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ABSTRACT. A necessary and sufficient condition for weak compact­
ness in the space of vector measures is given. 

1. Introduction and statement of the theorem. Weak compactness in the 
space of set functions has been studied by a number of authors. Dubrovskiï 
[6], Grothendieck [9], Bartle, Dunford and Schwartz [1] obtained necessary 
and sufficient conditions for weak compactness in the space of countably 
additive scalar measures. Leader [10] and Porcelli [13] treated the finitely 
additive scalar case. Chatterji [4] considered weak compactness in L1(3E); 
a slightly more general case was studied by Batt and Berg [2]. 

In this paper we give necessary and sufficient conditions for weak com­
pactness in a very general setting, which includes the above results as 
special cases. Details and applications will be presented elsewhere. Our 
theorem is the following (definitions are given in the next section). 

THEOREM. Let Xbe a reflexive Banach space and let 01 be a ring of sets. 
A set K a fa{0t, X) is conditionally weakly compact if and only if K is 
bounded and the set of measures {V(JJ):IÂ€ K} is uniformly additive. 

REMARK 1. In the case K is weakly compact, there exists a positive 
bounded finitely additive set function X such that {v{\x)\[ie K} is uniformly 
absolutely continuous with respect to X. Conversely, if K is bounded and 
such a X exists, then K is conditionally weakly compact. The hypothesis of 
reflexivity in the necessary part of Theorem 1 can be omitted. 

COROLLARY 1. The above theorem remains valid if fa(0l, X) is replaced by 
ca(0t, X). 

REMARK 2. The theorem is false for every X which is not reflexive. This 
observation was made by J. J. Uhl, Jr. In fact, if X is not reflexive, choose a 
sequence {xn} in the unit sphere of X which has no weakly convergent sub­
sequences. Assume (5, S, fi) is a measure space ; let £ be a measurable set 
of positive measure. The subspace {xÇ£:xeX} of L^X) is linearly 
homeomorphic to X. Note that the set K = {xnÇE:n = 1,2,...} is not 
conditionally weakly compact. 
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COROLLARY 2.fa(M,X) is weakly sequentially complete if X is reflexive. 

2. Notation and definition. X denotes a Banach space with norm || || 
and conjugate space 3Ê*. Let ̂  be a ring of subsets of a set S. For a set 
function JJL \ffl -• X, define the total variation set function on the power set 
of S by v(jj)(A) = sup£||jU(-Rf)||, where the supremum is taken over all 
finite disjoint families of sets Rt contained in A. fa(0t, X) is the Banach 
space of all finitely additive set functions fi defined on J> with v(fi)(S) < oo. 
The norm of pi is V(JJL)(S). ca{0t, X) is the subspace of fa(M, X) consisting of 
countably additive set functions. <r(E) denotes the a-algebra of sets gener­
ated by S. Li(S, se, v, X) is the space of Bochner integrable functions rela­
tive to the measure space (S,srf,v); L^S, se, v, X) denotes the class of 
^-measurable essentially bounded ï-valued functions. A family T of 
finitely additive scalar measures of bounded variation defined on 0t is 
uniformly additive if for every disjoint sequence of sets Rt, lim„^]?lw |ju(-Rf)| 
= 0 uniformly for fieF. Weak convergence is denoted by -^. 

3. Brief outline of the proof. I. Assume 01 = Z is a a-algebra. Let 
K = {fii}r=i Œ ca(L,X). Suppose /ipiS -> X is a set function such that 
fit (E) •**• jU0(£) in X for every E e l . Then for every x* e 3E*, x*^0 = lim x*^. 
By the Nikodym theorem [7, p. 160], X*/J,0 is countably additive, and the 
Orlicz-Pettis theorem [11] implies that fi0 is countably additive on E. The 
expression X/ = ill^o(^i)ll = limfcZr=ix?/**(^») f° r appropriate xfeX*, 
\\xf || ^ 1, shows that V(/Â0)(S) ^ Hm v(fii)(S) ; hence fi0 e ca(L, X). Let 3o be 
the rational span of {/ij?i0. Obtain a countable algebra j / 0 c l such that 
v(P/s/0)(S) = V(P)(S), P e 3 0 . We then show that p e 3 implies : 

(*) v(P/s/)(S) = v(p)(S\ 

where 3 is the closure in ca(L, X) of 3o a n d ^ = o"(^o)- Let the separable 
space 3£0 be the closure of span{P(A):A estf0, /?e3o}- Using the Hahn-
Banach theorem and the Hahn extension theorem for measures, we obtain : 
P(A) e X0 whenever p e 3 and A e sé. This fact and (*) yield the isometry 
n:3 - ca(s/,X0), where TC(JB) = P/stfJe3- Let v = X,*02"'ü(ft). Since 
3Ê0 is reflexive, by the Radon-Nikodym-Phillips theorem [12], we obtain 
functions f in L^S, se, v, 3£0) = L^XQ) such that ƒ• = dtijdv, i = 0, 1 , . . . . 
Since X0 is reflexive, 3E§ is separable, and thus L^Xo)* = L^iS, se, v, 3£$) 
= L ^ ï g ) (cf. Dinculeanu [5, p. 282]). \i{JE) ^ / J 0 (£) f° r every E implies 
that jhf dv -» ƒ hf0 dv for simple functions h e L00(ï§). Since the y(^) are 
uniformly additive and absolutely continuous with respect to v, a result 
of Gould [8, p, 199] implies that the u(/^) are uniformly absolutely con­
tinuous with respect to v. Using this fact together with Egoroff 's theorem 
for 3E§-valued measurable functions and the boundedness of {i;(/if)(S)}, one 
can show that $hfdv -» jhf0dv, /ieL00(3E§); this in turn implies that 
\i{ ^ fi0 in caÇL, X). 
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II. Suppose K c ca(L, X\ where Z is a a-algebra. By the Eberlein-
Smulian theorem, it suffices to consider a sequence {^j ç K. As in I, con­
sider {fit} c ca($t9 X0\ X0 separable. An application of the Bartle-Dunford-
Schwartz weak compactness theorem [1] shows that {x*/^} is conditionally 
weakly compact for every x* e 3£*. Let x* be dense in the unit sphere of X%. 
By a diagonal process obtain {fxik} such that limfc x*fiik(E) exists for every 
Eesrf and every n. The limit also exists then for every x* e X%. Define 
[i(E):X% -> (scalar field) by //(£)x* = lim x*/Àik(E). Then / I (£)G3E§* = X0 

and fiik(E) -^ /i(£), E G se. As in I, /^k -^ /* in ca(sé9 X0). Since closed sub-
spaces contain weak limits of elements in the subspace, jiik -^ n~l(ix) in 
ca(L9 X). 

III. Let K a fa(L, 3Ê), where Z is an algebra. Let H1 be the Stone algebra 
[7, p. 312] of all open-closed subsets of the compact Hausdorff space 
Si ; Z2 = 0"(Zi). For a scalar or vector finitely additive set function \i of 
bounded variation defined on Z, let T(^) be its extension on Z2. x :/fl(Z, X) 
-> ca(Z2, X) is an isometry (cf. Uhl [14]). It can be proved that on Z2, 
v(xfx) ^ X(V(JÀ)). The conditional weak compactness of K is established by 
showing the uniform additivity of x(K). This is indicated in the next step. 

IV. Let r be a bounded set of scalar countably additive set functions 
defined on an algebra Z0. If T is a uniformly additive family, then the 
extensions of T to cr(Z0) are also uniformly additive. The technique used to 
prove this is similar to that found in Brooks [3]. A diagonal process is used 
in addition to results of Leader [10] and Porcelli [13]. 

V. Let ^? be a ring (S $ 0t\ Z the algebra generated by St. Z consists of 
sets of the form R or R u (S - R0)9 R9R0e M (R n(S - R0) = 0 ) . For 
pLsfa(St9X\ define fi on Z by p(R u (<S — R0)) = n(R) — fi(R0). Thus 
v(fi)(S) g v(fi)(S) S 2v(ji)(S). K is uniformly additive on St if and only if K 
is uniformly additive on Z. Using the maps /? ->/?/J? (ƒ? e faÇL, X)) and 
P -> /? 08 G /a(#, X)), we reduce V to III. 

VI. The converse (without reflexivity) is proved by sliding hump 
methods in sequence spaces. 

VII. Remark 1 follows from the result: If a family F of finitely additive 
scalar measures is bounded, then T is uniformly additive if and only if there 
exists a bounded positive finitely additive measure X such that T is uniformly 
absolutely continuous with respect to X and X(E) ̂  s\ip{v(jLi)(E): jae T}. 
Results from [1], [3] and [13] are used to prove this. 

Corollary 1 follows from the theorem by observing that ca(0t9 X) is a 
closed subspace of fa($9 X) and therefore contains weak limits in fa(St, X) 
of elements belonging to ca(0t, X). 

REMARK 3. The author and N. Dinculeanu have recently extended the 
above theorem to the space of vector measures of local finite variation. A 
"Synthesis theorem" concerning the existence of a control measure for a 
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family of locally equivalent measures is used to show the existence of a 
positive measure k such that weakly compact sets in this locally convex 
linear topological space are locally uniformly absolutely continuous with 
respect to it. 

REMARK 4. The author has obtained criteria for strong compactness 
in the space of vector measures with local finite variation. Details will 
appear elsewhere. 
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