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Introduction. The purpose of this note is to announce a theorem in 
the representation theory of semisimple groups (Theorem 1.2, below). 
This theorem implies that certain spaces of square summable har­
monic forms on noncompact locally symmetric spaces, associated 
with Q-rank one arithmetic groups, are finite dimensional. Assertion 
(1.3) then gives information about the boundary behavior a t <*> of 
such forms. Combining (1.3) with the computations in [4] and 
Raghunathan's square summability criterion in [ó], we obtain upper 
bounds for some betti numbers of locally symmetric spaces associated 
with Q-rank one arithmetic groups (these spaces are noncompact, 
but have the homotopy type of a finite simplicial complex (see [7])). 
In some cases we obtain vanishing theorems for the first and second 
betti numbers. For the first betti number, such a vanishing theorem 
was obtained in greater generality by D. A. Kazdan (see [3]) by a 
different method. We remark that Raghunathan's square summa­
bility criterion has been generalized to arbitrary Q-rank in [ l ] . 
Therefore an extension of Theorem 1.2 to arbitrary @-rank would 
yield a corresponding extension of our present results on cohomology. 
A detailed proof of Theorem 1.2 and a full discussion of the applica­
tion of this theorem to the cohomology of arithmetic groups will 
appear elsewhere. I wish to express my thanks to S. T. Kuroda and 
M. S. Raghunathan for stimulating discussions. 

We now introduce some notation. Let Q, JR, and C denote the fields 
of rational, real, and complex numbers, respectively, and let Z denote 
the ring of rational integers. Let G denote a connected, linear, semi-
simple, algebraic group which is defined and simple over 0 . For a 
subring A C C , let GA denote the A-rational points of G. However, 
when A = R, we let G = GR. We let g denote the Lie algebra of G, ôc 
the complexification of g, and © the universal enveloping algebra of 
8c- We make the convention that g is the space of right invariant 
vector fields on G. Hence © is the space of right invariant differential 
operators on G. We denote the center of © by £. As is well known, 3 
may be identified with the space of (adjoint-)invariant polynomials 

1 The author was partially supported by NSF Grant GP-7131 and a Yale Uni­
versity Junior Faculty Fellowship. 
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on 8c- In particular, there is a unique element AGGCS» called the 
Casimir operator, which corresponds to the Killing form under this 
identification. 

Let TQGQ be an arithmetic subgroup. We fix a Haar measure dv 
on G, and note that dv induces a G-invariant measure on G/T (which 
we again denote by dv). We let L% = Lt{G/T) denote the space of C00, 
C-valued functions/on G/I\ such that 

f f(x)f~(x)dv(x) < oo 
^ G/Y 

(where u~" denotes complex conjugation). 
We fix a maximal Q-split torus gSCGr, and we let QA denote the 

topological identity component of the /^-rational points of e S . We 
let Z(QS) denote the centralizer of QS in G, and we let XQ denote the 
Q-rational characters of Z{QS). We then define MQZ(QS) by 

M = fl kernel x2-
XSXQ 

Z(QS) is known to have an almost direct product decomposition 
Z(QS)=MQS, and Z(QA), the centralizer of QA in G, a direct product 
decomposition 

Z(QA) = MQA, 

where M denotes the 2?-rational points of M. 
We now fix a maximal compact subgroup KQ.G, such that K and 

QA have Lie algebras which are orthogonal with respect to the 
Cartan-Killing form of g. Let F be a finite dimensional, complex 
vector space with a positive definite, Hermitian inner product. Then 
let a: K—>Aut F be a representation of K which is unitary with re­
spect to the given inner product. We let d„ denote the complex dimen­
sion of V and we let £, denote the character of <r. 

We then define a subspace L\ of L2, by 

(0.1) L\ = (f E UI dff ƒ UWl*)dk = ƒ(*), x G G/T 

where dk denotes Haar measure on K, normalized so that 

f dk = 1. 
J K 

We remark that functions on G/T may be identified with T-invariant 
functions on G. We will make this identification whenever convenient 
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and we will denote corresponding functions on G and G/T by the 
same letter. 

1. Statement of the main theorem. For vEC, let 

9^= {fGLl\A0f = vf}. 

LEMMA 1.1. Assume G has Q-rank one; i.e. dim QS~1. Then there 
exists a real number J so that if g* 5?̂  {0} , then v is real and v<J. 

THEOREM 1.2 (MAIN THEOREM). Assume G has Q-rank one. For 
cERy let 

a « 

Then SF* is finite dimensional. Moreover, if vER,fE£l and AG®, we 
have AfEL2. If vu V2ER, fiE&t (* = 1, 2), and Au A2G@, then for 
I G ô > we have 

(1.3) f {XAlf1){A2f2)dv = - f (A1/1)(XA2/7)^. 
•J G/T J G/T 

The following is an immediate consequence of Lemma 1.1 and 
Theorem 1.2. 

COROLLARY 1.4. The eigenvalues of AQ in LI have no finite point of 
accumulation.2 

2. An indication of the proof of the main theorem. In this section 
we assume G has Q-rank one. Let P C G be a minimal Q-parabolic 
subgroup and let P denote the ^-rational points of P. We let U de­
note the unipotent radical of P and U the i?-rational points of U. 
After conjugating P by a suitable point in GQ, we can assume 

P = MQSU, P = MQAU. 

We let S denote a set of double coset representatives for PQ\GQ/T, 
and we let 

r « = n qTq^rMi. 
qeZ 

U/T* is compact, and we can therefore fix a Haar measure du on 
U so that fu/T„du = l. For fEL2 and g £ E , we define fq by fq(x) 
—f{xq), xEG (f here being identified with a right T invariant func-

* At first we proved gr
r finite dimensional. We thank R. P. Langlands for pointing 

out that our argument also gives the finite dimensionality of (F#
#, and hence Corollary 

1.4. 
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tion on G). We then define fq by 

ƒ«'(*) = f fq(xu)du, xEG. 

From now on, we assume/G9T f° r some vÇ^R and some cr. In par­
ticular, ƒ £i>2 a n d this means that ƒ is a component of a F-valued, 
left K equivariant function. The same is then true of fq . Moreover, 
since G has the generalized Iwasawa decomposition 

G = KMQAU, 

and since fq is also right U invariant, we see that fi is uniquely 
determined by its restriction to MQA. We denote this restriction 
again by fj. 

Recall that MQA is a direct product. We can therefore regard fq 
as a function of two variables (the M-variable and the QA-variable). 
A central step in proving Lemma 1.1 and Theorem 1.2, is to deter­
mine the nature of fq as a function of the QA -variable. For we can 
then apply the theory of cusp forms (see [2, Chapter l ] ) together 
with arguments from the theory of elliptic operators (see [5]) to 
obtain the desired results. We will describe fq' as a function in the 
Q-4-variable presently, but in preparation, we introduce some 
notation. 

We let w: MTJ-+M denote the natural projection. We let 

T p = PI (qTq-'nMU), and TM = x ( r P ) . 

For each a £ 0 4 , we set fqA(m) =ƒ<ƒ {ma), m (EM. fqA is then a right 
Tjif-invariant function on M. Moreover, TM is a discrete subgroup of 
M and M/TM is compact. Hence fq>a may be regarded as a function 
on the compact quotient space M/TM* We let KM^TT^C^MU) and 
we define <TM' KM—>Aut V, by 

er*(*•(*)) = *(*), kGKC\ MU. 

We then fix a Haar measure dm on M, and define L2{M/YM) and 
I4M(M/TM) just as we did L2(G/T) and U2(G/Y), respectively. We 
note that fQAÇïLiu(M/Tu)9 for all aEQA. The pair (QA, U) deter­
mines an order on the roots of QA. We then let a denote the unique 
simple root and Qg one half the sum of the positive roots. The be­
haviour of fq

f as a function in a, aÇ^çA, is then given by 

LEMMA 2.1. There is an orthonormal basis fa, • • • , </>i, • • • of 
L%M(M/TM), a sequence of real numbers mi, • • • , mi, • • • 
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Limitz-oo nti= 00, and a positive number X depending only on g, so that 
if vÇiC and 9 ^ {o}, then v^R and there is a finite subsequence </>iv 

• • • t 0t>» wi/ft mij+v>0,j=l, - - - , N, so that if Kj=\~l{mij
Jtv)112 

{here we take the positive square root), then f or allfÇz<£, <z€=2> w^ can 
find 61, • • • , 6nGC, so that 

N 
exP(0g(!og <*))ƒ« (0*0) = 2 *y expfo*x(log tf))0<y(w), ö £ 0 i , m^M. 

üfere log a is /À£ unique element in the Lie algebra of QA which exponen­
tiates to a. 

REMARK. The <£» and m^ are respectively the eigenfunctions and 
corresponding eigenvalues of a certain (essentially) elliptic invariant 
differential operator on LlM{M/TM) associated with AQ. 
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