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Introduction. The purpose of this note is to announce a theorem in
the representation theory of semisimple groups (Theorem 1.2, below).
This theorem implies that certain spaces of square summable har-
monic forms on noncompact locally symmetric spaces, associated
with @-rank one arithmetic groups, are finite dimensional. Assertion
(1.3) then gives information about the boundary behavior at « of
such forms. Combining (1.3) with the computations in [4] and
Raghunathan’s square summapbility criterion in [6], we obtain upper
bounds for some betti numbers of locally symmetric spaces associated
with @-rank one arithmetic groups (these spaces are noncompact,
but have the homotopy type of a finite simplicial complex (see [7])).
In some cases we obtain vanishing theorems for the first and second
betti numbers. For the first betti number, such a vanishing theorem
was obtained in greater generality by D. A. Kazdan (see [3]) by a
different method. We remark that Raghunathan’s square summa-
bility criterion has been generalized to arbitrary @-rank in [1].
Therefore an extension of Theorem 1.2 to arbitrary @-rank would
yield a corresponding extension of our present results on cohomology.
A detailed proof of Theorem 1.2 and a full discussion of the applica-
tion of this theorem to the cohomology of arithmetic groups will
appear elsewhere. I wish to express my thanks to S. T. Kuroda and
M. S. Raghunathan for stimulating discussions.

We now introduce some notation. Let @, R, and C denote the fields
of rational, real, and complex numbers, respectively, and let Z denote
the ring of rational integers. Let G denote a connected, linear, semi-
simple, algebraic group which is defined and simple over Q. For a
subring ACC, let G4 denote the A-rational points of G. However,
when A=R, we let G=Gg. We let g denote the Lie algebra of G, gc
the complexification of g, and @ the universal enveloping algebra of
gc. We make the convention that g is the space of right invariant
vector fields on G. Hence ® is the space of right invariant differential
operators on G. We denote the center of & by 3. As is well known, 3
may be identified with the space of (adjoint-)invariant polynomials

1 The author was partially supported by NSF Grant GP-7131 and a Yale Uni-
versity Junior Faculty Fellowship.
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on gc. In particular, there is a unique element Ag&E 8, called the
Casimir operator, which corresponds to the Killing form under this
identification.

Let I'CGg be an arithmetic subgroup. We fix a Haar measure dv
on G, and note that dv induces a G-invariant measure on G/T' (which
we again denote by dv). We let Ly =L,(G/T") denote the space of C%,
C-valued functions f on G/T', such that

J@)f~(x)dv(x) < oo
Gr
(where “—” denotes complex conjugation).

We fix a maximal @-split torus gSCG, and we let g4 denote the
topological identity component of the R-rational points of oS. We
let Z(gS) denote the centralizer of oS in G, and we let Xy denote the
@-rational characters of Z(gS). We then define MCZ(gS) by

M= ( kernel x%
X€EXQ

Z(gS) is known to have an almost direct product decomposition
Z(gS) =MgS, and Z(gA), the centralizer of g4 in G, a direct product
decomposition

Z(gA) = M4,

where M denotes the R-rational points of M.

We now fix a maximal compact subgroup KCG, such that K and
o4 have Lie algebras which are orthogonal with respect to the
Cartan-Killing form of g. Let V be a finite dimensional, complex
vector space with a positive definite, Hermitian inner product. Then
let 0: K—Aut V be a representation of K which is unitary with re-
spect to the given inner product. We let d, denote the complex dimen-
sion of ¥ and we let £, denote the character of o.

We then define a subspace L] of L,, by

0.1) Ly = {fe Lgi d,f E,(k)f(k—lx)dk =f(x), 2 € G/l"} ,
K
where dk denotes Haar measure on K, normalized so that

fdk=1.
K

We remark that functions on G/T may be identified with I'-invariant
functions on G. We will make this identification whenever convenient
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and we will denote corresponding functions on G and G/T' by the
same letter.

1. Statement of the main theorem. For v&C, let

G = {fE€ L:| Acf = »f}.

LeEmMMA 1.1. Assume G has @-rank one; i.e. dim oS =1. Then there
exists a real number J so that if G 7 {0}, then v is real and v < J.

THEOREM 1.2 (MAIN THEOREM). Assume G has @Q-rank one. For
cER, let

'3 o
Fe = ®v>cgw

Then 3 is finite dimensional. Moreover, if vER, fEG, and AEY, we
have AfEL,. If v, »ER, fi€g, (=1, 2), and A, A,EG, then for
X & g, we have

(1.3) f AL Ao = — [ () (XAsfa)i.
QT QT

The following is an immediate consequence of Lemma 1.1 and
Theorem 1.2.

COROLLARY 1.4. The eigenvalues of Ag in L have no finite point of
accumulation.?

2. An indication of the proof of the main theorem. In this section
we assume G has @-rank one. Let PCG be a minimal @-parabolic
subgroup and let P denote the R-rational points of P. We let U de-
note the unipotent radical of P and U the R-rational points of U.
After conjugating P by a suitable point in Gg, we can assume

P=MgSU, P=MyAU.

We let = denote a set of double coset representatives for Pg\Gg/T,
and we let
To = N ¢qTg'NU.
gEE
U/T,, is compact, and we can therefore fix a Haar measure du on

U so that fy;r,du=1. For fEL,; and gEE, we define f, by f,(x)
=f(xq), * &G (f here being identified with a right T invariant func-

* At first we proved G, finite dimensional. We thank R. P. Langlands for pointing
out that our argument also gives the finite dimensionality of &,*, and hence Corollary
1.4.
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tion on G). We then define f{ by

i@ = S, z€G.

From now on, we assume fEG; for some v&ER and some o. In par-
ticular, fE€ L3 and this means that f is a component of a V-valued,
left K equivariant function. The same is then true of f; . Moreover,
since G has the generalized Iwasawa decomposition

G = KMyAU,

and since f; is also right U invariant, we see that f; is uniquely
determined by its restriction to MgA. We denote this restriction
again by f .

Recall that M4 is a direct product. We can therefore regard f;
as a function of two variables (the M-variable and the gA4-variable).
A central step in proving Lemma 1.1 and Theorem 1.2, is to deter-
mine the nature of f; as a function of the gA4-variable. For we can
then apply the theory of cusp forms (see [2, Chapter 1]) together
with arguments from the theory of elliptic operators (see [5]) to
obtain the desired results. We will describe f; as a function in the
gA-variable presently, but in preparation, we introduce some
notation.

We let w: MU— M denote the natural projection. We let

Tp= N (@¢*NMU), and Ty = x(Tp).

qEE

For each aE g4, we set fy,(m)=f; (ma), mE M. f,, is then a right
T'y-invariant function on M. Moreover, I'y is a discrete subgroup of
M and M/Tu is compact. Hence f;, may be regarded as a function
on the compact quotient space M/I'y. We let Ky =w(KNMU) and
we define ox: Ky—Aut V, by

ou(w(k)) = o(k), EEKNMU.

We then fix a Haar measure dm on M, and define Ly(M/Tx) and
LM(M/T ») just as we did Ly(G/T') and L3(G/T'), respectively. We
note that f,EL#(M/Tx), for all a€gA. The pair (g4, U) deter-
mines an order on the roots of g4. We then let @ denote the unique
simple root and gg one half the sum of the positive roots. The be-
haviour of f as a function in @, a& g4, is then given by

LeEMMA 2.1. There is an orthonormal basts ¢y, - - -, ¢, - - - of
L (M/Tx), a sequence of real numbers my, - - -, my, - - - such that
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Limit;.,, m;= «, and a positive number N depending only on g, so that
if vEC and G # {0}, then vER and there is a finite subsequence ¢,

“y Giyy wWith my+v>0,j=1, - - -, N, so that if k;=N""(m;+»)"?
(here we take the positive square root), then for all fEGS, ¢EE, we can
find by, - - -, b, &C, so that

N
exp(gg(log a))f{ (ma) = > b; exp(xja(log @)y (m), a E gd, mE M.

=1

Here log a is the unique element in the Lie algebra of gA which exponen-
tiates to a.

REMARK. The ¢; and m; are respectively the eigenfunctions and
corresponding eigenvalues of a certain (essentially) elliptic invariant
differential operator on Lj¥ (M /T s) associated with Ag.
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