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Let X and Y be real Banach spaces. A mapping/ of X into Y is said to 
be normally solvable if/(X) is closed in Y The theory of normal solvability 
uses this property together with infinitesimal assumptions upon the 
structure off (X) to obtain conclusions upon the global structure of/(X), 
and in particular the conclusion that ƒ (X) is all of Y or that a given element 
y0 of Y lies inf(X). 

It is our purpose in the present note to present some new and sharper 
results in this theory, and to apply these results to the proof of existence 
theorems for equations of the form ƒ (x) = y for mappings ƒ which lie in a 
general class of ^-accretive mappings, generalizing the concept of a 
monotone mapping from X to X* and of an accretive mapping from 
XtoX. 

DEFINITION 1. Let X and Y be real Banach spaces, Y* the conjugate space 
of Y Let (/) be a mapping ofX into Y* such that (j){X) is dense in 7* with 

ll̂ Wlly* = l|x||x, Mx) = Éflx), 

for all x in X, £ ^ 0. Then : 
(a) A mapping f of X into Y is said to be (^-accretive if for all x and u 

in X, 

(f(x) - f(u), tMx - «)) ^ 0. 

(b) The map ƒ is said to be strongly ^-accretive if there exists c > 0 
such that, for all x and u in X, 

{m-f{u\<j>{x-u))^c\\x-u\\\ 
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(c) The map ƒ is said to be strictly ^-accretive if for all x and u in X 
with X ^ M , 

( ƒ (x) - f H <Kx - u)) > 0. 

(d) The mapping ƒ is said to be firmly ^-accretive if there exists a con
tinuous strictly increasing function cfrom R+ to R+ with c(0) = 0 such that 

(ƒ(*) ~ ƒ ( 4 </>(* - u)) ^ c(\\x - u\\) (x, u e X). 

Similar definitions may be formulated for maps ƒ of X into 2Y, and in 
particular for single-valued mappings ƒ defined only on a subset £>(ƒ ) of X. 

We shall derive existence theorems for ^-accretive mappings from 
general results of the normal solvability theory. Two such results which 
are stated in [6] and proved in [7] and [8] are the following : 

THEOREM 1. Let X and Y be Banach spaces, f a mapping ofX into Y, y0 

a point of Y Suppose that f (X) is closed in Y and that there exist constants 
r > 0, p < 1 such that the following conditions hold: 

(*)BJ(yo)nf(X)¥>0. 
(b) For each y inf(X) n Br(yo\ there exists a sequence {y^ inf(X) with 

yj 7* y for eachj such that yj -» y, and a sequence {^} of nonnegative real 
numbers such that, for eachj, 

Hjiyj -y)~ ivo - y)\\ û v\\y0 - y\\. 

Then, y0 lies inf(X). 

THEOREM 2. Let X and Y be Banach spaces with Y* uniformly convex, 
fa mapping of X into Y, y0 a point of Y Let J be the (normalized) duality 
mapping of Y into 7* which is uniquely defined by \\J(y)\\ = ||y||, (J(y),y) 
= Il y II2 for each y in Y. Suppose that f (X) is closed in Y and that there 
exist r > 0, ô > 0 such that the following two conditions hold: 

(*)BJLyo)nf(X) + 0. 
(b) For each y in Br( y0) n ƒ(X), there exists a sequence {yj] in f(X) 

such that yj -* y, yj # y for eachj, and such that 

(J(y0 - y\ yj-y)£ s\\yj - y\\ • ho - yll-

Then, y0 lies inf(X). 

We now prove a sharper version of Theorem 2 under a still stronger 
structural hypothesis on the image space Y, and then apply these results 
to the existence theory of ^-accretive mappings. 

THEOREM 3. Let X and Y be Banach spaces with Y uniformly convex and 
Y having its norm twice-dijferentiable on the unit sphere with bounded 
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second derivative, so that the duality mapping J of Y into 7* satisfies the 
Lipschitz condition 

\\J(yi) - J(y2)\\ SM\\yi-y2\\ (yl9y2eY). 

Suppose that f (X) is closed in Y, and that for each y0 in Y, the following two 
conditions hold : 

(a) There exists r > 0 such that f (X) n Br(y) # 0 . 
(b) If y0 does not lie in f(X), then for each y in Br(y0) nf(X), there 

exists v inf(X) such that 

(J{y0-y),v-y)>M\\v-y\\2. 

Then, f(X) is all of the space Y 

PROOF OF THEOREM 3. Since ƒ (X) is closed in Y, it suffices to prove ƒ (X) 
dense in Y Let 

*o = {.Vol̂ o e X there exists y in f(X) such that \\y0 — y\\ = dist(y0>/W)}-

By the theorem of Edelstein [9], Y0 is dense in Y Hence, it suffices to prove 
that Y0 c ƒ (X). 

Let y0 be a point of Y0 — f(X), and let y be a point of ƒ (X) such that 
lbo — y II = lbo — v\\ f° r aH v i n / ( I ) . Since the duality mapping J is the 
subgradient of the convex function g(y) = j\\y\\2 on Y, we see that 

g(v - y0) ^ g(y ~ y0) ^ g(v ~ yo) + (A^o ~ v),v - y). 

Hence 
( J ( j ; o - t ; ) , i ; - y ) ^ 0 . 

As a consequence, 

G/(y0 - )* » - y) ^ \\J(y0 - y) - J(y0 - t>)ll • \\v - y\\ è M\\v - y\\2. 

The last inequality is true for all v in ƒ (X). By hypothesis, the reverse 
inequality is true for some v in ƒ (X) if y0 does not lie in f(X). Hence 
Y0 c /(X), and hence ƒ (X) = 7 Q.E.D. 

THEOREM 4. Le£ X and Y be Banach spaces, ƒ a strongly cjy-accretive 
mapping of X into Y Suppose that one of the two following additional 
hypotheses holds : 

(I) 7* is uniformly convex and f is locally Lipschitzian. 
(II) Y and 7* are uniformly convex, J satisfies a Lipschitz condition, 

0(X) = 7*, and f satisfies the following lipfy-condition : 

II* ~ u\\-1/2|| f(x) - f(u)\\ - 0, as \\x - u|| - 0, 

/or eac/z u in X. 
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Then9f(X)= Y. 

PROOF OF THEOREM 4. Since ƒ is strongly (/>-accretive, we have 

c||x - u\\2 = (f(x) - f(ul <f>(x - u)) = || f(x) - ƒ(w)|| • \\<Kx - 11)11 
^ I I / ( X ) - / ( I I ) | | - | | X - I I | | . 

It follows that || ƒ (x) — f(u)\\ = c\\x — u\\. Since ƒ is continuous, it is an 
immediate consequence that ƒ (X) is closed in Y To prove that ƒ (X) = Y, 
it therefore suffices by the connectedness of Y to prove that ƒ (X) is open 
in Y 

PROOF FOR CASE (I). Let yx be a point of f(X). We consider a point y0 

of Br(yi) such that ƒ satisfies a Lipschitz condition with constant M 0 on 
BiÀyi)- We wish to prove that y0 lies in f(X\ by applying the result of 
Theorem 2. Let y be a point of Br( y0) n ƒ (X), y = f(u). We apply the 
strong accretiveness condition with respect to the points xt and u, where 
xt = w + tv, t > 0, and obtain 

f ( /W- / (4#0 )^> | | 2 . 
We choose an element u of I with ||i;|| = II3̂ o — y\\ s u c r i that \\(j)(v) 
— J(yo ~ y)\\ < £ f° r a suitable small s > 0, to be chosen in a moment. 
Then 

(ƒ(*,) " / ( 4 J(^o " y)) = ct\\y0 - y\\2 - s\\f(xt) - f(u)\\. 

By the choice of t sufficiently small, we know that 

|| ƒ(*,) - f(u)\\ S M0\\xt ~ u|| = M0t\\y0 - y\\. 

We have, finally, 

( ƒ (xt) - ƒ (II), JQ>0 - y)) ̂  II ƒ (*,) ~ f(u)\\ -\\y0- y\\(cMö ' - s\\y0 - y\\ ~l) 
= S\\f(xt)-f(u)l\\y0-y\\ 

with ô = 2" 1 cMö 1 if we choose e < ö\\y — y0\\. Hence, the hypothesis of 
Theorem 2 is valid, Br(yi) <= f(X\f(X) is open in Y, and hence ƒ (X) = Y 
Q.E.D. 

PROOF FOR CASE (II). We obtain the desired conclusion by the applica
tion of Theorem 3. We choose v in X such that ||v|| = \\y — y0\\, (f)(v) 
= J(yo — y)- (Such a choice is possible since 4>(X) = Y*, under the 
hypothesis of (II).) Let xt = u + tv where f(u) = y, for a given point y of 
/(X). By the strong 0-accretiveness off we have 

t(f(xt)-f(ul$(v)) = ct2\\y0-y\\\ 

i.e., 

(ƒ(*,) - y, J(y0 ~ y)) = ct\\y0 - y\\2. 



190 F. E. BROWDER [March 

On the other hand, 

II ƒ W - m\\2 s <t)\\xt - M|| s z(t)t\\y0 - yll 
where s(t) -• 0 as £-»0+. Hence, given a constant M, we can choose 
t > 0 so small that 

MII f(xt) - f(u)\\2 < (fix,) - m J(yo - y)). 
Hence, the criterion of Theorem 3 applies and each y0 lies in/(X). Q.E.D. 

We remark that existence results for strongly </>-accretive mappings ƒ 
have been obtained by the writer in his systematic paper [2] under the 
assumption that ƒ is locally Lipschitzian without structural hypotheses 
upon the Banach space Y and with the additional hypothesis that there 
exists a surjective strongly 0-accretive locally Lipschitzian map R of X 
on Y Theorem 4 under the hypothesis of a Holder condition of order \ is 
a first step in the program of finding a general theory of ^-accretive map
pings without assumptions upon ƒ of more than continuity (as in the 
monotone and accretive cases). Such a theory would provide a much-
needed methodological link between the technically disparate theories of 
monotone and accretive mappings. 

1. To obtain results for (p-accretive mappings which are not necessarily 
strongly 0-accretive, we apply the following concept : 

DEFINITION 2. Let X and Y be Banach spaces, <f> a mapping ofX into Y* 
which satisfies the conditions of Definition 1, R a strongly ̂ -accretive 
mapping ofX into Y Let f be a <j)-accretive mapping ofX into 2Y. Then f is 
said to be hypermaximal (^-accretive with respect to R if f or each e > 0 
and for the mapping f8 ofX into 2Y given by 

fe(x) = ƒ (x) + R(ex\ 

the range off is all of Y for each s > 0. 
If ƒ is a single-valued ^-accretive mapping of X into Y which satisfies 

the hypotheses (I) or (II) of Theorem 4, and JR is one as well, then by 
Theorem 4, ƒ is hypermaximal ^-accretive with respect to R. 

THEOREM 5. Let X and Y be Banach spaces, f a ^-accretive mapping of 
X into Y for a mapping (j) of X into Y* which is uniformly continuous on 
bounded subsets of X. Suppose that there exists a bounded continuous 
strongly (^-accretive mapping R of X into Y such that ƒ is hypermaximal 
(^-accretive with respect to R. 

Then, the closure off(X) in Y is convex. 

Theorem 5 extends results of Minty for maximal monotone mappings 
in finite-dimensional Banach spaces, results of Rockafellar for maximal 
monotone maps in reflexive Banach spaces, and a result of Brezis-Pazy 
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for hypermaximal accretive operators from Y to Y with Y* uniformly 
convex. 

PROOF OF THEOREM 5. Since R and fe are strongly ^-accretive for each 
c > 0, it follows easily that they have single-valued inverses, S and S£, 
from their ranges in Y to X which are Lipschitzian mappings. By assump
tion, R(fe) = Y, so that for each s > 0, SE is a Lipschitzian mapping of Y 
into X. Let w be an arbitrary element of Y, uE = Se(w). Then there exists 
a unique element wE of f(ue) such that w = we + R(suE). Hence, suE 

= S(w — wg). We may assume without loss of generality that 0e / (0) , 
R(0) = 0. Then, we have 

(w, <j){ue)) = (w£, <j>(uB)) + (K(8W£), <£(MJ) ê (R(nsuE), # 0 ) ^ ce|k| |2 , 

from which it follows that ||wj ^ 8"1c"1||w||. Since R is a bounded 
mapping, there exists a constant M such that ||jR(ew£)ll g M for all e > 0 
and a fixed win K Hence, ||w£|| ^ M + ||w|| for all s > 0. 

Let ye / (x ) . By the </>-accretiveness of ƒ it follows that for all e > 0 
(w£ — y, (f)(uE — x)) ^ 0. Since uE = s~1S(w — w£), we obtain 

(w£ - y, </>(S(w - w£) - ex)) ^ 0. 

Since ||w£|| is uniformly bounded, S maps bounded sets into bounded sets, 
and (/> is uniformly continuous on bounded subsets of X, it follows 
immediately that 

lim (we - y, (/>(S(w - w£))) ^ 0. 
e-»0 

Let C = { y\y e Y, UmB^ 0 + (we - ^ <M-S(w - w£))) ^ 0 for every w in Y}. 
Then C is a closed convex subset of Y which contains f(x) and hence 
contains c\(f(X)). On the other hand, if y lies in C and we apply the 
definition of C for w = y, we have 

ïïE(we - y, (j>(S(wE - y))) ^ 0. 

Let xE = S(wE - y). Then R(xE) = wE - y, and 

(w. - y, 0(5(w£ - y))) = (R(xtl (j>(xE)) ^ c\\xE\\2. 

Hence xE converges to 0 as s -> 0, and by the continuity of R, wE converges 
to y. Thus C c cl(ƒ(JSQ). Hence cl(ƒ(X)) = C, and cl(ƒ(X)) is convex. 
Q.E.D. 

THEOREM 6. Let X and Y be Banach spaces, f a cj)-accretive mapping from 
X to Y for a map (j) of X into Y * which is uniformly continuous on bounded 
sets with (f){X) = Y*. Suppose that there exists a bounded continuous 
mapping R of X into Y which is strongly (j)-accretive such that f is hyper-
maximal (j)-accretive with respect to R. Suppose moreover that f(X) is 
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closed in Y and that f is strictly (^-accretive. 
Then f (X) = Y 

PROOF OF THEOREM 6. By Theorem 5, cl(f(X)) is convex. By hypothesis, 
f(X) is closed in X so that ƒ (X) is a closed convex subset of Y If/ (X) # X 
then by a simple variant of the Bishop-Phelps Theorem [1], there exists a 
support point of/(X) in X i-e. a nonzero y* in Y* and an element y = ƒ (u) 
inf(X) such that (y*, y) = supxeX(y*,f(x)). We choose v in X such that 
(f)(v) = y*. Then for x = u + v9 we have (y*9ƒ(*)) = (</>(y), ƒ(x)) = 
(0(x — u\f(x)) > (4>(x — u\f(u)) = (y*,y) by the strict 0-accretiveness 
of/. This contradiction proves that f(X) = Y. 
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