THE SPECTRUM OF NONCOMPACT G/Γ AND THE COHOMOLOGY OF ARITHMETIC GROUPS

BY HOWARD GARLAND1

Communicated by Louis Auslander, February 13, 1969

Introduction. The purpose of this note is to announce a theorem in the representation theory of semisimple groups (Theorem 1.2, below). This theorem implies that certain spaces of square summable harmonic forms on noncompact locally symmetric spaces, associated with Q-rank one arithmetic groups, are finite dimensional. Assertion (1.3) then gives information about the boundary behavior at ∞ of such forms. Combining (1.3) with the computations in [4] and Raghunathan's square summability criterion in [6], we obtain upper bounds for some betti numbers of locally symmetric spaces associated with Q-rank one arithmetic groups (these spaces are noncompact, but have the homotopy type of a finite simplicial complex (see [7])). In some cases we obtain vanishing theorems for the first and second betti numbers. For the first betti number, such a vanishing theorem was obtained in greater generality by D. A. Kazdan (see [3]) by a different method. We remark that Raghunathan's square summability criterion has been generalized to arbitrary Q-rank in [1]. Therefore an extension of Theorem 1.2 to arbitrary Q-rank would yield a corresponding extension of our present results on cohomology. A detailed proof of Theorem 1.2 and a full discussion of the application of this theorem to the cohomology of arithmetic groups will appear elsewhere. I wish to express my thanks to S. T. Kuroda and M. S. Raghunathan for stimulating discussions.

We now introduce some notation. Let Q, R, and C denote the fields of rational, real, and complex numbers, respectively, and let Z denote the ring of rational integers. Let G denote a connected, linear, semisimple, algebraic group which is defined and simple over Q. For a subring $A \subset C$, let G_A denote the A-rational points of G. However, when A = R, we let $G = G_R$. We let g denote the Lie algebra of G, g_C the complexification of g, and G the universal enveloping algebra of G. We make the convention that g is the space of right invariant vector fields on G. Hence G is the space of right invariant differential operators on G. We denote the center of G by G. As is well known, G may be identified with the space of (adjoint-)invariant polynomials

¹ The author was partially supported by NSF Grant GP-7131 and a Yale University Junior Faculty Fellowship.

on g_c . In particular, there is a unique element $\Delta_c \in \mathcal{B}$, called the Casimir operator, which corresponds to the Killing form under this identification.

Let $\Gamma \subset G_Q$ be an arithmetic subgroup. We fix a Haar measure dv on G, and note that dv induces a G-invariant measure on G/Γ (which we again denote by dv). We let $L_2 = L_2(G/\Gamma)$ denote the space of C^{∞} , C-valued functions f on G/Γ , such that

$$\int_{G/\Gamma} f(x)f^{-}(x)dv(x) < \infty$$

(where "-" denotes complex conjugation).

We fix a maximal Q-split torus $_{Q}S \subset G$, and we let $_{Q}A$ denote the topological identity component of the R-rational points of $_{Q}S$. We let $Z(_{Q}S)$ denote the centralizer of $_{Q}S$ in G, and we let X_{Q} denote the Q-rational characters of $Z(_{Q}S)$. We then define $M \subset Z(_{Q}S)$ by

$$M = \bigcap_{\chi \in XQ} \text{kernel } \chi^2.$$

 $Z(_{Q}S)$ is known to have an almost direct product decomposition $Z(_{Q}S) = M_{Q}S$, and $Z(_{Q}A)$, the centralizer of $_{Q}A$ in G, a direct product decomposition

$$Z(_{\mathcal{Q}}A) = M_{\mathcal{Q}}A,$$

where M denotes the R-rational points of M.

We now fix a maximal compact subgroup $K \subset G$, such that K and ${}_{Q}A$ have Lie algebras which are orthogonal with respect to the Cartan-Killing form of ${}_{Q}B$. Let V be a finite dimensional, complex vector space with a positive definite, Hermitian inner product. Then let $\sigma: K \to Aut \ V$ be a representation of K which is unitary with respect to the given inner product. We let d_{σ} denote the complex dimension of V and we let ξ_{σ} denote the character of σ .

We then define a subspace L_2^{σ} of L_2 , by

$$(0.1) L_2^{\sigma} = \left\{ f \in L_2 \left| d_{\sigma} \int_{\mathcal{K}} \xi_{\sigma}(k) f(k^{-1}x) dk = f(x), x \in G/\Gamma \right\} \right.,$$

where dk denotes Haar measure on K, normalized so that

$$\int_{K} dk = 1.$$

We remark that functions on G/Γ may be identified with Γ -invariant functions on G. We will make this identification whenever convenient

and we will denote corresponding functions on G and G/Γ by the same letter.

1. Statement of the main theorem. For $\nu \in C$, let

$$g_{\nu}^{\sigma} = \{ f \in L_2^{\sigma} | \Delta_G f = \nu f \}.$$

LEMMA 1.1. Assume G has Q-rank one; i.e. dim $_{Q}S=1$. Then there exists a real number J so that if $g_{\nu}^{\sigma} \neq \{0\}$, then ν is real and $\nu < J$.

THEOREM 1.2 (MAIN THEOREM). Assume G has Q-rank one. For $c \in R$, let

$$\mathfrak{F}_{c}^{\sigma} = \bigoplus_{\nu > c} \mathfrak{S}_{\nu}^{\sigma}.$$

Then $\mathfrak{F}_{c}^{\sigma}$ is finite dimensional. Moreover, if $\nu \in \mathbb{R}$, $f \in \mathfrak{F}_{\nu}^{\sigma}$ and $\Lambda \in \mathfrak{G}$, we have $\Lambda f \in L_{2}$. If ν_{1} , $\nu_{2} \in \mathbb{R}$, $f_{l} \in \mathfrak{F}_{\nu_{l}}^{\sigma}$ (l=1, 2), and Λ_{1} , $\Lambda_{2} \in \mathfrak{G}$, then for $X \in \mathfrak{g}$, we have

(1.3)
$$\int_{G/\Gamma} (X\Lambda_1 f_1)(\Lambda_2 f_2) dv = -\int_{G/\Gamma} (\Lambda_1 f_1)(X\Lambda_2 f_2) dv.$$

The following is an immediate consequence of Lemma 1.1 and Theorem 1.2.

COROLLARY 1.4. The eigenvalues of Δ_G in L_2^{σ} have no finite point of accumulation.²

2. An indication of the proof of the main theorem. In this section we assume G has G-rank one. Let $F \subset G$ be a minimal G-parabolic subgroup and let F denote the F-rational points of F. We let F denote the unipotent radical of F and F the F-rational points of F. After conjugating F by a suitable point in F0, we can assume

$$P = M_Q SU, \qquad P = M_Q AU.$$

We let Ξ denote a set of double coset representatives for $P_Q \backslash G_Q / \Gamma$, and we let

$$\Gamma_{\infty} = \bigcap_{q \in \mathbb{Z}} q \Gamma q^{-1} \cap U.$$

 U/Γ_{∞} is compact, and we can therefore fix a Haar measure du on U so that $\int_{U/\Gamma_{\infty}} du = 1$. For $f \in L_2$ and $q \in \Xi$, we define f_q by $f_q(x) = f(xq)$, $x \in G$ (f here being identified with a right Γ invariant func-

² At first we proved $\mathfrak{G}_{\mathfrak{s}}$ finite dimensional. We thank R. P. Langlands for pointing out that our argument also gives the finite dimensionality of $\mathfrak{F}_{\mathfrak{s}}$, and hence Corollary 1.4.

tion on G). We then define f_q' by

$$f_q'(x) = \int_{U/\Gamma_n} f_q(xu) du, \quad x \in G.$$

From now on, we assume $f \in \mathcal{G}_{7}^{\sigma}$ for some $\nu \in \mathbb{R}$ and some σ . In particular, $f \in L_{2}^{\sigma}$ and this means that f is a component of a V-valued, left K equivariant function. The same is then true of f_{4}' . Moreover, since G has the generalized Iwasawa decomposition

$$G = KM_{Q}AU$$

and since f_q' is also right U invariant, we see that f_q' is uniquely determined by its restriction to M_QA . We denote this restriction again by f_q' .

Recall that M_QA is a direct product. We can therefore regard f_q' as a function of two variables (the M-variable and the $_QA$ -variable). A central step in proving Lemma 1.1 and Theorem 1.2, is to determine the nature of f_q' as a function of the $_QA$ -variable. For we can then apply the theory of cusp forms (see [2, Chapter 1]) together with arguments from the theory of elliptic operators (see [5]) to obtain the desired results. We will describe f_q' as a function in the $_QA$ -variable presently, but in preparation, we introduce some notation.

We let $\pi: MU \rightarrow M$ denote the natural projection. We let

$$\Gamma_P = \bigcap_{q \in \mathbb{Z}} (q \Gamma q^{-1} \cap MU), \text{ and } \Gamma_M = \pi(\Gamma_P).$$

For each $a \in_Q A$, we set $f'_{q,a}(m) = f'_q(ma)$, $m \in M$. $f'_{q,a}$ is then a right Γ_M -invariant function on M. Moreover, Γ_M is a discrete subgroup of M and M/Γ_M is compact. Hence $f'_{q,a}$ may be regarded as a function on the compact quotient space M/Γ_M . We let $K_M = \pi(K \cap MU)$ and we define $\sigma_M : K_M \to \text{Aut } V$, by

$$\sigma_M(\pi(k)) = \sigma(k), \qquad k \in K \cap MU.$$

We then fix a Haar measure dm on M, and define $L_2(M/\Gamma_M)$ and $L_2^{\sigma_M}(M/\Gamma_M)$ just as we did $L_2(G/\Gamma)$ and $L_2^{\sigma}(G/\Gamma)$, respectively. We note that $f'_{q,a} \in L_2^{\sigma_M}(M/\Gamma_M)$, for all $a \in_Q A$. The pair (QA, U) determines an order on the roots of QA. We then let α denote the unique simple root and QG one half the sum of the positive roots. The behaviour of f'_q as a function in $a, a \in_Q A$, is then given by

LEMMA 2.1. There is an orthonormal basis $\phi_1, \dots, \phi_l, \dots$ of $L_2^{\sigma_M}(M/\Gamma_M)$, a sequence of real numbers m_1, \dots, m_l, \dots such that

Limit_{l→∞} $m_l = \infty$, and a positive number λ depending only on \mathfrak{g} , so that if $\nu \in \mathbb{C}$ and $\mathfrak{G}_{\nu}^{\sigma} \neq \{0\}$, then $\nu \in \mathbb{R}$ and there is a finite subsequence ϕ_{i_1} , \cdots , ϕ_{i_N} , with $m_{i_j} + \nu > 0$, $j = 1, \cdots, N$, so that if $\kappa_j = \lambda^{-1}(m_{i_j} + \nu)^{1/2}$ (here we take the positive square root), then for all $f \in \mathfrak{G}_{\nu}^{\sigma}$, $q \in \mathbb{Z}$, we can find $b_1, \cdots, b_n \in \mathbb{C}$, so that

$$\exp(_{Q}g(\log a))f'_{q}(ma) = \sum_{j=1}^{N} b_{j} \exp(\kappa_{j}\alpha(\log a))\phi_{i_{j}}(m), \quad a \in _{Q}A, m \in M.$$

Here $\log a$ is the unique element in the Lie algebra of $_{\mathcal{Q}}A$ which exponentiates to a.

REMARK. The ϕ_i and m_i are respectively the eigenfunctions and corresponding eigenvalues of a certain (essentially) elliptic invariant differential operator on $L_2^{\sigma_M}(M/\Gamma_M)$ associated with Δ_G .

BIBLIOGRAPHY

- 1. H. Garland and W. C. Hsiang, A square integrability criterion for the cohomology of arithmetic groups, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 354-360.
- 2. Harish-Chandra, Automorphic forms on semisimple Lie groups, Lecture Notes in Math., vol. 62, Springer-Verlag, New York, 1968.
- 3. D. A. Kazdan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71-74=Functional Anal. Appl. 1 (1967), 63-65.
- 4. Y. Matsushima, On Betti numbers of compact, locally symmetric Riemannian manifolds, Osaka J. Math. 14 (1962), 1-20.
- 5. R. Narasimhan, Lectures on topics in analysis, Mimeographed Notes, Tata Institute of Fundamental Research, Bombay, 1965.
- 6. M. S. Raghunathan, Cohomology of arithmetic subgroups of algebraic groups. II, Ann. of Math. (2)87(1968), 279-304.
- 7. ——, A note on quotients of real algebraic groups by arithmetic subgroups, Invent. Math. 4 (1968), 318-335.

YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520