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In this note, we shall announce some results on differentiable ac­
tions of SO(n), SU(w) and Sp(w) on manifolds. Since the detailed 
proofs are too long to be included here, we shall publish them else­
where. 

THEOREM 1. Let <j> be a differentiable action of SO(n), (S\J(n), 
Sp(w)) on an m-dim manifold Mm where w e l l and m ^ ( « - l ) 2 / 4 
(n^8 and mS(n — l)2/2, n^S and m^(n — l)2). If the first rational 
Pontrjagin class of Mm, Pi(Mm), vanishes, then the identity component 
of any isotropy subgroup, (Gx)ofor xGMm is always conjugate to SO(fe), 
(SU(fe), Sp(&)) under the standard inclusion for some k^\n. 

THEOREM 2. For a given differentiable action <j> of SO(n), (SU(w), 
SpOO) on a homotopy sphere Sm {respectively Euclidean space Rm, 
respectively disc Dm) where n^ll and mS(n — l)2/4: (n*£& and 
m^(n — l)2/2, n^S and mS(n — l)2) , we have that 

(i) all orbits are real (complex, quaternionic) Stiefel manifolds, 
(ii) if SO(n)/SO(k), (SU(n)/SXJ(k), Sp(#)/Sp(fe)) is the principal 

orbit and F is the fixed point set, then 

#*(F; A)~H*(Sy, A) 

(respectively H*(F] A) ~ H*(Rv; A) 

respectively H*(F\ A) ~ #*(£? ; A)) 

where 

y = dim F = m — n(n — k) for the SO(n) case 

= m — 2n(n — k) for the SU(^) case 

= m — 4:n(n — k) for the Sp(w) case 

and 

A = Z2 for the SO(n) case (n odd) 

= Z for the other cases. 

1 During the preparation of this paper, the first named author was partially 
supported by NSF grant NSF-GP-4037 and the second named author was partially 
supported by NSF grant NSF-GP-3422. 
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(iii) the orbit space 2 m / $ is a (k —I)-connected ((2k — l)-connected, 
(4k —I)-connected) differentiable manifold with boundary and the 
boundary is the image of singular orbits. 

Let (Hi), (H2) be two conjugate classes of connected subgroups of 
G such tha t H2/Hi~Sk (k^l, 3). We shall give a complete set of in­
variants for differentiable actions of G on compact connected mani­
folds with (Hi), (H2) as the isotropy subgroup types. Recall tha t 
H2/Hi~Sk ( JM1, 3). In fact, it follows from the Slice Theorem [ l ] , 
[ l l ] tha t H2/Hi must be diffeomorphic to 5* for some k if there exists 
an action of G with (Hi), (H2) as the isotropy subgroups. 

A pre-G-space with (Hi), (H2) as the isotropy subgroup types is an 
object 

* = {B,i,t,(f:4->k\L),(g:4-+t)} 

satisfying the following four conditions: 
(i) B is an n-dim compact connected manifold with boundary and 

£ is a differentiable G/i?i-bundle over B with N(Hi)/Hi as the struc­
tural group. | is the principal iV(Hi)/iTi-bundle associated with £. 

(ii) f is a differentiable G/£?2-bundle over a (n — l)-dim regular 
compact submanifold L of dB (L may be disconnected) with N(H2)/H2 

as the structural group, f is the principal N(H2)/H2-b\xndle associated 
with f. 

(iii) The structural group of | | L is reduced to (N(Hi)C\N(H2))/Hi 
and ƒ : *)—>| is the reduction. 

(iv) There is a bundle map g: j}—»f which induces the natural 
homomorphism (N(Hi)r\N(H2))/Hi~*N(H2)/H2 on the fibre and 
identity on the base L. 

Notice tha t for a given principal (N(Hi)nN(H2))/Hi-bundle fj, 
g is unique if it exists. We define isomorphism classes of pre-G-spaces 
in the natural way and only consider isomorphism classes of pre-G-
spaces. 

THEOREM 3. To each differentiable action <j> of G on a compact con­
nected manifold M with (Hi), (H2) as isotropy subgroups, there corre­
sponds a unique isomorphism class of pre-G-space 

* = iS,fcr,CM->!U),C*:0-»f)} 
such that 

(i) the orbit space M/4> is diffeomorphic to B, 
(ii) £| (B— L) is the differentiable fibre bundle 

G 
— >M(Hl)->(B- L) 
tii 
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where M(HX) is the union of all principal orbits, 
(iii) f is the differentiable fibre bundle 

G 
— -» MM -» L 
i±% 

where M<H2) is the union of all singular orbits. 
Conversely, for a given pre-G-space <£, there is a unique equivalence 

class <j> of differentiable action of G on a compact connected manifold M 
such that the above conditions (i), (ii) and (iii) are verified. 

Consider the set of all equivalence classes of differentiable actions 
of G on compact connected manifolds with (Hi), (i?2) as the isotropy 
subgroup types such that the associated pre-G-spaces have isomorphic 
£, J and diffeomorphic B, L. Since g is completely determined by ƒ 
as we remarked before, the actions are completely distinguished by 
the reduct ions/ : t?—>|| L. 

Under these circumstances, the reduction ƒ : *}-*||L is called the 
"twist invariant" of a differentiable G-action <f>. By [14], the "twist 
invariant" is represented as a homotopy class of cross-sections of the 
fibre bundle 

N(HM(N(BÙ r\ N(H2)) -> E(l \ L)/(#(J5Ti) H N(H2)) -> L. 

Applying Theorem 3 to fixed point free actions of SO(n) (SU(n), 
Sp(w)) on {In — 1)—((4^ — 1)—, (8w — 1)—1) spheres, we generalize 
the classification theorem of [S]. 

THEOREM 4. Let <t> be a fixed point free differentiable action of SO (n), 
(SU(«), Sp(»)) on a homotopy sphere S2*-1 (S4»"1, 28*-1) for n^ll 
(n*z 8). Then the orbit space is always a D2 (3-dim compact contractible 
manifold, 5-dim compact contractible manifold). Moreover, the SU(n) 
and Spin) actions are completely determined by the orbit spaces while 
all such SO (ft) actions are distinguished by their a twist invariants" 
which may be identified as elements in Hl(Sl\ Z). For the latter case, the 
utwist invariant" is always a generator of jff1(51; Z) if n is even and it 
can be any odd multiple of a generator of H\SX\ Z) if n is odd. 

Now, let us study differentiable actions of compact connected 
classical groups on spheres with three types of orbits such that one of 
them is fixed point. 

Let <t> be a differentiable action of SO(w) (SU(w), Sp(w)) on a 
homotopy sphere S w for m<3n — 6 (m<6n—9, m<12n~15). By 
Theorem 2 and Theorem 4, the only remaining case is that where 
2n-~l<m<3n-6 (4n~l<m<6n~-9, Sn-Km<l2n~lS) and 
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Vn,2(Wn,2, Xn,2) is the principal orbit type. In this case, the fixed 
point set is nonempty and of dimension m — 2n (m—4tn, m — 8n). I t 
again follows from Theorem 2 that the orbit space of <j> naturally 
consists of a triple of manifolds (B, dJ3, L) such tha t 

(i) B is contractible of dim m — 2n+3 (m—An+A, m — &n+6), 
(ii) dB is the image of singular orbits, 
(iii) L is the fixed point set which is a closed manifold of codimen-

sion 2 (3, 5) in dB. (B, dB, L) is called the orbit triple of <j>. 

THEOREM 5. The differentiable action <t> of SO (n) (SU(w), Sp(w)) on 
a homotopy sphereSwfor n^ll (w^8) , 2n — l<m<3n — 6 (An —Km 
<6n — 9, 8n — Km<l2n — 15) with Vn,2(Wn,2, Xnt2) as the principal 
orbit is completely determined by the uorbit triple" (B, dB, L) of <f>. 

Combining the results of [S], [7], [9] with Theorems 4 and 5, we 
have theoretically completed the classification of differentiable ac­
tions of SO(w), SU(rc) and Sp(w) on homotopy spheres in the follow­
ing range: 

SO(n) actions on w-spheres f or n â 11 and m < 3n — 6, 

SU(w) actions on m-spheres f or n è 8 and m < 6n — 9, 

Sp(w) actions on m-spheres for n â 8 and m < Yin — IS. 
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