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This paper is dedicated to Professors Leroy M. Kelly and Fritz 
Herzog who gave so enthusiastically of their time and talent in develop­
ing undergraduate mathematicians at Michigan State University. I 
was one of their beneficiaries. 

0. Introduction and motivation. We begin by listing some questions and 
remarks which establish the theme of this paper. 

1. Which cobordism classes of oriented manifolds admit nontrivial 
circle actions? Answer: Atiyah-Hirzebruch [4]: For a compact oriented 
manifold X of dim 4k, its sd genus vanishes iff there is a multiple mX 
which is cobordant to X with W2(Y) = 0, which admits a nontrivial circle 
action on each of its components. The sd genus is the genus belonging to 
the power series (x/2)(sinhx/2)_1. 

2. Which manifolds in a given homotopy type admit nontrivial circle 
actions? More specifically, of those manifolds homotopy equivalent to 
complex projective n space, which admit nontrivial S1 actions? 

Strong conjecture. If h : X -• CPn is an orientation preserving homotopy 
equivalence and if X supports a nontrivial circle action then h*sd(CPn) 
= s/(X) where 

sd(X) = ri(*i/2)(sinh xJlTx e H*(X, Q) 

and the elementary symmetric functions of the xf give the Pontrjagin 
classes of X. In other words, the homotopy equivalence must preserve the 
total sd cohomology class. 

Weak conjecture. To the hypothesis of the strong conjecture add the 
condition that the fixed point set of the action consists of isolated fixed 
points. Then 

h*sd(CPn) = sd{X). 

A corollary of the strong conjecture is that most homotopy complex 
projective spaces do not admit S1 actions. The weak conjecture is dis­
cussed in detail in Part II, §2. 
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The validity of the weak conjecture is related to the representations of 
S1 on the tangent space of X at the isolated fixed points. If X is homotopy 
equivalent to CP\ there must be n + 1 isolated fixed points pjt To each 
we show how to associate an integer aj and compare the eigenvalues 
of the S1 action on the tangent space of X at pj with the integers {± (ak — a,-), 
k*j}. 

A particularly good property of the homotopy type which is useful to 
exploit in connection with the second question is the existence of a spinc 

structure. In the first few sections we discuss the properties of an equi-
variant spinc structure. 

Another idea we develop in connection with S1 actions on manifolds in 
general, is the exploitation of a theorem of Stewart (Part I, 6.1) which is 
concerned with lifting an S1 action on X to an S1 action on a principle S1 

bundle over X. Using this theorem and assuming HX(X, Z) = 0, we define 
a function F from the additive group H2(X, Z) to the multiplicative group 
of units of K$i(X). Assuming X is a spinc manifold and using Stewart's 
theoTem we construct an "orientation class" ösi e K$i(TX) (TX = tangent 
bundle of X). This class generates Kgi (TX) as a free module over Kgi(X). 

The index homomorphism Idfi : K$i(TX) -> RiS1) is a homomorphism 
of RiS1) modules and is intimately connected to the representations of S1 

on the normal fibers of the components of the fixed point set. Suppose 
that z l 5 . . . , zs is a basis for H2(X, Z) and let <J>(y1?..., ys) be any poly­
nomial in indeterminants yt with integer coefficients. Set wt = F(zf)e K|i(X). 
Then the condition that 

Idf1(^1(D(w1,w2,...,ws))GJR(S1) 

for every O imposes stringent restrictions on the representations of S1 on 
the normal fibers of the components of the fixed point set. This idea is 
exploited in connection with Part II, Theorems 2.11 and 2.12. 

The principle applications of the ideas developed here are in Part II, 
Theorems 2.8-2.12. They deal with the relationship between si(X\ the 
integers {(ak — a7)} and the integers {xjk} which are the roots of the S1 

action on TX at pj. 
Another interesting item, which was suggested by the above mentioned 

results, is an example of an exotic action of S1 on CP3. It is exotic in the 
sense that the eigenvalues of the S1 action on TCP3 dit the four isolated 
fixed points are distinct from those of the linear case (Part I, 6.4). See 
Part II, §4 for more detail. Another significant feature of this example is 
the fact that the bilinear form < > of Part II, §3 is nondegenerate in this 
case, see §5 of Part II. 

We have interspersed the ideas and theorems with numerous examples 
and conjectures. We hope the reader finds the former of sufficient interest 
to consider the latter. 
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This paper is divided into two parts and is organized as follows : 

I. GENERALITIES CONCERNING SMOOTH ACTIONS OF COMPACT LIE 

GROUPS ON MANIFOLDS 

1. Properties of the index homomorphism là^:K%(TX) -» R(G). 
2. The group spinc(m). 

(a) The half spin representations A+ and A_ as complex spinc(m) 
modules. 

(b) The elliptic pairing of spinc(m) modules : 

Rm x A ± - • A + . 

3. Spinc(m) bundles. 
4. KG orientation of G manifolds and Poincaré duality. 

(a) Equivariant homology dual to Kg. 
(b) Examples of orientations constructed from equivariant spinc(m) 

structures. 
5. Formula for Id£ :KG(TX) -> R(G) in terms of: 

(a) Orientation class of X. 
(b) Representations of G on normal fibers to fixed point set. 

6. Specialization to S1 actions. 
(a) Stewart's theorem. 
(b) The homomorphism from H2(X, Z) to the group of units of 

KUX). 
(c) Standard example—Illustration of (a) and (b) for the case of 

"linear actions" of S1 on CPn. 

II. APPLICATIONS TO S1 ACTIONS ON A HOMOTOPY COMPLEX 

PROJECTION SPACE X AND SPECULATIONS 

1. Generalities. 
(a) The equivariant "Hopf bundle" rj e K$i(X). 
(b) The integers aj associated to the component Xj of the fixed point 

set of the S1 action by restricting rj to a point Pj e Xjt 

(c) Comparison of KJi(X) with K%,{Xz»r\ Xz*r = fixed point set of 
Zpr cz S1. 

2. S1 actions on X with isolated fixed points. 
(a) Number theoretic properties of the eigenvalues of the representa­

tions of S1 on the tangent space at the isolated fixed points. 
(b) Theorem 2.8; The relations between the eigenvalues of the 

representations of S1 above and the integers a} defined by the 
equivariant Hopf bundle rj. 

(c) Theclassj/(X)eiJ*(X,Ô). 
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3. Speculation: The bilinear form < > on K%(X). 
(a) Analogy with cup product pairing for ordinary cohomology 

theory. 
(b) When is < > nondegenerate over R(G)1 
(c) Examples where < > is nondegenerate. 

4. An exotic action of S1 on CP3. 
(a) Exotic representations on TCP3 at isolated fixed points. 
(b) Identification of differential structure. 

5. The bilinear form < > on K£i(X), X = CP3. 

It is indeed a pleasure to acknowledge my gratitude to Glen Bredon 
who made several important suggestions concerning the material of this 
paper. Also, one should consult the work of W. Y. Hsiang referenced in 
the bibliography for related ideas. 

I. GENERALITIES CONCERNING SMOOTH ACTIONS OF COMPACT LIE 

GROUPS ON MANIFOLDS 

1. Properties of the index homomorphism. IA^:K%(TX) ->R(G). Here 
we review the relevant properties of the equivariant K theory of [1], [5] 
and [6]. Throughout, G is a compact Lie group acting smoothly on a 
manifold X. Denote by K%(X) the equivariant K theory of X. We note 
that K%(Y) is defined for any locally compact G space X in particular for 
Y = TX the tangent space of X. In this case, K%(TX) is a module over 
K%(X) via 7i* where n : TX -* X is the projection. 

If i :Z-»X is the inclusion of a G invariant submanifold Z whose 
normal bundle v' is complex, there is a homomorphism 

with the property 

(l.i) /%w = A.1(vrx 
when x e K%(Z) and A_ x :K%(Z) -• K%(Z) is the operation which sends a 
G vector bundle £ to £(— l)fAf(̂ ), X\Q is the ith exterior power of £ 

We note that TZ c TX always has a complex normal bundle namely 
7i*(v ® C) where n\ TZ -> Z is the projection and v is the normal bundle 
of Z in X. Thus if Ti denotes the inclusion of TZ in TX, the homomorphism 

Ti^K%{TZ)-+K%{TX) 

satisfies 

(1.2) Tf*Tïîicx = /l_1(v(8)C).Z 

for x G K*{TZ). Recall K%{TZ) is a K%{X) module via TC*. 
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Note that KG(point) = R(G) is the complex representation ring of G 
and K%(X) is an R(G) module. An important example is the case G = S1, 
the circle group. Then RiS1) = Z[t9t~

x] is the ring of Laurent series 
£J = _Nait\ Here N is an arbitrary positive integer and all at are integers. 

Of fundamental importance is the existence of a homomorphism of 
R(G) modules : 

ldx
G:K%(TX)^K*(pt)==R(G); 

R{G) is the complex representation ring of G (character ring of G). This 
homomorphism satisfies a few basic properties which makes it quite 
accessible to computation. Let coiG1 -• G be a homomorphism. Then 
there is a homomorphism co*:KG

i(TX) -» K%{TX) and a commutative 
diagram 

K%{TX) œ * *K£i(TX) 

(1.3) | ld£ |ld£i (Compatibility axiom). Wo |] 
Y _ CO _ • 

R(G) •^(G1) 

Of course co* is defined for any G space Y. If i : Z -> X is the inclusion of 
an invariant submanifold, then there is a commutative diagram 

K*{TZ) ^*—•Kg(TX) 

(1.4) lldg Id* 

„ • _ identity J^ 
£(G) -—•K(G). 

(1.5) If X is a point, Id£ is the identity map of R(G) = K%(TX). 

Let G be abelian and geG. Denote by p the prime ideal of characters 
of R(G) which vanish at g. The localized ring R(G)P consists of the fractions 
{j#l& <A ^ #(G), i//(g) # 0} with the relation xd^i = X2M2 if there is an 
co e R(G) with co(g) ^ 0 and co(x1il/2 - Xi^i) = 0. If M is an R(G) module 
MP=M ®RiG) R(G)p. 

If S is a subset of G, Xs denotes the set of points of X fixed by elements 
of S. Note that since G is abelian, Xg is a G invariant submanifold of X 
for g e G . There is then this basic theorem of Atiyah-Segal [5]. 

(1.6) LOCALIZATION THEOREM. The inclusion i:X8 -> X induces isomor­
phisms i*:Xg(X)p -> KG(X\ and Ti*:KG(TX)p -> KG(TX%. The latter 
has inverse /l_ x(v (g) C)~ 1(TÏ%* w/*m> v is £/K? norma/ bundle of Xg in X. 

Thus Id£ is completely determined by (1.4), (1.5) and (1.6) in the case Xg 

consists of isolated points. 
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When v is a G vector bundle over X and Z <= X is an invariant sub-
manifold, we denote by v|z this bundle restricted to Z. If Z = x is a fixed 
point, it is a complex G module and we let v\x(g) denote the trace of the 
element g acting on vx for geG, i.e., the value at g of the character of G 
defined by vx. 

2. The group spinc(m). Let V be a real vector space of dimension 
m = 2n. We suppose V endowed with the standard inner product with 
respect to an orthonormal base el9e29...9em. Let A(V) denote the 
Clifford algebra of V [2], [13]. F o r u e F c A(V) we have 

(2.1) t;2 = - I M I M 

where 1 e A(V) is the identity. 
A(V) is the direct sum A+ © A" where A+ is spanned by the products 

eheii ' " efc with k e v e n an(* A~ by the products with odd k. The multiplica­
tive subgroup of A(V) generated by elements of the unit sphere Sm~x c: V 
c A(V) is denoted by spin(m). The intersection spin(m) n A+ is the group 
spin(m). 

The group spin(m) acts in an obvious manner on A + (x) C giving a linear 
representation of spin(m). This representation is reducible 

A+ ®C=2 m (A + ©A_) 

where A+ is the + eigenspace of (i)ne1e2 • • • em = T and A_ is the negative 
eigenspace of T. 

Observe that T2 = 1 and T commutes with elements of A+ and so with 
spin(m) and 

TV = — I;T for i; G K 

Because of this, left multiplication by t; G K denoted by L(v\ maps A+ to 
A_ and vice versa. Let 

6:Vx A±-+Vx AT 

be the map defined by 

(2.2) 6(v, Ô) = (t;, L(t;)(5), v e K <5 e A ±. 

Then 0 is elliptic, i.e., for fixed v ^ 0 in F the linear map 

0V:V X A ± -> t? X Aq: 

defined by restricting 6 is an isomorphism. This follows from the fact that 

evo9v(v,S) = (v,L(v)L(v)ô) = (v, -\\v\\2ô) 

because L(v)oL(v) = L(t;2) = -| |i; | |2 • 1 by (2.1). 
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The generator s = — 1 e A(v) of the double covering 

n1:spm(m) -• SO(m) 

acts as multiplication by — 1 on A+ and A_. This means that the action 
of spin(m) on these two representation spaces may be extended to the 
group 

spinc(m) = spin(m) xZ2 S
1.2 

Here Z2 c: spin(m) is the subgroup generated by — 1 e spin(m) and Z2 cz S1 

is the subgroup generated by — 1 c S1. Explicitly if [g, t] denotes an 
equivalence class in spinc(m) determined by g G spin(m) and teS1 eC, then 

[g9t]ô = t.(g.ô) for<5eA±. 

Of particular importance to us is the commutative diagram 

U(m) — •spinc(m) 

(2.3) \ < A 

Here;i[g,t] = n^g); 

SO(m). 

^diag(^^...?^) = d i a g ( ^ ^ 2ej)-SO(m)9 

i A o d i a g ( ^ , ^ 2 , . . . , ^ ) 

[ 0 (cos 0,-/2 - s inöy2^_^ 2 j) ?exp[-f(p j /2)]] . 

Note that 

Y[ (cos 8j/2 — sin OJl e2j- i ^ ) e spin(m) a A(V) 
7 = 1 

so i/̂ o makes sense and n\l/0 = \j/. 
Observe that spinc(m) has a central circle subgroup S1 and the quotient 

is SO(m). The orbit map is n. 
Moreover there is an exact sequence of groups 

(2.4) 1 -> spin(m) -4 spinc(m) -4 S1 -> 1, j[g, t] = r2, 

2 In general if X is a right G space and Y is a left G space X xGY denotes the space 
obtained from X x Y by identifying (xg, g" V) with (x, y). x e X, >; e Y, g e G. 
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and a commutative diagram 
« i i 

spinc(m) x S1 —• spin^m) 

(2.5) j x d 

S1 x S1-
m? 

+S1. 

Here mx is multiplication in spinc(m), m2 multiplication in S1 and d is the 
squaring map d(t) = t2. Since S1 is central in spinc(m), mx is a homomor-
phism of groups. 

3. Spinc bundles. Here we collect some of the properties of spinc(m) 
bundles which will be useful in our analysis of actions on spinc manifolds. 

The classifying space of a group G is denoted by BG. From diagram 
(2.5) and the fact that m1 and m2 are homomorphisms of groups we obtain 
a commutative diagram 

(3.1) 

-°spinc(m) X &S1 ' 

J X d 

m X-+B spinc(m) 

J 

Bsi x Bsi 
m0 +BS1 

The map mt makes Bspinc(m) the total space of a principle Bsi bundle 
over BSO(m) and there is a commutative diagram of fiber spaces 

BSi- -+B*. 

I' 

(3.2) Bspmc(m) ^Bsi 

In ÎA 

B 
W, ->K[Z2,1\. SO(m) 

which shows that the principle bundle £ defined by n is induced from 
the bundle over K[Z2,2] via the map W2. Of course, the bundle over 
K[Z29 2] arises from the diagram of groups 1 -*> Z2 -• S1 -4 S1 -• 1. 

Principle Bsi bundles over BSO(m) induced from this principle Bsi bundle 
over K[Z2,2] are classified by H2(BSO(m)9 Z2) ^ Z2. This group is gener­
ated by the universal second Stiefel-Whitney class W2. Thus, to justify the 
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notation W2 for the map inducing the bundle £, it suffices to show that 
7i2(£spinc(m)) is not Z ® Z2 = n2(Bsi x BSO{m)\ i.e., that W2 is not the 
trivial map. But this follows from the fact that ^(spin^m)) = Z which is a 
consequence of the fact that spin(m) is simply connected and the exact 
sequence (2.4). This gives 

LEMMA 3.3. Bspincim) is the total space of a principle Bsi bundle over 
BSO(m) induced from the nontrivial bundle over K[Z2, 2] by a map W2 : BSO{m) 

-• K[Z2,2] realizing the universal second Stiefel-Whitney class. 

Let ô be a principle SO(m) bundle over a space X classified by a.map 
c:X -• BSO(m). By definition a spinc(m) structure (briefly a spinc structure) 
on ô is a homotopy class of maps c : X -> J3spin

c(m) such that rtc is homo topic 
to c. Let a e H2(Bsh Z) be a generator of this group. 

LEMMA 3.4. The mod 2 reduction of c*/*(cr) is W2(ô\ the second Stiefel-
Whitney class of b. 

PROOF. Let o2 be the mod 2 reduction of a. Then if i e H2(K[Z2,2], Z2) 
is the generator, A*(i) = a2 and 

W2{§) = c*W?(0 = c*S*W?(0 = c*/*cx2 

which is the mod 2 reduction of (c*j*&). 
We remark that the multiplication m2 of (3.1) corresponds to the tensor 

product of complex line bundles. Since B spinc(m) IS the total space of a 
principle Bsi action, H2(X, Z) acts on [X, Bspin«(»i)l the set of homotopy 
classes of maps of X to J3spinc(w), in the following manner. Let ƒ G [X, £spin*(m)] 
and g e [X, Bsi] = H2(X, Z). Then we obtain a commutative diagram 

ƒ x gw 
'spinc(m) 

I J x d \j 

m2 • 
I>5i X f> si • -D51. 

Denote the composition mt ƒ x g by ƒ og. This defines the action of 
//2(Z,Z)on[X,Bspinc(W)]. 

Let ƒ denote the complex line bundle over X defined by jf If Pf denotes 
the principle spinc(m) bundle over X induced by ƒ then ƒ = Pf x spinc(w) C 
where spinc(m) acts on C via the representation; of spinc(m) to S1 given by 
(2.4). Let g denote the complex line bundle over X determined by g. 

LEMMA 3.5. (fogf =f-g2. 
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PROOF.(fogf = jmi(f x g) = m2(j x d)(f x g) = m2(jf x dg) =f-g2 

Since BspinC(m) is the fiber product of 

Bso(m)^K[Z2,2] and Bsl^-+K[Z2,2] 

we have : 

COROLLARY 3.6. 77ze spinc(m) structures on a principle SO(m) bundle ö 
are in 1-1 correspondence with elements deH2(X,Z) whose mod 2 reduc­
tion is W2(S) the second Stiefel-Whitney class ofb. An explicit correspondence 
is this: Let P be the total space of a principle spinc(m) bundle such that the 
orbit space P/S1 = Q of P by S1 c spinc(m) is the total space of ö. (Since 
spin^mJ/S1 = SO(m\ Q is the total space of a principle SO(m) bundle.) Then 
the correspondence is given by P ->c1(^). Here Ç is the line bundle whose 
total space is P xspinC(m)C and c^Ç) is its first Chern class. 

Suppose that X is a smooth m dimensional manifold. By definition a 
spinc(m) structure on X is a spinc(m) structure on its tangent bundle TX. 

LEMMA 3.7. If H3(X, Z2) = 0 then X has a spinc(m) structure. 

PROOF. H2(X, Z) -> H2(X, Z2) is onto. 
REMARK. We find it convenient at times to use the total space P of a principle 

spinc(m) bundle to designate the spinc(m) structure it defines. 

4. Orientation of G manifolds and Poincaré duality. Let X be a compact 
G manifold of dimension m. Let VF be a (real) G vector bundle over X of 
dimension k. An orientation for W is a class coGeKG(W) such that 
i*coG e Kk

G(W\0) generates K%(W\0) freely over K%(0) for every orbit O. 
Here i is the inclusion of W\0 in W. 

DEFINITION. An orientation for X is an orientation aG e KG(TX) of the 
tangent bundle ofX. 

Observe that if X has a boundary dX, then dX is oriented by 7*(aG), 
j\dX -• X because 

K$(TX\dX) = K%(TdX x R1) = K%-\TdX). 

An orientation class aG provides a Thorn homomorphism \jj — \j/^:K%(X) 
-,XG(TZ),iAiW = a G . l 

LEMMA 4.1. XJ/Q is an isomorphism. 

PROOF. Let X denote the orbit space of X by G. There are two sheaves 
over X, £fq and ^ whose stalks are respectively 

Sfq(x) = K%(Gx\ <Tq(x) = K%(TGx\ 

where xeX and Gx cz X is the orbit of x e X lying over x. 
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Multiplication by aG induces a map of the spectral sequence [12] 

to the spectral sequence 

Ep
2>

q = Hp{X, 3T) => K%{TX) 

which is an isomorphism on the E2 level. 

COROLLARY 4.2. \j/G
x is an isomorphism. 

COROLLARY 4.3. i/zgM) : K%{X, dX) -> K%(TX, TX\ex) is an isomorphism. 

PROOF. Multiplication by aG induces a map of the exact sequence of the 
pair (X, ÔX) to (TX, TX\ÔX) which is an isomorphism on two terms by the 
preceding. The result follows by the five lemma. 

REMARK. We could equally well have defined an orientation for X by 
means of a class j8G e K%(NX) where NX is the normal bundle ofX which is 
equivariantly imbedded in a complex representation space M for G. These 
are equivalent concepts. 

The significance of this remark is that K%(NX) is the equivariant 
homology of X dual to K%(X) if X is a closed manifold. To see this, note 
that I c M c M + = S2n where M+ is the one point compactification 
of M which we assume has complex dimension n. Then by definition 

(4.4) Kf(X) = K2
G

n-\S2\ S2n - X) s K2
G

n-\NX, NX\dx) 

by excision. 
The map C which collapses the exterior of the closure NX of NX in M+ 

induces 

C*:K%(NX, dNX) -> KG(M, +) = R(G). 

The composition of C* with the map m\K%{X) ® K%{NX,NX\dX) 
-* K%(NX9 NX\dX) which exhibits K%(NX, NX\dX) as a module over 
K^(X) defines the duality pairing 

i:K&X)®K°-JLX)^R{G). 

There is a second duality pairing which is more appropriately related 
to our purpose when X is a closed manifold. It is the map 

d:K^(X)®K^{TX)^R(G) 

which is defined by 

d(x ®y) = Id£(x • y) 

for x e K%(X) and y e K%(TX). 
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REMARK. When X is a closed manifold, these two pairings are the same. 
The point is that the pairing d is more generally defined while the pairing d 
is more accessible to computation because of the properties of the index 
homomorphism. To extend the definition of d to spaces X which are not 
manifolds we must assume that X is imbedded in a complex representation 
space M of G with an equivariant regular neighborhood NX c M+. Then 
Kf(X) = KQn~l(NX, dNX) and d is defined for such G spaces X as above. 

To justify the above remark we offer 

PROPOSITION 4.5. If X is a closed G manifold there is an isomorphism 
4>\K%(TX) -+ K%(NX) which takes d to d. 

PROOF. There is a commutative diagram of vector bundles 

TNX 

\ 
NX 

—> 

—» 

TX 

i* X . 

Since NX c M is an open subset, TNX s NX x M as a G vector 
bundle over NX. However, TNX s n*(NX ® Q. Since TNX is a com­
plex G bundle over NX as well as over TX, we have Thom isomorphisms 

^1:K%(NX)-^KUTNX), 

^2:K%{TX)^K%{TNX\ 

and a commutative diagram 

K%{NX) ® K%X) -&-* K%{NX) -^—-+ K%{M) 

Itf'i® 1 
K*(TNX) ® K&X) "' • Kg 

1 ^ 2 ® 1 

•K I 
(TNX) >K%{TM) 

ij/2 

IdS Î 
K%(TX)®KUX) -Jn-+ K*(TX) — ^ R(G) 

in which all vertical maps are isomorphisms. Since d is defined by the top 
row and d by the bottom, the demonstration is complete. 

With the equivariant homology of a manifold X defined by (4.4) we 
obtain Poincaré duality free if an orientation is given. 

PROPOSITION 4.6. If X is a compact oriented G manifold of dimension m, 
then X satisfies Poincaré duality: Kf(X) £ K^~l(X, dX). 

PROOF. If aG e K%(TX) is an orientation then 

xj,x:K%{X,dX)-*K*{TX,TX\dx) 
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is an isomorphism. But 

K*{TX9 TX\ex) s K$(NX,NX\ex) = K°(X). 

In view of Proposition 4.6, we expect the difficulties of studying G 
actions on manifolds by using Poincaré duality to be intimately connected 
with the existence of an orientation. There is a very general situation in 
which it is often possible to construct an orientation. This occurs when X 
is a spinc(m) manifold. Again this means there is a principle spinc(m) 
bundle P over X such that 

P x spin-(m)̂  = TX the tangent bundle of X. 

We assume : that G acts on the left on P, commutes with the right 
action of spinc(m) and is compatible with the natural left action 

,.— on g, the principle SO(m) bundle associated to TX, (in 
other words, the frame bundle of TX\ obtained by sending 
(g, l>i> v29...9 vm]) -> [dgvu dgv2,..., dgvm] for g e G, [vl9..., vm] 
a frame in Q and dg the differential of G. 

The elliptic pairing (2.2) is the basic property for constructing a class ôG 

in KQ(TX) from the equivariant spinc(ra) structure on X. 
For brevity, set H = spinc(m). We define a G x H complex of vector 

bundles [6, p. 489] over P x V: 

P x V x A+-^P x V x A_, 

<l*P,i>,«) = (p ,0M)) . 

The G x H action on P x F is given by 

(g,h)(p,v) = (gph~\hv); 

the action on P x V x A± is given by 

(g, h){p, v, b) = {gph~ \ to, hb). 

Since 0 is an elliptic pairing, this complex defines an element 

èGeK*G«H{P xV) = Xg(P xH V) = K&TX). 

Here are some examples in which ôG or a close variant defines an 
orientation. 

EXAMPLE 1. X is a point, m is even, G = U(m/2) is the unitary group of 
isometries of Cm/2 and K= Cm/2 denotes the standard U(m/2) module. It 
is a U(m/2) bundle over a point. We define an orientation class A^ for V. 

The elliptic pairing 9 : V x A+ -> V x A_ of (2.2) gives an elliptic 
U(m/2) complex 

Ô:Vx A+ -> Vx A_ 
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over a point. Here A+ and A_ are U(m/2) modules via the homomorphism 
\j/0 of (2.3). This complex defines an element A^ e K$( V). 

PROPOSITION 4.8. K$(V) is a free module over R(U) = K${pt) generated 
by Av. 

PROOF. The symbol of the de Rham complex of V, Àp e K$(V) is a 
generator [6], so 

Au = a'ÀpeK$(V) 

for some aeR(U). Let j:X-> U denote the inclusion of the maximal 
torus and / the composition 

K*{V) £ Xg(0) A K*(0) = R(X). 

Here i* is the restriction defined by the inclusion of the origin 0. Now 
m/2 

R(X) = Z[ti9t1 ,t2,t2 , . . . , £w/2> tm/2]' 

But/Ay =(A+ - A_)|r =Y\(l - t r % This follows from the definition 
of \//0 and the fact that the trace of t = (tu t2,..., tmj2) acting on A+ minus 
the trace of t on A_ is Yl(^~ ^i"1)^- Since R(U) -> R(Z) is injective, 
a = (-l)w / 2 . 

If G A U(m/2) is a representation then AG e K%(V\ is defined to be 
p*Av. It generates K%(V) freely over R(G). 

EXAMPLE 2. X is a simply connected spinc(m) manifold with an S1 action 
which satisfies (4.7). 

PROPOSITION 4.9. (5si is an orientation for X. 

PROOF. There are two kinds of orbits, a point and Sx. If p is a fixed point 
and i: TX|p -> TX the inclusion, TX\p — V as an S1 bundle over p and 

If S1 is an orbit, then because X is simply connected 

P\si S S1 x spinc(m) 

is the restriction of the principle spinc(m) bundle over X to the orbit S1. 
If x denotes the point SVS1, then ^ ( S 1 ) = K*(x) and 

Xîi(TX|si) = KKS1 xV)* K*(V) 

and i*((5si) = A1 e K*(V) is an orientation for V over x. Here 1 denotes the 
trivial group. 
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EXAMPLE 3. X = U(Z) is the group of isometries of a complex G module 
Z of real dimension m. So as a space X = U(m/2). The G module structure 
on Z gives a representation p of G in U(Z) and G acts on X = £/(Z) via 
inner automorphisms. Then 

(4.10) TU(Z) = U(Z) x M 

where M is the real G module p*Mx and M1 is the tangent space of U(Z) 
at the identity. It is a real U(Z) module via the adjoint representation of 
U(Z) on M1. We emphasize the fact that (4.10) is the expression of TU(Z) 
as a G vector bundle over U(Z). 

Either M1 or M1 x R1, depending on the dimension of M1, is a complex 
U(Z) module V. Then restricting to G we obtain a complex of G vector 
bundles 

U(Z) x V x A+ i l l [/(Z) x F x A . 

whose symbol aG G KG((7(Z) x V) is 

1 <g> AG G Kg(l/(Z)) ® *(G) X*(f) = Xg(l/(Z) x f) 

by the Künneth theorem of [10]. Since U(Z) x F is either Tt/(Z) or 
TU(Z) x K1 as a G space, aG G Kg(TT/(Z)) and 

PROPOSITION 4.11. aG is an orientation. 

PROOF. This follows from the fact that aG = 1 ® AG and Proposition 
4.8 together with the Künneth theorem. 

EXAMPLE 4. X = G/H where H and G are compact connected Lie 
groups, H has maximal rank in G and G/H has a spinc structure. G acts on 
G/H by left translation. Then the G action on X satisfies the condition of 
(4.7) and the class aG constructed from the spinc structure is an orientation 
for X. We omit details of the proof. 

5. The homomorphism Xg(X)-^Xg(TX)^^>R(G). When X is 
oriented we can consider the composition IdGi/̂ G = TG. It provides 
powerful invariants for the G action on X. The most important case for 
our purpose occurs when X has a spinc(m) structure (m even) and is oriented 
by öG. We require an explicit formula for IdG(<5G) in terms of the representa­
tions of G in the normal fibers to the fixed point sets. 

We make these assumptions : 
(5.0) G is topologically cyclic, i.e., has a dense generator g and for each 

component Xf of the fixed point set of G, XG, we have H3(Xf, Z2) = 0. In 
addition we assume that the action of G on X satisfies (4.7). 
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We now investigate the behavior of the class ôG when restricted to 
K%(TXG). Over XG we have a diagram of bundles 

PQ
 c p\x° = P 

I I 
6o <= Q\Xo = e 

where Q is the principle SO(m) bundle associated to TX\xG and Q0 is the 
principle SO(kj) x SO(m - kJ) associated to TXG © NXf. Q0 is a reduc­
tion of Q. Here we assume XG is orientable so its dimension kj is even as 
is m. The group of the bundle P0 is spinc(/cy) x 5i spinc(m — fc,) = H0. For 
convenience of exposition, we concentrate on a particular component of 
XG and drop the subscript ƒ We are interested in the class Ti*öG e KG(TX°) ; 
Ti: TXG -> TX is the inclusion. Note that Ti is the composition 

TXG -4 TXG © NXG À TX 

where S is the zero section of TXG © ATXG as a bundle over TZG and; is 
the inclusion. 

Let d e H2(X) be the class associated to the principle spinc(m) bundle 
P over X. See Corollary 3.6. Since H3(XG

iZ2) = 0, every element of 
H2(XG,Z2) is the reduction of an element of H2(XG,Z). Choose 
dt e H2(XG, Z) whose reduction is W2(X

G) and let d2 = ƒ *d - dx ; 
f:XG-+Xthe inclusion. The principle spinc(fe) and spinc(m — k) bundles 
determined by dt and d2 are denoted by P1 and P2. Then P1 x P2 is the 
total space of a principle i?0 = spinc(/c) x spinc(m — k) bundle over 
X x X whose orbit space Px x s iP 2 by the diagonal action g(x,y) 
= (g~xx>gy\ geS1

9xePl9 yeP2, is the total space of a principle H0 

bundle over XG x ZG. If D:ZG -+ XG x XG denotes the diagonal map 
then D*PX xslP2 = P0. 

Now we remark that 

P Xspinc(w) ^ X A ± = P 0 XHO V X A ± ' 

The homomorphism spinc(fc) x spinc(m — k) -> spinc(m) makes A± and 
V H0 modules and these decompose as 

V = V1 © F2, 

A+ = A^-A2. © A l - A 2 , A_ = A1
+-A2.®AL-A2

+, 

where • denotes tensor product. Here the superscript 1 denotes a spinc(/c) 
module and a superscript 2 a spinc(m — fc) module. 

Next we observe that 

P0 xHo Vx A±=P0xÊ0Vx A± 
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where P 0 = D*P^ x P2. From these observations we have 

J*SG = Ö*yG ® 9G = yG • 0G G KG(TXG © NXG). 

Here yG (g) 0G 6 K%(TXG x iVXG) is the external tensor product of the 
class yG G K%(TXG) defined by the complex 

^1 Xspinc(fc) ^ X A+ - • P i X sp inc (k ) K X A _ , 

6G e K^(NXG) is the class defined by the complex 

*2 Xspinc(m-k) ^ X & + ""* -*2 Xspinc(m-fc) ^ X A -

and D:TXG © NXG -> TXG x iVXG is the bundle map covering the 
diagonal map D. Now P 2 xSpin^m-fc) V2 x A^ x co± are vector bundles 
over XG and S*yG9G = yG * (&>+ — &>-) hence 

7Y*<5G = 5 T a G = yG(co+ ~ co_)eX*(TXG). 

We record this as 

LEMMA 5.1. Let G be cyclic and H3(XG ,Z2) = 0. Let deH2{X,Z) 
determine a spinc(m) structure P on X. Choose dx G H2(XG, Z) whose mod 2 
reduction is W2(X

G) and let d2 = f*(d) — dl9 f:XG -• X the inclusion. 
Then dx and d2 determine spinc structures Px and P2 on TXG and NXG and 
we obtain G vector bundles co+, co_ e K%(X) coming from P2 and a class 
y G e K%(TXG) coming from P1 such that 

T M G = yG(co+-co_)GXG(TXG) 

where <5G is the orientation class associated to the principle spinc(m) bundle P. 

Now the action of G on NXG gives a representation p:G -» SO(m — k). 
Namely if x e XG then gx = x; so, for q e <20, 

m = qp(g), 

. v ,. / cos of sinöA c r i / fv 
p(g) = diag . ' *eSO(ro-fc), 

i = 1,2,.. . , (m — fe)/2. The numbers 0f are well defined modulo 
7i = 3.1416... . 

The action of G on P2 gives a homomorphism p : G -> spinc(m — /c) and 
a commutative diagram 

• spinc(m — fc) 

50(m - k). 
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Moreover, 

Pis) = 
(m-'k)/2 

f i (cos Oj/2 - sin dj/2 e2j.,e2j\ exp[-i^fijl + X)] 
L J = I 

for some A = A(g), g-*e~ u is a homomorphism from G to S1 and 
gp = pp(g) if p lies over x; thus the action of g on the fibers A2 and A2. 
of <x>+ and co_ is given by the representation p. 

REMARK. Observe that if XG and hence NXG has n components, we 
obtain n representations ph i — 1, 2 , . . . , rc, which completely describe the 
action of G on the fibers ofo)+ and co_. 

The normal bundle NXG has a decomposition invariant under G, 

NXG = NXG{- 1) + £ NXG{u), 
u 

where the u are complex numbers of absolute value 1 with positive 
imaginary part and NXG(u) has a complex structure in which geG 
operates by multiplication by u. This gives a lifting p of the representation 
p:G^> SO(m - k) to U((m - k)/2) and 

p(g) = diag{v/v} c= I/((m - fc)/2). 

/v is the nv x ny identity matrix where nv = dimciV(v), v = eie, 0 ^ 0 < n. 
For a complex vector bundle L of dimension s and complex number z, 

set 

iF(L,z) = z"s/2 f l [z~1/2e~^/2 - z ^ V ' 2 ] " 1 

= f l [e-»f2 - zé»*2]-1 

where the ^ are the formal roots of the total Chern class of L. Observe that 

JF(L, -1) = l\[e-»12 + e^12]-1 

also makes sense because this is a symmetric function of the y) and so is a 
function of the Pontrjagin classes of N(— 1). 

Another cohomology class is defined by 

J(XG) = [J x/e*'/2 - £T*'>2)-* G #*(XG, C). 

The elementary symmetric functions of the variables x2 are the Pontrjagin 
classes of XG. 

We are now in position to give an explicit formula for ldG[ôG](g)e C, 
i.e., the value of the character Id£[(5G] at g G G. 



1972] S1 ACTIONS ON HOMOTOPY COMPLEX PROJECTIVE SPACES 123 

PROPOSITION 5.2 

77œ swm ÏS oi>er t/ze components XG of XG. The numbers Uj are determined 
by the representation pf.G -» SO(m — /c;). Explicitly if 

t/ien the t̂ -'s are £/ie complex numbers {eWl} and dimc(iVXG(w)) = number 
of I with el6x = u. The number kj = kfg) associated to the jth component is 
determined by the lifting py. G -> spinc(m — k) via 

Pjfe) 
•(m-k)/2 

[ ] cos 0,/2 - sin 0,/2 e^-i^i* exp[-i(Xei/2 + A;)] 

ara/ g -> elA^(g) defines a homomorphism of G to S1. The inclusion of XG in 
X is denoted by fj and the cohomology class in the sum is evaluated on the 
orientation class [XG]. The class d e H2(X, Z) determines the spinc structure 
on X used to define ôG. 

PROOF. KG(XG) = R{G) ® K*(XG). 
Let chg:KG(XG) -+ K*(XG, C) be defined by chgx ® u = %(g) • ch{u) for 

X G R(G) and u e H*(XG). Let e ® Id?GR(G) ® K*(XG) -» C ® z Z = C be 
defined by e ® Idf°fo ® u) = *(g) • IdfG(w). Let 77: TXG -» TX be the 
inclusion. Then 

Id£<5G(g) = e ® Idr(Ti*5GM_1(iVXG ® O ) by [5] or Part I, (1.6), 

^ \œ+\XG-œ.\XG 

k.1{NXG®C) 

chyolxoAXj)-]^ (œ+\Xf-œ-\Xf\rvG 

II™» 

= e®ldr\yGr: Z^o -„J>1 by Lemma S.l, 

= I Chg\ k^(NXf®C)][X"1 

where the wjh I = 1,2,..., are the formal roots of the Pontrjagin classes 
of Xj. This formula follows from [6, p. 559, Proposition 2.17], Let du and 
d2j be the jth components in H2(XG, Z) = HjH2(Xf9 Z) of the classes dx 

and d2 discussed in Lemma 5.1. Then 

chxyG\xo = ed"l2Y[ew»/2 - <TW"/2, 
J i 

- W j l 
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and 

Since dlj + rf2j- = f*(d), the result follows. 
We can give a better geometric interpretation of the numbers Xj as 

follows. Let 

co = r x spinc(m) C 

be the line bundle over X determined by the representation spinc(m) -• S1 

which sends [g, t] to £2. Then co is a G bundle over X. Here G acts on co via 

gl>, c] = [gp, c], peP,ce C. 

The restriction of co to the component X? defines a one dimensional 
complex representation of G, namely the representation of G in the fibers 
of co. So if x e Xj and cô  is the fiber over x, then g operates on œx by 
multiplication by eiC0j. 

PROPOSITION 5.3: The numbers o)j defined by the restriction of the line 
bundle co to the component Xj by 

<o\Pjig) = Ja", PjeXj, 

and the numbers Xi and 9Jt defined by the representation of G on NXf by 

p/.G -*• spinc(m — kj), 

PM) = f ] (cos 6j,/2 - sin 6j,/2 e2l_1e2l, exp - i (EV2 + ^) 

are related by 

( E ^ + 2A,)=Û,, . 

PROOF. If X G Xj, then gx = x; so if p e P lies over x, then 

gP = PPM) 

and 

g[p> c] = [ppj(gl c] = [p, p/g)c] 

= [ p , e x p [ - * £ 0 j 7 + 2 ^ ) M 

and this shows that the representation of G on cox has character value, at 
g e G , e x p [ - / ( X e J , + 2^)]. 
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REMARK. More generally for u e K%(X\ 

Id£(<5G • u)(g) = X chg(u\Xf) • Aj[Xf], geG 
j 

where Aj is the expression in parentheses occurring in Proposition 5.2. In 
particular when g = 1 e G, 

Id£((SG • u)(l) = ch{u)edl2d{X)[X\ 

An important special case occurs when G = S1 and the fixed point set 
XG consists of isolated points pp j = 1,2,...,/. Let t = eweS1 be a 
generic point. Then 

,c ,v ,. j . (7 cosx;fc0 sinx/7c0\ 
(5.4) ^ ) = d i a g { ( - s i n 4 0 c o s * » 

/c = 1,2,..., m/2, where each Xyfc is an integer well defined up to sign. 

(5.5) pit) = [ ] cos xjk6/2 - sinxjk0/2 e2k_ 1e2k,e
 l*j 

where a,- = XkXjk0/2 + Ayö and A,- is an integer. 

COROLLARY 5.6. If S1 acts on X with I isolated fixed points PjJ= 1,2,..., 
/, then it is possible to fix the signs of the integers xjk such that the I x m/2 
matrix {{xjk}) whose jth row gives the representation ofS1 on TX\pj via (5.4) 
and the I integers- Xj determined by (5.5) determine the homomorphism 
Id$i:KUTX)-+R(S1)by 

l m/2 i 

where Uj(t) e RiS1) = Z[t9t~*] denotes the character obtained by restricting 
u to Pj. Moreover ifP is the principle spinc(m) bundle used to define ôSi and 
co = P x spinc(m)C the line bundle determined by P, then œ is an S1 bundle 
over X and the integers Pj defined by 

œ\Pj(t) = t^eZ[t,r1] 

and the integers Xj are related by 

- ( J N * + 2A,)=/!7. 

PROOF. One of the fundamental properties of the homomorphism 
Id£ : K%(TY) -• R(G) is that for Y = point, it is the identity. By hypothesis 

xsl = Ù PJ-
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If Tij'. Tpj -» TX is the inclusion, 

m/2 

Tij(ôslu) = up)- n if*12 - rx*l2)t-x*l2-x\ 

m/2 

x.1{NPj®C)= f] (i - t^)(i - r**). 
fc=i 

The signs of the xjk9 k = 1,2,..., m/2, are chosen as follows: Let 

TX\p. = ex 0 e2 0 • • • 0 em/2 

be the splitting of this representation space of S1 into oriented 2 planes 
invariant under S1. The orientation of TX\Pj is to be the one given by this 
direct sum representation. Give et a complex structure compatible with 
the given orientation on et. Then for zkeek, teS1 operates on zk by 
multiplication by tXJk and the sign of the integer xjk is determined. Thus 

I m/2 / i \ 

The rest of Corollary 5.6 follows from Proposition 5.3 by replacing the 
data (coj, 0Jl9 ks) by (fifl, Xjfi, kJ9) and g by t = eie. 

6. Specialization to S1 actions. There is a theorem of Stewart [15] 
improved by Su [16] which to my knowledge has found little use until 
now. It is fundamental to the rest of our discussion. The situation is this : 
X is a paracompact space supporting a left action of a torus group Zx; 
P is a principle %2 bundle over X. The torus %2 acts on the right of P. 

THEOREM 6.1 (STEWART [15] AND Su [16]). If f/1(X,Z) = 0, the left 
action ofZ1 on X lifts to a left action ofZx on P which commutes with the 
principle right action of Z2 on P. If (t,p)-> t-p and (t,p) -> top denote 
two liftings of Zi to P then there is a homomorphism 8:Z1 -• Z2 such that 

top = t-p>6(t). 

We shall restrict application of this theorem to the case Zx = Z2 = S1. 
Suppose, in addition to the hypothesis of 6.1, that X is a smooth manifold 
of dimension m and H3(X9 Z2) = 0. Then X has a spinc(m) structure by 
Lemma 3.9. Let P be a principle spinc(m) bundle over X associated to the 
tangent bundle of X. 
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THEOREM 6.2. The left S1 action on X lifts to a left S1 action on P which 
commutes with the right action of spinc(m) on P. Thus the action of X 
satisfies the hypothesis (4.7). 

PROOF. Let Q denote the principle SO(m) bundle associated to the 
tangent bundle of X. From the exact sequence of groups 

S1 -• spinc(m) -> SO(m) 

we see that P is a principle S1 bundle over Q. If m > 2, then H\Q9 Z) = 0. 
There is a natural left S1 action on Q commuting with the principle right 
action of SO(m). By 6.1 this action lifts to P and commutes with the 
principle right action of S1. 

The lifted action may not commute with the principle spinc(m) action 
on P so a modified lifting may be necessary. We have satisfied these. 

Hypothesis. P is the total space of a principle right spinc(w) bundle over 
X. There is a left action of S1 on P which commutes with the right action 
of S1 c spinc(rc). Moreover, the induced left action of S1 on the orbit 
space Q = P/S1 commutes with the right action of SO(n) on Q. 

We now show that this hypothesis implies that the left action of S1 on 
P can be modified so as to commute with the principle right action of 
spmc(n) and so that the induced left action on Q is left unaltered. 

Let seS^^.he spinc(n). Then for x e P we have 
(i) (sx)h = s(xh){j/(s,x,h) where \j/(s9x,h)eS1

9 the center of spinc(n). 
This is a consequence of the fact that the S1 action on Q commutes with 
the right action of SO{n). 

(ii) \j/(s9xt9h) = \j/(s9x9h) for teSx. This is a consequence of the fact 
that t G center spinc(n) and the Hypothesis. 

As a result of (ii), $(s, x, h) = (s, nx, h) where i/r.S1 x Q x SO{n) -> S1. 
Here n is the projection of P on Q. The function ij/ has these properties : 

(iii) \//(l9z9h) = \jj{s9z91) = 1, zeQ and 1 the identity of the appro­
priate group. 

(iv) tA(siS2>
 z>h) = *A(si> s2z9 h)\l/{s29 z, h). 

(v) i//(s9 z9 hxh2) = \J/(s9 zhl9 h2)\jj{s9 z9 hx). 
Because of (iii), x// is null homotopic and there is a unique lifting \j/ to 

R1 which satisfies ^(l ,z0 ,1) = 1 for a fixed z0eQ. Moreover \j} will 
satisfy (iii), (iv) and (v) except we change from a multiplicative to an 
additive notation. Observe that 

(vi) \//(s9 zh\ h'~ 1h) — [//(s9 zh'9 h'~l) — \j/(s9 z, h) by (v). 
Define, for seS1, zeQ9 

y(s9 z) = \j/(s9 zh9 h'^dh 
JH 
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where dh denotes the normalized Haar measure on spinc(n) = H. Then 

y(s, zh) — y(s, h) = \j/(s, zhh\ tt'^dh' — $(s, zh\ h'~ x)dh' 
JH JH 

(vii) = f [\p(s9 zh", h" ~ **) - $(s, zh", h" ' ^dh" 
JH 

= \j/(s, z, h)dh" = \j/(s, z, h) by (vi). 
JH 

(viii)\jfas2, z) = y{su s2z) + y(s2, z) by (iv). 
Let y(s, z) e S1 denote the image in S1 of y(s, z) under the covering map 

and define a new left action of S1 on P by 

sox = sx(y(s9 z(x))) 

where z:P -> g is the projection. Then 

(s o x)h = (sxy(s9 z(x))h) = s(xh)\j/(s9 z(x), h) • y(s, z(x)), 

s o (x/i) = s(xh)y(s, z(x), /i). 

Since y(s, z(x)h)y(s, z(x))~x = ^(s, z(x), h) by (vii) we have 
(ix) (s o x)h = s o (x/i) ; 
(x) (siS2) © x = Sx o (s2 o x) by (viii). 
Property (x) shows that o is an action and property (ix) shows that this 

left action of S1 commutes with the right action of spinc(n). It follows from 
the definition of o that the induced left action of S1 on Q agrees with the 
original action. 

COROLLARY 6.3. Let X be a smooth manifold with H1(X9 Z) = 0 and 
which supports a smooth S1 action. Then the class ôsi e K%I(TX) is defined 
and is an orientation for X. 

PROOF. This follows from Theorem 6.2 and Proposition 4.9. 
6.4. Standard example. Here is an important example which illustrates 

the foregoing remarks: Let X = CPn = U(n + 1)/(7(1) x U(n). X is a 
spinc(2n) manifold. A principle spinc(2n) bundle associated to TCP" has 
total space 

U(n+ 1) xHspinc(2n) = P 

where H = (7(1) x U(n) acts on spinc(2n) through the composition (see 
(2.3)) 

H - ^ - U(n) -ÉU spinc(2n). 

file:///jfas2
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For x e 1/(1) = S1 , let d(x)e U(ri) be the diagonal matr ix with dH(x) = x. 
Then Ad(x, y) = d(x~~ *)y for y e U(n). Moreover , the complex line bundle 

CO PXsPinH2n)C=U(n+ I) X H C 

is Jfw+1 where tf is the Hopf bundle over X. 
Left act ion of U(n + 1) on the coset space U(n + I)/H makes X into a 

left U(n + \) space. Any representat ion cfr'.S1 -> U(n + 1) will then 
define an act ion of S 1 on X. Such a representat ion is given by 

</>« = c £/(rc + 1) 

for teS1 and integers a f. In terms of homogenous coordinates 
(z0 : zx : . . . : z„) on CP", the action takes the form 

t ( z 0 : z 1 : . . . : z l l ) = ( t - 0 zo :^z 1 : . . . : t f l »z l l ) 

and if the integers a,- are distinct, there are n + 1 isolated fixed points 

p, = ( 0 : 0 : . . . : l : . . . : 0 ) 

all of whose coordinates are zero except the ith which is 1. The representa­
tion Pj of S 1 on TX\Pj is given by 

/ ,TK i. (7 cos(afc - a,)0 sin(afc — a.)0\ l „^/fS . 
Pj(e

ie) = diag^ . J[ ) k J[\ \ c= SO{2n\ k * j . 
l\ -sm(ak - aj)6 cos(ak - a$] J 

The S1 action is already lifted to the principle spinc(2n) bundle P. 
Explicitly 

(i) t[u9 s] = [0(t)w, s] 

for t e S ^ u e U(n + 1) and s e spinc(2n). Moreover 

(ü) 

PMi6) = n [cos(ak - a,.)0/2 

-sin(afc - a ^ ö ^ ^ ^ i ^ ^ e x p f - i ^ / c - ty)0/2]]. 

The Hopf bundle ^f = J7(n + 1) x H C, where H acts on C via the 
representat ion 1/(1) x l/(n) -• (7(1) defined by (x, y) -* x, becomes an S 1 

bundle over X by setting 

(iii) t o [u, c] = [<t>(t)u, c], u e C/(n + 1), c e C 
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In the same manner the bundle JfM+1 becomes an S1 bundle over X and, 
by (iii), 

je\pj(t) = ta\ œn+1\Pj(t) = t(n+1)aJ e Z[t, t~*]. 

Since œ and Jfw+1 are isomorphic as vector bundles, their associated 
principle S1 bundles are isomorphic and since we have two liftings of S1 

to this principle bundle P(œ) = P(Jfn+ *), by 6.1 there is an integer 9 such 
that 

top = t-p'te, teS\peP(œ) = P(Jfn+1). 

This integer is determined by the restriction of œ and JfM+1 to any fixed 
point Pj. But 

(o\pj(t) = t~Sk *jiak~aj) by (i) and (ii), 

while 

^ « + i y r ) = tin+1)aJ 

so 

(iv) 9 - X (ak - aj) = (n + lty 

and 

9 = £ a k . 
k = 0 

The character Idff" (Jf k<5si) is given by 

(v) X tka^Yi(\ -t^-^y1 

j=0 l + j 

by Corollary 5.6 (kâ = 0 by (5.5) and (ii)). 
As a second application of the Stewart theorem we define a homomor-

phism F from the additive group H2(X, Z) to the multiplicative group of 
units of K%x(X). We assume H2(X, Z) is free abelian. Let zu..., zs be a 
basis for this group. The z£'s determine complex line bundles over X 
which we also denote by zt. Let Pt denote the principle S1 bundle over X 
associated to zf. Then 

zt = Pt x s i C 

By 6.1, the left S1 action on X lifts to a left 51 action on Pt which commutes 
with the right principle S1 action on P£. Define a left S1 action on zi by 

f[p,c] = [tp9c]. 

Then zf with this action of S1 becomes an element F(zt) = W^K^X). 
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Define FfckjZj) = I W J > h^ z 

Let L(zl9..., zs) = }jijZj = L, rijSZ, be an element whose mod 2 
reduction is W2{X) and PL the principle spinc(m) bundle over X defined by 
L, i.e., PL x spinc(m) C is the line bundle with the first Chern class L. Use 
Theorem 6.1 to lift the S1 action to PL. Suppose for simplicity that Xs1 

consists of n isolated fixed points {pj and define integers zij9i = 1,.. . , 5, 
; = l ,2, . . . ,n,by 

^ y t ) = ^ e z [ t , r 1 ] 
and integers xtj (defined up to sign) by 

pf(0 = diag . 7 v I ; = 1,2,..., m/2, i = 1,2,..., n. 
\ - sin x0ö cos Xijöj 

Then set Lf = L(zli9 z2i,..., zs/) = Y,nkzkt e Z. 

THEOREM 6.5. There is an integer N such that for any polynomial 
0(yl9 y2,..., ys) wi'r/i integer coefficients, 

i = l 

m/2 

J = l 

PROOF. Since f l ^ anc* *L
 xsPin^m) C = co are isomorphic as vector 

bundles there is an integer N such that 

co\Pj(t) = tN-Uwripp) (by6.1) 

i 

i 

The result follows from Corollary 5.6 by setting ƒ},. = N + L,. and 
ft = 0(rZl', tZ2i,..., fZs0 because E* = Idl(<l>(Wl9 W29...9 Ws)ôs>) and 

m/2 m/2 

(̂iv+Lo/2. f[(rx^2 - t^'2)-' = rA< fi (i - ^ ) _ 1 ' 

^ = Œ V 2 + PJ2). 

REMARK. Because of the occurrence of square roots in the terms in the 
expression for £ 0 , these terms are only defined up to sign. We will have 
more to say later. 
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II. APPLICATIONS TO S1 ACTIONS ON HOMOTOPY COMPLEX 

PROJECTIVE SPACES 

Part II of the paper is devoted to studying this situation: X is a smooth 
manifold homotopy equivalent to CPn and supports a smooth S1 action. 
What properties of the example of Part I, (6.4) persist here? 

1. Generalities. The most important property of this situation is 

PROPOSITION 1.1. Let rj' be the pull back of the Hopf bundle over CPn via 
a homotopy equivalence from X to CPn. Then r\' admits an S1 action making 
it an S1 bundle r\ over X. 

PROOF. Let F:H2(X, Z) -> K^(X) be the function defined in §6. Then 
rj — F[c1(f/

/)] where c^rj') is the first Chern class of Y\'. It generates H2(X, Z). 
Let Xs1 denote the fixed point set of S1 acting on X. Then 

X s 1 = X0KjXlW"uXl_1 

is the disjoint union of / connected components Xt and each Xt is a 
cohomology CPki~x where £1=0^ = n + 1. Moreover, the natural map 
H*(X) -> H*(Xt) is an isomorphism for * ^ 2kt + 1. This is a result of 
[9], [11]. 

Choose a point pj€ Xj. 
DEFINITION 1.2. Define I integers a^ by rj\p.(t) = taj. 
REMARK. The integers a^ are not uniquely defined by the S1 action on X; 

they depend on the lifting of the action to the principle S1 bundle associated 
to rj. However a second lifting will give rise to a new set of integers a] which 
are related to the old set by 

a] = aj + 6. 

This is a consequence of Part I, 6.1. TÜus the integers a,- are well defined up 
to translation. 

Having this set of integers, we can now compare the given action with 
the S1 action on CPn of 6.3 which is determined by the representation 
(fr'.S1 ^ U{n+ 1) defined by 

0(O = diag{r%.}j=o,1,...,/-1. 

Ij is the identity matrix of dimension kj. 
REMARK. The complex K theory of X and of the components Xt of Xs1 

is given by 

p(i)sz[(,w-ir+i), 

where rj't is the restriction of rj' to Xt. 
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The homomorphism T:1 -» S1 of the trivial group to S1 induces a 
homomorphism T* :£&(*) -• K*(X). 

LEMMA 1.3. T* is surjective. 

PROOF. Since i*rç = rj\ T* is surjective by the above Remark. 

LEMMA 1.4. There is an exact sequence 

0 -» Kl(X)-^K^(X)-^K^X) -> 0 

where A is multiplication by (t — 1) e Z[£, t~*]. 

PROOF. Let S1 act on (X x D2,X x S1) by t(x, d) = (tx, td) for xeX, 
deD2 and f e S1. Then on X x S1 this action is equivalent to the action 
defined by 

t(x,d) = (x,td)9 \\d\\ = 1. 

An equivalence of actions is provided by 

(x9d)^(d'1x9d)9 \\d\\ = 1. 

In view of this, 

Kl(X x S1) s K*(X x S^S1) s K*{X) 

because S1 acts freely on X x S1. By the Thorn isomorphism theorem [1], 

Kfi(X) s K&(X x D2,X x S1). 

This isomorphism composed with the restriction 

K&(X x D2,X x S1) -> K&(X x D2) s K&(X) 

is multiplication by (t — 1) [1]. Making these identifications, the exact 
triangle for the pair (X x D2, X x S1) becomes 

Kl(X) >Kl(X) 

\ A 
K*(X). 

Since T* is surjective, the result follows. 
Let I c K&(X) be the A = Z[t, t~*] torsion subgroup of Kfi(X). 
LEMMA 1.5. T* maps X to zero. 
PROOF. By Lemma 1.4, X has no t — 1 torsion. Let xeX and keA 

such that kx = 0. We may suppose that k is prime to t — 1. Then in 
A (x) Q there are elements a and b such that 

1 = ak + b(t - 1). 
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Let d be an integer such that da = a' and db = V are in A. Then 
d = a'X + b'(t — 1) and dx = b'(t — l)x so 

dT*{x) = T*(dx) = x*(b'(t - l)x) = 0 

by Lemma 1.4. Since K*(X) is free abelian, T*(X) = 0. 

LEMMA 1.6. Let i:Xsi -» X denote the inclusion of the fixed point set. 
Then i* maps X to zero. 

PROOF. K^(Xsl) = 0 = 0 K*{Xt) ®z A is a free Amodule by the Remark 
above. 

Let Ksi(X) = K$i(X)/X. Then the above two lemmas imply that we 
may regard the domain of T* and i* as ^si(X). 

Define ƒ (x) e A[x] by 

(1.7) f(x)=n(x-ff< 
i = 0 

and define a map of algebras A' from A[x] to Ksi(X) by A'(x) = rç. 

LEMMA 1.8. 4 '( ƒ(*)) = 0. 

PROOF. Let p G A be the prime ideal of characters which vanish at a 
generic £ G S1. Then r = {xe X|tx = x} = X s \ Let Ap be A localized at 
p. By the Atiyah-Segal localization theorem Part I, (1.6), i*:£si(X)v 

-• K^i(Xf)p is an isomorphism. Since £si(X) is a torsion free A module 
and Kfi(X') is a free A module, this means that i* is a monomorphism. 
But iM'( ƒ (x)) = 0 so 4'(/(x)) = 0. 

Thus there is an induced map of algebras 

A:A[x]/(f(x))^Ks>(X). 

Let p G Z be a prime and £ a primitive prth root of unity, g(£) = fc the 
field of primitive prûi roots of unity and 0 the integers in k. Then (9 is a A 
module via g(t) -» g(£) when g(t) G A. Clearly if T = A[x]/( ƒ (x)), then 

r ® A (P = 0[x]/(/(x)) where /(x) = ft (* - <^)da; 
aeZpr 

da is the sum of the kj with â  = a(pr). Moreover 

r®Afc^ n kM/((*-£a)da) 
asZpr 

as an algebra. 
We shall see that £si(X) ®\k is a, useful tool for studying the fixed 

point set XZpr. 

LEMMA 1.9. A ® K\k :T ® Kk ^ Ks^X) ® A ^
 ls m isomorphism of 

algebras. 
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PROOF. The A rank of KS1(X) is n + 1 because K$i(Xsl) = 
RiS1) <g> K*(XS1) is a free A module of rank n + 1 and K£(X) has the 
same A rank as Kfi(Xsl) by Part I, (1.6). It suffices to show that A induces 
a monomorphism 

A = A ®A l&:T ®A (9 -> XS1(Z) ®A 0. 

It is easy to check that the kernel of the composition 

r ®A O -+ KS1(X) ®A 0JÏ®A±K*(X) ®A&^ K(X) <g) 0/(1 - QQ 

is T (x) A (1 — Ç)(9. This means that if x is in the kernel of Â, x = (1 — t;)xv 

Since Xsi(X) is torsion free, A(x^) = 0 and inductively x = (1 — £)wxM. 
Since T (x) A 0 is a free O module and (1 — <J) is not a unit of 0, this can 
only happen if x is zero. 

Let %pr be the A torsion subgroup of K%(XZpr) and let; denote the 
inclusion of XZp in X. 

LEMMA 1.10. The composition 

r <g> A k *®±£sl(x) ® A * £®A1^ S I ( X
Z O ® A * 

is an isomorphism. 

PROOF. Let p be the prime ideal of characters vanishing at Ç e S1. Then 
j$:Ksi(X)p -• Ksi(X

Zpr)p is an isomorphism. This implies that jp:Xp 

-• (£pr)p is an isomorphism; hence, j * induces an isomorphism Ksi(X)p 

-> Ksi(X
Zpr)p. Tensoring these groups over Ap with k and observing that 

Ksi(X)®Avk = Ksl(X)®Ah, 

Ksl(X
Zpr) ®Ap k = Ksi(X

Zp") ®A k, 

we obtain the desired result. 
Let Zoo t^ the union of those components of XZpr which miss Xs1 and 

let Za,ae Zpr, be the union of those components which contain an X{ with 

at = OO­

LEMMA 1.11. Za is connected and empty if there is no at = a(pr). 
PROOF. Since there are no points of Z^ fixed by S1 by definition, it 

follows from the Atiyah-Segal localization theorem that K%x(Z^) is a A 
torsion module. Moreover 

Kl(Xzn = n KJi(ZJ x KfoZJ 
aeZpr 

and the torsion subgroup %pr splits as 
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where %a is the torsion subgroup of Kfi(ZJ. Thus 

2esl(x
zo = n^(z„). 

a 

Suppose Za #: 0 . Then for some i there are S1 equivariant maps (see 
Definition 1.2) 

Pi - • Za -+ Pi 

which imply that A = K%i(pt) is a direct factor of £si(Za) so Ksi(Za) is 
nonzero. By Lemma 1.10 we have 

(i.i2) n feM/((^ - ta)da) = n £s>(za) ® /c. 
a a 

This is an isomorphism of k[x] modules; so by the unique decomposition 
theorem for torsion modules over fc[x], [14], 

Ks,{Za)®Ak^ U kW/d* - ??*) 
aeSa 

where Sa is some subset of Zpr which is nonzero if Za ^ 0 . 
Since the number of factors on the left of (1.12) is precisely the number 

of distinct residue classes appearing among the {at} and since the number 
of factors occurring on the right side of (1.12) is at least this number, it 
follows that Sa is zero if there is no ai s a(pr) and just a if there is an 
at = a(pr). 

Suppose some Za # 0 is not connected. Then Za = Y1 u Y2 where Yi 
and 72 contain points pt and p̂  with at=z a = a} so £si(19 ^ 0, i = 1,2, 
and 

tfsi(ZJ s ^ ( 7 0 x iesl(Y2). 

But this implies that there are more nonzero summands on the right side 
of (1.12) than on the left. 

COROLLARY 1.13. 

Ksl(X
zn®Ak^ n k[x]/((\ - l?)d") 

aeZpr 

as an algebra. 

COROLLARY 1.14. A sufficient condition that the fixed/ point set of Zpr 

strictly contain the fixed set of S\ Xs1, is that there are a pair of distinct 
integers i and j with a{ = afpr). 

PROOF. We have seen in the proof of Lemma 1.11, that the number of 
connected components of XZpr intersecting Xs1 is the number of distinct 
residue classes among the / integers ah while the number of components 
of Xs1 is / by assumption. If the number of distinct residue classes among 
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the ÜJ is less than /, then two components of Xs1 are in the same component 
of XZpr showing XZpr strictly contains Xs1. 

COROLLARY 1.15. The I integers at are distinct. 

PROOF. For r large, XZpr = Xs1 for any prime p. If some pair (ahaj) 
were equal, then the collection of / integers {a,} would contain fewer than 
/ residue classes mod pr so XZpr would strictly contain Xs1 by the preceding 
corollary. 

2. Isolated fixed points. Now we restrict our attention to the case in 
which Xs1 consists of isolated fixed points. Then there must be n + 1 such 
points Pj, j = 0,1,2,... , n. To each is attached an integer aj as discussed 
in §1 and the n + 1 integers a,- are distinct by Corollary 1.15. Our aim is to 
compare the given action of S1 on X with the linear action of S1 on CPn 

defined by the integers at of Part I, 6.4. 
Introduce an (n + 1) x n matrix of integers xij9 i = 0,1,2,.. . ,rc, 

j = 1,2,..., n (defined up to sign), whose fth row gives the representation 
o f^onTXI^by 

LEMMA 2.1. 

Ut) = EI (1 ~ f " ) * ft (1 " tXiJ)~l G A-

PROOF. Let et = f l * , fa - taj) e KS,{X). Then ôsiet e Ksi(TX) and 

(2.2) Idfifoi^eA. 

Since the character oîn\p. is ta\ et\p. = 0 unless j = i and 

eii*w = n a* - ^)-
By Corollary 5.6, with u = ei9 we have 

and the result follows from (2.2). 

LEMMA 2.3. iAk(l) = s where 8 = ± 1 is independent ofk. 

PROOF. Since the normal bundle v of Xs in X is trivially a complex 
bundle, there is a homomorphism i^ : K$i(Xsl) -> Xfi(X) induced by the 
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inclusion i:Xsl -• X and having the property that 

i%(x) = X. i(v) 'X for x G KUXS1). 

See Part I, (1.1). 
There is a commutative diagram (Part I, (1.3)) 

Ksl(X) £ K*(X) 

|'* J'* 
K^(X51) ^ K*(X51). 

Since Xsl = UUoPP 

KS1(X
SI) = Y\KMPJ)-

Let /k e K&PÙ be the identity and x = (0,0,...,fk9..., 0) G Kfi(Xsl). 
Then T*/k is the identity of K*(pk) and J*T*(X) = s(rj — \)n; s depends on 
the orientation of X. This follows from the definition of i%. 

Let p denote the prime ideal of characters which vanish at t e S1 and 
consider the element 

dk = no»-*"')(**-^r1 f i ( i - ^ ) 

of Xsi(X)p. By the localization theorem i$:Ksi{X)v-+K%i(Xs% is an 
isomorphism. But 

'?<** = n ( l - ^ ) x = A_1(v)-x 

and 

£**(*) = A_i(v)-x. 

Since i* is a monomorphism, i'̂ (x) = dk. Thus dkeKsi(X) c Ksi(X)v so 
T*<4 is defined and 

and 

^i)( i , - ir = T*(4) = T % M = *»T*W = <n - i)M 

SO 1/^(1) = 8. 

COROLLARY 2.4. 

I l (aj -ad = e ftx^. 
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PROOF. 

^(I) = l i m n ( l - ^ " a 0 f l ( l - ^ ) - 1 

= n (aj - at) /ft xu=e-
DEFINITION 2.5. For each integer m and each i = 0,1,2,..., n, set 

n,(m) = number of j =/= i such that m divides aj — ai9 

di(m) = number of j = 1, 2 , . . . , n such that m divides xtj, 

oi(m) = n^m) - ot(m). 

THEOREM 2.6. <5f(m) ^ 0 and <%p1 = 0 if p is prime. 

PROOF. Let c/)d(t) = Y[&sd (* — £) where Sd consists of the primitive dth 
roots of unity, i.e., <j)d{t) is the dth cyclotomic polynomial. Then 

t ' - i = n^w 
d\i 

and 

ut) = ± t N n </>m(0"(<M)/ n ^m(od'(m) 

m / m 

= ±tNUMtf"n\ 
m 

where iV is an integer. By Lemma 2.1, ^ ) G A . But each 0w(t) defines a 
prime ideal in A ® Q = g[t, t"1]. Since ^ t ) e A ® 6, (5f(m) ^ 0. Next 
observe [7] 

(j>J\) = p, m = pr p prime, 

= 1, m composite. 

Thus 

<Ai(i)= ± r i p w ) = ±i, 

so <5f(p
r) = 0. 

REMARK. If <5f(m) = 0 for all m not just prime powers, then the two 
collections of integers 

{\aj - at\\j # i} = Sf{ and Tt = {I^IU = 1,2,..., n} 

are equal and this would establish the truth of 
Statement 2.7. If S1 acts smoothly on a manifold X homotopy equivalent 

to CPn with n + 1 isolated fixed points ph then then -f 1 integers at defined 



140 TED PETRIE [March 

by ^\Pi(i) = ta\ t = eieeSl (Part II, Definition 1.2), and the integers xtj, 
j = 1, 2 , . . . , n, defining the representation pt ofS1 on TX\p. by 

are related by {\xtj\ \j= 1,2,..., n} = {\ÜJ — at\ \ j # *'}• 
In fact, 2.7 is false, as we shall see in §4; however, here are some addi­

tional relations which must hold between the xtj and the (a,- — at). 

THEOREM 2.8. The n + 1 x n matrix of integers ((xy)), i = 0 ,1 , . . . , rc, 
j= 1,2,..., n, whose ith row gives the real representation ofS1 on TX\p; 
and then + 1 integers {at} defined by rj\p.(t) = tai must satisfy these relations : 
There is an integer N such that, for every integer fc, 

(i) t*12- £ tai(k+(n+1)/v- f l (rXii/2 - ^ " ^ z f c r 1 ] . 
i=0 j = l 

(ii) Yl (aj ~ at) — 8 El xu where sis + or — 1 independent of i. 
jft J = I 

..... A A , Y ,w Y.. .x-1 =0, if nis odd. 
£to /=i = I, if n is even. 

PROOF. Let L = (n + l)ci(rç') where again v[ is the pull back of the Hopf 
bundle over CPn. See Part II, Proposition 1.1. Since Stiefel-Whitney 
classes are preserved by homotopy equivalences, the mod 2 reduction of 
L is the second Stiefel-Whitney class of X. By Part I, Corollary 3.8, there 
is a principle spinc(2rc) bundle PL over X with 

I*L X spinc(2«) C — Vl Y • 

Part (i) now follows from Part I, Theorem 6.5, by setting Wx = r\ (Part II, 
Proposition 1.1), zt = c^rj'), ztj = aj9 Lj = (n + l)oj and O ^ ) = y\. 
Part (ii) is a restatement of Corollary 2.4. Part (iii) is a consequence of the 
fact that the S1 signature of X [6, p. 578] as a function on S1 is the constant 
0 or 1 depending on n. The left-hand side of (iii) is the expression for the 
symbol of the index operator on X. 

We return to the Remark following Part I, Theorem 6.5, as we want an 
explicit formula for Idfi(<5si, <£)(£) when 0>e K%i(X) is a polynomial <D(rç) 
in rj involving only: the integers ah the integers {xjk} and the first Chern 
class of the line bundle œ = P x spinC(2w) C. That is, we want to remove the 
ambiguity in signs which occur in Part I, Theorem 6.5 (at least for the case 
at hand) due to the presence of square roots. To that end we introduce the 
expressions 

(*) çt(t) = f ] (r<«i-«<>/2 - t^-ai)/2)l\(rXij/2 - f»12)-1. 
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Of course, Çt(t) is only defined up to sign; however, we impose the 
additional restriction : There is an integer M such that 

(**} tM,2. £ <bft)Ut) IK* - f'-'V1 e z[t, rx] 
i=0 j*i 

for every <D == ®(rj)e Kfi(X). Here ^(t) = ®(tai). 

LEMMA 2.9. The vector v = (Ç0(t\ ^x{t\..., Çn(t)) is well defined up to 
sign. That is, if the Çt(t) satisfy (*) and (**) and if Ç0(t) is fixed, the ambiguity 
in sign in the remaining £f(t) disappears. 

PROOF. Let vt = (£o(0> £i(0> • • • > £«(0)> î = 0,1, be two distinct solutions 
of (*) and (**). Suppose v0 / — v0. Then there must be a pair fc andj with 
Q(t) = Q(t) and aif) = -^°W.Let 

<Dfo) = n (rj-neKUX). 

Then G>f(0 = 0, i ^ k,j. Apply (**) to v0 and i^ and add the two expressions 
obtaining the condition 

(***) 2tMn. o/o^/O n (i - fl~aj)~x ez[t, r1]. 

But 

®j(') E K 1 " ^-"T1 = *7(l - r1*"̂ ) 

and £/r) = ^ / 2 • \l/j{t) where a and ƒ? are integers. By Lemma 2.3, i/^(t) has 
no zero at t = 1. Thus 

has a pole at t = 1 contradicting (***). 
The relationship between (**) and IdfiOV» *)(0 is this 

THEOREM 2.10. Let P be the principle spinc(2n) bundle associated to TX 
with c^co) = (n + \)b where œ = P x spinc(n) C and b = ^(77'). Let ôsi be 
the orientation class constructed from P. Then there is an integer N such 
that, for every <D = ®(rj)e K$i(X), 

Idl{SsiO)(t) = t<N+**v2 t ®i(t)Ut) n (1 - r " - f l T ' . 
i = 0 j*9fci 
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PROOF. By Part I, Theorem 6.5, with Lt = (n + \)at and 0>{{t) = ®(tai) 
we have 

= tNI2 £ ^i(t)tin+1)ai/2 f[{t~Xiil2 -tXijl2)~K 
i=0 j = l 

The result follows by arithmetic. 

THEOREM 2.11. Let S1 act on a manifold homotopy equivalent to CPn. If 
Xs1 consists of isolated fixed points, the cohomology class J / ( I ) G H * ( I , Q) 
is determined by the equivariant "Hopf bundle" rj and the integers xjk 

describing the representations ofS1 on TX at the isolated fixed points. 

PROOF. Let 

tai%(t) 
Ek(t) = f(" + ̂ )/2 £ 

Since the ai are defined by rj\Pi(t) = ta\ it follows from Lemma 2.10 that 
Ek(t) is determined up to sign by rj and the xjks. 

Let b = c1(rjf) be the first Chern class of rj', [X] e H2n{X) the orientation 
class and <y, [X]> the value of the cohomology class y e H*(X, Q) evalu­
ated on the orientation class. Then by the Remark following Part I, 
Proposition 5.3, 

( ^ + ( B + 1 ) / 2 Vff l 5 [*]> = Wfi(if*^i)(l) = lim^W = Ek 

and Ek is determined up to a sign independent of k by the given data. 
We observe that: e

i{n+1)/2)b is a unit of H*(X, Q) because its degree zero 
term is 1, ch:K*(X) ® Q -> H*(X, Q) is an isomorphism so {ekb = chrj'k\k 
= 0, l , . . . ,n} is a basis for H*(X,Ô) and since ea"+1)/2)b is a unit, 
{eik+(n+1)/2)b\k = 0,1,.. .,n} is also a basis and by Poincaré duality 
{e(k + (n+l)/2)b n [-X]| i g a b a s i g f o r jj^x9 g) S i n c e t h e v a l u e s o f <^(X), 

^+(»+D/2)»n[X]> for fc = 0, l ,2, . . . ,n determine j/(X), j / (Z) is 
determined up to sign by the given data. However, s/(X) = 1 + terms of 
higher dimension and this fixes sd(X). 

COROLLARY 2.12. Suppose ^(i) = Ç{t) is independent ofi. Ifh:X-> CPn 

is a homotopy equivalence, h*j/(CPn) = J/(X). 

PROOF. Let x e H2(CPn) be the first Chern class of the Hopf bundle and 
b = /i*(x). Set 

Du(t)= t ^na-^""')-1. 
i = 0 
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Then by Part I, (6.4) (iv) and (v) and the Remark following Part I, Proposi­
tion 2.8, 

<^w+l)/2+k)w(cpw),[cpw]> = id£rov^ fc)(i) = Dk(iy 
On the other hand, it follows from Theorem 2.10 that 

<e((w+1)/2+kM*U*]> = Idfi(W)(l) = £(l)Ök(l). 
Since Çt(t) = t7i/2 • tyfa) for some integer yi9 it follows from Lemma 2.3 
that {(1) = ± 1. Thus 

<h*J{CPn\ [X] n e««+i)/2+w>> 

= ±{s/(CPn)9[CPn] n e«n+1)/2+k)by 

= ±<s/(X)[X] n e«»+i>/2+*»>. 

Since this holds for every integer fe, h*j/(CPn) = ±s/(X). However, 
sd(CPn) = 1 ± terms of higher dimension and likewise for s/(X) ; so the 
plus sign must hold. 

We end the section with an example due to G. Bredon which shows that 
the analogs of Lemma 1.9 and Corollary 1.14 are false without the assump­
tion on the field k. 

Let S1 act on the complex plane C2 via the representation p = t2 + t3 

e RiS1). Then S4 is the one point compactification of C2 and the S1 action 
extends uniquely to a smooth action on S4 with fixed point set 0 and oo. 
The isotropy subgroups are 0, Z2 , Z 3 and S1. 

Let 0 be the S1 orbit of the point (1,1) e C2 and X be an open equivariant 
tubular neighborhood of 0. Set X = S4 — &. Then X is diffeomorphic to 
S2 x D2 = CP1 x D2. Let Pi = 0 and p2 = ooeX. The integers associ­
ated to Pi and p2

 y i a *?U(0 = ffli a r e <*I a n d ax + 6 = a2. Thus a2 — ax = 6 
but the fixed point set of Z 6 is the same as the fixed point set of S1. Compare 
Corollary 1.14. 

As an algebra 

KMX) = AM/((x2 + fafafax)) 

where (j)d = </>d(t) is the dth cyclotomic polynomial. The algebra Y in this 
case is 

T = A[y]/((y2 - (1 - t6)y) = A[y]/((y ~ l)(y ~ *6)) 

where 3; = y + £6. 
Let k be the cyclotomic field of primitive sixth roots of unity. The map 

of algebras A from T to K$i(X) is defined by A(y) = (j)6(t)x, so A (x)A lk: 
T ®A k -• K&PO ® A fe is not an isomorphism. Compare Lemma 1.9. 

3. Speculation: Bilinear forms on K%(X). When X is a closed oriented 
manifold of dimension 2n, the cup product pairing on Hn(X,Z) 
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= H"(X, Z)/Torsion is nondegenerate. This means that the homomor-
phism <D:fJw(X,Z)- Homz(H

w(X, Z), Z) defined by <b(x)[y] = (xu j / , 
[X]} for x, yeHn(X,Z) and [X]eH2n{X,Z) the orientation class is an 
isomorphism. This is a consequence of 

(a) Poincaré duality Hn(X9 Z) s Hn(X, Z). 
(b) The universal coefficient theorem: Cap product defines an iso­

morphism ; Hn(X, Z) -> Homz(iJ„(X), Z). 
The statement of the universal coefficient theorem may be turned 

around to 
(b') Hn(X, Z) -* Homz(H

n{X, Z\ Z) is an isomorphism. 
The concept of the nondegenerate bilinear form constructed in this way 

has been a powerful tool in the development of the topology of manifolds. 
The purpose of this section is to set up an analogous situation for K%(X\ 
ask some questions and discuss examples. 

Suppose that G is a compact connected Lie group acting smoothly on a 
closed G oriented manifold X. Then K%X) = K%{TX) and Poincaré 
duality holds; i.e., we have an isomorphism ^/G\K%(X) -» K%(TX). In 
addition we have an R(G) homomorphism 

D : KG(TX) - HomR(G)(KUXl R(G)) 

defined by 

(3.1) D(x)[y] = Id&x-y), xeKG(TX), yeK£(X). 

The composition D\j/G gives rise to a bilinear form < }onKG(X) = K^(X)/Z 
where X is the R(G) torsion subgroup of K%(X). Precisely 

<z?};> = Id^G(z)-y) = 6(iAG(^))[y] 

îorz,yeKUX). 
Question 3.2. When is the bilinear form < > on KG(X) nondegenerate? 

This means that the map KG(X) -> HomR(G)(KG(X)9 R(G)) defined by 
Dij/G is an isomorphism of R(G) modules. 

Question 3.3. When the preceding question has an affirmative answer, 
can one relate the algebraic invariants of the bilinear form < > to the 
representations of G on the fibers normal to the fixed point sets? 

One hopes that the bilinear form < > is nondegenerate when KG(X) is 
free over R(G). We discuss some interesting cases when this is true. 

Case 3.4. X = U(Z) is the group of isometries of a complex G module 
Z and G acts on X by 

g • x = p{g)xp(g)~ \ geG,xe U(Z)9 

where p.G -+ U(Z) is the representation given by the structure of Z as a 
complex G module. In Part I, §4, Example 3, we constructed an orientation 
class aG. See Part I, Proposition 4.11. 
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PROPOSITION 3.5. The bilinear form < > on KG(X) defined by 

<x, y> = Id£(aGx • y) 

is nondegenerate. 

PROOF. Suppose the complex dimension of Z is n. Then 

K&X) = R{G)®zA(el9...90H) 

is the exterior algebra over R(G) generated by n basic generators 
6U 0 2 , . . . , 0„ [10]. Here A(0 1 , . . . , 0„) is the Z exterior algebra generated 
by 0i, 0 2 , . . . , 0„. Moreover, the homomorphism p* :K$(Z)(X) -• K%(X) 
induced by the homomorphism p:G -> U(Z) is given by p* = p <g) 1 
where p:RU(Z) -• JR(G) is induced by the homomorphism p. This means 
that a Z basis {ej for A(0 1 ? . . . , 0„) gives an &(G) basis for K%(X) and 
^*(Z)W- Note that < > is nondegenerate on K%(X) if and only if the 
determinant of the matrix <£;,£,•> is a unit of R(G). Let us denote this 
determinant by detlî(G)<el-,^>. By the above remarks and the com­
patibility axiom (Part I, (1.3)) 

detK(G)Of, ej> = Id£(aGef • ej) 

= Id^(p*al7(Z)ei • ej) = pId^(Z)(aü(Z)^ • ̂ ) 

Thus it suffices to prove the proposition when G = U(Z). For convenience 
we set U(Z) = U. As properties of the maximal torus of U play a key role 
in our proof we discuss them before proceeding. 

Let j:%-> U be the inclusion of the maximal torus X viewed as a 
homomorphism of groups and i : X -> U = X the same map viewed as a 
continuous map of topological spaces. Let X operate on itself and X via 
inner automorphisms i.e., x e l , teX, 

tox = txt'1. 

Then i is equivariant with respect to the action of X and X% = X i.e., the 
fixed point set of the action of X on X is iX which we briefly write as X. 

Since X acts trivially on itself, TX = X x W where W = Rn with trivial 
action of X. Either W or W x R1 is a complex X module # £ C [ (n+1) /2 ] 

with trivial action and the class 

az = 1 ® A* e Kg (I) ®K(£)Kg(^) 

= Kg(î x tf) 
is an orientation for X. See Part I, §4, Example 3. Moreover, if V is the 
complex U module used in constructing A^ we have 

(3.6) V\% = W ® O 



146 TED PETRIE [March 

where O is the tangent space of U/Z at [Z] e U/Z. The representation of 
Z on O is given by the adjoint action. This gives a representation co:Z 
-• U(d) where 2d = real dim 0 and the composition of œ with the map 
\j/0: U(d) -> spinc(2n) (Part I, (2.3)) gives a homomorphism ^ 3 = \jj0œ\ Z 
-> spinc(2n). Let Q = Ad*(A+ - A_) G R(Z). 

It follows from (3.6) that 

(3.7) s*fAv = A r Q e # £ ( # ) = K%n + 1)I2\TZ). 

Here 5 : W -• J^ ® O is the zero section of this bundle over W. 
Let Ti : T Ï -• TU be the inclusion which is equivariant with respect to 

the Z action on each. Then from the factorization 

K%(TU) = K%(U x V) A K%{Z x{W® 0)) * K%{Z x W) = K%(TZ) 

of 71* and from (3.7) we see that 

(3.8) Ti*j*(xv = Q • a*. 

Let U act trivially on Z and by left translation on U/Z. Then we have an 
equivariant map 

n:U/XxX->U 

defined by 

7l(uZ, t) = UtU'1 

ÎorteZ and ueU. Note that I is included in U/Z x Z via ƒ (t) = [Z] x t. 
This is equivariant with respect to the Z action. We then have a commuta­
tive diagram of Z spaces and n is U equivariant 

Z^U/ZxZ 

\k 
Atiyah [0] has shown that the coordinates of Z define elements f}t e ^(Z) 

such that 
(i) 7ü*(Ö1-Ö2...0n) = £'Q <g> p1-p2---pneR(Z) ®z K*(Z) = 

K%{U/Z x Z) where <*' is a unit of R(Z). 
Let (j) : Z -> 1 be the trivial homomorphism. Then because Z acts on 

itself trivially, 
(ii) I d S M i •••/»••) = Id|((/>*alj81 •. • pn) = « ( a ^ •.. £„) = 1. 
By the localization theorem (Part I, 1.6), 
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id&j*auo1.e2--en) 
= Id%(Ti*j**uOi • • • OJk- x(0 ® C)) 

= Id|(Qa* • i'Cip1 • • • PJX.x(0 ®C)) 
because 

7TV"*ofo0i. • • 0„ = (ivf*,;) • (/*öi • • • en) 

by (3.8) and (i). Let - be the involution of R(X) defined by sending a 
complex X module W to Homc(W, C). Then a basic property of the 
element Q is that Qfi = /L t(0 ® C) and Q = £ • Q where £ is a unit of 
R(£) [8]. Putting all this information together gives 

(iii) Id£t/*«tf0i • • • Qn) = É T 1 a unit of £(S). 
Note that J is an inclusion of K(l/) in R(X) as the subring of invariants 

of the Weyl group. This implies that if x e R(U) and J(x) is a unit of R(X), 
then x is a unit of R{U). From this and 

(iv)7ldj(aü01---4) = {'r1by(iü,) 
we see that 

(v) Id&aA. . • 9n) is a unit of R(U). 
It follows from (v) and the algebra structure of the exterior algebra 

A(0!,..., 0„) that the map Ù\l/u:Ki(X)^HomR{U)(KUX)9R{U)) is an 
isomorphism and this completes the proof of Proposition 3.5. Compare [0], 

PROPOSITION 3.9. Let S1 act on CPn as described in Part I, (6.4) (Standard 
example). Then the bilinear form < > is nondegenerate. 

PROOF. Atiyah has shown [1] 

KMCP") = R{Sl)[3tf] / f i C* " ?')) 

as an RiS1) algebra. The restriction homomorphism 

i*:KMCPn) -> "ff KUPi) = "ff R(s') 
i = 0 t = 0 

is given by 
(3.10) i*34fk = {tka°, tka\..., tkan). 

Thus 1, M,..., 2tfn is a basis for K$i(C^w) over R(SX) and i* is a mono-
morphism and induces an isomorphism 

KUCPn)®R(si)F(Sl)-+ flFiS1) 
i = 0 

where F(Sl) is the field of fractions of ^(S1). Let 

ei=Y\(tai -fT1^ ~taj). 
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Then e0, eu..., en is a base for K%i{CPn) ®R{Si) F(SX) and 

(3.11) jVk = Ytka% 

because of (3.10) and the fact that i* induces an isomorphism over F(s'). 
Observe that ef = et because i*ef = i*et • i*e( = i*et. Thus in terms of 

this new basis < > gives a diagonal matrix with 

(3.i2) < ,̂̂ > = ri(i-^" f lo"1 . 

This follows from Part I, Corollary 5.6, by setting Uj(t) = et\PJ(t). Then 
Ui(t) = 1 and Uj(t) = 0 for j =£ I Furthermore, k} = 0 because the action 
of S1 on the principle spinc(2n) bundle P is defined using the lifting i//0 of 
U(ri) to spinc(2n) (Part I, 6.3). 

Thus if A£ = Yb f Af* - taj\ then 

det(«^,^») = t ^ . fl Af1. 
i = 0 

Let et = Y,jsij^j' T h e n 

det(«JT, j f ' » ) = det S~2 det(«^, e,»). 

By (3.11), S is the inverse of the Vandermone matrix V so S"1 is F and 

det S"1 = det V = f] ('aj - 'flk). 

But 

(det v)2 = n n (^ - ^flk) = n A * -
fe j^fc fc = 0 

Hence det(K Jf', ^fJ») = twS% a unit of ̂ (S1). Since jf', i = 0,1,2,..., n, 
is a free ^(S1) base for X|i(CPw), the proof is complete. 

Finally, I mention the interesting analysis of Vasquez [18]. He studies 
the case in which H c G are compact connected Lie groups with H of 
maximal rank in G and such that the homogenous space X = G/H has a 
spinc(m) structure, m = dim X. Left translation by G makes X a G space 
and Vasquez shows that the bilinear form < > is nondegenerate on K%(X). 

These examples can be multiplied by taking cartesian products. Anyway, 
Question 3.2 has an affirmative answer in enough cases to make it interest­
ing and hopefully useful. 

4. An exotic action of S1 on CP3. We offer an example of an action of 
S1 on CP3 which is definitely distinct from the linear actions of Part I, 
(6.4). This example is distinguished from the linear actions by the repre­
sentation of S1 on the tangent space at the four isolated fixed points. 
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Representations of S1 in 1/(2) are defined by the 

«Hó ")• *H .' 

The sphere S3 is identified with S (7(2) via the map 

f(z) = \ -° -1 > 2 = (zo> *i), zt e C. 

We let z • w for l e S 3 and w G (7(2) denote the standard action of (7(2) on S3. 

LEMMA 4.1.1n (7(2) we have 

mf(z'Co(t))=f(z)co(t). 

LEMMA 4.2. There is a degree one map O : S3 -• S3 satisfying 

<D(z-j8(0) = *(z)co(0. 

PROOF. Let 

(f\( \ — (̂ 0zl> z0 + z l ) 

for (z0, zx) G S3. Here z0 denotes the complex conjugate of z0. 
Define a diffeomorphism g: (7(2) x S3 -+ U(2) x S3 by 

g(M,z) = (W/(<D(z)),z). 

Let Xf, i = 0,1, be the S1 manifold whose underlying space is (7(2) x D4 

with S1 action defined by 

(uj)t = (#(0, zj8(0), i = 0, 

(u,z)t = (uœ(tlz/](t)\ î = l, 

M G (7(2), |Z| = 1. 

LEMMA 4.3. g:dX0 -• âX^ is an equivariant diffeomorphism. 

PROOF. Equivariance follows from Lemmas 4.1 and 4.2. Since g is 1-1, 
it is a diffeomorphism. 

Let H = 1/(1) x (7(1) c £/(2). Then H acts on the left of 1/(2) by left 
multiplication and on Xt by a(w, z) = (aw, z), a G (7(1) x (7(1), M G 17(2) and 
z G D4. The left action of H on Xf commutes with the right action of S1 on 
Xt so the orbit space Xt = X/tf inherits an S1 action. Moreover g com­
mutes with the action of H on dX0 and 3Xt and induces a diffeomorphism 
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g:dX0 -+ dXt which is equivariant with respect to the S1 action on each. 
In a similar manner the left action of H on 1/(2) commutes with the two 

right actions of S1 defined by 

u o t = ui//(t)9 u o t = uœ(t\ 

for ue U(2), t G S1. The orbit space l/(2)/if is CP1 = S2 and inherits two 
S1 actions. We let Zh for i = 0,1, denote the resulting S1 manifolds. 

Observe that as an S1 manifold Xt = Zt x D{M) where D(M) is the 
unit disk in the complex 2 dimensional S1 module M with Sl acting via 
the representation t -> /?(£) G C/(2). This means that Xt is the total space 
of a disk bundle of a complex S1 bundle over Zt. Thus we have a Thorn 
isomorphism 

li:Kl(Zi)-+KMXi,dXi). 

LEMMA 4.4. Let X = X0 Ug Xx denote the manifold obtained by identify­
ing x G ÔX0 with g(x) eôXl. Then X is homotopy equivalent to CP3. 

PROOF. Since O : S3 -» S3 is homotopic to the identity (Lemma 4.2), g is 
homotopic to the map H:S2 x S3 -• S2 x S3 defined by ff(w, z) = (w/(z), 
z) and CP3 = S2 x D4 uH S2 x £>4. 

The manifold X inherits a unique S1 action compatible with the given 
action on Xh for i = 0,1. The fixed point set of this action consists of four 
isolated points Po>Pi>P2>P3 labeled so that p09pieX0 and p2>P3e^i-
The representations of S1 on TX\Pi are given by 

TX\Po(t) = t"®t2® t3, 

TZ|Pi(o = r 7 e t 2 e t 3 , 
Tx\P2(t) = t5 e t2 e t3, 
T*yo = r 5 ® t 2 e t 3 . 

Actually we have listed complex representations which define the real 
representations we seek. 

Here is an explicit description of the S1 bundle rj over X. The total 
space of rj, E(rj) is given as 

E(ri) = Cl X H I O U G C 1 XHX, 

where [c,x0] in C1 xHdX0 is identified with G[c,x0] = [c,g(x0)] in 
C1 xHdXv The action of £(rç) is defined by the condition 

[c,xt]t = [c,Xjf], xteXh i = 0,1. 

c G C1, t G S1. The projection rc of E(rj) on X is described by n[c, xj = p^x,), 
i = 0,1, and p£ : X,- -» X; is the orbit map. We find 
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ri\P0(t) = t°, t,\pi(t) = t\ r,\P2(t) = t\ r,\P3(t) = t6. 

COROLLARY 4.5. This action of S1 on X is not equivalent to any linear 
action of S1 on CP3. It is distinguished from such a linear action by the 
representations ofSlon TX at the isolated fixed points pt. 

PROOF. By Part I, (6.4), the representations of S1 on TCP\Pi are com­
pletely determined by the equivariant Hopf bundle Jf as follows: 
«^U(0 = t<Xi anc* TX\Pi(t) is the real representation defined by the complex 
representation Xt = X/=^ÖJ'~öi. 

Suppose F : X -• CP3 is a diffeomorphism equivariant with respect to 
some linear action on CP3. By composing F with the map which conjugates 
the coordinates in CP3 if necessary, we may suppose that F is orientation 
preserving. Then by Stewart's theorem 

F*jf = tk • rj as S1 line bundles for some integer k. Then a0 = /c, 
ax = 7 + k, a2 = 1 + fc, a3 = 6 + k. But the real representations on 
TX„ are not of the form 

Pi 

\ — sin(ak — at)6 cos(afc — a^ö/ 

as dictated by the linear case. 

COROLLARY 4.6. X is diffeomorphic to CP3. 

PROOF. 

W J ( r 2 / 2 _ t 2 / 2 ) ( r 3 / 2 _ ^ 3 / 2 ) - «W 

is independent of I Choose an orientation preserving homotopy equiv­
alence h.X^CP3. By Corollary 2.12, h*J(CP3) = J(X) and J(X) 
= 1 — Pih^x2)/!^ where x is the first Chern class of the Hopf bundle and 
Pi is an integer such that P\h*(x2) is the first Pontrjagin class of X, Pi(X). 
Montgomery-Yang have shown [19] that the manifolds homotopy 
equivalent to CP3 are in 1-1 correspondence with the integers. The 
correspondence is characterized by / -• Wt where Pi(W9 = (24/ + 4)hf (x2) 
and ht : Wt -> CP3 is a homotopy equivalence. 

Since h*J{CP3) = J{X) we have P^X) = 4h*{x2) so by the Mont­
gomery-Yang theorem X is diffeomorphic to CP3. 

5. The bilinear form < > on Kfi(X), X = CP3. Let i :Z0 -• X be the 
inclusion and denote by i% the composition of the Thorn isomorphism X0 

and the natural map K?i(X0, <3X0) -* K|i(X). Then 

*'%(*) = k- i(v) • x, for x e K?i(Z0), 
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and v the S1 normal bundle of Z0 in X. From the exact sequence of the 
pair (X, Xt) we obtain this short exact sequence 

(i) 0 - KMZo) *-* KMX) * KMZi) - 0 

where 7 :Z]. -• X is the inclusion. 
Let rji e K*i(Z£) be the equivariant Hopf bundle for Zt and r\ e K$i(X) 

the equivariant Hopf bundle for X. Since 1, rjt gives an R(Sl) base for 
^fi(Zf), it follows readily from (i) that ^(1), i*(rj0), 1 and rj gives an RiS1) 
base for K&(X). Let 

et = [ I (rj - taWl ~ tarl e KfoX) ®*(5i> FQ1) = ^ ( I ) 0 . 

LEMMA 5.1. In K$i(X)0 we have 

1 = e0 + ex + e2 + e3, 

rç = e0 + t1el + t^ 2 + t6e3. 

REMARK. Note A.^v) = (1 - t2)(l - t3)-U leK$i{X);so we regard 
2_i(v) as (1 — t2)(l — ti)sR(S1) as well as an element ofK$i(X). 

PROOF. K%I(X) is a free FiS1) module so the restriction 

i*:Kl(X)0 - KUXS\ = I l KMPÙo 
i = 0 

is an isomorphism ; hence, in order to establish the equation of the lemma 
it is sufficient to show that they hold in K$i(Xs\. E.g., since 7% = 0, 
'*(!) = oc0e0 + a^i and <*t = i+ (l)|Pi for i = 0,1. But **(l)|Pi= i%(l)\Pi 

= *-i(v)\Pi = A_i(v). Thus a0 = ax = A_i(v). 

THEOREM 5.2. The bilinear form < > on K$i(X) is nondegenerate. 

PROOF. With respect to the basis ef, the matrix of the bilinear form < > 
is diagonal. In fact, 

(e0,eoy = rx°/(l-t1)l„M 

<e1,e1> = r^/(i-r7)A.1(v), 
<^^2> = r ^ / ( i - f 5 M-i (v ) , 

(e3,e3) = r^/(l-t~5)X.M 

where Xt are integers. See Part I, Corollary 5.6. 
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So in terms of this basis the determinant of < > is 
D = u/(1 -f)2(l -*5)2->Li(v)4 

where u is a unit of Z[t91~1]. 
Let S be the matrix which expresses the basis i*(l), i*(ri0), 1, rj in terms of 

the basis {et}. From Lemma 5.1 we see that the determinant of S, written 
|S|, is A_!(v)2-(1 - t7)(l - t5)-t. Thus the determinant of < > with 
respect to the "integral basis" i^(l), ijrj), 1, rj is |S|2 • D and this is a unit 

of zfcr1]. 
I regard this example optimistically as strong evidence that the bilinear 

form < > is nondegenerate under rather general circumstances. 
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