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1. Introduction. We outline here a proof of the following 

THEOREM 1. Let M be a compact C00 Riemannian manifold, all of 
whose sectional curvatures are negative. Then the geodesic flow in the 
orthonormal frame bundle of M is weakly mixing. 

J. G. Sinaï and D. V. Anosovhave proved that the geodesic flow in 
the tangent bundle induces a Kolmogorov system; in particular, the 
flow is strongly mixing and has countable Lebesgue spectrum [ l ] , 
[8]. Indeed, their methods apply to many dynamical systems other 
than geodesic flows, and Anosov's notion of E7-system seems to give 
remarkably complete results in the instability theory of flows and 
cascades on differentiable manifolds. The extension of a weaker re­
sult (weak mixing) from the tangent to the principal bundle would 
hardly be worthwhile if it were not for the fact that our method seems 
to provide a new and powerful way of attacking global problems on 
manifolds with complete connections. Namely, noticing that a well-
defined infinite dimensional Lie group (called the Pythagorean group, 
below) acts transitively on the principal bundle, we try to apply 
group representation ideas to its analysis. 

As in Anosov's proof, one can trace the evolution of our approach 
back to the Hedlund-Hopf technique of asymptotic geodesies. How­
ever, once it is realized that Hopf's introduction of horocyclic co­
ordinates is, in the constant curvature case, a reflection of the 
Iwasawa decomposition of the associated group, a great many points 
in his fundamental paper [4] take on new significance. In the Lie 
group case, this approach has been exploited by L. Auslander, Hahn, 
and the present author [2], [3], and C. C. Moore [7]. (See also the 
earlier work by Gelfand and Fomin, and Mautner; references may be 
found in the above cited papers and book.) 

Because we use horocycle flows extensively, a result inaccessible to 
entropy theory does fall out. 

THEOREM 2. Let M be as in Theorem 1 and in addition have dimen­
sion two. Then the horocycle flow in the tangent bundle is ergodic. 

As far as we know, this is the first such result for a nonmeasure 
1 Research supported by NSF Grant GP-3750. 
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preserving flow defined by geometric conditions. We have not yet 
been able to extend this to higher dimensional manifolds, although it 
is undoubtedly true without the restriction to surfaces. The details of 
the proofs will appear elsewhere. 

2. The generalized Mautner lemma. Let F be a compact C00 

oriented manifold with a volume element (nonsingular form of high­
est degree). Then one can talk of the divergence of vector fields on V 
and of Lp spaces of functions on V. Thanks to the compactness of V, 
with every vector field X we may associate a one-parameter group of 
diffeomorphisms, \Xt\ — <*> <t< oo }. Considered as a group of oper­
ators in Lp, {Xt} has a closed infinitesimal generator, which we desig­
nate also by X, since it coincides with the vector field on the C00 func­
tions. The group {Xt} is measure preserving if and only if div X = 0. 
In the spirit of Appendix II of [3], we state the generalized Mautner 
lemma2 as follows: 

PROPOSITION 1. Let X, H be infinitesimal generators of one-parameter 
groups of diffeomorphisms of V. Assume d i v X = 0, and that [X, H] 
=Xiï, where X is a strictly positive function» Then 

lim X^tHsXt = / 
t—*oo 

strongly in L2for each s. In particular, if f is an eigenfunction of the 
flow {Xt}, then H8f=f for all s. 

The proof of this proposition, so easy when X is constant and div H 
= 0, now uses some formulas from functional analysis. For the n-
dimensional case we need the analogous result for the case when H 
is vector valued and X is a definite matrix. 

3. The Pythagorean group. Now let M be an oriented, compact C00 

Riemannian manifold of dimension n. Let O(M) be the principal 
bundle of orthonormal frames on M. (We use, with discrepancies, 
the notation and nomenclature of Nomizu-Kobayashi [6].) If 
{Ej}, 1 £i<j£n, is a basis for the Lie algebra of SO(n), there exist 
vertical vector fields on 0(M), which we designate by the same let­
ters, induced by the action of the group on the fibers; these are called 
fundamental vector fields. Basic vector fields in O(M) are the unique 
horizontal lifts of geodesies. There exist n independent basic vector 
fields Bi, • • • , Bn such that 

[Bu Ek] *** faiBi — öiiBk 
2 In this form, the result should be attributed to Segal and von Neumann [<>]. 
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and 

[Bi, Bj\ = 2 2^ RmjiEr. 

These are the vector forms of the structure equations of M (to which, 
of course, one adds the Lie algebra multiplication table for the E's). 

Since 0(M) is complete, each of these n+%n(n — 1) vector fields 
gives rise to a one-parameter group of diffeomorphisms. The subgroup 
generated by these in the full group of diffeomorphisms of 0(M) we 
call the Pythagorean group of M, P . The name is chosen because 
"structure group" means something else, and because relations in this 
group are consequences, at least locally, of the law of cosines. 

The usefulness of P is a consequence of the following properties. 
First, it acts pointwise transitively in 0(M). Of course, except when 
M is homogeneous, P is not a finite dimensional Lie group, so M is 
not a coset space of P when any natural topology is assigned to P . 
Next, every element of P preserves the natural measure on 0(M) 
obtained locally from the product of the volume element of M and 
Haar measure on the fibers (Liouville theorem). Finally, P is finitely 
generated, a t least in the sense that a finite number of one-parameter 
subgroups generate it, and the relations between their infinitesimal 
generators are known. Actually, in view of the transitivity of the 
orthogonal group on the fiber, it is sufficient to take as generators the 
fundamental vector fields and a single basic one, say Bn. The one-
parameter group of diffeomorphisms generated in 0(M) by Bn will be 
called the geodesic flow in 0(M). 

PROPOSITION 2. LetfE:L2 (O(ikf)), and suppose that f is invariant 
under P . Then ƒ is constant. 

This proposition is the key to doing ergodic theory on bundles asso­
ciated with M. For example, Theorem 1 is proved by showing tha t 
any eigenfunction of the geodesic flow is necessarily invariant under 
P . 

A system of root vector fields for the vector field X is defined to 
be a set Fi, • • • , Ym of vector fields such that [X, F*] = X)**-i ^ucYk 
for some matrix ("root-form matrix") (X**). If m = 1, F i s simply called 
a root vector field and X a root function. 

PROPOSITION 3. If M has strictly negative sectional curvatures, suffi­
ciently many systems of root vector fields for Bn may be found with 
definite root-form matrices. 

Here "sufficiently many" means tha t the fields in question gener­
ate P . 
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The two-dimensional case is very instructive, although the fact 
that the tangent bundle and the principal bundle can be identified 
makes for certain oversimplifications. Let X be the basic vector field 
inducing the geodesic flow and let A be the unique (within normaliza­
tion and orientation) fundamental vector field. Another basic field 
Y can be chosen so the structure equations become 

[Y, A] = X, [X, A) = -Y, [X, Y] - kA, 

where k is the Gaussian curvature. In analogy with the situation in 
the Lie algebra of SL(2, R), we seek an eigenvector for ad X. One of 
them is given by 

H = Y + uA, 

where u is a function on the tangent bundle satisfying the Riccati 
equation 

X(u) + u2 + k = 0. 

Then [X, H] = —uH, and Proposition 1 applies, provided we can ob­
tain estimates for (not to mention, define) u. Most of the necessary 
work in this case has been done by E. Hopf [4], [5]. J5T, of course, is 
the infinitesimal generator of the horocycle flow. We see from its 
definition that the horocycle flow is not measure preserving unless 
A(u) = 0. Thus solving the Riccati equation associated with the struc­
ture equations (or, if you prefer, with the second variation of arc 
length) is an essential step in putting the Lie algebra of P into root-
space form. Unfortunately, this process takes us outside of P. 

Proposition 1 now applies to prove that any eigenfunction of the 
geodesic flow is invariant under the horocycle flow. Now there are 
actually two independent horocycle fields, H+ and H~, corresponding 
to the positive and negative asymptotes to geodesies; this is analogous 
to the presence of positive and negative roots in sl(2, R). These, in 
turn, generate P, so that Proposition 2 may be invoked. This fact, 
that H+ and H~ generate P, is clearly the function analytic counter­
part to Sinafs result that the intersection of corresponding <r-algebras 
is trivial (cf. the last paragraph of [8]). 

The ergodicity of the horocycle flows may be heuristically obtained 
from the formal relation 

X « (AH)* - AH. 

Then (still formally; the domains of validity give quite a bit of 
trouble), if 23/=0 
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\\Xf ||> - (Xf, Xf) « «AH)*f, Xf) - (ƒ, AHXf) 

= (f, A(uH + XH)f) = 0. 

Thus any function invariant under the horocycle flow is invariant 
under the geodesic flow and therefore constant.8 

4. Remarks. Anosov has pointed out that, in a general Z7-system, 
it is naive to hope for the existence of transverse fields such as our 
horocycle flows. But, as we remarked above, it would be silly to at­
tempt to replace the methods of entropy theory when they yield such 
strong conclusions. I t is in the borderline area, where structural stabil­
ity probably does not hold, that there is the most promise for Lie 
algebra techniques. In this connection, we remark that our work 
shows the usefulness of weaker concepts of root and Cartan subalge-
bra than promulgated by, say, Sternberg.4 

Perhaps more appropriate uses of the Pythagorean group are in 
global differential geometry. For instance, although the proof is es­
sentially the usual one, de Rham's decomposition theorem becomes 
conceptually more satisfying when phrased in terms of complete re-
ducibility of the Pythagorean group. In general, one can now formu­
late many questions which previously made sense only in symmetric 
spaces, for arbitrary complete Riemannian manifolds. 

Added in Proof. Sinai has called to my attention that the result of 
Theorem 2 is essentially contained in the course of his proof that 
geodesic flows on surfaces are it-systems {Geodesic flows on compact 
surfaces of negative curvature^ Dokl. Akad. Nauk SSSR 136 (1961), 
549-552 = Soviet Math. Dokl. 2 (1960), 752-758). 
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The purpose of this paper is to introduce certain interpolation 
methods (interpolators) which lead to a proof of Marcinkiewicz's theo­
rem. We start with some definitions. 

An interpolation pair is a couple of Banach spaces continuously 
contained in a Hausdorff topological vector space V. 

On the vector spaces A1+A2 — (wGF: u*=v+w, vÇ^Ai, wÇzA?] 
and AiC\A2 we introduce the norms 

IMUrMi =inf{||ZJ||^X + IHU,: v + w = u} v £ Au w G A2}, 

MUifU, =max{||w||Al, \\u\\A%}i 

with these norms, A1+A2 and A%C\A2 become Banach spaces. 
An interpolator F is a function defined on interpolation pairs whose 

values are Banach spaces F(A\, A2) such that: 
(1) -4in^42C^C4i, A2) C.A1+A2, the inclusions being continuous; 
(2) if (Xi, X2), (Fi, Y2) are interpolation pairs, and T is a linear 

map of Xi+X 2 into Y\+ Y2 which maps Xi into Y\ and X2 into F2 

and which decreases the norms, then T is also a norm decreasing 
map of F(Xi, X2) into F(Ylf F2). 

We will say that F(Au A2) is an intermediate space between Ai 
and A 2. 

The functions considered in the following are complex-valued func­
tions defined on a totally er-finite measure space (M, m). The dis­
tribution function of ƒ is 


