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RESEARCH ANNOUNCEMENTS 

A QUILLEN STRATIFICATION THEOREM FOR MODULES 

BY GEORGE S. AVRUNIN AND LEONARD L. SCOTT 1 

Let G be a finite group and k a fixed algebraically closed field of character­
istic p > 0. If p is odd, let HG be the subring of //*(G, k) consisting of ele­
ments of even degree; take HG = //*(G, k) if p = 2. HG is a finitely generated 
commutative fc-algebra, and we let VG denote its associated affine variety Max HG. 
If M is any finitely generated fcG-module, the cohomology variety VG(M) of M 
may be defined as the support in VG of the HG -module H*(G, M) if G is a p-
group, and in general as the largest support of //*(G, L ® M) where L is any kG-
module. A module L with each irreducible fcG-module as a direct summand will 
do [3]. 

D. Quillen [9, 10] proved a number of beautiful results relating VG to the 
varieties VE associated with the elementary abelian p-subgroups E of Gf culmin­
ating in his stratification theorem. This theorem gives a piecewise description of 
VG in terms of the subgroups E and their normalizers in G. Some of Quillen's 
results have been extended to the variety VG(M) associated with a fcG-module 
M [1,4, 5, 6, 7, 8 ] , and the work of Alperin and Evens [2] and Avrunin [3] 
showed that there was at least a surjection IIE VE(M) —• VG(M). However, the 
stratification theorem for VG(M) remained elusive, since one still needed to 
know that a point in VG(M) in the image of a given VE was in fact in the image 
of VE(M). 

We announce here a proof of the stratification theorem for VG(M)9 as well 
as a proof of a conjecture of J. Carlson regarding VE(M) for E an elementary 
abelian p-subgroup. We are also able to generalize several of Quillen's other 
results to the module case. 

For H <G, let tG H: VH —> VG be the transfer map induced by restric­
tion on the cohomology rings. For an elementary abelian p-subgroup E, let V^ 

= VEWF<E tE,FVF and let KM = V% n P*0O- Then Put K.EW = 
tGEV^ O VG(M). We have the following stratification theorem. 
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THEOREM. The variety VG(M) is the disjoint union of its subvarieties 
VQ E(M), where E ranges over a set of representatives for the conjugacy classes 
of elementary abelian p-subgroups of G. Moreover, each of the varieties VQ E(M) 
and Vg(M) is affine, the group NG(E)/CG(E) acts freely on V%{M), and tG E 

induces a bijective finite morphism 

V+(M)WG(E)ICG(E))-+ V+^M). 

To establish the theorem, we first prove Carlson's conjecture equating VE(M) 
for E elementary abelian with a variety, the "rank variety", defined more directly 
in terms of the action of E on M. Let L be a fc-subspace of kE with / = L 0 
J2, where / is the kernel of the augmentation map. Then kE is the restricted 
enveloping algebra u{L) of L, regarding L as a commutative restricted Lie alge­
bra with trivial pth power. HL, VL, and VL(M) are defined just as in the group 
case, and one sees easily that HL = HE, VL = VE, and VL{M) = VE(M). There 
is also a natural identification L = VL = VE. (For p = 2 this comes from the 
isomorphism Hl(L, k) = Z,*.) We define the rank variety VL(M) to be the union 
of all 1-dimensional fc-subspaces S of L (automatically restricted Lie subalgebras) 
for which M\s is not projective. Carlson, whose original definition [5, 6] of 
the rank variety was in terms of "shifted subgroups" of kE whose group algebras 
are generated by the subspaces of L, showed that F£(M) is a variety of dimen­
sion equal to that of VE{M) (see also Kroll [8]), and that, under the natural 
identification, F^(M) C VE(M). He then conjectured 

THEOREM (CARLSON'S CONJECTURE). V^M) = VE(M). 

If T is a subalgebra of L and tL T: VT —> VL is the map induced by re­
striction on cohomology, we have T = tL TVT in the identification L = VL. To 
prove Carlson's conjecture, let S be a 1-dimensional subalgebra of L with S = 
tLSVs C VL(M). We have to showMI^ is not projective. If M\s is projective, 
a spectral sequence argument gives H*(L/S, Ms) -^ H*(L, M), where the isomor­
phism is inflation followed by the map on cohomology induced by the inclusion 
Ms C M. It follows that H*(L, M) is a finitely generated HL ^-module. But the 
inflation of the ideal of all elements of positive degree in HLjS is contained in 
the ideal P of S = tLSVs in HL, so H*(L, M)\V • H*(L, M) is a finite-dimensional 
A>space. By Nakayama's lemma, one then sees that the support VL(M) of //*(£, M) 
in VL contains only finitely many points of S, which is a contradiction. 

As a corollary of Carlson's conjecture, we obtain the following result in 
the special case that G is an elementary abelian p-group. 

THEOREM. Let G be a finite group and H a subgroup of G. If Mis a 
finitely generated kG-module, then VH(M) - tG*HVG(M). 
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To prove this theorem in general, we recall from [3] that VH(M) C 
t~^]HVG(M). Suppose v E t~^l

HVG{M). By [2] or [3] we can choose an elemen­
tary subgroup E and an s E VE{M) with tG E(S) = tG H(v). Quillen's stratifica­
tion theorem says that there exists an elementary subgroup E' <H and s E Vg> 
with tH E'(s') = v, and that some conjugate of s' maps to s under the appropriate 
transfer map. By the corollary to Carlson's conjecture, we have s' E VE>{M) and 
this implies [3] that v E VH(M). Thus tG^HVG(M) C VH(M), and the theorem 
is proved. 

The stratification theorem for modules now follows from Quillen's original 
theorem and this result. 

For any subgroup H of G, let rH(M) denote the radical ideal in HH defining 
VH(M) as a subvariety of VH. (If H is a p-group, rH(M) is the radical of the anni-
hilator of H*(H, M) in HH. A similar interpretation can be given in general; see 
[3].) Using the stratification theorem above, we can generalize a "glueing 
theorem" of Quillen's to obtain 

THEOREM . Let V be a family of elementary abelian p-subgroups of G 
which is closed under conjugation and taking subgroups. Suppose, for each E E F, 
we have an element yE E HE such that, for any É G F and any restriction or 
conjugation map HE —> HE>, j E is sent to an element of the coset yE> + rE>(M). 
Then there exists an element y E HG and a power q of p such that, for each 
EG F, 

y\E = l% (mod rE(M)). 

Applying the result VH(M) = t~^l
HVG(M) for H <G, obtained in the course 

of proving the stratification, to the diagonal embedding G —> G x G, we get the 
following tensor product theorem, due to Carlson [6] in the case of elementary 
abelian p-groups. 

THEOREM. Let M and N be finitely generated kG-modules. Then 

VG(M®kN)=VG(M)nVGW-

Further details of the proofs and additional results will appear elsewhere. 
It is a pleasure to acknowledge the contributions of Jon Carlson and Jon 

Alperin to this research. The notion of a tensor product theorem was Carlson's 
very original idea. Using this, Alperin was able to give a reduction of the strati­
fication problem, which we followed in our original proof. We would also like to 
thank Peter Donovan for sharing with us some of his ideas on cohomology rings. 
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