ON THE SPECTRUM OF ALGEBRAIC K-THEORY

BY S. M. GERSTEN

Communicated by H. Bass, October 4, 1971

ABSTRACT. The groups $K_i(A)$ of Bass for i < 0 are identified as homotopy groups of the spectrum of algebraic K-theory. The spectrum itself is identified. Applications to Laurent polynomials and to K-theory exact sequences are given.

Quillen has recently proposed a K-theory for unital rings [12], [13]. He associates to a ring A a space $BG1(A)^+$ whose homology is that of the group G1(A) and whose homotopy groups $\pi_i BG1(A)^+$ he defines as $K_i(A)$, $i \ge 1$. The space $BG1(A)^+$ is known to be an H-space, and indeed an infinite loop space.

Hence one is motivated to define $K_i(A)$, for $i \in Z$, as $\pi_i(E(A))$ where E(A) is the associated Ω -spectrum. This note describes E(A) and identifies the groups $K_i(A)$, i < 0. In fact, we show that the groups $K_i(A)$ are exactly the groups $L^{-i}K_0(A)$ discussed in Bass' book [3, p. 664] for i < 0.

Recall from the work of Karoubi and Villamayor [10] the cone CA and suspension SA of a ring A. An infinite matrix is called permutant if it is an infinite permutation matrix times a diagonal matrix of finite type. The diagonal matrix is of finite type if its diagonal entries are chosen from a finite subset of the ring. The ring CA is the ring generated by permutant matrices. The cone CA contains the two-sided ideal $\tilde{A} = \bigcup_n M_n(A)$ and the quotient ring is called the suspension of A. We can now state our main result.

THEOREM A. The space Ω (BG1(SA)⁺) has the homotopy type of $K_0(A) \times BG1(A)^+$.

COROLLARY. For all $i \in Z$ we have $K_i(A) = K_{i+1}(SA)$.

Since Karoubi [9] has already identified $K_0(S^iA)$ with Bass' groups $K_{-i}(A)$, the Corollary above completes the identification of Bass' groups with the negative homotopy of the spectrum E(A).

In proving Theorem A we must first analyze the cone construction.

THEOREM B. The space $BG1(CA)^+$ is contractible.

This result generalizes work of Karoubi and Villamayor [11] who show that $K_i(CA) = 0$ for $i \leq 2$. To prove Theorem B we observe that it suffices

AMS 1970 subject classifications. Primary 18F25, 55B15, 16A54, 13D15, 55F50, 18G30, 55B20, 55D35.

Key words and phrases. Algebraic K-theory, suspension and cone of a ring, Ω -spectrum, flasque category, locally free simplicial monoid, group completion functor, Laurent polynomials.

Copyright © American Mathematical Society 1972

to show that $\dot{H}_*(BG1(CA)^+) = 0$. This latter result is a consequence of a theorem of Karoubi [7] that the category $\mathcal{P}(CA)$ is "flasque," together with a recent result of Barratt and Priddy [2] which implies

THEOREM C. Suppose that M is a locally free simplicial monoid (i.e. M_n is a free monoid for all n). Let \hat{M} denote the group completion of M. If $H_*(M, Z)$ is (graded) commutative, then $\pi_0(\hat{M}) = (\pi_0(\hat{M}))$ and $H_*(\hat{M}, Z) = H_*(M, X) \otimes_{\mathbb{Z}\pi_0(M)} Z[\pi_0(\hat{M})]$.

D. W. Anderson informed me that Quillen has also given a proof of Theorem C.

In order to apply Theorem C, it is necessary to use the description of $BG1(CA)^+$ given by D. W. Anderson [1] as the group completion of the morphism complex of the "blown-up" permutative category $\mathcal{P}(CA)$.

Let I be the image of G1(CA) in G1(SA). Since $K_1(CA) = 0$ it follows that I = E(SA), the elementary group of matrices. We have two short exact sequences of groups

and

$$G1(A) \rightarrow G1(CA) \rightarrow E(SA),$$

$$E(SA) \rightarrow G1(SA) \rightarrow K_1(SA).$$

Recall Z_{∞} , the integral completion functor of Bousfield and Kan [4], [5]. We remark that $Z_{\infty}BG1(A) \simeq BG1(A)^+$, as was established in [6]. The following theorem was communicated to us directly by Bousfield.

THEOREM D (A. K. BOUSFIELD). Let $F \to E \stackrel{\pi}{\to} B$ be a fibration of connected spaces and suppose (1) $Z_{\infty}E$ and $Z_{\infty}B$ are nilpotent and (2) $\pi_1(B)$ acts nilpotently on each $H_n(F)$. Then the inclusion of $Z_{\infty}F$ in the fibre of the map $Z_{\infty}\pi$ is a homotopy equivalence, and moreover $Z_{\infty}F$ is nilpotent.

One checks the hypotheses of Theorem D for the fibration

$$BE(SA) \rightarrow BG1(SA) \rightarrow BK_1(SA).$$

The action of $K_1(SA)$ on $H_*(BE(SA))$ is the limit of inner automorphisms, and hence is trivial. We deduce that we have a fibration

$$Z_{\infty}BE(SA) \rightarrow Z_{\infty}BG1(SA) \rightarrow BK_{1}(SA)$$

with $Z_{\infty}BE(SA)$ nilpotent. In fact, $Z_{\infty}BE(SA)$ is easily seen to be the universal cover of $BG1(SA)^+$.

Consider now the commutative diagram whose rows are fibrations

$$F_{0} \rightarrow Z_{\infty}BG1(CA) \rightarrow Z_{\infty}BE(SA)$$

$$\downarrow \qquad \qquad \downarrow = \qquad \qquad \downarrow$$

$$F \rightarrow Z_{\infty}BG1(CA) \rightarrow Z_{\infty}BG1(SA).$$

After examining the exact homotopy sequences, it follows that F_0 is a connected component of F. One considers now the fibration

$$BG1(\tilde{A}) \rightarrow BG1(CA) \rightarrow BE(SA).$$

Again one checks that the hypotheses of Theorem D are satisfied. Here the action of E(SA) on $H_*(BG1(\tilde{A}))$ is trivial. The idea for this observation is already contained in [9] in the proof of Lemma 5.9. It follows that $Z_{\infty}BG1(\tilde{A}) \simeq F_0$. Next we establish

Lemma. $Z_{\infty}BG1(\tilde{A}) \simeq Z_{\infty}BG1(A).$

This Lemma generalizes [11, Proposition 7.4]. After an application of Theorem B, the proof of Theorem A is quickly completed.

Following Karoubi [9] we observe that the Corollary of Theorem A has application to the study of Laurent polynomials.

THEOREM E. For any unital ring A and $n \in Z$ we have

 $K_n(A[t, t^{-1}]) = K_n(A) \oplus K_{n-1}(A) \oplus ?.$

One considers the pairing

$$K_{n-1}(A) \otimes K_1(Z[t,t^{-1}]) \xrightarrow{\smile} K_n(A[t,t^{-1}])$$

which induces a map $K_{n-1}(A) \to K_n(A[t, t^{-1}])$ by $x \mapsto x \cup [t]$. Karoubi's idea to exhibit an inverse to this map is as follows. He defines a homomorphism $A[t, t^{-1}] \to SA$ by sending $\sum a_i t^i$ to the coset of the matrix in CA:

$\int a_0$	a_{-1}	a_{-2}]
<i>a</i> ₁	a_0	<i>a</i> ₋₁
<i>a</i> ₂	a_1	$a_0 \ldots$
•	•	
· ·	•	•
Ŀ·	•	· _

This induces the map $K_n(A[t, t^{-1}]) \to K_n(SA)$. By the Corollary to Theorem A, $K_n(SA) = K_{n-1}(A)$ and one checks that the resulting map is a left inverse to the cup product map.

We also have results giving a homotopy theoretic interpretation to the K-theoretic exact sequences of a surjection. These K-theory sequences may be deduced from

THEOREM F. Let q be a two-sided ideal in the ring A. Let F be the homotopy theoretic fibre of the induced map $BG1(A)^+ \rightarrow BG1(A/q)^+$. Then there is a canonical isomorphism $\pi_1 F \cong K_1(A, q)$. I now know K-theoretic interpretations for the higher homotopy groups of the fibre F. It would be very interesting to interpret the corresponding fibre in the case of a localization $A \rightarrow A_S$.

BIBLIOGRAPHY

1. D. W. Anderson, Simplicial K-theory and generalized homology theories. I. Examples from K-theory (preprint).

2. M. Barratt and S. Priddy, On the homology of non connected monoids and their associated groups (to appear).

3. H. Bass, Algebraic K-theory, Benjamin, New York, 1968. MR 40 #2736.

4. A. K. Bousfield and D. M. Kan, *Homotopy with respect to a ring*, Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc., Providence, R.I., 1971.

 5. ——, The homotopy spectral sequence of a space with coefficients in a ring (to appear).
 6. S. M. Gersten and D. L. Rector, A relation between two simplicial algebraic K-theories, Bull. Amer. Math. Soc. 77 (1971), 397–399.

7. M. Karoubi, *Foncteur's dérivés et K-théorie*, Séminaire sur la K-théorie, Lecture Notes in Math., vol. 136, Springer-Verlag, Berlin, 1970.

8. ____, La périodicité de Bott en K-théorie générale, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1305–A1307. MR 41 # 5462.

9. _____, La périodicité de Bott en K-théorie générale, Ann. Sci. École Norm. Sup. 4 (1971), 63–95.

10. M. Karoubi and O. Villamayor, Foncteurs K^n en algèbre et en topologie, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A416-A419. MR 40 # 4944.

11. ____, K-théorie algébrique et K-théorie topologique (to appear).

12. D. Quillen, Cohomology of groups (to appear).

13. ____, The K-theory associated to a finite field. I (to appear).

14. G. Segal, Homotopy everything H-spaces (to appear).

DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY, HOUSTON, TEXAS 77001