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ON DEFINING RELATIONS OF CERTAIN
INFINITE-DIMENSIONAL LIE ALGEBRAS!
BY OFER GABBER AND VICTOR G. KAC

ABSTRACT. In this note we prove a conjecture stated in [2] about defining

relations of the so-called Kac-Moody Lie algebras. In the finite-dimensional

case this is Serre’s theorem [5]. The basic idea is to map the ideal of relations

into a Verma module and then to use the (generalized) Casimir operator (cf.

[3, 4]).

1. The main statements. Let 4 = (4;;) be an n x n matrix over a field F. De-
note by g(4) the Lie algebra over F with 3n generators e;, f;, h, i€1= {1,...,n}
and the following defining relations (i, j € I):

(1) le, £;1 —8,h, My, [hy, €] —age;, [hy, £ + ayf;.

SetI'=2",T, = {(ky,...,k,) €ETlk; >0}\{0} and let Il = {a,, ...
,} be the standard basis of I'. Setting deg e; = —deg f; = o, for i € I defines
a Igradation §(4) = @ cr 8o Let M, = B p 4 8soand =70, Then
?f_,_ and 1 _ are free Lie algebras over F with systems of free generators €1snes
e, and f,, ..., f,, respectively, and 1) = n_ehen + (direct sum of vec-
tor spaces), so that E"‘i = Fe,, 8_o; = Ff; for i €1, and = @, Fn; (2,
Chapter I]. Define (« > @) € Homy, (T, §*) by g, () = a; fori, j €L

Let t be the sum of all graded ideals in §(d4) intersecting B trivially. We
have the induced gradation t = @, t,. Settingt, =t N T,, we obtain that
t=1, ® t_ is a direct sum of ideals.

Our main result is the following,

THEOREM 1. Fora = (ky,...,k,) €T set

T,= 2 akk+ 2 a,i—(kz k)
1<i<j<n 1<i<n

and assume that the matrix A is symmetric. Then the ideal t (resp.t_) is gen-
erated as an ideal in T 4+ (resp. n_) by thoset,, (resp. v_ o) for which o € T \II
and T, = 0.

COROLLARY [4, THEOREM 1]. If T, # 0 for all « €T \II, then t= 0.
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The next corollary is, in fact, the purpose of the note. An» x n matrix
A = (a;) over a field F of characteristic 0 is called a Cartan matrix iff it satisfies
the following properties:

O a;=2, a;; are nonpositive integers for i # j, and a; = 0 implies a;; =
0,,j€

(ii) there exists a nondegenerate diagonal » x n matrix D such that the
matrix D4 is symmetric.

Define automorphisms s;, i € I, of the lattice I" by s,(oz,) =0 — a0, JEI,
let W C Aut I' denote the group generated by s, i €1 [2].

THEOREM 2. Let char F = 0 and let A be a Cartan matrix. Then the ele-
ments
) (ade)™ e fori,jE€L i +#],
3) (adf) “f forij €L i #],
i j
lie in v and generate the ideals v, and t_, respectively.

ProoF. It is well known that the property (i) of 4 implies that all the
elements (2) and (3) lie in v (see, e.g., [2, Lemma 9]).

In order to prove that these elements generate t,,, note that replacing 4; by
d;h, d; € F* and e, by d; e, is equivalent to replacing 4 by the matrix B =
diag(d,, . . . , d,)A. Therefore, by the property (i) of 4 we can identify the
Lie algebras g(4) and g(B), where B = (b) is a symmetric matrix; it is also
clear that we can choose d;’s so that b,; are positive rational numbers.

Define a symmetric bilinear form ( , ) on ' by (q;, o) = by, LjEL
Then we have a;; = 2(o;, O‘i)/(“i’ ;). Denote by g the quotient of B(A) by the
ideal generated by all elements (2) and (3), let g =€D g, be the induced grada-
tion and T, denote the image of tr, in g. We have the induced gradation t, =
@aer‘ +—fia-

Recall that there exists 'E; € Aut g such that [2, Lemma 10]

l;;‘(ga) = Bsi(@) and ;;Gi) = ?:t'
Now suppose thatt O (the case T_ is similar). From among & = (ky, .. ., k,)
€T, such that T, # 0 choose one of minimal height (i.e., Z; k; is minimal).
Then height s,() > height « for all i € . It follows that (o, ;) < O for all i €
I, and hence (o, @) < 0. Hence 2T, = Z; ; b;kk; ~ Z; b;;k; < 0. This is a con-
tradiction with Theorem 1.

COROLLARY 1. Let char F = 0 and let A be an indecomposable Cartan
matrix. Let g(4) = @ cr 8, be the Lie algebra with generators e, f;, h;, i €1,
and defining relations (1), (2), (3), and the gradation induced from g (A). Set
¢c={h€g, =Ylayh) = 0 foralli EI}. Then

(a) c is the center of g(A) and any proper graded ideal of g(A) lies in c.



INFINITE-DIMENSIONAL LIE ALGEBRAS 187

(b) Provided that A is not one of the affine matrices from Tables 1-3 [1],
the Lie algebra g(A)/c is simple.?

Proor. (a) follows from Theorem 2 and [2, Lemma 1]. (b) follows from
(2), [2, Lemma 6], which gives a sufficient condition for nonexistence of a non-
graded ideal in g(4)/, and [1, §2, Exercise 8b], which implies that this condi-
tion holds unless 4 is affine.

COROLLARY 2. Let A = (a;;) be a Cartan matrix and let n(4) denote the
Lie algebra over a field of characteristic O with generators e, . . . , e, and de-
fining relations (adei)1 4 ej=0,i#]. Setting dege; = o defines a T, -grada-
tion n(4) = @, n,. For w € W denote by s(w) the (finite) sum of the o« € T',.
for which -w='(a) €T',. Then

IT a-eni™me= 3 (det w)es™.
a€T weWw
ProoF. This follows from Theorem 2 and the “denominator” identity
proved in [3]. We remark that the proof in [3] works for the Lie algebra
‘4(A4)/r (but not g(4)). Thus the last corollary of [3] (in which Theorem 2 is
claimed) remained there unproven.

2. Proof of Theorem 1. First, we prove a simple general result on Lie
algebras and then apply it to our situation. For a Lie algebra p over F, U(p) will
denote its universal enveloping algebra and U,(p) C U(p) the augmentation ideal.

Let p be a Lie algebra over F, a an ideal, p = P/a and 71 p — p the canon-
ical map. The injection @ — UO(B') and the map 7 induce homomorphisms of left
p-modules, respectively A:a/[a, @] — 0(3)/0U0(’ﬁ') and ¢: UO(F)/an(ﬁ) —
U(p), so that Im ¢ = Uy(p).

LEMMA 1. The following sequence of p-modules is exact
@ 0 —a/[a, ] 2> Up(3)/aU(3) 2 Uy() — 0.

ProoF. The inclusion Im A C Ker ¢ is clear. To show the other inclusion
note that U(p) = U(p)/alU(¥). Hence

Ker ¢ = (U,(3) N aU(P)/aUy(3) = aU(P)/aU,(¥).

As U(P) = F @ Uy(p), we see that Ker ¢ C Im \.

Finally, we show that Ker A = 0. This is equivalent to a N an(ﬁ) = [a, q].
A standard Poincaré-Birkhoff-Witt theorem argument gives that this is equivalent
toa N Uo(a)2 = [a, a] (in U(a)). The inclusion D is obvious, and the other in-
clusion is shown by passage to U@a/[a, a]).

2 For an affine matrix A there is an explicit construction of g(4)/c [2], which
shows that (b) fails in this case.
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Recall that if V' is a left module over a Lie algebra a, then given a Lie alge-
bra homomorphism ¢: @ — b, one defines the induced left §-module

IndV = (U(b) ® ¢ N/, , yF bY@ ®v—b ®a - v),

where b € U(b), a €a, v € V, with an obvious action of b.

Now we turn to the Lie algebra § = §(4) associated to a symmetric matrix
A =(ay). Setg' = 9 /r; denote by  the canonical homomorphism § —¢’. We
have the induced gradation g’ = @, 8, and induced decomposition g’ =
n_ ® b ®nl, (we identify § with n(h) = @), so that Ql—a,- = Fn(f}), 8e; =
Fn(e;) for i € . Define a symmetric bilinear form on I' by («, o) = ay for
i, jEL N

For a €T define a g-module #(a) = Indg o7, Fo» where F, is a 1-dimen-
sional module with underlying space F defined by T +(1) =0, h(1) = a(h) for
h € §. Denote the image of 1 ® 1 in M(a) by D, and let (), = F - V,,. The I'-
gradation of g induces a gradation M(a) = ®ner +ufo }M(a)a_ n» SO that
E'ﬁi‘\;l(oz)7 C 171(04)5 +yr Further on, by a “module” we mean a I'-graded mo~dule.
M(o) contains a unique proper maximal submodule which is denoted by M L(a).
Similarly, we define the g'-module M(c) = Indg;l;“:_l~ F, its gradation M(a) =
®n M), _p» the canonical generator v, the submodule M L(a), etc.

An element v € M7 in a I'-graded ¢"-module M is called primitive of weight
v iff there exists a g’-submodule ¥ C M(c)) such that v & ¥ but n) (v) = 0 mod V;
then we call ¥ € T a primitive weight of M.

LemMA 2. If o — 8 is a primitive weight for the §'-module M(), then Tﬁ =
(a, B).

ProoF. Define the (generalized) Casimir operator £ on M(c) by
Q) =T, -@mp+ X X D) ifveMa),_,,
Y€ + i
where e,(yi) is a basis of g; and eg)7 is a dual basis of G'_7 with respect to the in-
variant symmetric bilinear form on @' as in [4, p. 313]. This has been introduced
in a slightly different form in [3] and differs from the version in [4] only by a
factor % (we do it in order to include the case char F = 2). As usual, one shows
by a direct computation that { commutes with e; and f; action, and as Q(,) = 0,
obtains that £ = 0. On the other hand, by the definition of £2, a primitive vec-
tor v EM(a), _ g is an Q-eigenvector modulo a submodule, with eigenvalue
T4 — (o, B). Hence, this eigenvalue is 0.

Now we are able to complete the proof of Theorem 1. We apply the exact
sequence (4) to p = T_ and p=n’'_. We clearly have the following isomor-
phisms of 1_-modules: UO(?{_) =M (0) = =1 M(—ai); the last isomorphism
(of g-modules, actually) is due to the fact that 1_ is a free Lie algebra and hence
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U(n_) is freely generated by f;, i €1 We also have the following isomor-
phisms of n’_-modules: Uy(n) = M*(0) and U,(n_)/x_U,(1_) = U@n')

® Un_) Uo(?{__) = U(n'_) ® Uv_) MI(O) =Un') ® U(}I’_)(@:';lM(_ai)) =
@7, M(-o;). Hence (4) gives an exact sequence of n’_-modules,

© 0—t_/[r_r_] 2> D M) 2 M'(©0)—o.

i=1
Now we show that (5) is, in fact, an exact sequence of g'-modules. For the map
¢ this is clear. To show that X is a g"-module homomorphism we describe it
more explicitly., Define {: v —M L(0) by ¥(a) = a(v~0). This induces A;: t —
U@ ®y 3y M'(0) such that A, (r,) = 0, A, ([r_, t_]) = 0, which gives us the
map A. We have to check that A, is a homomorphism of ‘d-modules. Indeed,
fora €t and x € § one has

A aD)

1® (xa’J0 - axﬁ’o) = 1(x) ® a?)'o - (@) ® xv,

m(x) ® a’l\fo = a(x)\, (@).

Now let — be a primitive weight of the g-module v_/[r_, r_]. Then,
since (5) is an exact sequence of g'-modules, we deduce that —a is also a primi-
tive weight of one of the g'-modules M(—0;) and hence of the g'-module M(0).
Hence, by Lemma 2, we obtain that T, = 0. « € II since no f; liesin t. As
the n'-module t_/[tr_, t _] is generated by primitive vectors (because a
homogeneous vector v is not primitive iff v € U(n’_)U(n’,)n', - v) we obtain
that the ideal t_ inn_ is generated by those t_, for which o € I', \Il and
T, =0, as required. The result for r, follows by applying the involution 0
of § defined by 6(e;) = ~f,, 0(f;) = —e;, 0(h;) = —h, i € L.
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