ON SINGULAR INTEGRALS

BY N. M. RIVIÈRE1

Communicated by Gian-Carlo Rota, March 5, 1969

The note is divided into three sections. The first section is devoted to singular kernels in \mathbb{R}^n . Most of the results of the section remain valid after some modifications, if we replace \mathbb{R}^n by a locally compact group and the Lebesgue measure by the Haar measure of the group; the second section deals with those extensions.

In the third section we apply the results of the first section to obtain L^p estimates for kernels whose homogeneity is given over a one parameter group. These kernels have been first considered by M. de Guzman [2]; particular cases of these kernels are those studied by A. P. Calderón and A. Zygmund in [1]; and by E. B. Fabes and N. Rivière in [3].

- 1. Singular kernels. Let $\{U_{\alpha}, \alpha > 0\}$ be a family of open subsets of \mathbb{R}^n , satisfying:
- (a) $0 \in U_{\alpha}$; for $\alpha < \beta$, $U_{\alpha} \subset U_{\beta}$; $\bigcap_{\alpha} U_{\alpha} = \{0\}$, the closure of U_{α} compact.
 - (b) There exists $\phi(\alpha)$ continuously mapping R_+ onto R_+ such that

$$U_{\alpha} - U_{\alpha} \subset U_{\phi(\alpha)}$$
 and $m(U_{\phi(\alpha)}) \leq Am(U_{\alpha})$
 $U_{\alpha} - U_{\alpha} = \{z; z = x - y, x \in U_{\alpha}, y \in U_{\alpha}\}.$

(Clearly $\alpha < \phi(\alpha)$), $m(\cdot)$ denotes the Lebesgue measure.

(c) The function $f(\alpha) = m(U_{\alpha})$ is left continuous and $f(\alpha) \to \infty$ as $\alpha \to \infty$.

We shall say that the operator T defined over a class of measurable functions is sublinear if

$$|T(f+g)| \le |T(f)| + |T(g)|,$$

$$L^{p}(\mathbb{R}^{n}) = \left\{ f; ||f||_{p} = \left(\int_{\mathbb{R}^{n}} |f(x)|^{p} dx \right)^{1/p} < \infty \right\}.$$

THEOREM 1 (WEAK TYPE). Let $\{U_{\alpha}\}$ be a family as above, T a sublinear operator defined in $L^1(\mathbb{R}^n) \oplus L^p(\mathbb{R}^n)$ satisfying:

- (i) For $f \in L^p(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$, $|Tf(x)| \leq |T_1f(x)| + |T_2f(x)|$ where $m\{x; |T_1f(x)| > t\} \leq (c/t^p) \int_{\mathbb{R}^n} |f|^p dx$ and $|T_2f||_{L^{\infty}} \leq ||f||_{L^{\infty}}$.
 - (ii) If $f \in L^1(\mathbb{R}^n)$ with support contained in $x + U_{\alpha}$, and if

¹ Research partially supported by NSF GP-8834.

$$\int_{x+U_{\alpha}} f(y)dy = 0,$$

then there exists $W_{\alpha,x}$ such that $m(W_{\alpha,x}) \leq Cm(U_{\alpha})$ and

$$\int_{(W_{q,x})'} \left| Tf(y) \right| dy \le C \int_{\mathbb{R}^n} \left| f(y) \right| dy.$$

(W' denotes the complement of W.) Under these hypotheses, for $f \in L^q(\mathbb{R}^n)$, $1 \leq q \leq p$

$$m(\lbrace x, \mid Tf(x) \mid \geq t \rbrace) \leq \frac{BC}{t^q} \int_{p^n} |f|^q dx$$

where B is an absolute constant depending only on the dimension and the constant A of the family $\{U_a\}$. (Note. $L^{\infty}(\mathbb{R}^n)$ can be replaced by $L^r(\mathbb{R}^n)$, $r \geq p$.)

DEFINITION. Let k(x) be a measurable function. We shall say that k(x) is a singular kernel for the family $\{U_{\alpha}\}$ iff:

- (1) $k \in L^1(\Omega)$, for every bounded open subset of $R^n \{0\}$ and $\left| \int_{U'\alpha} \nabla_{\gamma} k(x) dx \right| \leq C < \infty$ independently of α and γ . Moreover the limit of the integral exists as $\alpha \to 0$.
 - (2) For $\phi(\alpha)$ as in (b)

$$\int_{U_{\Delta(x)} \cap U_{\alpha}'} |k(x)| dx < C \quad \text{(ind. of } \alpha\text{)}.$$

(3) For $x \in \mathbb{R}^n$ set $h(x, \alpha) = \inf \{1/|t| ; tx \in U_\alpha\}$ then

$$\int_{U_{\alpha}} h(x, \alpha) | k(x) | dx < C \quad \text{(ind. of } \alpha\text{)}.$$

Set

$$k_{\alpha,\gamma}(x) = k(x)$$
 for $x \in U'_{\alpha} \cap U_{\gamma}$,
= 0 otherwise,

and for $f \in L^p(\mathbb{R}^n)$ $(1 \le p \le \infty)$

$$K_{\alpha,\gamma}(f)(x) = \int_{\mathbb{R}^n} k_{\alpha,\gamma}(x-y)f(y)dy.$$

THEOREM 2. Let k(x) be a singular kernel such that for $y \in U_{\beta}$,

$$\int_{(U_{\phi(B)})'} |k(x-y) - h(x)| dx \le C \quad (ind. of y)$$

then:

- (i) For $f \in L^1(\mathbb{R}^n)$, $m(\{x, |K_{\alpha,\gamma}(f)| \ge t\}) \le BC/t||f||_1$. Moreover $\lim_{\alpha \to 0; \gamma \to \infty} K_{\alpha,\gamma}(f)(x) = K(f)(x)$ exists pointwise almost everywhere.
- (ii) For $f \in L^p(\mathbb{R}^n)$, $(1 , <math>||K_{\alpha,\gamma}(f)||_p \le B_p C||f||_p$ (B_p depending on p). Moreover $\lim_{\alpha \to 0; \gamma \to \infty} K_{\alpha,\gamma}(f)(x) = K(f)(x)$ exists pointwise almost everywhere and in the L^p -sense.
- 2. Singular kernels on locally compact groups. The results obtained in the previous section can be extended to locally compact groups, after suitable modifications. More explicitly we replace R^n by a locally compact group G and the Lebesgue measure $m(\cdot)$ by the Haar measure $h(\cdot)$ of the group. In the definition of the family $\{U_{\alpha}\}$ conditions (c) and (b) should be replaced by
 - (c') $f(\alpha) = h(U_{\alpha})$ is left continuous and $f(U_{\alpha}) \rightarrow h(G)$ as $\alpha \rightarrow \infty$,
- (b') $U_{\alpha} U_{\alpha} \subset U_{\phi(\alpha)}$, $\phi(\alpha) > \alpha$, ϕ continuous and onto, and $h(U_{\phi(\alpha)}) \leq Ah(U_{\alpha})$.

Under conditions (c') and (b') Theorem 1 remains valid in G.

Finally condition (3), of the definition of singular kernels, should be replaced by

(3') for $f \in L^2(G)$, $||K_{\alpha,\gamma}(f)||_2 \le C||f||_2 C$ ind. of α and γ .

With such extension Theorem 2, parts (i) and (ii), remain valid in G.

The results remain valid if we use vector valued functions over Banach spaces. For Theorem $1, f \in L^p(G, B_1)$ and T is a mapping from $L^1(G, B_1) \oplus L^p(G, B_1)$ into $\mathfrak{M}(G, B_2)$ the measurable functions from G to the Banach space B_2 (G with its Haar measure). In Theorem 2, k(x) for each x should be a mapping from a Banach space B_1 into a Banach space B_2 and the absolute values should be replaced by the appropriate norms of the operators.

- 3. Homogeneous kernels. Let $\pi: R_+ \to \mathfrak{L}(R^n, R^n)$ with the properties
- (1) $\pi(\lambda \mu) = \pi(\lambda)\pi(\mu)$, π continuous, $\pi(1) = I$ (*I*, identity),
- (2) for $0 < \lambda \le 1 ||\pi(\lambda)|| \le \lambda (||\cdot|||)$ denotes the norm of $\mathfrak{L}(\mathbb{R}^n, \mathbb{R}^n)$ the space of linear transformations of \mathbb{R}^n).

For simplicity $\pi(\lambda)$ will be denoted by T_{λ} . Let $F(x, r) = ||T_{r^{-1}}(x)||$, then for $x \neq 0$ there exists a unique solution r = r(x) of the equation $||T_{r^{-1}}(x)|| = 1$. Moreover the function r(x) defines a metric in \mathbb{R}^n with the properties

- (i) $r(T_{\lambda}(x)) = \lambda r(x)$,
- (ii) r(x) = 1 if ||x|| = 1,
- (iii) if $||x|| \le 1$ then $r(x) \ge ||x||$. Iff $||x|| \ge 1$, then $r(x) \le ||x||$.

Let $x' = T_{r^{-1}(x)}(x)$. Then ||x'|| = 1 and hence x' can be expressed by a coordinate system in S^{n-1} . More explicitly:

$$x'_1 = \cos \phi_1 \cdot \cdot \cdot \cos \phi_{n-1}$$

$$\vdots$$

$$\vdots$$

$$x'_n = \sin \phi_1.$$

In this way we define a change of coordinates of polar type $x \to (r, \phi_1, \cdots, \phi_{n-1})$. To compute the Jacobian of the transformation, we observe that T_{λ} can be written uniquely as $T_{\lambda} = e^{P \ln \lambda}$, where P is an $n \times n$ real matrix.

Then

$$\Im(x; r, \phi_1, \cdots, \phi_{n-1}) = r^{(\operatorname{tr} P)-1} \det(P(x'), \partial x'/\partial \phi_1, \cdots, \partial x'/\partial \phi_{n-1})$$

(tr(P) denotes the trace of P). Set

$$H(\phi) = \det(P(x'), \partial x'/\partial \phi_1, \cdots, \partial x'/\partial \phi_{n-1}).$$

DEFINITION 2. A function k(x) is a homogeneous kernel with respect to $\{T_{\lambda}\}$ iff

- (1) k(x) is defined in $\mathbb{R}^n \{0\}$, $k \in L^1(S^{n-1})$ and $\int_{S^{n-1}} k(x') H(\phi) d_{\phi} = 0$,
- (2) for $\lambda > 0$, $k(T_{\lambda}(x)) = \lambda^{-\operatorname{tr} P} k(x)$.

A homogeneous kernel is a singular kernel for the family $U_{\alpha} = \{x, r(x) < \alpha\}$.

Define

$$k_{\epsilon,R}(x) = k(x)$$
 for $\epsilon \le r(x) \le R$,
= 0 otherwise,

and $K_{\epsilon,R}(f) = k_{\epsilon,R} af$ $(f \in L^p(\mathbb{R}^n), 1 \leq p < \infty)$. As a consequence of Theorem 2

THEOREM 3. Let k(x) be a homogeneous kernel satisfying

$$\int_{\{x; r(x) \ge 3r(y)\}} \left| k(x-y) - k(x) \right| dx \le C \quad (ind. of y).$$

Then:

- (i) For $f \in L^1(\mathbb{R}^n)$; $m(\{x, |k_{\epsilon,R}(f)| \ge t\}) \le (BC/t)||f||_1$. The $\lim_{\epsilon \to 0; R \to \infty} k_{\epsilon,R}(f)(x) = k(f)(x)$ exists pointwise almost everywhere.
- (ii) For $f \in L^p(\mathbb{R}^n)$, $1 , <math>||k_{\epsilon,R}(f)||_p \le B_p C ||f||_p$ (B_p depending on p), and the $\lim_{\epsilon \to 0; R \to \infty} k_{\epsilon,R}(f)(x) = k(f)(x)$ exists pointwise almost everywhere and in the L^p -sense.

Another consequence of Theorem 2 is the following multiplier theorem:

THEOREM 4. Assume that

$$\sum_{|\alpha| \leq N} \int_{\frac{1}{2} \leq r(x) \leq 2} |D^{\alpha} a_{\lambda}(x)|^2 dx \leq C$$

where $N > \operatorname{tr}(P)/2$, $a(x) \in L^{\infty}(\mathbb{R}^n)$ and $a_{\lambda}(x) = a(T_{\lambda}(x))$.

For $f \in C_0^{\infty}(\mathbb{R}^n)$ set $T_a(f) = \mathfrak{F}^{-1}(a\mathfrak{F}(f))$ ($\mathfrak{F}(\cdot)$ denotes the Fourier transform). Then $||T_a(f)||_p \leq B_p C||f||_p$ for all p, 1 .

Note. Theorems 3 and 4 remain valid if we consider k(x) and a(x) as operators from a Hilbert space H_1 into a Hilbert space H_2 $(f \in L^p(\mathbb{R}^n, H_1))$.

When P = I, the homogeneous kernels described above are exactly those studied by A. P. Calderón and A. Zygmund in [1]. When P is diagonal and the diagonal elements are greater than or equal to one we obtain the kernels with mixed homogeneities studied by E. B. Fabes and N. M. Rivière [3].

The proofs of these results will appear elsewhere.

REFERENCES

- 1. A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139.
- 2. M. de Guzman, Singular integral operators with generalized homogeneity, Dissertation Thesis, University of Chicago, Chicago, Ill., 1968.
- 3. E. B. Fabes and N. M. Rivière, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19-38.

University of Minnesota, Minneapolis, Minnesota 55455