
COHOMOLOGY AND DEFORMATIONS IN 
GRADED LIE ALGEBRAS1 

ALBERT NIJENHUIS AND R. W. RICHARDSON, JR. 

Introduction. In an address to the Society in 1962, one of the 
authors gave an outline of the similarities between the deformations 
of complex-analytic structures on compact manifolds on one hand, 
and the deformations of associative algebras on the other. The first 
theory had been stimulated in 1957 by a paper [7] by Nijenhuis-
Frölicher and extensively developed in a series of papers by Kodaira-
Spencer, Kodaira-Spencer-Nirenberg and Kuranishi; the second had 
just been initiated by Gerstenhaber [9]. While fine details were not 
available at that time, it seemed that graded Lie algebras were the 
common core of both theories. In particular, in both cases, the set of 
deformed structures is represented by the set of solutions of a certain 
deformation equation in graded Lie algebras. This observation was 
further elaborated in a Research Announcement [16] of the authors, 
in which the concept of algebraic graded Lie algebra was carefully 
defined, and in which applications to deformations of Lie algebras and 
to representations, extensions and homomorphisms of algebras were 
indicated. 

The present paper gives a detailed discussion of the deformation 
equation in graded Lie algebras whose summands are finite-dimen­
sional. The paper starts with a general discussion of graded Lie 
algebras including the case of characteristic 2, and leads to a general 
deformation theorem, which is the precise analogue of Kuranishi's 
local completeness theorem for complex analytic structures [13]. (A 
more recent proof of this theorem [14] uses methods closely related 
to those indicated in [16].) 

The basic deformation theorems presented are 16.2, 18.1, 20.3, 
22.1 and 23.4. The following is an outline in which a few of the more 
technical details have been deleted. We consider a graded Lie algebra 
(cf. 3.1) £ = ©£LQ En in which each En is finite-dimensional, and with 
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which is associated a group G of automorphisms (cf. 9.1, 10.1), whose 
Lie algebra is E° and acts by the adjoint representation of E° on E. 
Furthermore, there is given a derivation D on E which raises degrees 
by 1, and which satisfies JD2 = 0. (One may take D = 0 and still get 
meaningful results.) The equation 

Da + \[a, a] = 0 (a E El) 

is called the deformation equation; let M0 be the algebraic set of all 
solutions of this equation. Then Mo is stable under an appropriate 
action of G; points of Mo on the same orbit are called equivalent. (In 
specific applications Mo will be the set of all associative structures 
on a given vector space, the set of all representations of a given alge­
bra on a given vector space, the set of all homomorphisms of one 
algebra into another, etc. Equivalent points correspond to isomorphic 
associative algebras, equivalent representations, etc.) 

A point a G Mo is rigid if its G-orbit is a neighborhood of a in Mo] 
we set Dab = Db+ [a, b] for &£E; consequently Dl = 0, and E can be 
considered as a cochain complex with coboundary operator Da. Then 
the space of coboundaries £!(£, Da) is the tangent space to the G-
orbit of a at a; the space of cocycles Zl(E, Da) the tangent space at 
a to Mo. The rigidity theorem (cf. 16.2, 22.1) states that if Hl(E, Da) 
= 0, then a is rigid. (For associative and Lie algebras A this condition 
translates into H2(A, A)=0, for the Hochschild resp. Chevalley-
Eilenberg cohomologies.) 

A connected subset F of Mo containing a is locally complete at a if, 
for every neighborhood U of a, the G-orbit of the a-component of 
UT\F is a neighborhood of a in M0. It is proved (cf. 20.3, 23.4), that 
the so-called Kuranishi families are locally complete. The general 
description of Kuranishi families is moderately involved; when the 
base field is the real or complex numbers it is a subvariety of Mo 
analytically parametrizable by a subvariety of Hl(E, Da) which in 
its turn is the set of zeros of an analytic map of Hl(E, Da) into 
H2(E, Da). As a corollary, a is a simple point of Mo if H2(E, Da)=0. 
(For associative and Lie algebras the groups Hn(E, Da) are the cor­
responding iîn+1C4, A) of Hochschild and Chevalley-Eilenberg.) 

The following are typical applications of the general theorems. 
Their proofs are just the constructions of specific graded Lie algebras 
relevant to the problems considered. For the associative algebras 
this construction is given in [8], for the Lie algebras in [16]; others 
are to be given in a forthcoming paper. Some general comments are 
given in §3. 

(i) Let M be the algebraic set of all Lie algebra multiplications on 
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a finite-dimensional veetor space V over an algebraically closed field, 
and let G = GL(F). If j^GAf is such that the Lie algebra L = (F, /*) 
satisfies H2(L, L)=0, then /x is rigid (its G-orbit is Zariski-open in 
M). There are only finitely many isomorphism classes of Lie algebras 
L = (F, ix) with H*(L, L) = 0. 

(ii) Let L be a finite-dimensional Lie algebra and W a finite-
dimensional vector space over an algebraically closed field. Let M 
denote the algebraic set of all representations of L on W; i.e. each 
p £ M is a homomorphism p: L—>End(W); it makes End(W) into an 
L-module. If p<EM is such that ff^L, End(W))=0, then the set of 
representations which are equivalent to p is a Zariski-open subset of 
M. There are only finitely many equivalence classes of p for which 
IP(L9 End(T7))=0. 

The authors are thanking M. Gerstenhaber and P. Griffiths for 
several helpful discussions concerning this material. 

0. Notation, The five major parts of the paper are denoted §§1-5. 
The sections, 0 through 24, are numbered independently. 

Z denotes the ring of rational integers. Zn denotes the quotient 
ring Z/nZ. R (resp. C) denotes the field of real (resp. complex) num­
bers. Fields are to be commutative. 

We shall use the notation V=@ae& Va for both internal and ex­
ternal direct sums of vector spaces. In particular, we shall consider 
Va as a subspace of © a Va without further comment. 

We denote by GL( 7) the group of all automorphisms of the vector 
space V (ignoring any additional structure V might have); $(V) 
denotes the Lie algebra of all endomorphisms of V. 

Algebraic groups will be taken in the sense of Chevalley's book [2]. 
That is, an algebraic group is a subgroup G of the group GL(F) 
(for some finite dimensional vector space V) which is of the form 
G = GL(V)r\A, where A is an algebraic subset of the vector space of 
all endomorphisms of V. 

§1. GRADED LIE ALGEBRAS 

In this part we discuss the basic properties of graded Lie algebras. 
We have chosen to give a rather detailed treatment, first, because 
there is no such account in the literature, and secondly, in order to 
prepare the way for future applications of the theory. In particular, 
we discuss graded Lie algebras graded by an arbitrary commutative 
group with parity. In §§9 and 10 we introduce the notions of analytic 
and algebraic graded Lie algebras, which will be basic for the de­
formation theorems of §§4 and 5. 



4 ALBERT NIJENHUIS AND R. W. RICHARDSON, JR. [January 

1. Graded algebras. Let A be a commutative group. A graded 
vector space of type A is a vector space V together with a family 
{ Va}aeA of subspaces of V, indexed by A, such that V is the direct 
sum of the family { Va} of subspaces. The elements of Va are called 
homogeneous of degree a. A subspace W of F is a graded subspace if 
Wis the sum (necessarily direct) of the family of subspaces {WC\ Va} ; 
if this is so, then W itself is a graded vector space of type A. Let W be 
a graded subspace of V and let ir: V-+V/W denote the canonical 
projection. Then the family {x(F a)} defines a graded vector space 
structure on V/W. 

If F=©*GA Va and W~@aeA Wa are graded vector spaces of type 
A, we define a structure of graded vector space of type A on the 
direct sum U= V®W by setting £/« = Va@Wa for every a £ A . 

A linear map ƒ of a graded vector space F=©« e A Va into a graded 
vector space W=© t teA Wa is homogeneous of degree /3£A if, for 
every a £ A , we have f(Va) C.Wa+P; when this is so, the kernel (resp. 
image) of ƒ is a graded subspace of V (resp. W). Let H denote the 
vector space of all linear maps of V into W and, for each ce£A, let 
Ha be the subspace of H consisting of all homogeneous linear maps of 
degree a. We define Hom(F , W) to be the sum of the family {Ha}aeà 
of subspaces of H. I t is easily verified that this sum is direct and thus 
defines on Hom(F , W) the structure of a graded vector space; we 
denote H* by Hom a (F , W). 

A graded algebra of type A over a field K is a graded vector space 
A = © a e A Aa over K which is given an algebra structure compatible 
with its graded structure, i.e. a bilinear map (a, b)—>ab of A XA into 
A such that AaA^C.Aa+p for every ce, /3£A. (If B and C are subspaces 
of A, we denote by BC the subspace of A spanned by the set of 
products {&C|&£JB, C £ C } . ) A graded subalgebra of a graded algebra 
A is a graded subspace J5 of A which is closed under products, i.e. 
BBC.B. A graded ideal of a graded algebra A is a graded subspace C 
of 4̂ such that ACQC and CAC.C. A homomorphism of a graded 
algebra 4̂ of type A into a graded algebra B of type A is a homo­
geneous linear map ƒ of degree zero of A into B such that f(ab) 
=f(a)f(b) for every a, b(~A. Let 4 b e a graded algebra, let C be a 
graded ideal in ^4, and let w: A~-*A/C denote the canonical projec­
tion. Then there exists a unique structure of graded algebra on A/C 
such tha t 7T is a homomorphism of graded algebras. 

The concept of associativity for graded algebras is the usual one: 
(ab)c = a(bc). 

Let F = © « Va be a graded vector space. If / £ H o m a ( F , V) and 
gGHom^(F, 7 ) , then ƒ o gGHom«+^(F, F) . I t follows easily from 
this observation tha t if / £ H o m ( F , F) and g £ H o m ( F , 7 ) , then 
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/ o g G H o m ( F , V). Thus the graded vector space Hom(F , F) , to­
gether with the bilinear map (ƒ, g)-+fog is a graded associative 
algebra; we denote it by End(F)-

2. Commutative and anticommutative graded algebras. A com­
mutative group with parity is a commutative group A, together with 
a homomorphism <j> of A into the commutative group Z2. The ele­
ments of <l>~'1(0) are called even, those of ^""Kl) a r e called odd. 

Let K be a commutative ring with identity. The map w—>( — l ) n is a 
homomorphism of the commutative group Z into the (multiplicative) 
group K* of units of K\ the kernel of this map includes 2Z. Thus 
there is an induced homomorphism of Z2 into K*. The image of an 
element &£Z 2 under this homomorphism will be denoted ( — l ) a . 

DEFINITION 2.1. Let A be a graded algebra over a field X of char­
acteristic 5^2 graded by a commutative group with parity A (with 
parity map <£). Then A is a commutative (resp. anticommutative) 
graded algebra if formula (i) (resp. (ii)) below holds for every pair of 
homogeneous elements, aÇiA01, bÇEA^: 

(i) a& = (-l)*<«>*C0>&a; 

(ii) a&=-(-l)*<«>*<flfo. 
The classical notions of commutativity and anticommutativity are 

obtained by taking <£ trivial: 0(A) = {o}. 
In most examples the grading group A will be the additive group 

Z of integers and <j> will be the canonical projection Z—>Z/2Z. We 
then have, for a, /3GA, ( —l)*c«)*w=3( — i)«*. By abuse of notation 
we shall write (—1)°* for general A and <£ also. Thus ( —1)«^= —1 if 
both a and j8 are odd, otherwise ( —l)a/3 = l. 

We always consider Z as a commutative group with parity map 
the natural projection Z-^Z/2Z. 

3. Graded Lie algebras. For the rest of §§1 and 2, unless explicitly 
stated otherwise, all graded vector spaces and graded algebras will 
be of type A, where A is a commutative group with parity. Explicit 
reference to A will often be suppressed. 

A graded Lie algebra is an anticommutative graded algebra which 
satisfies a graded version of the classical Jacobi identity. In detail: 

DEFINITION 3.1. A graded Lie algebra of type A over a field K of 
characteristic 9^2 is a graded vector space E — @aeà Ea over K to­
gether with a bilinear map (a, 6)—»[a, b] of EXE into E which 
satisfies the following conditions: 

GLA1. [£«, £0] CE«+e for all ce, jSGA; 
GLA2. If aE.E« and bEEP, then [a, &] = ~ ( - l ) « * | > , a ] ; 
GLA3. If a G £ a , 6G£^ and <;££*, then 
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( ~ l H k »], c] + (-l)*[[ft, c], a] + ( - 1 M b a], 6] - 0. 

When chari£ = 3, this is supplemented by the condition: if a is a 
homogeneous element of odd degree, then [[a, a] , a ]=0 . 

The identity given in GLA3 is called the Jacobi identity. It can be 
written in the following equivalent forms: 

(3.2) [a, [b, c]] = [[a, b], c] + (-l)<*[b, [a, c]]; 

(3.3) [a, [b, e]] - (-1M&, [a, c]] = [[a, b], c\; 

(3.4) (-lMa, [b, c]] + (-l)*fc [a, e]] + (-l)*fc [a, b]] = 0. 

We shall discuss the concepts of commutativity, anticommutativ-
ity, and graded Lie algebras over fields of characteristic 2 separately 
in §2. 

REMARKS. 1. A Lie algebra may be considered as a graded Lie 
algebra all of whose elements are of degree 0. 

2. The center of a graded Lie algebra E is the graded ideal 
{ a £ E | [a, x] = 0 for all xEE}. 

3. The subalgebra E° of E is an (ungraded) Lie algebra. More 
generally, © « even Ea has the structure of (ungraded) Lie algebra, 
denoted 8°. Setting 8X= ©« oddEa, we see that £>°@8>l is a graded Lie 
algebra of type Z2. 

4. Graded Lie algebras of commutators. The commutator product 
defines on an (ungraded) associative algebra the structure of a Lie 
algebra. A similar result holds for graded associative algebras, pro­
vided we take a graded commutator product. 

PROPOSITION 4.1. Let A=®aA
abea graded associative algebra. The 

underlying graded vector space of A, with the product determined by 
[a, b]=ab — ( — l)a(iba for a<E.Aa, &G-4 ,̂ is then a graded Lie algebra. 

The proofs of GLA1 and GLA2 are immediate. GLA3 is verified 
simply by a write-out. 

As a particular example let F==©« Va be a graded vector space. 
Then we have seen that End(F) has a natural structure of graded 
associative algebra. The graded Lie algebra derived from End(F) by 
the process above is denoted by gt(F) =©« $a(V). If ƒ and g are 
homogeneous endomorphisms of V of odd degree, then [ƒ, g]=f o g 
+gof; so [ƒ, g] is not in this case the usual commutator of endo­
morphisms. We note that the Lie algebra Qt°(F) is canonically iso­
morphic to the direct product of the family of Lie algebras { Q!( Va)} «. 

The construction of Proposition 4.1 also works for graded algebras 
satisfying a somewhat more general law than associativity. 
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PROPOSITION 4.2. Let A be a graded algebra whose product satisfies 
one of the following commutative-associative laws: if aÇzA01, b(E.A? and 
c£^47, then 

(4.3) a(bc) - (ab)c = (-l)^(a(cô) - {ac)b)\ 

(4.4) a(bc) - (ab)c = (-l)^(ô(a<;) - (fta)c); 

(4.5) a(bc) - (ab)c = (-l)«^+?a(<;(fta) - (cft)a). 

r/ie underlying vector space of Af with the product determined by [a, b] 
= aft — ( — l)aj3fta/or û £ 4 a , 6 £ ^ is tóe^ a graded Lie algebra. 

PROOF. AS GLA1, 2 are obvious, we need prove only GLA3. We 
give the proof only for the case of (4.3). The other two cases are 
similar. We rewrite (4.3) as follows: 

(-l)«*(a»)<? - (-l)w*>*(oc)ft = (-l)«*a[ft, <?]. 

Now we permute a, bf c (and also a, j3, 7) cyclically. This gives two 
more identities: 

(-l)**(pc)o - (-l)W-7>«(Ja)<? = (-l)*»ft[*, a], 

( - l ) ^ W J - (~l)^+^(cô)a = ( - l ) ^ [ a , ft]. 

Addition of the three identities gives 

(~l)7ak ft]* + (-iMô, *]<* + ( - l )^k a]ft 
= (-l)«*a[ft, *] + (-l)*"ftk a] + ( - l ) ^ k »]. 

Collecting terms from both sides we find GLA3. If chari£ = 3, we 
again take (4.3) and set a = J = cG4 a , with a odd. Since [a, a] = 2aa 
this gives a[a, a]— [a, a]a = 0; that is, [[a, a] , a ]=0 . 

The graded Lie algebras which are used in studying deformations 
of Lie algebras and associative algebras are obtained from graded 
algebras which satisfy the commutative-associative law (4.3). 

5. Graded Lie algebras and derivations. Let -4 ~ © « -4" be a graded 
algebra and let D: A-+A be a homogeneous linear map of degree a. 
Then D is a derivation of degree a if 

D(ab) - (Da)b + (-l)«*a(Z>ft) for a C ^ J G i . 

The set £>a(A) of all derivations of degree a of A is a subspace of 
Homa(i4, A). Let £>G4) denote the sum of the family {3D"(i4)}« of 
subspaces of Hom(4, A); £>(A) is a graded subspace of Hom(-4, A), 
or equivalently, of $l(A). 

PROPOSITION 5.1. 3D(-4) is a graded subalgebra of the graded Lie 
algebra $l(A). 
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PROOF. I t must be shown that the product [D, D ' ] of derivations 
D and D' of degrees a and a' is a derivation of degree a +a'. This is 
done by a simple computation. 

Let E = @aE
a be a graded Lie algebra. If a£-E, we denote by 

ad# a (or simply ad a if the meaning is clear) the linear map x—>[a, x] 
of E into E. The map a—»ad# a is called the adjoint map of E. 

PROPOSITION 5.2. If a £ E a , tóew a d ^ a E â X E ) . 77K? adjoint map 
ad# : £—»2D(E) is a homomorphism of graded Lie algebras. The image 
£>;(E) is an ideal in £>(E). 

PROOF. The first statement follows from (3.2), which is one version 
of the Jacobi identity. The second statement follows from another 
version (3.3). If a G £ a , and D 6 a ) ? ( E ) , then an easy computation 
shows that [D, adjg? a] =ad# Da. This proves the last statement. 

REMARKS. 1. The kernel of the adjoint map is the center of E. The 
graded Lie algebra £>i(E) is the graded Lie algebra of inner deriva­
tions of E. I t is isomorphic to the quotient algebra of E modulo its 
center. 

2. The quotient algebra 3}(E)/3X(E) is called the graded Lie alge­
bra of outer derivations of E. I t has a natural action on the center of E. 

6. Complexes defined by derivations of graded algebras. Let A be 
a graded algebra of type A and let D be a homogeneous derivation 
of A of degree a with P o P = 0. Then {A, D) is a complex (of type A) 
and we can form the cohomology (vector) space in the standard 
manner. We let Z(A, D) denote the kernel of D, and denote the image 
of D by B(A, D). Then both Z(A, D) and B(Af D) are graded sub-
spaces of A, called the spaces of D-cocycles and D-coboundaries. The 
quotient space H (A, D) — Z{A, D)/B(A, D) thus has a natural grad­
ing; it is the cohomology space of A with respect to D. 

The fact that D is a derivation implies, by a well-known (and ele­
mentary) argument, that Z(A, D) is a subalgebra of A and that 
B(A, D) is an ideal in Z(A, D). Furthermore, any identities (such as 
commutativity, associativity, a Jacobi identity, etc.) that hold in A 
will automatically hold in H (A, D). Thus we obtain: 

PROPOSITION 6.1. If D is a derivation of degree a of a graded algebra 
A such that P o Z ) = 0, then the cohomology space H(A, D) has a graded 
algebra structure. If A is commutative, anticommutative, associative, or 
a graded Lie algebra, then so is H(A, D). 

Let E==© a Ea be a graded Lie algebra and let a £ £ a be a homo­
geneous element of odd degree such tha t [a, a] « 0. Since a—»ad# a is a 
homomorphism it follows tha t 0 = [ad# a, ad# a] = 2(ad# a o ads a), 
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hence (recall char K^ 2) adjg? a o adj? a — 0. Thus we can form the 
cohomology space H{E1 ad# a), which is again a graded Lie algebra. 
Cohomology spaces of this type will be of particular importance in 
applications. 

7. Semi-direct products. The action of £>(£) on a graded Lie alge­
bra JE, together with the graded Lie algebra structures of E and £>(£) 
themselves, can be expressed in one graded Lie algebra structure on 
the graded vector space £©SD(E). More generally, given graded Lie 
algebras E and F, and a homomorphism of JF into £>(£), a graded 
Lie algebra structure can be defined on E @ F expressing all actions. 

PROPOSITION 7.1. If E and F are graded Lie algebras andf—>Df is a 
homomorphism of F into 2D(£), then the graded vector space E@Ft 

equipped with the product determined by 

[(«,ƒ)• (»,g)\ = ( k »] + Dfi - ( - I ) ^ D A [/,d), 

for a(£Ea, &G£^, f<EFa and g £ F , is a graded Lie algebra. It contains 
F as a subalgebra, and E as an ideal (i.e. it is a split extension of F by 
E). 

PROOF. GLA1, 2 are obvious. The Jacobi identity splits into four 
pieces containing terms of the following forms: (1) [[a, 6], c], 
(2) [[ƒ, g], hi (3) [[ƒ, 6], c] and (4) [[ƒ, g], * ] . The terms of the form 
(1) (resp. (2)) drop out because E (resp. F) is a graded Lie algebra, 
terms of the form (3) drop out because Df is a derivation on £ , and 
terms of the form (4) drop out because f-*D/ is a graded Lie algebra 
homomorphism. The write-out is straightforward. In case char K = 3, 
one must also check [ [ (a , / ) , (a, ƒ)] , (a, ƒ)] = 0 . I t is a simple exercise. 
The fact that F is a subalgebra and E an ideal is immediate from the 
product formula. 

The graded Lie algebra constructed above is called the semi-direct 
product of E and F with respect to the representation f—>Df. 

Conversely, every split extension of F by E is isomorphic to a 
suitable semi-direct product of E and F. 

We return now to the situation considered in §6. Let £ be a graded 
Lie algebra and let D be a derivation of E of odd degree a such that 
DoD = 0. Then KD (the subspace of £)(£) spanned by D) is a 
graded subalgebra of £>(E), since [D, P ] = D o D ~ ( - l ) a a I ) o I ) 
= 2£>oD = 0. We can thus take the semi-direct product E@KD 
(with respect to the inclusion homomorphism KD—»33(E)). The deri­
vation D can be considered as the restriction to E of an inner deriva­
tion of E®KD. We note tha t if £> = 0, then E®KD~E. 
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8. The general linear group of a graded vector space. Let 
F=©aeA Va be a graded vector space. We define GL(F), the general 
linear group of F, to be the group of all homogeneous automorphisms 
of degree 0 of V. GL(F) is canonically isomorphic to the direct prod­
uct of the family {GL(Fa) }a(=A of groups. If G is any group, then a 
homomorphism p:G—»GL(F) is uniquely determined by a family 
{pa}«€A, where, for each index a, pa is a homomorphism G—>GL(Va). 
We write p = {pa}«eA. 

Consider now the case in which each direct summand Va of V is 
finite-dimensional. Let G be an algebraic group with Lie algebra g. 
A homomorphism p = {pa}«eA of G into GL(F) is a rational repre­
sentation of G on V if, for every index a, pa is a rational representation 
of G on Va. For each af the differential dp* is a homomorphism of g 
into $l(Va). The family {dpa}«6A of homomorphisms determines a 
unique homomorphism dp of $ into the Lie algebra gl°(F) of all 
homogeneous endomorphisms of degree 0 of V; we call dp the differ­
ential of the rational representation p. 

Let the base field of V be either JR or C and let G be a (real or com­
plex) Lie group with Lie algebra g. A homomorphism p= {pa}«eA of 
G into GL(F) is a representation of G on V if, for every a, pa: G 
—»GL(Fa) is a homomorphism of (real or complex) Lie groups. As 
above we define the differential dp to be the homomorphism of g 
into gl°(F) determined by the family {dpcl}e<*A of homorphisms. 

9. Analytic graded Lie algebras. 
DEFINITION 9.1. An analytic graded Lie algebra is a triple (E, G, p), 

where E = © « £* is a graded Lie algebra over either R or C, G is a 
(real or complex) Lie group with Lie algebra £°, and p is a continuous 
homomorphism of G into GL(E), subject to the following conditions: 

(i) Each direct summand Ea of E is finite-dimensional; 
(ii) p is a representation of G on £ ; 
(iii) The differential dp of p is just the homomorphism ad# of E° 

intogt°(T0; 
(iv) Each p(g), for g EG, is an automorphism of E. 
We note that condition (iv) is a consequence of the other condi­

tions if G is connected. This follows from the fact that each ad# a 
is a derivation (of degree 0) of E. The proof is similar to that of [l, 
p. 136]. (One must be careful, however, since E is, in general, in­
finite-dimensional.) 

G is called the structure group of (£, G, p); p(G) is the group of 
inner automorphisms of (£, G, p). 

THEOREM 9.2. LeJ E be a graded Lie algebra over R or C satisfying 
condition (i). Then there exists a connected and simply connected Lie 
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group G and a representation p of G on E such that (E, G, p) is an 
analytic graded Lie algebra. If (E, G', p') is another analytic graded 
Lie algebra with underlying graded Lie algebra E, then there exists a 
unique homomorphism h : G—»G' onto the identity component of G1 with 
discrete kernel such that p=p'o&. 

The proof of Theorem 9.2 follows easily from standard theorems 
in the theory of Lie groups. We omit details. 

Let E be as above. It follows that the identity component of the 
group of inner automorphisms of (E, G, p) is uniquely determined 
b y E . 

10. Algebraic graded Lie algebras. The algebraic analogue of 
Definition 9.1 is the following. 

DEFINITION 10.1. An algebraic graded Lie algebra over a field K is 
a triple (E, G, p), consisting of a graded Lie algebra E~@aE

a over 
K, an algebraic group G over K with Lie algebra E°, and a homo­
morphism p of G into GL(E), subject to the following conditions: 

(i) Each direct summand Ea of E is finite-dimensional; 
(ii) p is a rational representation of G on E; 
(iii) The differential dp is the map ad# of E° into fiï°(E) ; 
(iv) Each p(g), for g (EG, is an automorphism of E. 
In the analytic case if E is a graded Lie algebra satisfying (i), then 

by Theorem 9.1 there exists an analytic graded Lie algebra with 
underlying graded algebra E. Furthermore, this analytic graded Lie 
algebra is to a large extent unique. If E is a graded Lie algebra 
satisfying condition (i) over a field 2£, there is in general no algebraic 
graded Lie algebra with underlying graded Lie algebra E. Further­
more, if such algebraic graded Lie algebras do exist there is no ana­
logue of the uniqueness part of Theorem 9.2. In the analytic case for 
connected G we saw that condition (iv) was a consequence of the other 
hypotheses. In the algebraic case this is no longer true. 

11. Admissible derivations. Let (E, G, p) be an analytic (resp. 
algebraic) graded Lie algebra. 

DEFINITION 11.1. An admissible derivation of degree a of (E, G, p) 
is a pair (£>, p') consisting of a derivation D of E of odd degree a 
satisfying [D, D] =0 and a representation (resp. rational representa­
tion) p' of G on the semi-direct product E@KD = E' such that the 
following conditions are satisfied for each g£G: 

(i) Each p'(g) is an automorphism of the graded Lie algebra E'; 
(ii) The restriction of p'(g) to E is identical with p(g); 
(iii) The endomorphism of the quotient space E'/E induced by 

p'(g) is the identity; 
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(iv) The differential of p' is the homomorphism adj&> of E° into 
8K£'). 

The above conditions imply tha t (£ ' , G, p') is an analytic (resp. 
algebraic) graded Lie algebra. We note that the zero derivation is an 
admissible derivation of arbitrary (odd) degree (set p' —p). 

Let (E, G, p) be an analytic graded Lie algebra such that G is 
simply connected (and connected). Corresponding to every deriva­
tion D of odd degree such tha t D o D = 0 there exists a unique repre­
sentation p' of G on E' such that (Z), p') is an admissible derivation. 
For, since G is simply connected, there exists a unique representation 
p' of G on E' satisfying (iv). Condition (ii) follows immediately and 
(i) follows from the fact that, for each a £ E 0 , ad#' a is a derivation 
of £ ' . Finally, (iii) is a consequence of the fact that ad#* a induces 
the zero map on E'/E. 

We note tha t the analogous statement for algebraic graded Lie 
algebras is not true. 

§2. GRADED L I E ALGEBRAS OVER FIELDS OF CHARACTERISTIC 2 

In this part we indicate the modifications necessary in our defini­
tions of §1 if the base field is of characteristic 2. Cross-references to 
§1 have been simplified by following a similar numbering of sections. 

2'. Commutative and anticommutative graded algebras, Oddness 
and evenness of elements of the grading group A is defined as in §1. 
A graded algebra is called weakly commutative (resp. weakly anti-
commutative) if ab~ba for all a, b(EA, and a a ~ 0 for all aÇzAa and 
a odd (resp. a even). 

The concept of strong commutativity (also called commutativity) is 
defined by requiring that there is given a quadratic operation Q[a] 
for a of even degree, which generalizes the expression ^aa when the 
base field has characteristic 5^2. Similarly, for strong anticommutativ-
ity (also called anticommutativity) Q[a] is defined for a of odd degree. 

A strongly commutative (resp. strongly anticommutative) graded 
algebra is a graded algebra A in which, besides the bilinear product 
AX A—>A there is defined a map Q:A'—>A, where A' is the direct 
sum of the Aa with even a (resp. odd a), satisfying: 

SA1. ab = ba for all a, b&A; 
SA2. aa = 0 for all aÇ.Aa and a odd (resp. a even); 
SA3. Q[Aa] CA2a for a even (resp. a odd); 
SA4. Q[ka]=k*Q[a]îorkeK, a£A'; 
SA5. Q[a+b] = Q[a]+Q[b]+abtora,b£A'. 
Condition SA5 with a = b gives aa = Q[2a]+2Q[a] = 0 for a^A'. 
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In view of SA2 this means that all squares vanish. 
Associativity for weakly commutative (resp. weakly and strongly 

anticommutative) graded algebras is as before: a (be) = (ab)c; for the 
(strong) commutative case the additional condition Q[ab] — 0 for all 
products ab in A' is imposed. 

3' . Graded Lie algebras. The quadratic map of a (strong) graded 
Lie algebra has to satisfy an extra "Jacobi" identity. 

A weak graded Lie algebra over a field K (char K = 2) is a weak anti-
commutative graded algebra whose product satisfies the Jacobi iden­
tity GLA3 of §3. A (strong) graded Lie algebra over K is a strongly 
anticommutative graded algebra whose product satisfies GLA3 of §3 
add whose quadratic map satisfies 

GLA4. [a, [a, b]] = [(?[#], b] when a is of odd degree. 
REMARK. The distinction is made between weak subalgebras and 

(strong) subalgebras, ditto for homomorphisms, ideals, etc., depend­
ing on whether the quadratic operation is preserved. The quotient 
of a graded Lie algebra modulo a weak (resp. strong) ideal is a weak 
(resp. strong) graded Lie algebra. 

PROPOSITION 3'.1. If E is a weak graded Lie algebra, then the squares 
[a, a] of all belong to the center. 

PROOF. When a is of even degree, then [a, a] = 0 . When a is of odd 
degree, then we apply the Jacobi identity (3.3) for arbitrary b: 

k k &]] + k k &]] = [ k <*L &]. 
The left side equals 2[a, [a, b]]f which vanishes. 

4'. Graded Lie algebras of commutators. Let F be a graded vector 
space. 

PROPOSITION 4M. The graded algebra Q!( V) whose direct summands 
Q>la(V) are the spaces Hom a (F , F) , and in which the product and quad­
ratic operation are defined by 

[f,g] ^fog + gof; 

Q[f] — ƒ ° ƒ for f °f °d& degree] 

is a (strong) graded Lie algebra. 

PROOF. The verification of the anticommutativity property of the 
product, and the conditions on Q; additivity, quadratic behavior 
under scalar multiplication and GLA4, are elementary. 

Propositions 4.1 and 4.2 remain true, with Q[a] in the graded Lie 
algebra defined as aa. 
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5'. Graded Lie algebras and derivations. A weak derivation on a 
graded algebra A is a map D: A—*A as in §5. A (strong) derivation 
of a commutative (resp. anticommutative) graded algebra A is a 
map D: A—+A as in §5 satisfying the condition 

DQ[a] = (Da)a for a G A'. 

PROPOSITION 5M. The weak derivations of a graded algebra A form a 
(strong) subalgebra of &l(A). 

PROOF. The additional fact to be shown is that Q[D] = D o D is & 
derivation when D is of odd degree. It follows immediately by direct 
computation. 

PROPOSITION 5'.2. The strong derivations of a strong commutative 
(resp. anticommutative) graded algebra A form a strong subalgebra of 

PROOF. It has to be shown that [Z>, £>']<2[a], which by definition is 
DD'Q[a]+D'DQ[a]t equals ([Dt D']a)a\ furthermore, it must be 
shown that DDQ[a] = (DDa)a\ i.e. Q[D]Q[a] = (Q[D]a)a. Both 
verifications are routine; the first uses (Da)(D'a) = (D'a)(Da) and the 
second uses the vanishing of all squares, so (Da) (Da) = 0. 

PROPOSITION 5'.3. If a weak graded Lie algebra E has no center, then 
there exists a minimal strong graded Lie algebra £ which contains E as a 
weak subalgebra. 

PROOF. The adjoint map ad#:£--»£>(£) is an injection; £>(£) is 
strong. Let £ be the subspace of £>(£) spanned by ad£?(£) and the 
elements Q[adjs a] for all a £ £ of odd degree. Then £ is a subalgebra. 
Indeed, [ad £, ad E] Cad £ C 2 , and 

[g[ad a], ad E] = [ad a, [ad a, ad E]] C ad E C S; 

also 
[Q[ad a], Ç[ad b]] = [ad a, [ad a, Ç[ad b]]] 

= [ad a, [ad &, [ad b, ad a]]] G ad E C E. 

£ is strong, since £ a = ad Ea for a odd. 
Let Fi be a strong graded Lie algebra, and contain £ as a weak sub­

algebra. Then the set £2 of f<E.F\ such that [ƒ, £ ] C £ is the normal-
izer of £, and is easily seen to be a strong graded Lie algebra. Since 
F2 acts on £ as derivations, there is a natural homomorphism <j>: JF2 

—»£>(£) which sends £ onto ad £ . It is a strong homomorphism, so 
the image covers £. It follows that £ is the homomorphic image of a 
subalgebra (namely, ^ - 1(£)) of F\. 
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6'. Complexes defined by derivations of graded algebras. When 
A is a strong graded commutative (resp. anticommutative) algebra, 
and D a strong derivation satisfying D o P = 0, of homogeneous de­
gree a, then Q[a] is a D-cocycle if a is a P-cocycle and if the degree 
of a is even (resp. odd). The ideal B(A, D) in Z(A, D) is, in general, 
not closed under the quadratic map, however. Thus, cohomology 
spaces of strong commutative (resp. anticommutative) graded alge­
bras are in general only weak algebras of the same type, The quotient 
Z(A, D)/T3(A, D) is a strong algebra, however, if 2?C<4, D) is the sub-
space (ideal) in Z(A, D) spanned by B(A, D) and the elements Q[a] 
for all a(EB(Ay D) of even (resp. odd) degrees. 

The construction of cohomology spaces H(E, ad# a) analogous to 
that in §6 is possible if E is a strong graded Lie algebra, if a is homo­
geneous of odd degree and if Q[a] = 0. 

10'. Algebraic graded Lie algebras. Weak algebraic graded Lie 
algebras are defined as in §10; strong algebraic graded Lie algebras 
admit, in addition, the usual quadratic map, and the representation 
p must satisfy the additional condition 

(v) p(g)Q[a]-Q[p(g)a] for all g £ G . 

§3. T H E DEFORMATION PROBLEM 

12. The deformation equation. Let £ = © « £ " be a graded Lie 
algebra over a field K of characteristic ?*2 and let D be a derivation 
of E of odd degree a such that D o D = 0. The equation 

(12.1) Da + %[a, a] => 0, a£E« 

is called the deformation equation. We denote by Mo the set of all 
solutions of (12.1): 

Mo = [a G E*\ Da + J [a, a] - 0}. 

Let E' be the semi-direct product E@KD and let L be the linear 
variety in E' parallel to Ea and passing through Dt i.e. L = D+Ea. Let 

M ~ {X£L\ [X9X] = 0}. 

If x — D+a is an element of L, then 

[x, x] = [D + a, D + a] = 2Da + [a, a ] ; 

thus %<E:M if and only if a £ M o . Hence the affine bijection rj: a->D+a 
of Ea onto L maps Mo onto M. Instead of studying the set Mo of all 
solutions of the deformation equation, it is sometimes more con­
venient to consider instead the set M. 

If x — D+a is an element of M> we denote by D9 the derivation 
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D+adE a of £ i.e. Dx is the restriction of ad#> x to E. It follows from 
the definition of M that Dx o Dx~0\ thus we can associate to each 
xÇzM the cochain complex (£, Dx) and the cohomology space 
H(E, Dx). 

The simplest case of the deformation equation, but a very im­
portant one for applications, occurs when D = 0. In this case M=Mo, 
and Dx is the inner derivation ad# x. 

In the rest of this paper we shall study the set Mo of solutions of 
the deformation equation, or equivalently the set M described above, 
when E (really: (£, G, p)) is an analytic or algebraic graded Lie alge­
bra and D (really: (D, p')) is an admissible derivation. In the alge­
braic case the field K is assumed to be algebraically closed. In either 
case M is an algebraic set in L. It follows from the definition of an 
admissible derivation that both L and M are stable under the action 
of G on E' determined by the representation p'. Hereafter we consider 
both L and M as transformation spaces for G and suppress mention 
of p'; if g£G and xÇzL, we denote p'(g)x simply by g-x. 

If we wish to work with the set Mo of solutions of (12.1), we pro­
ceed as follows: By means of the affine bijection rj of Ea onto L, we 
assign to each g£G an affine transformation TQ of Ea. Precisely, T0 

is the affine transformation a—^"Kg •*?(#)) of Ea. Then the map 
g—*TQ is an affine representation of G on Ea and Mo is stable under 
the action of G on Ea determined by this representation. 

For a local study of M we take a point m = D+a on Af, and set 
x = m+u] then 

[x, x] = [m + u, m + u] = 2[m, «] + [w, #] = 2Dmw + [u, u], 

so x £ M if and only if w satisfies 

Dmu + | [^ , w] = 0; 

the "small" solutions u of this deformation equation relative to m 
give a neighborhood of m on M. 

When the base field K has characteristic 2, and when E is a strong 
graded Lie algebra, the deformation equation reads 

(12.2) Da + Q[a] = 0y a G £«; 

in this case Mis the set { x G i | Q[#]=0}. 
Hereafter we shall assume that char K?£2. The results which we 

obtain can be translated to the case in which char K *=* 2 by the stan­
dard changes elaborated in §2. They will not be mentioned each time. 

13. Problems leading to the deformation equation. To each vector 
space V over a field K can be associated a graded Lie algebra 



i966] COHOMOLOGY AND DEFORMATIONS IN GRADED LIE ALGEBRAS 17 

E = Enn(V) of type Z whose direct summand En consist of the (n+l)-
multilinear maps of V into V. The product in E is such that a bilinear 
map fiE:El of V into V defines an associative multiplication on V if 
and only if [M, ju]=»0. (If chari£ = 2, the condition reads Ç^MI^O.) 

Thus the set M = {MG-E1! [JU, JU] = 0} is precisely the set of all associa­
tive multiplications on V. If jixGMand if A = (V, ju) is the correspond­
ing associative algebra, then the cohomology space Hn(E, DM) is 
identical with the cohomology space Hn+l(A, A) defined by Hoch-
schild [ l l ] . If F is finite-dimensional, then JEun(F) admits a natural 
structure of algebraic graded Lie algebra with structure group GL(7)-
Furthermore, two elements jtii and JU2 of M lie on the same orbit under 
GL(V) if and only if the corresponding associative algebras are iso­
morphic. The graded Lie algebra structure on Eun(V) was established 
by Gerstenhaber [8]. 

A similar situation exists for the case of Lie algebra multiplications 
on V. In this case there exists a graded Lie algebra E~E&\t(V) whose 
direct summand En consists of all alternating (^+1)-multilinear maps 
of V into V. An element juiGE1 satisfies the Jacobi identity if and only 
if [/x, JJL] = 0. If ix satisfies the above equation and if A = (F, JJL) is the 
corresponding Lie algebra, then the cohomology space Hn{Ey Z>M) is 
identical with the cohomology space Hn+1(A, A) as defined by 
Chevalley-Eilenberg [5]. Again, if V is finite-dimensional, then 
E&u(V) admits the structure of an algebraic graded Lie algebra with 
structure group GL(T0; two Lie algebra multiplications lie on the 
same orbit under GL( V) if and only if the corresponding Lie algebras 
are isomorphic. 

A similar situation arises for multiplications on V which are com­
mutative and associative. In this case the cohomology spaces which 
arise are those recently defined by Harrison [l0]. 

The deformation equation also arises in the study of homomor-
phisms of algebras. Let A and B be algebras (either associative or 
Lie). Then there exists a graded Lie algebra E such that E1 is the 
set of all linear maps of A into B. Furthermore, there exists an 
(outer) dérivation D of E such that an element <j> of E1 is a homo-
morphism of A into B if and only if !)<£+£[<£, <£] «=0. Let <££EX be a 
homomorphism and let x*=D+#. Then Hn(E, Dx) is identical with 
the cohomology space Hn(A, £) , where B is considered as an A-
module via cj>. Let A and B be finite dimensional, and let the base 
field be either R or C, then E admits a natural structure of analytic 
graded Lie algebra whose structure group G is the group of inner 
automorphisms of B. Furthermore, two homomorphisms lie on the 
same orbit under G if and only if they differ by an inner automor-
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phism of B. However, if A and B are Lie algebras and the base field 
is arbitrary, E will not, in general, admit a structure of algebraic 
graded Lie algebra. A sufficient condition that E should admit such 
a structure is that B be an algebraic Lie algebra (i.e. the Lie algebra 
of an algebraic group). 

14. The deformation language. In this section E is an analytic or 
algebraic graded Lie algebra over a field K (algebraically closed in 
the algebraic case) and D is an admissible derivation of E. L and M 
are as defined in §12; the structure group G acts on L and M via the 
representation p'. In the analytic case L is given the usual tqpology 
of a finite dimensional real or complex affine space and M is given the 
induced topology. In the algebraic case L and M are given the Zariski 
topology. The elements x and y of M are said to be equivalent if they 
lie on the same orbit under G. 

In the examples discussed in §13 each element of M represented 
a certain type of algebra structure; two elements of M were equiv­
alent if and only if the corresponding algebra structures were iso­
morphic. If m G I f and N is a neighborhood of m on M% then each 
point x of N can intuitively be considered as a deformation of the 
structure represented by m ; the deformation is trivial if x is equiva­
lent to my tha t is if the corresponding structures are isomorphic. 

We shall consistently use the intuitive language suggested by the 
above discussion. Thus, for example, an element m<E.M is rigid, if it 
admits (locally) no nontrivial deformations, i.e. if the orbit G(m) is 
an open subset of M. By a family of deformations of mÇ.M we shall 
mean a connected subset F of M which contains m. The family F of 
deformations of m is locally complete a t m if the orbit G{F) is a 
neighborhood of m on M. 

In §4 we shall construct a locally complete family of deformations 
of m parametrized (at least in the analytic case) by an analytic sub­
set of Hl(E, Dm). 

In our results concerning the deformation equation, only the direct 
summands Ena ( 0 ^ w ^ 3 ) are relevant. Thus there is no loss of gen­
erality in using n as a grading index and in considering D as a der­
ivation of degree 1. The case when wa = 0 for some n creates little 
difficulty, since a formal change (replacing Ena by EnaX{n}) can 
make n a grading index. 

§4. DEFORMATION THEOREMS FOR ANALYTIC 

GRADED L I E ALGEBRAS 

15. Notation. The following notation will be used throughout §4. 
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E = ®nez En is an analytic graded Lie algebra with structure group 
G and D is an admissible derivation of E of degree 1. 

E' denotes the semi-direct product E@KD (here K is either R 
or C) : L is the linear variety in E' parallel to El and passing through 
D, and M={xGL\ [X,X]=0}. 

If xÇzL and gEG, we denote p'(g)x simply by g-x. The exponental 
map of Lie algebra into Lie group is denoted exp: En-*G. 

For each w £ ¥ w e denote by Dm the restriction of ad#' m to E; 
Z(m)=@nZ

n(m) denotes the kernel of Dm and B(m)=®nB
n(m) 

denotes the image of Dm. Furthermore, let H(m) be a graded supple­
mentary subspace to B(m) in Z(w), and let C(m) be a graded supple­
mentary subspace to Z(m) in E. Set Hn(m)=Enr\H(m) and Cn(m) 
— Enr\C(m). Note that Hn{m) is canonically isomorphic to Hn(Ey Dm) 
and that Dm induces an isomorphism of Cn(m) onto 5w+1(m). The 
direct sum decomposition 

E = B(m) 0 £T(w) 0 C(m) 

is called a Hodge decomposition of £ with respect to m. The symbols 
fl"j?(m), TTH{m), TTc(m) denote the projection operators corresponding to 
this Hodge decomposition. When the context is clear, we shall often 
omit reference to m and write Bn, Hn, O, 7r#, etc. 

All finite-dimensional affine spaces (over JR and C) are given their 
usual topology; subsets are given the induced topology. If X is a 
topological space and x(EXy the symbols N(x, X), Ni(x, X), etc. 
will denote neighborhoods of x in X; if F is a vector space, N(V), etc. 
will denote a neighborhood of the origin 0 of V. 

If ƒ : V-+W is a differentiate map of vector spaces (resp. affine 
spaces), we denote by dfx the differential of ƒ at the point x; i.e. the 
linear approximation to ƒ at x. In the affine case this is a map of the 
tangent spaces. 

We shall make frequent use of the inverse function theorem and 
the implicit function theorem. We use the formulations given by 
Dieudonné [ó] and Lang [IS, Corollary 2, p. IS], with the obvious 
modifications for maps of affine spaces. 

16. The Rigidity Theorem. Let E = B®H®Cbe a Hodge decom­
position with respect to w6Af. 

LEMMA 16.1. Let m(~M, then there exist iV(m, L), iV(C°), N(Hl) and 
NiC1) such that the analytic mapping F: C^X-fiPXC1—>L given by 

F(a, h, u) = exp(a) • (m + h + u) 

maps NiC^XNiH1) XN(CX) diffeomorphically onto N(m, L). 
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PROOF. By the inverse function theorem it is sufficient to show that 
the differential dF(o,o,o) of F at the origin is an isomorphism of 
C0XHlXCx onto E1. An easy computation shows 

dF(O,Q,O) (a, hyU) = [a, m] + h + u = — Dma + k + u. 

Since Dm maps C° isomorphically onto Bl, and since El = Bl QH1 @ C1, 
it follows that d/^o.o.o) is an isomorphism. 

THEOREM 16.2 (RIGIDITY THEOREM). Let mGM be such that 
Hl{E, P m ) = 0 . Then m is a rigid element of M\ in fact there exist 
N(m, M) and N(C°) such that every element of N(m, M) is of the form 
exp(a) -m, where a£iV(C°) and C° is a supplementary space to Z°(m) 
in £° . 

PROOF. Choose Ni(m, L), N(C°), NiiC1) so that the statement of 
the lemma holds. Then every x(E.Ni(m, M) is of the form # = exp(a) 
-(m+u), where aE:N(C°) and uÇzN\(Cl). Furthermore, xÇzMii and 
only if m-\-uÇ:M. We note that m = m+0 belongs to M. 

Let P denote the polynomial mapping u—*[m+u, m+u] of C1 into 
E2; we note that m+u(£M if and only if P(u)=0. The differential 
dPo is just Dm\ hence dPo is an injection. I t follows from the inverse 
function that there exists an iV^C1) such that the restriction of P to 
Nz(Cl) is an injection. Thus, if w G ^ C 1 ) , then m+uÇ:Miî and only 
if ^ = 0. Now take N(Cl) =iV1(C1)niV2(C1) and N(m, L) =exp(iV(C0)) 
-N(Cl), and set N(m, M)~N(m, L)r\M\ then every xÇ.N(m, M) is 
of the form exp(a) *m with aÇzN(C°). 

17. Linear Lie groups acting on algebraic sets. The proposition 
proved in this section allows us to strengthen the conclusion of the 
Rigidity Theorem. 

First we recall some facts about algebraic sets in complex w-dimen-
sional space Cn. Let S be an irreducible algebraic set in Cw and let 
So be the set of simple points of 5. (For the definition of simple point, 
see §21.) So is a Zariski-open subset of 5. If #£So , then there is a 
neighborhood iV(x, Cn) such that 5HiV(x, Cn) is a complex submani-
fold of N(x, Cn). If xESo, then the tangent space to S0 (considered 
as a complex submanifold of Cn) a t x is identical with the (Zariski) 
tangent space of 5 (considered as an algebraic subvariety of Cn) a t 
X] in particular the dimension of 5 0 as a complex manifold is equal 
to the dimension of S as an algebraic variety. If U is a Zariski-open 
subset of 5, then U is connected (in the topology induced on U by 
the usual topology of O ) . For a proof of these statements we refer 
the reader to [18, pp. 163-169]. 

If S is an irreducible algebraic set in jRw, then all the statements in 
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the above paragraph hold except the last one. In this case one can 
only say that U has a finite number of components. For details, see 
[18]. 

PROPOSITION 17.1. Let S be an algebraic set in Cn (resp. Rn) and let 
G be a Lie subgroup of GL(Cn) {resp, GL(jRn)) such that S is stable 
under the action of G. Suppose there is a point xG5 such that the orbit 
G(x) is an open subset of S. Then G(x) is a Zariski-open subset of S 
(resp. is one component of a Zariski-open subset of S). 

PROOF. We may assume that G is connected. We first give the proof 
for S C O . It is easily seen that each irreducible component of S is 
stable under the action of G. Thus we may assume that S is irre­
ducible. Let k be the dimension of 5 as an algebraic variety and let g 
denote the Lie algebra of G. For each x £ C n the orbit G(x) is a com­
plex submanifold of Cn; the (differential-geometric) tangent space 
to G(x) at x is just $(x) = { T(x) \ TÇzQ} • If xÇzS, then it follows easily 
that dim $(x)^k. Let U= {x(E:S\ dim $(x)=k}. An elementary 
argument shows that U is a Zariski-open subset of S; furthermore, 
U is nonempty, since it contains the given point x. It is easy to see 
that U is included in the set .So of simple points of S. If # £ U, then 
the orbit G(x) is an open subset of U; thus the orbits of G partition 
U into disjoint open sets. Since U is connected, there is precisely one 
orbit of G on U. 

If SQRn, then the above argument is valid except for the last 
sentence. In this case U has only a finite number of components and 
the conclusion of the theorem follows easily. 

We note that in either case (SQCn or S(ZRn), S admits only a 
finite number of disjoint Zariski-open subsets. 

18. A strengthened form of the Rigidity Theorem. 

THEOREM 18.1. Let the base field of E be C (resp. R) and let m&M 
be such that Hl(E, Dm) =0. Then the orbit G(m) is a Zariski-open sub­
set of M (resp. is one component of a Zariski-open subset of M). 

Theorem 18.1 is an immediate consequence of Theorem 16.2 and 
Proposition 17.1. 

Let Ak,n be the subset of x(~M for which dim Zn(x) ^k. An ele­
mentary argument shows that Ak,n is a Zariski-open subset of M. A 
similar argument shows that £&,«= {x£.M"|dim JBn(x) ^k} is a 
Zariski-open subset of M. Let Un- {xÇ.M\Hn(E1 DX)=0}; then 
Un is the union of the family {Ak$n^Bk,n}kez of Zariski-open subsets 
and hence is a Zariski-open subset of M. 
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COROLLARY 18.2. The Zariski-open subset U\ of x<£M for which 
Hl(E> Dx) = 0 is the union of a finite number of orbits of G. 

This follows immediately from Theorem 18.1. 

19. Two geometric lemmas. Let m G M , and let E=B@H®C be 
a Hodge decomposition with respect to m. We set 

M' = {* G £ | **•[*, *] = 0}. 
I t is clear that M<ZM'. We can consider M' as an approximation to 
M. The following lemma shows that, locally, M' is a manifold "lying 
above Z1 ." 

LEMMA 19.1. There exist an N(m, L), an N(Zl) and an analytic 
mapping <j>: N(Z1)—>Cl such that 

N(m} L) r\ M' = {m + z + <t>(z)\ z E N(Z1)). 

PROOF. Let F denote the polynomial mapping ZlXCl—>B2 

F(z, u) = Dmu + \TTB • [z + u, z + u] ; 

then F(0, 0) = 0 . The differential dF(0,o) maps (0, u)<E.ZlXCl to Dmu\ 
hence u—>dF(0,o)(0, u) is an isomorphism of C1 onto B2. By the im­
plicit function theorem, the equation F(z, u)=0 can be "solved" for 
u in a neighborhood of (0, 0); i.e. there exist neighborhoods N(Zl)> 
N(Cl) and an analytic map <£: N(Zl)->N(Cl) such that (s, u)Ç:N(Zl) 
XN(Cl) satisfies F(z, u)=0 if and only if u=c[>(z). The observation 
that m-\-z+u lies on M' if and only if F(z, u)—0 completes the proof. 

The equation [x, x] = 0, for x G L , is equivalent to the set of equa­
tions 

TB'[%, x] = 0, 7T/J-[x, x] = 0, ire [x, x] = 0. 

The following lemma shows that , in an N(m, L), if x satisfies the first 
two of these equations, it also satisfies the third. 

LEMMA 19.2. There exists an N(m, L) such thatt if xÇzN(m, L) and 
if TTB• [x, x]=0 and TTH* [xy x ] = 0 , then [x, x]=0. 

PROOF. Let x = ra+a£L, and assume that TTB- [X, X\—TTH% [X, X] 

= 0. Then we have, by the Jacobi identity, 

0 = [x} [x, x]] = [m + a, TB-[X} X] + TW-[X, X] + w [x, x]] 

- (Dm + ad^ a)-we- [x} x]. 

For each a £ £ x the map A»+adjE a sends Cn linearly into En+l. When 
a = 0, this map is an injection. Hence there is an N(EX) such that the 
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restriction of Dm+^dsa to C2 is an injection whenever a<EN(El). 
Hence, for aÇîNiE1) the condition (£>m+ad^ a) -TO- [X, x]=0 implies 
7Tcr[x, x] = 0. The neighborhood iV(m, L)~m+N(E1) satisfies the 
condition of the lemma. 

20. Kuranishi families. We use the notations of §19. 

THEOREM 20.1. If H2(E, I>m)=0, then M' is locally identical with 
M. A neighborhood of m in M can be parametrized by an N(Zl). The 
subset parametrized by HlC\N(Zl) contains a representative of each 
equivalence class. 

The proofs of these statements are, respectively, immediate con­
sequences of the Lemmas 19.2, 19.1 and 16.1. 

If £T2(E, An) does not vanish, the algebraic set M may have a 
singular point a t m. The structure of M near m is described by the 
set of zeros of an analytic map (called the obstruction map) Q of an 
NÇH1) into H\ 

Let <j>: N(Zl)-*Cl be as in Lemma 19.1; we then define Q: N(Zl) 
-» f f 2 by 

(20.2) ti(z) = TTH' [z + 4(z), z + <£(*)]. 

The set 

3C = {m + h + <t>(h) \h^Elr\ N(Zl), ti(h) = 0} 

is called a Kuranishi family of deformations of m. The following 
theorem shows tha t X is locally complete at m. 

THEOREM 20.3. Let m<EM, and let E = B®H@C be a Hodge de-
composition relative to m. 

(a) There exist neighborhoods N(m, M) and N(Zl)> and analytic 
maps<i>: N(Zl)->Cl and Q: N(Zl)-*H2, with <l>(0)=0and 0(0) = 0 , such 
that 

N(m, M) = {m + z + <t>(z) \ z G N(Zl), ti(z) = 0}. 

(b) Let K.= {m+h+<l>(}i)\h<EHir\N(Zx)y fi(A)-0}. Then there 
exist N(C°) and Ni(m, M) such that the map (fe, a)—>exp(a)-fe is an 
analytic homeomorphism of 3ZXN(C°) onto Ni(m, M). 

PROOF. By Lemmas 16.1, 19.1 and 19.2 we may choose neighbor­
hoods N(Zl), N(Hl), N(C°), N(m, L) and Ni(m, L), and an analytic 
map <£: N(Zl)~>Cl such that the following conditions are satisfied: 

N(m, L) and Ni(m, L) satisfy the conditions of Lemma 19.2; 
The neighborhoods N(ZX), N(m, L) and the map <t> satisfy the 

conditions of Lemma 19.1; 
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The map F: (a, h1 u)—*exip(a) • (m+h+u) is an analytic homeo-
morphism of N(C°)XN(Hl)XH(Cl) onto Ni(m, L). 

Let Q be the map defined by (20.2). Then, since N(m, L) satisfies 
the conditions of Lemma 19.2, an element x£iV(m, L) lies on M if 
and only if TTB • [x, x] = 0 and TH-[X, x]= 0. The first equation is satis­
fied if and only if x~m+z+<f>(z), for zÇzN(Zl)\ such an element x 
satisfies the second equation if and only if 

0 = TH' \m + z + <t>(z)} m + z + <t>(z)] 

= TH-(2Dm(z + <t>(z)) + [z + *(*), z + *(*)]) = 0(«). 

The neighborhood iV(w, Af)=MP\iV(m, L) satisfies the conclusion 
of 20.3(a). 

For the proof of (b) we note that F(a, h, u) =exp(a) • (m+h+u) lies 
on M if and only if F(0t ht u) —m+h+u does. Since Ni(m, L) satis­
fies the conditions of Lemma 19.2, we see that m+h+u lies on M if 
and only if u~<$>(Jri) and Q,(h) = 0 , i.e. if and only if m+h+uQX. The 
conclusion of 20.3(b) follows easily. 

We note tha t the choice of a Kuranishi family is not canonical. I t 
depends on the Hodge decomposition of E and on the choice of a 
(sufficiently small) Ni^Z1). The proof of Theorem 20.3 above shows, 
in effect, tha t a Kuranishi family is any set Mrsim+F^C^Nim, L), 
where F1 is any complementary subspace to B * in E1 and where 
N(mf L) is any sufficiently small neighborhood of w in L; that is, 
locally a Kuranishi family is the intersection of M with a linear vari­
ety through min L which is transversal to the orbit G(m) a t m and is 
of complementary dimension to G(m) in L. 

§5. DEFORMATION THEOREMS FOR ALGEBRAIC 

GRADED L I E ALGEBRAS 

21. Notation and terminology. Throughout §5 E = © nez En will be 
an algebraic graded Lie algebra over an algebraically closed field K\ 
G is the structure group of E and Go the identity component of G. 
All finite-dimensional affine spaces over K will be given the Zariski 
topology; subsets are given the induced topology. Otherwise, we 
shall follow the terminology introduced in IS. 

Let X be an irreducible subset of the finite-dimensional vector 
space V over K. We denote by A (X) the algebra of polynomial func­
tions on X (i.e. the restrictions to X of the polynomial functions on 
V). Since X is irreducible, A(X) is an integral domain; its quotient 
field is denoted F. We define dim X as the transcendence degree of F 
over K. If x Ç J , we define T(X, x), the tangent space to X at x, as 



i966] COHOMOLOGY AND DEFORMATIONS IN GRADED LIE ALGEBRAS 25 

follows: y G V is an element of T(X, x) if and only if, for every poly­
nomial function P on V which vanishes on X, the differential dPx 

of P at x, vanishes on y. The tangent space T(X, x) is a linear sub-
space of V of dimension §: dim X. The point x is a simple point of X 
if dim r (X, #) = dim X; it is known that the simple points of X form 
a nonempty open subset of X, For further details we refer the reader 
to [3, pp. 177-184]. 

Let X be a closed irreducible subset of a vector space V and let <f> 
be a morphism (i.e. a polynomial mapping) of X into a vector space 
W. We denote by d<j>x the differential of 4> at the point x(EX. It is a 
linear map of T(X, x) into W. 

22. The Rigidity Theorem. 

THEOREM 22.1. Let ni&Mbe such that Hl(E, Dm) = 0. Then the orbit 
G(x) is an open subset of M. 

PROOF. It is sufficient to show that Go(m) is an open subset of M. 
Since G0 is irreducible, each irreducible component of M is stable 
under the action of G0. Let Mi be the irreducible component of M 
which contains m. It will suffice to show that Go(m) is an open subset 
of Mi. For, if this is the case, then Go(m) cannot meet any other ir­
reducible component of M, and hence Go(m) is an open subset of M. 
Let P denote the polynomial mapping x—*[x, x] of L into E2. Then 
the differential dPm is just the map 2Dm. Since P vanishes on Mi, it 
follows that Z1(m)1 the kernel of dPm, is included in the tangent 
space T(Mi, m). 

It follows from the definition of an algebraic graded Lie algebra 
and of an admissible derivation that the differential of the repre­
sentation p' of G on E is just the map y—>adj^ y of E° into gl°(£). It 
follows from [2, p. 122, Corollaire 1] and [3, p. 192, Proposition 2] 
that the tangent space T(Go(m), m) contains the space Bl(rri) 
= {ads y-m\yE:EQ}. Since Go(m)C.Mi, we have T(Go(m)t m) 
CTXMi, m). Thus 

B^m) C T(G0(m)y m) C T(Mh m) C Z\m). 

The condition Hl(Ey Dm) = 0 thus implies that T(Go(m), m) 
= T(Mi, m). Let 5 = dim T{G^{m), m). Since Go acts transitively on 
Go(m)y every point of Go(m) is a simple point; hence dim Go(m)=s. 
But we have 

s = dim Go(m) S dim Mi ^ dim T(Mh m) = s; 

thus dim ikfi = dim Go(w). This implies that Mi is the closure of 
Go(m). (We note that up to this stage we have not used the closure 



26 ALBERT NIJENHUIS AND R. W. RICHARDSON, JR. [January 

of K\ our argument so far is valid for an algebraic graded Lie algebra 
over an arbitrary infinite field.) 

According to [3, p. 193, Proposition 3] , the orbit Go(m) contains 
an open subset of its closure Mi. Since G0 acts transitively on the 
orbit, it follows easily that G0(m) is an open subset of Mi. 

COROLLARY 22.2. Let Z7i = {xGM\Hl(E, DX)=0}. Then Vi is an 
open subset of M, and G admits only a finite number of orbits on Uv 

PROOF. The fact tha t U\ is open follows as in §18. Theorem 22.1 
implies that the intersection of U\ with each irreducible component 
of M can contain at most one orbit of G; thus there are only a finite 
number of orbits of G on Ui. 

23. Kuranishi families in the algebraic case. Let mÇzM and let 
E = B®H®C be a Hodge decomposition of E with respect to m. We 
set M' = {x<EL| WB • [x, x] = 0 } . The following lemmas are the algebro-
geometric analogues of Lemmas 19.1 and 19.2 of §4. 

LEMMA 23.1. There is precisely one irreducible component Ml of 
M' which contains m. Furthermore, m is a simple point of M{ and 
T(M{,m)=ZK 

PROOF. This follows immediately from [17, p. 354, Proposition l ] , 
and from [17, p. 74, Proposition 3] , which allows us to pass from a 
universal domain to the algebraically closed field K. 

LEMMA 23.2. There exists an N(m, L) such that, if x<EN(m, L) and 
if TTB'[X, x]—0 and TH• [#, x] = 0, then [x, x] = 0. 

The proof is the same as tha t of Lemma 19.2 of §4. 

THEOREM 23.3. Let m<EMbe such that H2(Ey Dm) = 0 . Then there is 
precisely one irreducible component M\ of M which contains m. Further­
more, m is a simple point of M\, and T(M\, m) =Z1(m). 

The proof follows immediately from the two preceding lemmas. 
If H2(E, Dm) 5^0, then, as in the analytic case, the situation is more 

complicated. 

THEOREM 23.4. (a) Let Q denote the map X—>TH- [X, X] of L into H2. 
Let 5 = {xGM / | f l ( x )=0} and let M" be the union of the irreducible 
components of S which contain m. Let Mi be the union of the irreducible 
components of M which contain m. Then M" = Mi. 

(b) Let 3C0= {x<EM'\irB-(x—m)=0, U(x)=0} , and let X be the 
union of the irreducible components of 3Co which contain m. Then 3C is 
included in M. Furthermore, 3C is a locally complete family of déforma-
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tions of m (i.e. the orbit G(3C) is a neighborhood of m on M). 

Before proceeding with the proof of 23.4, we discuss the geometric 
meaning. Let 3C' = {x<EL\7TB'(x—m) = 0, TB*[X, X]=0}. Then es­
sentially the same argument given in Lemma 23.1 shows that there 
is precisely one component 3C" of 3C' containing m, that m is a simple 
point of 3C", and that Z\3C", m) = HK Let Ü' denote the restriction 
of Q to 3C"; then Q' maps 3C" into HK Theorem 23.4 says that the set 
3Co of zeros of £2' is a locally complete family of deformations of m. 

PROOF. It follows from the definitions that M is included in M". 
Lemma 23.2 implies that there is an N(m, L) such that Sr\N(m, L) 
is included in M. It follows easily that M" is included in M. This 
proves 23.4(a). 

For the proof of 23.4(b) we shall need the following technical 
lemma from algebraic geometry. We follow the terminology of [4]. 

LEMMA 23.5. Let <f> be a morphism of the affine variety X into the 
affine space W. Let x be a simple point of X such that the differential 
d<j>x is a surjection. Then <f> maps every neighborhood of x in X onto a 
neighborhood of <i>(x) in W. 

PROOF. An elementary argument shows that the set X\ of points 
xr of X such that d$x* is surjective is an open subset of X. It follows 
from [4, p. 42, Corollaire l ] that <t>(X\) contains an open subset of 
the closure Z of <f>(X); in particular, <f>(Xi) contains a simple point of 
Z. This implies that dim Z = dim W, hence that Z == W. Thus <j> is a 
dominant morphism. An elementary inductive argument using [17, 
p. 152, Theorem 6] shows that there is precisely one irreducible com­
ponent of ^^OK^)) containing #, and that the dimension of this com­
ponent is equal to dim X — dim W. The conclusion now follows from 
[4, p. 195, Proposition 3]. 

Let <]Ê>:GXCff1+C1)-»Z< be defined by <Kg, u)=g-(m+u). Let e 
denote the identity of G. Then d#(e,o) maps E° (the tangent space of 
Go at e) onto Bl and induces the identity isomorphism on Hl + Cl\ 
thus d<t>(e,o) is surjective. Moreover, (e, 0) is a simple point of 
GX(Hl+Cl). It follows from Lemma 23.5 that <t> maps every neigh­
borhood of (e, 0) onto a neighborhood of m on L. We note that 
<t>(g> u)ÇzMii and only if m+wGM. It follows easily from this remark 
and the preceding result that G(3C) is a neighborhood of m on M. 

24. Geometric remarks. In conclusion we discuss briefly the under­
lying algebro-geometric ideas of the proofs of the Rigidity Theorem 
and of Theorem 23.4 on the existence of Kuranishi families. An 
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analogue of the Rigidity Theorem can be proved in the following gen­
eral circumstances. Let F be a finite-dimensional vector space over 
an algebraically closed field K, let Pi , • • • , Pm be polynomial func­
tions on V, and let Ó denote the ideal generated by Pi, • • • , Pm in 
the algebra A(V) of all polynomial functions on V. Let S denote the 
algebraic set of common zeros of Pi , • • • , P m . Let G be an algebraic 
subgroup of GL(F) such that é is stable under the action of G on 
A(V). I t follows easily that 5 is stable under the action of G. Denote 
by $ the Lie algebra of G. If x £ S we define Zl(x) to be the intersec­
tion of the kernels of the differentials (dPi)x, • • • , (dPm)x. We set 
BKaO^flC*)- I t follows from [3, p. 192, Proposition 2] that Bl(x) 
CZ\x)\ we set Hl(x) =Zl(x)/Bl(x). (We note that the cohomology 
space H\x) is not determined by the algebraic set 5 ; however it is 
determined by the ideal 6.) If Hl{x) = 0, then the argument used in 
the proof of Theorem 22.1 shows that the orbit G(x) is an open subset 
of 5. If K is either R or C, it is sufficient to assume that G is a Lie 
subgroup of GL(F) . (In case K = R, we get a slightly weaker result, 
exactly analogous to Theorem 18.1 of §4.) 

In a number of applications outlined in §3 the cohomology spaces 
Hl(E, Dm) can be explicitly computed. In the general situation we 
have discussed above, the computation of Hl(x) may be quite in­
volved. 

The key geometric result in the proof of Theorem 23.4 is Lemma 
23.2. Roughly speaking, this lemma says that in defining M locally, 
(i.e. in a neighborhood of m)f we can eliminate a certain number of 
the defining equations. To be more precise, let W2 = dim E2, let b% 
= dim JB2(W), and let 32 = dim Z2(m). Then M is defined as the set of 
common zeros of n% polynomials. I t follows easily from dimensional 
considerations that a t least b% polynomials are needed to define M 
locally. Lemma 23.2 says that no more than s2 equations are required 
to define M locally. In particular, if £T2(w)=0, then 22 = b2 and it 
follows readily that m belongs to precisely one irreducible component 
of M and is a simple point of that component. I t turns out that a 
similar result holds for an arbitrary set of polynomial equations. In 
this case the cohomology defined by Harrison [lO] seems to be the 
pertinent one. We plan to discuss this further in a future paper. 
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