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Here we describe some results which will be proved in detail in
[13] and [14]. The notion of metarecursive set was introduced in
[8]. Kreisel [7] reported on some of the model-theoretic deliberations
which preceded the definitions of [8]. Metarecursion theory is a
generalization of ordinary recursion theory from the natural numbers
to the recursive ordinals. Theorems about finite sets of natural num-
bers are replaced by theorems about metafinite sets of recursive
ordinals, some of which are infinite. Initially, metarecursive sets were
defined in [8] in terms of hyperarithmetic sets, II} sets, and notations
for recursive ordinals [6], [16]; however, it later proved convenient
to utilize an equation calculus devised by Kripke [9]. The purpose
of Kripke's theory is to generalize recursion theory from the natural
numbers to certain initial segments of the ordinals [9], [10], [11].
He calls an ordinal « admissible if the ordinals less than « have cer-
tain closure properties definable in terms of an equation calculus
modeled on Kleene's. Kripke's equation calculus has numerals de-
noting ordinals, finitary substitution rules, and one infinitary deduc-
tion rule. If an ordinal & is admissible, then an a-recursive function f
is defined by a finite system of equations: each value of f is computa-
ble using Kripke’s rules, and only correct values can be so computed.
It turned out that the first admissible ordinal after w was Kleene's
w1, the least nonrecursive ordinal, and that the metarecursive func-
tions were the same as the wi-recursive functions [8], [9].

In this paper we concentrate on our first love, metarecursion the-
ory, but we cannot resist noting, whenever appropriate, which of our
results generalize to arbitrary admissible ordinals.

A set of recursive ordinals is called regular if its intersection with
every metafinite set of recursive ordinals is metafinite. (The meta-
finite sets coincide with the bounded, metarecursive sets.) It was
observed in [8] that there exist bounded, metarecursively enumer-
able sets which are not metarecursive; each such set is a constructive
example of a nonregular set. It would not be unfair to say that the
interesting arguments of metarecursion theory, if it is granted that

1 The preparation of this paper was supported by U. S. Army Contract ARO-
D-373. The author wishes to thank Professor G. Kreisel for several key suggestions;
in particular, the notion of semigeneric set is Kreisel’s.
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they exist, owe their existence to the phenomenon of nonregularity.
We are fond of pathology and consequently are delighted by the
intricacies of Driscoll’s result [2] that the metadegrees of the meta-
recursively enumerable sets are dense: between any two comparable
ones, there is a third. On the other hand, it is aiways healthy to place
limits on pathology. This is our purpose in the next theorem.

THEOREM 1. Each metarecursively enumerable set has the same meta-
degree as some regular, metarecursively enumerable set.

Two sets have the same metadegree [8] if each is metarecursive
in the other. Theorem 1 makes it possible to lift up various results
about degrees of recursively enumerable sets into metarecursion the-
ory; it is an essential ingredient of [2]. The phenomenon of nonregu-
larity makes it difficult, if not impossible, to lift up certain results
about recursively enumerable sets. For example, we do not know if
each nonmetarecursive, metarecursively enumerable set is the dis-
joint union of two metarecursively, enumerable sets of incomparable
metadegrees. The analogous result for recursively enumerable sets is
proved in [15]. The proof of Theorem 1 is inspired by Dekker’s no-
tion of deficiency set [1] and makes use of what might be called a
double-deficiency set. Curiously enough, we do not know if there
exists a metarecursive function f such that if w, is metarecursively
enumerable, then wy() is metarecursively enumerable, regular, and
of the same metadegree as w,.

Let « be an admissible ordinal. Following Kripke [9], we call a set
a-finite if it is a-recursive and bounded by some ordinal less than a.
Call a set of ordinals regular if its intersection with every a-finite
set is a-finite. There exist a-recursively enumerable sets which are
not regular. The proof of Theorem 1 generalizes to a proof of Theo-
rem 1.

THEOREM 1¢. Each a-recursively enumerable set has the same a-degree
as some regular, a-recursively enumerable set.

Two sets have the same a-degree if each is a-recursive in the other.
The natural numbers play a crucial role in the proof of Theorem 1.
The same part is played in the proof of Theorem 1% by the ordinals
less than a*. Kripke defines a*, the projectum of a, to be the least
ordinal § less than or equal to « such that there exists a one-one a-
recursive function whose range is bounded by 8.

Let us identify the natural numbers and the finite, recursive ordi-
nals. Then the IT] sets of natural numbers and metarecursively enum-
merable sets of finite, recursive ordinals coincide [8]. This coincidence
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strengthens the oft-mentioned analogy between recursively enumer-
able sets and II} sets by making it possible to apply priority methods
to IT} sets. At the moment we know of no elementary difference be-
tween recursively enumerable sets and II} sets. For example, Fried-
berg’s argument [4] can be modified to yield a maximal II} set [8].

THEOREM 2. There exist two II; sets of natural numbers such that
neither is metarecursive in the other.

The proof of Theorem 2 of course uses the priority method, but
the central trick of the argument has no counterpart that we know of
in ordinary recursion theory. The II} sets of Theorem 2, call them 4
and B, are defined in such a way that 4 and B are “incomparable”
with respect to a certain subset R of the set of all metarecursive com-
puting procedures P; this part of the proof is analogous to the usual
solutions of Post’s problem [3], [12]. But there is a second part of
the argument which guarantees that on 4 and B, the procedures of R
yield the same results as the procedures of P. The use of R rather
than P is essential because of the requirement that all members of
A and B be finite.

It is possible to regard Theorem 2 as the solution of Post’s problem
for IT} sets. Spector [16] showed that all II} sets lie in two hyper-
degrees. Theorem 2 can be extended to show that the II] sets lie in
infinitely many metadegrees.

In [8] it was shown that there exist two unbounded metarecur-
sively enumerable sets whose metadegrees are incomparable. Kripke
[10] announced that for a great variety of admissible «, Post’s prob-
lem has the usual solution. We give a uniform solution of Post’s
problem for all admissible a.

THEOREM 3¢. For each admissible ordinal e, there exist a-recursively
enumerable sets A and B such that A is not a-recursive in B and B is
not a-recursive.

We conjecture that Theorem 2 can be generalized as follows: for
each admissible ordinal «, there exist two a-recursively enumerable
subsets of a* (the projectum of a) such that neither is a-recursive in
the other.

Kreisel has introduced the notion of subgeneric set of recursive
ordinals. We give his precise definition in [13] and hope that an in-
tuitive definition will suffice here. Let E be a finite set of equations
of Kripke’s equation calculus with principal function letter f and
given function letter g; assume that each numeral occurring in E
denotes a recursive ordinal. If we think of g as the characteristic
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function of some set B of recursive ordinals, then E tells us how to
compute f from B. The deductions permitted by Kripke are described
by ordinals. It turns out that for most B and E, the recursive ordinals
do not suffice for describing all allowable computations from B using
E. If B is metarecursive, they do suffice. We say B is subgeneric if for
every E, every allowable computation from B using E can be de-
scribed by a recursive ordinal. Another way of putting it is: every
possible computation from B is a metafinite object. In ordinary re-
cursion theory, every set S of natural numbers is subgeneric, since
each computation from S permitted by Kripke’s equation calculus is
a finite object effectively given by some natural number. Kreisel
asked: do there exist subgeneric sets of recursive ordinals?

THEOREM 4. There exists a nonmelarecursive, metarecursively enu-
merable, subgeneric set of recursive ordinals.

One of the reasons subgeneric sets are of interest is that vastly
different notions of reducibility coincide on them; this matter is dis-
cussed by Kreisel in [7]. Theorem 4 also provides another solution
to Post’s problem, since it is easy to show a subgeneric set cannot be
complete. Lemma 5 is important in the proof of Theorem 4. We call
a set B of recursive ordinals completely regular if every set metare-
cursive in B is regular.

LEMMA 5. A4 set of recursive ordinals is subgeneric if it is completely
regular.

With the help of Theorem 4 and Lemma 5, we can obtain the
following strong solution of Post’s problem.

THEOREM 6. There exist two subgeneric, metarecursively enumerable
sets such that neither is metarecursive in the other.

We can generalize Theorem 4 to every admissible ordinal, but we
are unable to do so with Theorem 6.

Let « be an admissible ordinal, and let R be an a-recursively enu-
merable set. We say R is maximal if the complement of R (with
respect to the ordinals less than &) is not bounded by any ordinal
less than a and if for each a-recursively enumerable set S, either
S— R or the complement of .S is bounded by some ordinal less than e.
In [8] it was shown that maximal, metarecursively enumerable sets
exist; a slight extension of the argument used shows there are un-
countably many countable admissible ordinals « such that maximal,
a-recursively enumerable sets exist.
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THEOREM 7. There exists a countable admissible ordinal o with the
property that no a-recursively enumerable set is maximal.

We prove Theorem 7 by observing that no aleph-one-recursively
enumerable set is maximal and then applying the Skolem-Léwen-
heim Theorem. We know of no uncountable admissible a such that a
maximal, a-recursively enumerable set exists. There exist uncount-
ably many « which satisfy Theorem 7, but we are unable to define
any such « in a direct, elementary manner.

In [14] we will present axioms for recursion theory. We will see that
most of the results of this paper hold for any system of ordinals and
sets of ordinals satisfying the axioms. We will show that for each
admissible ordinal there exists more than one recursion theory; the
theory of Kripke [9], [10], [11] will turn out to be the minimal re-
cursion theory for each admissible ordinal. The central feature of
axiomatic recursion theory is the acceptability of recursive functions
not computable in any reasonable sense. Thus Church’s Thesis holds
only for the “minimal” models of the axioms of recursion theory. We
are presently unable to settle many questions about the classification
of models of the axioms of recursion theory. With the help of Theo-
rem 4 it is possible to give two different recursion theories on the re-
cursive ordinals which have the same bounded, “recursive” sets,
namely, the metafinite sets. It is also possible to have recursion
theories containing nonconstructible sets.
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