ microlocally in |x| < 1,|£| < £ , 

L{eSm{lxB). 
Once (3) holds, our machine will grind out the approximate diagonalization 
and approximate inverse for L(x,D), a priori estimates, eigenvalues, etc. To 
explain how (3) is proved, we have to be more specific about what the symbol 
L^(x, £) looks like. There are two important cases. 

I. Consider a second-order differential operator L(x,£>) with the nonnega-
tive symbol 

L(X, o = E M*)fc&+E M*)&+v{x) 
jk k 

microlocalized to \x\ < 1, |£| < B. 
Here djk{x),bk(x),V(x) are polynomials of degree at most d, and l a^x) ! < 

C, \bk{x)\ < CB, \V(x)\ < CB2 for |z| < 1 so that L G S2(I). 
Note that bk and V are allowed to be rather large, so they cannot be 

neglected. We define the notion of L in normal form by induction on the 
dimension n. In zero dimensions the block ƒ is a point and the symbol L(x, £) 
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is a number V. Then the symbol is in normal form if V > cB2. In n dimensions 
L is in normal form if either 

(a) L is elliptic, i.e., L(x, £) > cB2 in |x| < 1, |£| < £ , or 
(b) L(x ,0 = tî+Lfaux',?), with I(x',£') = J ^ ^ L(xi,x',£') dzi i n 

normal form in (n — 1) dimensions. 
Here we have L G S2(l X £?), while the Main Lemma of Chapter HI shows 

that L(x,D) > cBe microlocally in |x| < 1, |£| < B. So the needed subelliptic 
estimate (3) holds for second-order real symbols in normal form. 

H. Consider the complex symbol L(t, x, r, £) = ir + a(£)£ 4- V(t, x) microlo-
calized to |t|, |x| < 1, |r|, |£| < B. Here a,V are polynomials of degree at most 
d, and we suppose: 

B'2 < a(t) < 1 for \t\ < 1, (4) 

(5) 

\V(t,x)\<B for |t|, |x| < 1, 

V(t,x), 
a(t) 

is an increasing function of t for each fixed x. 

Estimates (4) ensure that L G S1(lxJB), while (5) says that L satisfies condition 
(*)• 

Egorov and Hörmander studied subelliptiticy of general ifrdQ by reducing 
matters to the special case L(t,x,r, £) considered here. Sharp subelliptic 
estimates are not easy even in the special case, while the reduction of the 
general case to the example is very hard. However, as Egorov already saw, 
it is trivial to get a crude subelliptic estimate for L. In fact the change of 
variable (£, x) —• (s, x) with ds = a(t)dt reduces the problem to a slight variant 
of the Cauchy-Riemann equations in one complex variable. 

For u G C^, we argue as follows. Let 

Then 

[di+ia^di+v^'x) 

V(t,xy 
a(t) . 

ƒ 
u = —, or 

a 

' d 
ds 

« = ƒ. 

pi a ._a_ 
[a(t)3t dx 

with G(s,x) = y(t,x)/a(t). Note that dG/ds > 0 by (5). Now 

\u = 

[\f(t,xr^=f\i\2dSdx=f\ 
J ait) J \a\ J \ 

du .du „ , x —-+i— + G(s,x)u 
ds dx 

dsdx 

du 
~ds 

I .du -, 
+ \i— + Gu 

dx 
dG. ,o 

dsdx. 

This last step follows from the elementary computation 

{TS
+1TX+G) U + ^ + G J = U J [T») 

+ ('JL G\(— n\ — 
\ dx J \ dx J ds' 
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Since dG/ds > 0, we get 

I i 2 i 

du\ . . f\.du „ (6) 

dsdx 

I i2 i 

du\ dtdx f\. ,,,du 
— —rr+\ia(t)—+ Vu 
dt\ a(t) J \ KJdx 

dtdx 

So we have an energy estimate in a weighted L2-norm. Unfortunately, what 
we need for Egorov's theorem is the analogous estimate without the weight 
factor l/a(t). It is not easy to prove this. 

However, we can get a cheap estimate if we just replace l/a(t) in (6) by its 
maximum on the left and by its minimum on the right. The result is 

(7) \\L(t,x,Dt,Dx)u\\2>B- du 
~dt 

+ B- . du 
ia h Vu 

ax 

ueC™. 

The sharp result would have n o 5 2 factors on the right, so (7) is very crude. 
Nevertheless, a subelliptic estimate 

(8) \\du/dt\\2 + \\ia(du/dx) + Vu\\2 > Be\\u\\2 

will imply 
e -2 | | |L (^ ,x ,D t ,P x H| 2 >B e - 2 |M | 2 , 

i.e., 

\\L{t,x,Dt,Dx)u\\ > ̂ - ' I N I , u£C~,Le S\l X B\ 

which is (3). In other words, the crude estimate (7), although far from sharp, 
is strong enough to power our machine. Approximate diagonalization will 
prove Egorov's theorem in the sharp form 

||p(a;,Z>H|-h||9(a;,jDH| < C||(p + ig)(x,£>H| + C|H|(€) 

for p+iq G S1 satisfying (^). In the special case p+iq = r+ia(t)£+V(t, x), we 
recover the sharp form of (7) without the B~2 factors. Here we see a curious 
feature of our machine: To get good estimates we microlocahze the symbol 
into pieces of a special form. It is important to carry out the microlocalization, 
even when the initial problem is already in the special form. 

Let us review the situation. To give an approximate diagonalization of 
L(x,D) we cover phase space by boxes Ba which arise as images of I = {\x\ < 
I? |£| < B} by canonical transformations $a. Setting Aa ~ maxBa|L(a;, £)|, we 
hope to write L(x, D) » J2a

 J^aU*aLll(x, D)Ua, where L^(x, £) = (j)aL/Aa o $ a 

living on Sa , and Ua is a Fourier integral operator associated to $a. Each 
L^(x,D) is, in effect, a matrix of bounded rank ~ Bn, so the decomposition 
operator u -^ (ua) = (Uau) splits L(x,D) as a "diagonal" part plus a small 
error. The error is dominated by a small constant times the main term, 
provided each of the V>d0's L £ ( X , D ) satisfy a subelliptic estimate microlocally 
in |x| < 1, |^| < B. It is important that the subelliptic estimate need not be 
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anywhere near best possible. We can get good enough subelliptic estimates in 
two important cases: 

I. La(x,D) a selfadjoint second-order PDE in a special form. Here the 
necessary estimate comes from methods of Chapter m. 

II. L^(x,D) a special nonselfadjoint first order PDE satisfying (\£). General 
symbols satisfying (#) will be microlocalized to this case. A crude estimate 
can be derived by elementary integration by parts. 

To make our machine work we have to produce the boxes Sa , the canonical 
transformations $ a , and the Fourier integral operators Ua> 

It is useful to make a pseudodifferential operator calculus adapted to the 
boxes Ba and weights Aa. We say that a symbol p(z, £) belongs to Sm^ = 
S^iBooK) if (po$a)/K/2 € SMC0 w i t h uniform bounds on the S^-semi-
norms. 

Thus, p G Sm/X, q G S™ imply pq G S™+"M+^ {p,q} G S™*"^-1. A 
basic elliptic symbol which plays the role of the Laplacian is A(x, £) ~ A^ for 
(x,£)eBa. Thus AGS 1 ' 0 . 

To p G £mM we associate the "pseudodifferential operator" 

p{x,D) = YJK
/2u*a 

a 

The basic facts about our ^dO are as follows. 

THEOREM. Fix L{x, £) G 52(1 X M) with L>M€ and take a large constant 
B with 1 <3C B < Me . From L and B we get a family of boxes {Ba} in phase 
space and weights Aa = max£Q L. These give rise to a ipdO calculus with the 
following properties: 

(A) Composition law. If p G S"1'* and q G Sn", then p{x,D)q{x,D) = 
poq(x,D), withpoq = pq + i/2{p,q} + £ and £ G S™+™M+^-2 

(B) Adjoints. If p G S171», then [p(x,£>)]* = p#{x,D), with p* = p + £, £ G 
om/x-2 

(C) Boundedness on Sobolev spaces. IfpÇL Sm/X, then 

Mx,D)u\\<CB»\\kml\x,D)u\\. 

In particular, p G S0fl implies \\p(x,D)u\\ < CB^\\u\\. 
(D) Elliptic and subelliptic estimates. Let p G SmfÀ and suppose the sym­

bols pa = (po $a)/A™/2 |j satisfy subelliptic estimates ||pa(x,D)u|| > 
^/2-2+eji^ii microlocally in I. Then 

\\p(x,D)u\\ > c^-2 + e | |Am /2(x, JD)^| | . 

Relation to classical ipdO. 
(E) If p G SmM is a classical symbol, then our ipdQ p{x,D) differs from the 

operator p(x,D) in the classical Weyl calculus by an error £(x,D) with 
£eSrn^-2. 

(F) A classical symbol p(x, £) belongs to SmM if and only if maxaa|p| < 
C Am/2£M In particuiarf L ( x > £) G S

2>°. 
(G) Special behavior of L(x, £)in its own calculus. 

0aP 
Am/2 

o<S>a(x,D) C/a. 
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j,k>l k 

where \£(x, £)| < CM~e and Yljka3k£j£k + Y^k^kik + V is in normal form. 
Also ajk(xi,..., xn) depends only on the x\ with I < min(y, k). 

Applications of the tpdO calculus are as follows. 
SAK principle. Start with L G S2{1 XM), L> M€. We have B2L{x, £) € 

S2 '2 by (F), while 5 2 L/A a o $a(x,£>) > cBe microlocally in I by (G) and the 
subellipticity of PDE in normal form. Therefore (E) implies 

(*) \\B2L{x,D)u\\ > CBe\\A{x,D)u\\. 

On the other hand, suppose p(x, £) is a classical symbol satisfying maxsa \p\ < 
maxB L = Aa. Then p <E S2>° by (F), so 

(**) M*,DM < C||A(x,D)ti|| by (C). 

So far L(x,D) and p{x,D) are defined by our ipdO calculus, but we can 
switch over to the usual ipdO L(x,D), p(x,£>) with errors of the form £(x,D), 
£ e S2 ' "2 by virtue of (E). Since ||£(x,£>)ti|| < CB-2\\A(x,D)u\\ by (C), 
estimates (*) and (**) are unaffected by the switch. Finally, (*) and (**) 
yield ||p(x,£>H < CB2-e\\L(x,D)u\\. This is the SAK principle for a priori 
estimates since B is just a fixed large constant. Of course we could start with 
L > 0 instead of assuming L > M€ and simply work with L -f M e in place of 
L. So we have proved 

THEOREM (SAK). Assume p,L are classical second-order symbols with 
L > 0. The a priori estimate \\p(x,D)u\\ < C||L(x,D)u|| + C||u||(e) holds if and 
only if maxajp| < Cmaxs a (L+ [1 + |£|]€) for suitable boxes Ba associated to 
L. 

COROLLARY. Ifp,L are classical second-order symbols with L > \p\ point-
wise, then \\p(x,D)u\\ < C\\L{x,D)u\\ + C|M|(e). 

The corollary yields highly nontrivial estimates, such as 

\\x2M\<c E*>j + C\\u\\(e), 

which requires the full force of Rothschild's and Stein's machine. To obtain 
HXjXfcwH < C|| 5^X^11 + <?NI(e), we need the full SAK theorem, since 
XjXk has symbol pjp^ + i/2{Pj,Pk} in the Weyl calculus; here, pj is the 
symbol of the vector field Xj. 

Now \pjPk\ < 2 j P 2 pointwise, but regarding {pj,Pk}, we can say only that 
maxBa|{pj,Pfc}| < CmaxBa Y^jP2ji a s m the proof of Hormander's theorem in 
Chapter m. 

Next we pass to 
Egorov's theorem. For p+iq G S1 of principal type and satisfying condition 

(*I>), we shall prove that 

\\p(x,D)u\\ + \\q(x,D)u\\ < C\\(p + iq)(x,D)u\\ + C\\u\\ie), 
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which immediately yields subellipticity. To prove this sharp estimate, we 
may first suppose q = r, p — p(t,x,£). (This comes already out of classical 
microlocal analysis.) Now we set L = r 2 + p 2 + Me and apply our ipdO calculus. 
Since r2,p2 <L pointwise, it follows from (F) that T,<? E S1,0. A repetition of 
the proof of the SAK theorem above yields the desired estimate, provided we 
can establish a subelliptic estimate for Aa(y, rj) = (r -f iq)/A1/2 o $ a , namely 
||Aa(y,jD)ti|| > d? e - 1 | |u | | microlocally in I. 

It isn't hard to follow the construction of $ a in this case, and one finds 
that A* must be a first-order differential operator of the form 

Pi p\ 

— + iJ2 a^ x)-^r~ + v& x) 
ot ~ dXk 

with max|x|;|t|<i|a/c(£, x)\ decreasing in k and ak(t,x) independent of xi, I > k. 
Such an operator can satisfy (*£) only if it has the special form6 

d/dt + m(t)(a/axi) + V(t, xi, x). 

Here x appears only as an irrelevant parameter, and our subelliptic estimate 
is reduced to II above. So Egorov's theorem may be read off from our tpdO 
calculus by using the estimate II. 

Explicit solutions of PDE. Let L be a second-order symbol as in the state­
ment of the theorem. We shall look for an approximate solution of L(x, D)u — 
ƒ. Introduce a partition of unity 1 = ^ a ^ a ( a : ^ ) with ipa supported in Ba-

Formally, we can try to write u = ^ a U*aVa, where va solves 

AaL^x^^a = üa{x,D)Uaf withLa(x, £) = a , ^ a = ipa o $a. 

Since La(x,D) is subelliptic on I, we can write Ta = [La(x,L>)]_1 with | | r a | | < 
CB~e, and 

u = ^2A-1U*aTja(x,D)Uaf. 
a 

Our ijjdO calculus shows that Lu = f + £(x,D)f with £ G S°'~2. In particular, 
the error £(x,D)f has L2-norm small compared to that of ƒ, so we can get 
an exact solution by successive approximation. 

Of course our solution is only as explicit as our knowledge of Ua and Ta. 
In at least one case, namely L a second-order differential operator, Ua is easy 
to understand: Here ƒ —• Ua ƒ is induced by a change of variable y = 0a(z) 
which carries a small ball BL(xa,pa) to the unit cube. 

For more general symbols, Ua is given as an oscillatory integral with degen­
erate phase function, so our understanding of Ua is less explicit. 

At first sight it appears that we have to calculate Ta = [L^x^D)}"1. We 
don't have to! The reason is that the problem is localized to a block / of 
bounded volume in phase space. In effect, La(xjD) acts on the space 

HB = [direct sum of eigenfunctions of — A -I- B2|a:|2 with eigenvalue < 4B2]. 

6Here we exclude the trivial case in which p always has the same sign. 
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Letting ipi,..., ip3 be an orthonormal basis of Hermite functions in HB, we can 
write La{x, D)\i in the form of an 5 X s matrix (A/fc). The subelliptic estimate 
yields a bound for the inverse matrix (Ajk). All we need is \Ajk\ < C, which 
is weaker than the known bound ||(Ajfc)|| < CB~e. Consequently Ta can be 
written as an integral operator 

Ta f(x) = ƒ &A>%(x)lMy)\ f(y) dy. 

Each ipj,ipk is a nice Schwartz function, so Taf(x) = ƒ Ka(x,y)f(y)dy for a 
kernel Ka(-j •) € S(R2n). Of course the seminorms of Ka in S(R2n) grow like 
high powers of B. This does not bother us, since in the end B is just a fixed 
large constant. 

Now we return to our formula 

(9) U = £ A^U'aTafaXtDp* ƒ = ^A-^afaUaf, 
a a 

where Ta — Ta2pa(x,D) is again given by a Schwartz kernel. Since each Ta 

is a harmless operator acting on functions on the unit cube, we now have 
a reasonable chance to write u = ƒ K(x,y)f(y)dy with some control on the 
properties of K. 

For instance, say L is a second-order differential operator as in Oleinik and 
Radkevitch. Then we recall Uaf(x) = |det 0'(x)|1/2/(0(a:)) for a change of 
variable y = <j>{x) carrying the unit cube to a small J5i,(xa,pa). Putting this 
back into (9), we get u(x) = ƒ K(x,y)f(y)dy with K(x,y) estimated in terms 

of the constants Aa and the Jacobian factors Idet^'l1/2 in Ua. The result one 
expects is as follows. (We exclude the one- and two-dimensional cases.) 

CONJECTURE. For L = — £ -fc ajh(x)d^k+^2k bk(x)dk+c(x) subelliptic with 
real coefficients, the solution to Lu = ƒ is given by u(x) = ƒ K(x,y)f(y)dy 
with 

\K{x, y)\ < C^p^- 6{x, y) = min{p | y e BL{x, p)}, 
Vol(x, y) 

Vol(x, y) = Vol BL(X, p) with p = 6(x, y). 

One has also natural estimates for the derivatives of K. 
If L is selfadjoint, then also K(x,y) > c62(x,y)/Vo\(x,y), so the order of 

magnitude of K(x,y) is known. The case L = YljX2 +X0 was solved earlier 
by Nagel, Stein and Wainger [32] and independently by Sanchez [38] using the 
Rothschild-Stein lifting. The above methods should make possible a proof in 
the general case. This is now being carried out by Sanchez. 

It would be interesting to write explicit inverses of some equations satisfying 
(ty), such as d/dt + ia(t)(d/dx) + V(t,x) microlocalized to |t| |x| < 1, |r|, 
l £ l < M . 

At one time there were two different ways to understand PDE: Prove a priori 
estimates or construct approximate solutions. Now the distinction between 
the two methods is starting to blur. If we can prove sharp enough estimates, 
then we have understood the geometry of the equation well enough to give an 
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approximate diagonalization, hence an approximate solution. Construction 
of the solution rests on a priori estimates for localized problems. 

It would be very interesting to understand the analogues of these ideas 
for systems, especially for d. Although a lot is known about strongly pseudo-
convex domains (Bergman, Szegö, Neumann kernels [3, 36]; Poincaré metric 
[7, 29]), the class of weakly pseudoconvex domains is much more mysterious. 
Kohn [27] and his students made a deep study of subellipticity of 8. In par­
ticular, Catlin has given evidence that a subelliptic estimate of order e holds 
for "3 on (0,l)-forms on D if and only if the following geometric condition 
holds: 

, . Given a point p G D with distance r to the boundary, no analytic 
disc of radius cre can be imbedded in D centered at p. 

The condition is necessary for subellipticity [6]. 
Catlin conjectures other closely related sharp estimates for d, which he can 

verify in many examples. Now geometric conditions like (*) must come from 
an SAK principle for systems, for they say that the nonexistence of an im­
bedded geometrical object is equivalent to a subelliptic estimate. If we could 
carry over our machinery to systems, we would have some hope of understand­
ing the Bergman and Szegö kernels for weakly pseudoconvex domains. We 
would already be delighted to understand a few nontrivial examples. Right 
now there is essentially only one weakly pseudoconvex domain on which the 
kernels can be computed, namely {2fc|2/c|

2m'c < 1} ( see D'Angelo [9]). The 
geometry of weakly pseudoconvex domains is very subtle. 

We close the chapter by explaining how to associate boxes Sa , canonical 
transformations $ a , and Fourier integral operators Ua to a given symbol L E 
52(1 X M). The boxes Ba are analogous to the non-Euclidean balls associated 
to a second-order PDE. 

Sa is defined by a construction using induction on the dimension. To 
understand it, imagine we don't know the correct definition of B^z^p), but 
we try to construct it so that the Geometric Lemma of Chapter lH holds. We 
should also understand how L(x, D) behaves on BL(XJ /?), and this leads us to 
the following. 

LEMMA 1. After a change of coordinates y = ip(x) with \if)'\, KVO-1! < C, 
the operator L and the ball B^(x, p) may be placed in the following special form: 

£ L ( Z , P ) ~ { | 2 / I | <<$i,M<<$2,...,l2/n| <Ön} withp>di > ô2 > • • • > 6n. 

d2 

define Ltiy', Dy') = Avly^s^xiy^y'.Dy'). 

d2 
s2-j-2+L2(y2iy",Dy"Y, 

àyi 
define L2{y",Dy») = Av|ya|<$2 L2(y2,</",£></')• 

p2L = 

W p2L,= 
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Thus, in some average sense, p2L looks like Y^k^ki^/^Vk)2 on BL(x,p). 
SKETCH OF PROOF. The result follows by induction on the dimension using 

the Geometric Lemma of Chapter JR. In fact, we make an initial coordinate 
change y = (j>{x) to bring about p2L = 6l(d/dyi)2+Li(yi, y', Dy>), and we know 
by the Geometric Lemma that BL{X,P) looks in y-coordinates like {{yi,y') \ 
12/11 < <$i> y' €&z (X>P)}- Inductive hypothesis applied to Zi(y',Dy>) produces 
a coordinate transformation ip: y —• y' in (n—Invariables so that B^ (x, p) ~ 
{\Vk\ < f>k,k > 2}, and all but the first line of (*) holds in the y coordinates. 
Now just define tp by the diagram 

0 , , 

* — "uw) 

*\ I 
^ ( V i . i K / ) ) 

and the lemma follows. Q.E.D. 
We now return to the problem of constructing Bai^aiUai given L G S2. 

The geometry is analogous to the simple lemma just proved, only now our 
constructions work in phase space. 

First we define the Ba- By analogy to the geometry of £ o,jk{x)d2/dXjdxk, 
we shall introduce a family of non-Euclidean balls B = BL{{X°, £°),p) in phase 
space associated to the symbol L. Each B will be the image of a block I& = 
{|x| < 1, |£| < MB} under a canonical transformation $ 3 . The {Ba} will then 
be simply those non-Euclidean balls S with MB = B. 

Our construction proceeds by induction on the dimension. First we con­
struct the balls of radius 1. Given (x°, £°) and L E S2{\ X M), we apply the 
decomposition of Chapter HI, Lemma 7, and let Q be the block containing 
{x°y £°). Say Q has sides 6 X M6. There are three possibilities: 

(A) L is elliptic on Q, i.e., L > c(MÔ2)2 on Q; 
(B)Vol(Q)~l; 
(C) L is nondegenerate on Q. 
In cases (A) and (B) we define BL{{xQ, £°), 1) to be simply Q. Evidently Q 

is the image of a suitable block {|x| < 1, |£| < MB} under a symplectic affine 
change of scale <3>B. 

In case (C) we proceed by analogy with the Geometric Lemma of Chapter 
m. Here we start with a canonical transformation \I> : Q - • Q* with natural 
bounds, so that 

L o * = «V+L( t ,y , i ? ) , 
^_ 1(x°,£°)is the pointer?) = 0,t = 0,r = r0. 

Now set 

Z(y, r?) = C(52r2 + Av|t,<6L(*, y, r/), 

C a large constant. Since L(y, rj) is a symbol in fewer dimensions, the inductive 
hypothesis says we have already constructed ~B = B^((0,0), 1) = <frg-(i7), with 
II = {|y| < 1, \rj\ < M} . Now set / = {|t|, |y| < 1; |r|, |q| < M}, and define 
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B = BL{{X°, £°), 1) = &B{I)) where $ B is given by the diagram 

(f, T, y, T() 

(10) 

This completes our construction of the ball of radius one. For p « l , the ball 
BL{{X, £),p) is defined simply as Bp2L((x, £), 1). 

It would certainly be simpler to have a natural intrinsic definition of the 
balls, rather than an inductive construction. Before continuing, we check 
that our definition agrees with the familiar non-Euclidean balls associated to 
L = J2 ajk{x)£j£k- In fact, the Geometric Lemma from Chapter III shows by 
induction on the dimension that {(y, rj) \ rj = 0} Pi BL((X, 0), p) is essentially 
BL(x,p). 

So far, we have defined the boxes Ba and the canonical transformations <l>a 

which straighten them out. Now we must associate Fourier integral operators 
Uot to the 4>a. Again, we carry out the construction of a F.I.O. UB for each 
of the canonical transformations 4>B associated to S = BL((X°,Ç0),P). As 
before, it is enough to look at the case p = 1. We proceed by induction 
on the dimension. The construction of UB is evident in cases (A) and (B) 
above—it is nothing but an affine change of scale. The delicate point is 
to construct UB in case (C). Here $ B is given as the composition of three 
canonical transformations, namely 

(H) ( ^ , ^ ) ^ ( ^ > < ^ ( y > ? ? ) ) > 

(12) (£, r, y, r?) - • (6t, r0 + 6 - 1 r , y, rj), 

(13) (t,r,y,Tj)-^(x,0, 

so it is enough to associate Fourier integral operators to these three. Now ^ 
satisfies good estimates on Q, and so is already covered by Egorov's theorem. 
Transformation (11) corresponds to Uf(t,y) = <$+n/2f{St,y)eirot, so again 
there is no problem. The tricky part is (10). However, by the inductive 
hypothesis we have already succeeded in associating a Fourier integral operator 
U-% to the canonical transformation $^. So we can associate an operator to 
(10) by letting f(t,y) -* Ujf(t,y) for each fixed t. 

This completes the construction of the Fourier integral operators. At last 
we have the boxes Sa , the straightening transformation $ a , and the associated 
Fourier integral operators Ua- These are the ingredients of our ipdO calculus. 

Of course we still have not explained how to prove our theorem on V^O 
calculus. That story is too complicated to present here. At least property 
(G) of the symbol L in its own calculus is rather clear—it is the analogue of 
Lemma 1, Chapter IV. This property is the reason our main terms dominate 
the errors. Our long struggle from the elementary localization at the start of 
Chapter I to the present ipdO calculus has gained us exactly this one advantage. 

-(5t,T0 + 0 - ^ , 0 (y, v)) 
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