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Abstract

Using the Alexandrov–Kontsevich–Schwarz–Zaboronsky (AKSZ) pre-
scription we construct 2D and 3D topological field theories associated to
generalized complex manifolds. These models can be thought of as 2D
and 3D generalizations of A- and B-models. Within the BV framework
we show that the 3D model on a two-manifold cross an interval can be
reduced to the 2D model.

1 Introduction

Recently, generalized complex geometry (GCG) has attracted considerable
interest both in the physics and mathematics communities. GCG has been
introduced by Hitchin [17] and further developed by Gualtieri [15] as a notion
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which unifies symplectic and complex geometries. At the same time GCG
can be thought of as a complex analogue of the Dirac geometry introduced
by Courant and Weinstein in [11, 12].

In this work we discuss the Batalin–Vilkovisky (BV) formulation [3] of
2D and 3D topological sigma models with target a generalized complex
manifold. GCG has a simple description [14] in the language of graded
manifolds. This will enable us to use the Alexandrov–Kontsevich–Schwarz–
Zaboronsky (AKSZ) prescription [2] for the construction of solutions to the
classical master equation. We study the relation between 3D and 2D models
within the BV framework. Naturally, our results have a wider interpretation
in the context of general 3D and 2D AKSZ models. This work contains only
the construction of the models; issues such as gauge fixing, localization and
the calculation of correlators are left for another more technical paper [9].

Let us comment on the literature and on the relations between our and
others’ work. Different 2D and 3D versions of topological sigma models
for generalized complex structures were discussed previously within the BV
formalism. To mention some, there are the 2D Zucchini model [36], the 3D
Ikeda models [19, 20] and the Pestun model [27]. These models are inter-
esting on their own. Our main intention here is to show that the powerful
AKSZ framework produces the simple and unique 2D and 3D models asso-
ciated to GCG. Moreover, 2D and 3D models are related to each other in a
rather canonical way.

The article is organized as follows: Section 2 contains a brief review of the
AKSZ construction of solutions to the classical master equation. In Section
3 we review the AKSZ models with target a symplectic graded manifold of
degree 1 or 2. Section 4 recalls the description of GCG in terms of graded
manifolds. This enables us to construct 2D and 3D AKSZ models. In
Section 5 we discuss the relation between these models. The main idea is
to use Losev’s trick [24], the partial integration of a subsector of the theory.
Section 6 gives a summary and provides an outlook to forthcoming work. At
the end of the paper we present two technical appendices with the explicit
formulas describing GCG in the language of graded manifolds.

2 The AKSZ-BV formalism

The BV formalism [3] is a powerful tool in the quantization of an action func-
tional that is degenerate (e.g., due to gauge equivalence). This procedure
embeds the space of fields into the so-called BV manifold, which is equipped
with an odd symplectic structure and thereby an odd BV bracket {·, ·}.



2D AND 3D TOPOLOGICAL FIELD THEORIES 697

The original action is enlarged to a new action S satisfying the so-called
master equation {S, S} = 0. One then chooses a Lagrangian submanifold
inside the BV manifold; the original path integral is now replaced by the
integration of S over this Lagrangian submanifold. The geometrical essence
of this procedure was expounded by Schwarz [32], which reformulated the
BV formalism as the “PQ-structure” on a supermanifold. The P -structure
is just the symplectic structure and the Q-structure is a nilpotent vector
field Q that corresponds to {S, ·} in the BV case.

In this section we review the AKSZ construction [2] of solutions of the
classical master equation within BV formalism. We closely follow the pre-
sentation given in [31] and use the language of graded manifolds which are
sheaves of Z-graded commutative algebras over a smooth manifold; for fur-
ther details the reader may consult [34]. We consider both the real and
complex cases and treat them formally on equal footing. However, in the
complex case additional care is required (see [2] for further details).

The AKSZ solution of the classical master equation is defined starting
from the following data:

The source: A graded manifold N endowed with a homological vector field
D and a measure

∫
N μ of degree −n − 1 for some positive integer n such

that the measure is invariant under D.

The target: A graded symplectic manifold (M, ω) with deg(ω) = n and
a homological vector field Q preserving ω. We require that Q is Hamilton-
ian, i.e., there exists a function Θ of degree n + 1 such that Q = {Θ,−}.
Therefore Θ satisfies the following Maurer–Cartan equation:

{Θ, Θ} = 0.

Introduce the (infinite-dimensional) graded manifold Maps(N ,M) of
maps from N to M. Its body is the manifold of morphisms from N to
M (i.e., sheaf morphisms of the sheaves describing the two graded mani-
folds). A soul is added to allow for morphisms parameterized by other graded
manifolds: namely, Maps(N ,M) is uniquely characterized by the property
that morphisms from P × N to M are the same as morphisms from P to
Maps(N ,M) for any graded manifold P. By abuse of language we will
often speak of maps from N to M and write N −→ M when referring to
constructions involving Maps(N ,M).

With our choices for N and M, Maps(N ,M) is naturally equipped with
an odd symplectic structure; moreover, D and Q can be interpreted as
homological vector fields on Maps(N ,M) that preserve this odd symplectic
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structure. The AKSZ solution SBV is the Hamiltonian for the homological
vector field D + Q on Maps(N ,M) and thus it satisfies the classical master
equation automatically.

Let us provide some details for this elegant construction. We denote by
Σ and M the underlying smooth manifolds to N and M, respectively. We
choose a set of coordinates XA = {xμ; ψm} on the target M, where {xμ}
are the coordinates for an open U ⊂ M and {ψm} are the coordinates in
the formal directions. We also choose coordinates {ξα; θa} on the source N ,
where {ξα} are the local coordinates on Σ and {θa} are the coordinates in the
formal directions of N . We then collect local coordinates on Maps(N ,M)
into the superfield Φ,

ΦA = ΦA
0 (u) + θaΦA

a (u) +
1
2
θa2θa1ΦA

a1a2
(u) + · · · , (2.1)

where ΦA
0 , ΦA

a , ΦA
a1a2

, . . . (the coordinates on Maps(N ,M)), are functions
on Φ−1

0 (U). They are assigned a degree such that ΦA has degree equal to
the degree of XA.

The symplectic form ω of degree n on M can be written in Darboux
coordinates as ω = dXAωABdXB. Using this form we define the symplectic
form of degree −1 on Maps(N ,M) as

ωBV =
1
2

∫

N
μ δΦA ωAB δΦB. (2.2)

Thus the space of maps Maps(N ,M) is naturally equipped with the odd
Poisson bracket {, }. Since the space Maps(N ,M) is infinite-dimensional
we cannot define the BV Laplacian properly. We can only talk about the
naive odd Laplacian. However on Maps(N ,M) we can discuss the solutions
of the classical master equation. Assuming that ω admits a Liouville form
Ξ the AKSZ action then reads

SBV[Φ] = Skin[Φ] + Sint[Φ] =
∫

N
μ

(
ΞA(Φ)DΦA + (−1)n+1Φ∗(Θ)

)
(2.3)

and it solves the classical master equation {SBV, SBV} = 0 with respect to
the bracket defined by the symplectic structure (2.2). Since the measure μ
is invariant under D, Skin depends only on ω, not a concrete choice of Ξ.
In particular, using the Darboux coordinates the first term in (2.3) can be
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written

Skin[Φ] =
∫

N
μ

1
2
ΦAωABDΦB. (2.4)

Action (2.3) is invariant under all orientation preserving diffeomorphisms of
Σ and thus defines a topological field theory. The solutions of the classical
field equations of (2.3) are graded differentiable maps (N , D) → (M, Q),
i.e., maps which commute with the homological vector fields.

The standard choice for the source is the odd tangent bundle N =
T [1]Σn+1, for any smooth manifold Σ of dimension n + 1, with D = d the
de Rham differential over Σ and the canonical coordinate measure μ =
dn+1ξ dn+1θ ≡ dn+1z

SBV[Φ] =
∫

T [1]Σn+1

dn+1z
(
ΞA(Φ)DΦA + (−1)nΦ∗(Θ)

)
. (2.5)

For the rest of the paper we consider only the case when the source is
T [1]Σn+1. However, the more exotic situations are possible, e.g., the holo-
morphic part of an odd tangent bundle, etc. see [28]. Next, we consider
the case when Σn+1 has a boundary. For this we need to impose certain
boundary conditions within AKSZ prescription, see [7] for details. In par-
ticular, the BV classical master equation for (2.5) is only satisfied up to
total derivative terms

{SBV, SBV} =
∫

T [1]Σn+1

dn+1z D(ΞA(Φ)DΦA + (−1)nΦ∗(Θ))

=
∫

T [1]∂Σn+1

dnz (ΞA(Φ)DΦA + (−1)nΦ∗(Θ)). (2.6)

Thus a natural choice for the boundary condition1 is

Φ : T [1]∂Σn+1 → L ⊂ M, (2.7)

where L is a Lagrangian submanifold of the target M such that

Ξ|L = 0, Θ|L = 0. (2.8)

Now with these additional conditions the solution SBV is the Hamiltonian for
homological vector field D + Q on Maps(T [1]Σn+1 → M, T [1]∂Σn+1 → L)
and thus it satisfies automatically the classical master equation.

1Throughout the paper, for the sake of clarity we assume that ∂Σn+1 has a single
component. The generalization beyond this case is quite obvious.



700 ALBERTO S. CATTANEO, JIAN QIU AND MAXIM ZABZINE

Let us make a few concluding remarks. The advantage of the AKSZ con-
struction is that it converts complicated questions into a simple geometrical
framework. For example, the analysis of the classical observables is straight-
forward. The homological vector field Q on M defines a complex on C∞(M)
whose cohomology we denote HQ(M). Take f ∈ C∞(M) and expand Φ∗f
in the formal variables on N

Φ∗f = O(0)(f) + θaO(1)
a (f) +

1
2
θa2θa1O(2)

a1a2
(f) + · · · .

We denote by δBV the Hamiltonian vector field for SBV, which is homological
as a consequence of the classical master equation. The action of δBV on Φ∗f
is given by the following expression:

δBV(Φ∗f) = {SBV, Φ∗f} = DΦ∗f + Φ∗Qf.

Thus if Qf = 0 and μk is a D-invariant linear functional on the functions
of N (e.g., a representative of an homology class of Σ), then μk(O(k)(f))
is δBV-closed and can serve as a classical observable. Therefore HQ(M)
naturally defines a set of classical observables in the theory. The classical
action (2.3) can be deformed to first order by

∫

N
μ O(n+1)(f)

with f ∈ HQ(M).

The gauge fixing in the BV framework corresponds to the choice of a
Lagrangian submanifold in the space of fields. For a given Lagrangian sub-
manifold we can choose the adapted coordinates with the odd symplectic
form written as follows:

ωBV =
∫

N
μ δΦa δΦ+

a , (2.9)

such that the Lagrangian is defined by the condition Φ+ = 0. We expand a
master action formally into a power series Φ+

SBV[Φ, Φ+] = SGF(Φ) + Qa(Φ)Φ+
a +

1
2
σab(Φ)Φ+

a Φ+
b + · · · ,

{SBV, SBV} = 0 ⇒ Qa ∂

∂Φa
SGF(Φ) = 0; [Q, Q]a = 2σba ∂

∂Φb
SGF(Φ).

Hence the gauge fixed action SGF(Φ) has Becchi, Rouet, Stora and Tyutin
(BRST) symmetry Q which is nilpotent on shell. Due to this simple
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observation it is very easy to analyze the BRST symmetries of the gauge
fixed action.

The AKSZ prescription is algebraic in its nature and thus it can be gen-
eralized even further, see for example [5].

3 AKSZ for symplectic GrMfld of degree 1 and 2

In this section we review the relevant facts about symplectic graded mani-
folds (GrMfld) of degree 1 and 2 with nilpotent Hamiltonians of degree 2 and
3, respectively. The symplectic target of degree 1 with nilpotent Hamilton-
ian of degree 2 leads to the AKSZ construction of the Poisson sigma model
[7] while the symplectic manifold of degree 2 with nilpotent Hamiltonian of
degree 3 leads to the AKSZ construction of the Courant sigma model [31].

3.1 Symplectic GrMfld of degree 1 and 2

Here we review the basic facts about symplectic GrMflds of degree 1 and
2. In particular, we consider some specific examples which are relevant for
our further discussion. Our review is somewhat informal and we refer the
reader for further details to [29, 30].

When M is of degree 1, we denote the coordinates x, η with degree 0, 1.
The local patches are glued through degree preserving transition functions.
Degree preserving means that the transition function for the degree 1 coor-
dinate ηA must be linear in η and the coefficient of linearity may depend
on the degree zero coordinate x (since we assume that there is no nega-
tively graded coordinate). One immediately sees that degree 1 GrMflds are
exhausted by L[1], where L → M is a vector bundle. A degree 1 vector field
on such a manifold must have the form

Q = 2ηAAμ
A(x)

∂

∂xμ
− fA

BC(x)ηBηC ∂

∂ηA
. (3.1)

Requiring Q2 = 0 puts constraint on the coefficients

Aν
[A∂νA

μ
B] = Aμ

CfC
AB,

Aμ
A∂μfD

BC + fD
AXfX

BC + cyclic in ABC = 0, (3.2)

where we use the notation ∂μ = ∂
∂xμ . In fact, these data give rise to a Lie

algebroid structure [33]: if one pick a basis 
A for the sections of L, then we
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can define an anchor map π : L → TM : π(
A) ≡ Aμ
A∂μ, and the structure

function fA
BC defines the Lie bracket for the sections of L: [
B, 
C ] = fA

BC
A

satisfying the extra condition [
A, f
B] = f [
A, 
B] + (π(
A)f)
B. The sec-
ond of the equations (3.2) is the condition for the Jacobi identity for the Lie
bracket, while the first says that the anchor π is a homomorphism between
the Lie bracket of L and the Lie bracket of TM . It is also easy to see that Q
acts on the functions f(x, η) as the Lie algebroid differential dL on Γ(∧•L∗).
If one is further restricted to symplectic degree 1 GrMflds, then one can
utilize the symplectic structure to identify the degree 1 coordinate η with
the fiber coordinate of T ∗M . In other words degree 1 symplectic manifolds
are exhausted by T ∗[1]M with symplectic structure

ω = dημdxμ,

where xμ is coordinate of degree 0 on M and ην is the fiber coordinate of
degree 1. The Hamiltonian of degree 2 is given by the following expression:

Θ = αμν(x)ημην , (3.3)

where α = αμν∂μ ∧ ∂ν is bivector on M . {Θ, Θ} = 0 if and only if α is
Poisson structure. The homological vector field on T ∗[1]M is

Q = 2αμνην
∂

∂xμ
+ ∂μανρηνηρ

∂

∂ημ
, (3.4)

which gives rise to the Lie algebroid structure on T ∗M associated to a Pois-
son structure on M .

Example 1 (Lie algebroid). Consider L being a vector bundle over M
with the Lie algebroid structure described above. Then the dual bundle L∗

considered as a total manifold is equipped with a Poisson structure

α(x, λ) = fC
AB(x)λC

∂

∂λA
∧ ∂

∂λB
+ 2Aμ

A(x)
∂

∂λA
∧ ∂

∂xμ
, (3.5)

where the x’s are coordinates on M and the λ’s are coordinates on the fiber
of L∗. Both x and λ are of degree zero. The corresponding symplectic
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manifold of degree 1 is T ∗[1]L∗ with the symplectic structure of degree 1

ω = dημdxμ + djAdλA,

where η, j are the coordinates of degree 1. From (3.5) it follows that the
nilpotent Hamiltonian of degree 2 is given

Θ = fC
AB(x)λCjAjB + 2Aμ

A(x)jAημ. (3.6)

Thus, Lie algebroid structure on L can be encoded in terms of
(T ∗[1]L∗, ω, Θ).

Now let us discuss the graded symplectic manifolds of degree 2. The
symplectic (nonnegatively) graded symplectic manifold M of degree 2 cor-
responds to vector bundle E over M with a fiberwise nondegenerate sym-
metric inner product 〈 , 〉 (it can be of arbitrary signature). For a given E,
M is a symplectic submanifold of T ∗[2]E[1] corresponding to the isometric
embedding E ↪→ E ⊕ E∗ with respect to the canonical pairing on E ⊕ E∗,
i.e., ea → (ea, gabe

b), where gab is the constant fiber metric 〈 , 〉 written in
a local basis of sections for E. Indeed M is a minimal symplectic realiza-
tion of E[1]. In local Darboux coordinates (xμ, pμ, ea) of degree 0, 2 and 1,
respectively, the symplectic structure is

ω = dpμdxμ +
1
2
deagabdeb. (3.7)

Any degree 3 function would have the following general form:

Θ = pμAμ
a(x)ea +

1
6
fabc(x)eaebec. (3.8)

As it has been shown in [30] the solutions of the equation {Θ, Θ} = 0 cor-
respond to Courant algebroid structures on (E, 〈 , 〉) with the Courant–
Dorfman bracket given by [·, ·] = {{·, Θ}, ·}, where { , } stands for the Pois-
son bracket on the symplectic manifold M. In expression (3.8) the quantity
Aμ

a and −gdafdbc are interpreted as the anchor and the structure function for
Courant algebroid E, respectively. We refer the reader to [30] for detailed
discussion of degree 2 symplectic GrMflds and its relation to Courant alge-
broids.

Example 2 (TM ⊕ T ∗M Courant algebroid). The standard example of a
Courant algebroid is the tangent plus cotangent bundle TM ⊕ T ∗M of a
smooth manifold M . In this case the corresponding symplectic manifold
of degree 2 is M = T ∗[2]T ∗[1]M . The degree 0,1 subspace in this case is
T ∗[1]M ⊕ T [1]M . Pick local coordinates pμ, vμ, qμ, xμ with degree 2,1,1 and
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0 with the metric induced from the natural pairing between TM and T ∗M .
The Hamiltonian function of degree 3 is Θ = Pμvμ which induces a vector
field corresponding to the Hamiltonian lift of the de Rham differential

Q = {Θ, ·} = vμ ∂

∂xμ
+ pμ

∂

∂qμ
.

If there is a closed three form H, then there exists another Hamiltonian
function of degree 3

Θ = pμvμ +
1
6
Hμνρv

μvνvρ, (3.9)

which gives rise to the twisted Courant structure on TM ⊕ T ∗M .

Example 3 (Lie bialgebroid). Consider a Lie algebroid L and assume that
the dual bundle L∗ is equipped with a Lie algebroid structure. The pair
(L, L∗) is called bialgebroid if dL is a derivation of the Schouten bracket
on Γ(∧•L∗). For any bialgebroid (L, L∗) the vector bundle E = L ⊕ L∗ is
naturally equipped with the structure of Courant algebroid [23]. Thus we
can apply the previous considerations. The graded manifold T ∗[2]L[1] is
equipped with the symplectic structure of degree 2

ω = dpμdxμ + d
Ad
A, (3.10)

where 
A are fiber coordinates2 of degree 1 for L and 
A are fiber coordinates
of degree 1 for L∗. The Hamiltonian of degree 3 has the same form as in (3.8),
but written in the basis adapted to the bialgebroid splitting E = L ⊕ L∗.

Example 4 (Lie algebroid). Take a Lie algebroid L, then the vector bundle
E = L ⊕ L∗ can be regarded as bialgebroid with the trivial bracket and zero
anchor on L∗. Thus E = L ⊕ L∗ is equipped with Courant algebroid struc-
ture. The corresponding graded symplectic manifold is T ∗[2]L[1] with the
symplectic structure (3.10). The corresponding Hamiltonian of degree 3 is

Θ = 2pμAμ
A(x)
A − fA

BC(x)
A
B
C .

The vector field Q = {Θ, ·} acts as the Lie algebroid differential on func-
tions f(x, 
A). In general, it has an interpretation related to the adjoint
representation of L [1].

2Through the paper we adapt the same notation for the fiber coordinates of a vector
bundle and the sections of the dual bundle.
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3.2 2D AKSZ model

We may apply the AKSZ approach to the 2D case when the source manifold
N = T [1]Σ2 with Σ2 being a 2D manifold. The target M = T ∗[1]M is a
symplectic manifold of degree 1 equipped with the Hamiltonian (3.3). The
space of fields defined as

Maps(T [1]Σ2, T
∗[1]M)

with odd symplectic structure

ωBV =
∫

T [1]Σ2

d2ξd2θ δημδXμ. (3.11)

The corresponding BV action is written as

SBV =
∫

T [1]Σ2

d2ξd2θ
(
ημDXμ + αμν(X)ημην

)
, (3.12)

where we use bold letters for the superfields corresponding to the coordinates
on T ∗[1]M , η and x. This action is the BV formulation of the Poisson sigma
model corresponding to the Poisson manifold (M, α). Action (3.12) is a
solution of a classical master equation if ∂Σ2 = ∅, [7]. If ∂Σ2 
= ∅ then the
following boundary conditions can be imposed:

T [1]∂Σ2 −→ N∗[1]C,

where C is a coisotropic submanifold of M . With these boundary conditions
the requirements (2.7) and (2.8) are satisfied [8].

In particular, we are interested in the situation when the Poisson manifold
is the dual bundle of a Lie algebroid L, see Example 1. In this case the space
of fields is

T [1]Σ2 −→ T ∗[1]L∗

with the odd symplectic structure

ωBV =
∫

T [1]Σ2

d2ξd2θ
(
δημδXμ + δjAδλA

)
. (3.13)
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The corresponding BV action is

SBV =
∫

T [1]Σ2

d2ξd2θ(ημDXμ + jADλA

+ fC
AB(X)λCjAjB + 2Aμ

A(X)jAημ), (3.14)

where we use the obvious correspondence between superfields and the coor-
dinates on T ∗[1]L∗. Action (3.14) satisfies the classical master equation if
∂Σ2 = ∅. If ∂Σ2 
= ∅ then the following boundary conditions can be imposed:

T [1]∂Σ2 −→ N∗[1]K⊥,

where K is a subalgebroid of L and K⊥ ⊂ K∗ is the annihilator of K:

K⊥
x = {α ∈ K∗

x : α(v) = 0 ∀v ∈ Kx}.

Let us remind that a Lie subalgebroid K of L is a morphism of Lie algebroids
F : K → L, f : C → M . such that F and f are injective immersions. It is
easy to see that for boundary conditions labeled by subalgebroid of L the
conditions (2.7) and (2.8) are satisfied, see [4] for similar analysis.

3.3 3D AKSZ model

Having the general description of a graded symplectic manifold of degree 2
and the Hamiltonian function Θ of degree 3 we can write the AKSZ action
for a Courant algebroid E. The space of fields is defined as

T [1]Σ3 −→ M,

where M is a symplectic submanifold of T ∗[2]E[1] which provides a minimal
symplectic realization of E[1]. The odd symplectic structure on the space
of maps is

ωBV =
∫

T [1]Σ3

d3ξd3θ

(

δPμδXμ +
1
2
δeagabδeb

)

. (3.15)

The BV action is

SBV =
∫

T [1]Σ3

d3ξd3θ

(

PμDXμ +
1
2
eagabDeb

−PμAμ
a(X)ea − 1

6
fabc(X)eaebec

)

, (3.16)
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where we identify the superfields and the coordinates on M in an obvious
way. Action (3.16) satisfies the classical master equation if ∂Σ3 = ∅. If
∂Σ3 
= ∅ then the additional boundary conditions should be imposed

T [1]∂Σ3 −→ L,

where L is a submanifold of N∗[2]K[1] corresponding to the isometric embed-
ding E ↪→ E ⊕ E∗ (see the previous discussion) and K is a Dirac structure
supported on a submanifold C [6]. A Dirac structure supported on a sub-
manifold i : C ↪→ M is defined as a subbundle K ⊂ i∗E = E|C such that
Kx ⊂ Ex is maximally isotropic for all x ∈ C, K is compatible with the
anchor (i.e., A(K) ⊂ TC) and [e1, e2]|C ∈ Γ(K) for any sections e1, e2 of E
such that e1|C , e2|C ∈ Γ(K).

Let us illustrate the general construction with a few concrete examples.
We start with the Courant algebroid structure over TM ⊕ T ∗M . The space
of fields is described as follows:

T [1]Σ3 −→ T ∗[2]T ∗[1]M

and the BV action is

SBV =
∫

T [1]Σ3

d3ξd3θ

(

PμDXμ +
1
2
vμDqμ +

1
2
vμDqμ

−Pμvμ − 1
6
Hμνρ(X)vμvνvρ

)

, (3.17)

where we use the notations adapted to Example 2. If ∂Σ3 
= ∅ then the
possible boundary conditions would be

T [1]∂Σ3 −→ N∗[2]T [1]C,

where C is a submanifold and H|C = 0. In this case K = N∗C ⊕ TC is
an example of Dirac structure supported on C. There is another way to
construct a Dirac structure supported on C. Let us choose a two form
on C, B ∈ Ω2(C). Then applying the B-transform to N∗C ⊕ TC we obtain
another bundle eB(N∗C ⊕ TC) over C. It is easy to show that this gives rise
to a Dirac structure with support over C if H|C = dB. The pair (C, B) with
the condition H|C = dB has been discussed by Gualtieri [15, 16], under the
name of generalized submanifold. Using the local coordinates from Exam-
ple 2 adapted to submanifold C we have the following description of the
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Lagrangian submanifold L in T ∗[2]T ∗[1]M :

xn = 0, vn = 0, qi = Bij(x)vj , pi = −1
2
∂iBjkv

jvk,

where n stands for the normal directions and i, j, k for the tangential direc-
tions for C. One can easily check that the Liouville form Ξ = pμdxμ + vμdqμ

and the Hamiltonian Θ (3.9) vanish when restricted to L provided that
H|C = dB. Thus the appropriate boundary condition for the BV model
would be

T [1]∂Σ3 −→ L,

where L corresponds to a pair (C, B) in a way described above.

Now let us discuss the BV theory corresponding to Example 4. Again
this is just a special case of Courant sigma model. Consider the space of
fields described as

T [1]Σ3 −→ T ∗[2]L[1],
with the odd symplectic structure

ωBV =
∫

T [1]Σ3

d3ξd3θ
(
δPμδXμ + δ�Aδ�A

)
(3.18)

and the BV action given by the following expression:

SBV =
∫

T [1]Σ3

d3ξd3θ

(

PμDXμ +
1
2
�AD�A +

1
2
�AD�A

− 2PμAμ
A(X)�A + fA

BC(X)�A�B�C

)

, (3.19)

where our notations are adopted to Example 4. If ∂Σ3 
= ∅ then the following
boundary conditions should be imposed

T [1]∂Σ3 −→ N∗[2]K[1],

where K is a subalgebroid of L. It is straightforward to see that conditions
(2.7) and (2.8) are satisfied for this choice.

4 AKSZ for generalized complex manifolds (GCM)

In this section we discuss the description of GCG in terms of graded sym-
plectic manifolds. We apply this to the construction of the AKSZ action in
2D and 3D cases.
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4.1 Graded geometry for GCM

Consider the Courant algebroid E and associated to it the symplectic graded
manifold M of degree 2. The Courant structure on E is defined through
the Hamiltonian function of degree 3

S = pμAμ
a(x)ea +

1
6
fabc(x)eaebec, (4.1)

where from now on we use S to denote this concrete Hamiltonian. Consider
the following function of degree 2 independent from p:

J =
1
2
Jab(x)eaeb,

where by construction Jab = −Jba. In [14] it has been observed that the
function S and J satisfy the relation

{J, {J,S}} = −S (4.2)

if and only if Ja
b = gacJcb defines the splitting of E ⊗ C = L ⊕ L̄ where L is a

maximally isotropic subbundle closed under the Courant bracket. One of the
condition which follows from (4.2) is Ja

bJ
b
c = −δa

b and thus the subbundle L
is defined as +i eigenbundle of Ja

b, thus L∗ = L̄. Although the interpretation
of (4.2) has been presented in [14] we prefer to give the details in Appendix
A. We find a number of useful formulas while investigating this relation. If
we choose the Courant algebroid E = T ∗M ⊕ TM , then the splitting (TM ⊕
T ∗M) ⊗ C = L ⊕ L̄ with L being a maximally isotropic involutive subbundle
defines a generalized complex structure (GCS) [15, 16]. The Courant bracket
restricted to L becomes a Lie bracket [·, ·] and thus L is a complex Lie
algebroid.

Next we observe that, if on M we have the functions S and J with
property (4.2), then we can construct the function of degree 3

Θ(α,β) = αS + β{J,S} (4.3)

which satisfies {Θ, Θ} = 0 for arbitrary constants α and β. If α and β are
real numbers, then there exists a symplectomorphism on M which connects



710 ALBERTO S. CATTANEO, JIAN QIU AND MAXIM ZABZINE

(α2 + β2)1/2S with Θ(α,β). Namely, J gives rise to the flow

∂tΘ(t) = {J,Θ(t)},

which has the following explicit solution:

Θ(t) = (α2 + β2)1/2 (cos t S + sin t {J,S}) .

At t = 0, Θ(t) corresponds to (α2 + β2)1/2S. On the other hand if we choose
t to be such that cos t = α(α2 + β2)−1/2 and sin t = β(α2 + β2)−1/2 then
Θ(t) coincides with (4.3). Therefore, we do not get a new Hamiltonian of
degree 3 if we deal with the real coefficients in (4.3). Indeed any function
of degree 2 generates a symplectomorphism of M [30] and our particular
function J realizes the U(1) action on M.

To get something nontrivial we have to complexify our graded symplectic
manifold M and allow complex coefficients in (4.3). One can be easily
convinced that, up to equivalence, the only nontrivial complex nilpotent
Hamiltonians are

Θ = S + i{J,S} (4.4)

and its complex conjugate. All other complex combinations of S and {J,S}
do not give rise to anything new (it can be seen through the appropriate
redefinitions). It is natural to choose the coordinates adapted to the split-
ting E = L ⊕ L̄. The manifold M with the symplectic structure (3.7) is
symplectomorphic to T ∗[2]L̄[1] with the symplectic structure

ω = dp̃μdxμ + d
̄Ad
A,

where 
̄A are odd coordinate along a fiber of L̄ and 
A along a fiber of L.
Moreover the Hamiltonian (4.4) written in new coordinates becomes

Θ = 2p̃μAμ
A(x)
A − fA

BC(x)
̄A
B
C . (4.5)

The proof of these statements and further technical details are presented in
Appendix B. In the new coordinates the function J looks particular simple
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J = i
̄A
A. The manifold T ∗[2]L̄[1] has two natural gradings described by

ε1 = p̃μ
∂

∂p̃μ
+ 
̄A

∂

∂
̄A
, (4.6)

ε2 = p̃μ
∂

∂p̃μ
+ 
A ∂

∂
A
, (4.7)

where ε1 + ε2 corresponds to the original grading and ε1 − ε2 is generated
by iJ . Thus the homological vector field for the Hamiltonian (4.4) comes
from the splitting of {S, ·} according to the grading defined by ε1 − ε2.

Here we have discussed the complex case. However if in relation (4.2) the
sign minus on the right-hand side is replaced by plus then this corresponds
to a real bialgebroid E = L ⊕ L∗. A similar discussion with a few minor
changes can be repeated for this case.

4.2 AKSZ for 3D σ-model on GCM

Using the discussion from the previous subsection, it is straightforward to
construct the appropriate BV master action. Starting from the manifold M
we define the space of maps as

T [1]Σ3 −→ M.

Using the complex Hamiltonian (4.4) on M, we construct the master action

SBV =
∫

T [1]Σ3

d3ξd3θ

(

PμDXμ +
1
2
eagabDeb

−(δa
b − iJa

b(X))ebAμ
a(X)Pμ − 1

6
fabc(X)eaebec

+
i
2
Jd

a(X)fdbc(X)eaebec +
i
2
Aμ

c (X)∂μJab(X)eaebec

)

, (4.8)

where we use the notations adapted to our discussion of geometry of M.
The corresponding odd symplectic structure is (3.15). Action (4.8) satisfies
the classical master equation if ∂Σ3 = ∅. If ∂Σ3 
= ∅ then we have to impose
the additional boundary conditions on the fields. Recall from Section 3.3
that the boundary conditions for the Courant sigma model are specified by
the Dirac structure K supported on a submanifold C; K gives rise to a
Lagrangian submanifold L of M and S|L = 0. Now we have to see when
{J,S}|L = 0. The simplest way to get it is to require that J |L = 0. This fol-
lows from a simple property of symplectic geometry: if two functions vanish
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on a given Lagrangian then their bracket also vanishes on this Lagrangian.3

The simplest way to achieve this is to require that Kx ⊂ Ex is preserved
under action of Ja

b for all x ∈ C. Since Kx is maximally isotropic it would
imply that J |L = 0. To summarize, boundary conditions for action (4.8) are
labeled by Dirac structures K supported on C which are invariant under of
the action of Ja

b.

As an illustration let us consider E = TM ⊕ T ∗M . In this case a solution
of equation (4.2) gives rise a the GCS. Action (4.8) can be easily rewritten
for this case. As we discussed in Section 3.3 for a submanifold C and two
form B ∈ Ω2(C), there exists a Dirac structure supported over C which we
denoted K = eB(N∗C ⊕ TC). As discussed above eB(N∗C ⊕ TC) gives rise
to the correct boundary condition if we require that it is invariant under the
action of the GCS. This corresponds exactly to the definition of generalized
complex submanifold suggested by Gualtieri [15]. Thus the boundary condi-
tions for 3D AKSZ model are labeled by generalized complex submanifolds.

The manifold M is symplectomorphic to T ∗[2]L̄[1]. This induces a sym-
plectomorphism at the level of fields. Namely, the symplectic structure
(3.15) can be mapped to

ωBV =
∫

T [1]Σ3

d3ξd3θ
(
δP̃μδXμ + δ�̄Aδ�A

)
, (4.9)

which is defined over the space of maps

T [1]Σ3 −→ T ∗[2]L̄[1].

The explicit formulas for the redefinitions of fields can be obtained from
those given in Appendix B. Moreover by using the explicit manipulations
in the appendix, action (4.8) is recast into the following:

SBV =
∫

T [1]Σ3

d3ξd3θ

(

P̃μDXμ +
1
2
�̄AD�A +

1
2
�AD�̄A

−2P̃μAμ
A(X)�A + fA

BC(X)�̄A�B�C
)
, (4.10)

where we kept all boundary terms arising in the redefinition. This is the
complex version of 3D AKSZ theory corresponding to the Lie algebroid. In
this formulation we analyze the boundary conditions as at the end of Section
3.3. Moreover, this discussion will be naturally compatible with the way we

3The simplest way to prove it is to perform a calculation of a bracket in the coordinates
adapted to a Lagrangian submanifold.
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described boundary conditions as Dirac structure supported over C which
are invariant under Ja

b.

4.3 AKSZ for 2D σ-model on GCM

Since the GCS gives rise to a complex Lie algebroid L we can apply the
construction from Section 4.1. The space of fields is defined as

T [1]Σ2 −→ T ∗[1]L̄,

where we regard L as a formal complex Poisson manifold. The BV action is

SBV =
∫

T [1]Σ2

d2ξd2θ(ημDXμ + jADλA

+ fC
AB(X)λCjAjB + 2Aμ

A(X)jAημ), (4.11)

with the anchor and structure constants for L (see appendices for the explicit
expressions). Obviously, this model can be written for the case of TM ⊕
T ∗M . The boundary conditions in this model corresponds to Lie subalge-
broids of L. If we consider the case of GCS then the generalized complex
submanifold C gives rise to a Lie algebroid over C, which can be interpreted
as a Lie subalgebroid of L; see [16] for the details. Thus, generalized complex
submanifolds give rise to the correct boundary conditions for this model.

5 Reduction from 3D to 2D

In this section we discuss the relation between the 3D and 2D models intro-
duced above. The consistent reduction is done through the following obser-
vation.

5.1 Separation of ultraviolet (UV) and infrared (IR) (Losev’s
trick)

Losev [24] suggested a framework for dealing with effective theories within
the BV framework. This idea was further developed and used in [10, 25, 26].
Here we apply the idea of effective theory to the dimensional reduction of 3D
AKSZ theory down to 2D AKSZ theory. We believe that this is the correct
conceptual framework for the discussion of the dimensional reduction within
BV formalism.
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The idea is essentially very simple; let us sketch it. Assume that the BV
manifold is of a product structure V = VUV × VIR, and the odd Laplacian
is also decomposed Δ = ΔUV + ΔIR. Let SBV be a BV action satisfying
the quantum master equation Δe−S = 0 on V . We shall refer to VUV as
UV degrees of freedom and to VIR as IR degrees of freedom. We can “inte-
grate out” the UV degrees of freedom and get an “effective action” just as
one would do for a normal quantum field theory. More concretely, pick a
Lagrangian submanifold L ↪→ VUV and define the effective action on VIR as

e−Seff =
∫

L
e−SBV . (5.1)

One can check that Seff satisfies the quantum master equation on VIR

ΔIRe−Seff =
∫

L
ΔIRe−S =

∫

L
Δe−S −

∫

L
ΔUVe−S = 0, (5.2)

where the first term vanishes due to the master equation and the second
term due to the integration over a Lagrangian submanifold of a ΔUV-exact
term. Furthermore, assume that two choices of Lagrangian submanifolds
L ↪→ VUV and L′ ↪→ VUV are related by a gauge fixing fermion Ψ such that
ΔΨ = 0, then

∫

L′
e−S −

∫

L
e−S =

∫

L
{Ψ, e−S} =

∫

L
−Δ(Ψe−S) − Δ(Ψ)e−S

+ ΨΔ(e−S) = −ΔIR

∫

L
Ψe−S .

Thus the change of the gauge fixing in UV-sector leads to change in e−Seff up
to ΔIR-exact term. These manipulations are well defined if the BV manifold
is finite dimensional. For the infinite-dimensional manifold this construction
is formal. For further details of construction the reader may consult [26].

Using this trick, we start from some solution to the classical master equa-
tion and integrate out certain degrees of freedom. The remaining effective
action will also satisfy the classical master equation.

5.2 3D AKSZ model on Σ3 = Σ2 × I

Using the idea of partial gauge fixing and integration in the UV-sector we
will show that the 3D theory on Σ2 × I corresponding to the Lie algebroid
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defined by (3.18) and (3.19) is equivalent to the 2D theory on Σ2 corre-
sponding to the same Lie algebroid defined by (3.13) and (3.14). This works
provided the following boundary conditions:

T [1]∂Σ3 −→ L[1] (5.3)

are imposed on the 3D theory.

Let us present the details of the derivation. We take the 3D source to
be T [1]Σ3 = T [1](Σ2 × I), and name the even and odd coordinates along
the interval I as (θt, t). Expand all superfields according to Φ(t, θt) =
Φ(t) + θtΦt(t) and perform explicitly the θt-integration. The odd symplectic
structure (3.18) becomes

ωBV = −
∫

d2ξd2θdt(−δPμδXt + δ�Aδ�A
t + δPtμδXμ + δ�tAδ�A) (5.4)

and the BV action (3.19) is

SBV =
∫

d2ξd2θdt(Pμ∂tXμ + PtμDXμ − PμDXμ
t − 1

2
�A∂t�

A

+
1
2
�tAD�A − 1

2
�A∂t�A +

1
2
�A
t D�A +

1
2
�AD�A

t +
1
2
�AD�tA

− 2PtμAμ
A(X)�A − 2Pμ(∂νA

μ
A(X))Xν

t �
A − 2PμAμ

A(X)�A
t

+ ∂μ(fA
BC(X))Xμ

t �A�B�C + fA
BC(X)�tA�B�C + 2fA

BC(X)�A�B�C
t ),
(5.5)

where now D stands for the de Rham along T [1]Σ2. Since the symplectic
structure (5.4) decomposes in two separate pieces we can choose the UV
sector to correspond to (Xμ

t ,Pμ, �A
t , �A). Next we choose the Lagrangian L

in the UV sector as follows: Xμ
t = 0, �A

t = 0. We get

SBV|L =
∫

d2ξd2θdt

(

Pμ∂tXμ + PtμDXμ − 1
2
�A∂t�

A +
1
2
�tAD�A

−1
2
�A∂t�A +

1
2
�AD�tA − 2PtμAμ

A(X)�A + fA
BC(X)�tA�B�C

)

,

We are now left with the integration over the remaining fields in the UV-
sector: Pμ and �A. Thus, we end up with the following IR action:

SIR
BV =

∫
d2ξd2θdt(PtμDXμ + �tAD�A

+ 2Aμ
A(X)�APtμ + fA

BC(X)�tA�B�C), (5.6)
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where the integration over P implements the condition ∂tXμ = 0 and the
integration over �A implements the condition ∂t�

A = 0. There is a subtlety
in the present integration over Pμ and �A. Namely, if Pμ and �A had zero
modes (t-independent pieces) then we would not be able to integrate them
completely. This is why we need boundary conditions that imply the absence
of zero modes: namely,

Pμ|T [1]∂Σ3 = �A|T [1]∂Σ3 = 0,

which are also the correct conditions from the points of view of the AKSZ
construction. The fields Xμ and �A are t-independent and the other fields
Ptμ and �tA enter the action (5.6) linearly. Therefore upon the following
identification

Xμ = Xμ, ημ =
∫

I
dt Ptμ, jA = �A, λA =

∫

I
dt �tA, (5.7)

the 3D action (5.6) collapses to the 2D theory given by (3.14).

We have shown that the 3D AKSZ theory for a Lie algebroid on Σ2 × I
can be reduced to the 2D AKSZ theory for the same Lie algebroid, provided
that the specific boundary conditions are imposed. We would like to stress
that for the case Σ2 × S1 the reduction would not work properly due to the
presence of zero modes.

Here we have discussed the reduction for the real model. The reduction for
the complex Lie algebroid works in exactly the same way and all expressions
remain true modulo notations.

6 Summary

A Lie algebroid L can be encoded by saying that L[1] is equipped with a
homological vector field of degree 1. We considered two possible Hamiltonian
lifts of this vector field, for the symplectic manifold T ∗[1]L∗ of degree 1
and for the symplectic manifold T ∗[2]L[1] of degree 2. Using the AKSZ
construction, these two lifts give rise to 2D and 3D topological field theories,
respectively. We also discussed the allowed boundary conditions for these
theories. Moreover, we have shown that the 3D theory on Σ2 × I reduces to
the 2D theory on Σ2, upon specific boundary conditions.

A GCS structure is a complex Lie algebroid L with the additional property
that L̄ = L∗. Thus, all our formal considerations are equally applicable to
the case of a GCS. One can show that our 2D theory with GCS corresponding
to an ordinary complex structure is, upon gauge fixing, equivalent to the
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B-model [35], while the 2D theory for a symplectic structure is equivalent
to the A-model [35]. The more general 2D models on a generalized Kähler
manifold should correspond to a topological twist of the N = (2, 2) nonlinear
sigma model [18, 21]. We will present the detailed analysis of the gauge fixing
for these models in a forthcoming work [9].
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Appendix A Integrability of GCS

Grabowski [14] suggested a description of GCG in terms of graded manifolds.
Here we review this and provide a number of useful relations.

Following Roytenberg [30], we describe a Courant algebroid E in terms of
a graded symplectic manifold M of degree 2 with Hamiltonian S of degree
3. The manifold M is the minimal symplectic realization of E[1] and in
local Darboux coordinates (xμ, pμ, ea) of degree 0, 2 and 1 respectively the
symplectic structure is

ω = dpμdxμ +
1
2
deagabdeb, (A.1)

where gab is the constant fiber metric 〈 , 〉 written in a local basis of sections
for E: ea are the fiber odd coordinates on E which transform as sections of
E∗. We use the metric gab to raise and lower the indies, thus relating E and
E∗. Any degree 3 function will have the following general form:

Θ = pμAμ
a(x)ea +

1
6
fabc(x)eaebec. (A.2)

As it has been shown in [30], the solutions of the equation {Θ, Θ} = 0 cor-
respond to Courant algebroid structure on (E, 〈 , 〉) with the Courant–
Dorfman bracket given by [·, ·] = {{·, Θ}, ·}, where { , } stands for the
Poisson bracket on the symplectic manifold M. In expression (A.2) the
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quantity Aμ
a and −gdafdbc are interpreted as the anchor and the struc-

ture functions for the Courant algebroid E, respectively. Equivalently,
we can discuss the Courant algebroid structure on E∗. The Courant–
Dorfman brackets for coordinates are given by the “structure functions”
fab

c to be [ea, eb] = {{ea,S}, eb} = −fab
cec or equivalently 〈[ea, eb], ec〉 =

{{{ea,S}, eb}, ec} = −fabc. Next, we define a function of degree 2 which is
independent of p as follows J = 1

2Jab(x)eaeb, such that Ja
b(x) = gacJcb(x) :

E → E is interpreted as an endomorphism of E and J b
a (x) = Jac(x)gcb :

E∗ → E∗ as an endomorphism of E∗. We want to study the relation
{J, {J,S}} = −S. Expand out the brackets

{J,S} = {1
2
Jab(x)eaeb, pμAμ

a(x)ea +
1
6
fabce

aebec}

= −1
2
(∂μJab(x))eaebecAμ

c (x) + ecJca(x)

×
[

Aμ
b (x)pμ +

1
2
fbde(x)edee

]

gab,

{J, {J,S}} = −(∂μJad(x))eaedecJ b
c (x)Aμ

b (x)

− (efJ h
f (x))(∂μJhk(x))ekeaAμ

a(x)

+ efJ h
f (x)J b

h (x)
[

Aμ
b (x)pμ +

(
1
6

+
1
3

)

fbde(x)edee

]

− efJ h
f (x)ecJ b

c (x)fbhe(x)ee.

Thus the condition {J, {J,S}} = −S requires

J b
a (x)J c

b (x) = −δc
a, (A.3)

N(J)abc ≡ −(∂μJab(x))J d
c (x)Aμ

d(x) − J d
a (x)(∂μJdb(x))Aμ

c (x)

− 1
3
fabc(x) − J e

a (x)J d
b (x)fdec(x) + cyclic in(abc) = 0,

(A.4)

where by construction Nabc ∈ ∧3E. Condition (A.3) implies that E can
decomposed into the sum of two maximally isotropic spaces, namely
E ⊗ C = L ⊕ L̄. We introduce the projection operators

Πa
±b(x) =

1
2

(δa
b ± iJa

b(x)),

such that Π− projects L and Π+ its complex conjugate, L̄. By construction
L (and L̄) are maximally isotropic with respect to g, since Jab(x) = −Jba(x).
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Next we show that (A.4) gives the integrability condition which states that
L is involutive under the Courant–Dorfman bracket [·, ·], that is

Π+[Π−ea, Π−eb] = 0.

The real part of this expression gives

[ea, eb] − [Ja
c(x)ec, Jb

d(x)ed] + J [ea, Jb
d(x)ed] + J [Ja

c(x)ec, eb] = 0, (A.5)

where by J we understand the endomorphism of E. Using the relations

[ea, Jb
d(x)ed] = {{ea,S}, Jb

d(x)ed}
= Aaμ(x)(∂μJb

d(x))ed + Jb
d(x)[ea, ed],

[
Ja

c(x)ec, eb
]

= {{Ja
c(x)ec,S}, eb}

= −Abμ(x)(∂μJa
c(x))ec − Ja

c(x)[eb, ec]

+edAμ
d(x)(∂μJab(x))

and the “structure constant” fab
c expression (A.5) can be rewritten as

− fab
ce

c + Jd
c(A

aμ∂μJb
d)e

c − Jb
df

ad
eJ

e
ce

c − Jd
ce

cAbμ(∂μJa
d)

+ Ja
cf

bc
dJ

d
ee

e + Jd
cA

μ
d∂μJabec.

This can be further massaged into

Aaμ(∂μJb
d)J

dc + JdcAμ
d(∂μJab) + (cyclic in a,b,c)

− fabc − J
[b

df
a]d

eJ
ec − Jb

dJ
a
ef

dec = 0

and thus the integrability condition becomes

Aμ
a(∂μJbd)Jd

c + Jd
cA

μ
d(∂μJab) +

[

−1
3
fabc + Jd

bJ
e
cfade

]

+ (cyclic in a, b, c) = 0,

which coincides with (A.4). Since the sections of L are now involutive under
the Courant bracket (which is antisymmetric when restricted to L), L and
likewise L̄ defines a Lie algebroid structure.

Example 5. Consider the standard Courant algebroid structure on TM ⊕
T ∗M and the corresponding graded symplectic manifold T ∗[2]T ∗[1]M from
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Example 2. Consider the function of degree 2 of the form

J = Jμ
ν(x)qμvν .

Condition (A.3) says that Jμ
ν is almost complex structure and condition

(A.4) becomes

J σ
ρ ∂σJ ν

μ + J σ
μ ∂σJν

ρ + J σ
μ ∂ρJ

ν
σ + Jν

σ∂μJσ
ρ = 0, (A.6)

which we recognize as the standard Nijenhuis tensor: Jσ
[ρ∂σJν

μ] − Jν
σ

∂[ρJ
σ
μ] = 0. Thus, we end up with the standard complex structure on M .

Example 6. Take another example of function of degree 2 on T ∗[2]T ∗[1]M

J =
1
2
(ωμν(x)vμvν + ωμν(x)qμqν).

Condition (A.3) implies that ωμνω
νλ = δλ

μ and condition (A.4) becomes
ωσ[μ∂σωνρ] = 0. Thus, ωμν is a closed nondegenerate two form, symplec-
tic structure.

Example 7. On T ∗[2]T ∗[1]M the general form of function of degree 2 inde-
pendent from p is

J =
1
2
Lμν(x)vμvν + Jμ

ν(x)qμvν +
1
2
Pμν(x)qμqν .

By plugging this into (A.3) and (A.4) we get the conditions for a GCS
on TM ⊕ T ∗M which were analyzed in [22, 13]. We would like to stress
that the language of graded symplectic manifolds allows one to obtain those
complicated conditions by performing rather simple calculations.

We have another useful observation regarding the integrability of Ja
b.

Define ∂+
c by

∂+
c V a ≡ Aμ

c ∂μV a +
1
3
fa

bcV
b.
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Then Nabc is in fact the (3,0)+(0,3) part of ∂+
[c Jab] ∈ ∧3E. Let us check this

explicitly

(∂+
c′ Ja′b′)Πa′

−aΠ
b′
−bΠ

c′
−c + (cyc in abc)

= − (∂+
c′ J

a′
a)Π−a′bΠc′

−c + (cyc in abc)

= −1
4

[
∂+

c Jba − Jc′
c(∂

+
c′ J

a′
a)Ja′b

]
+

i
4

[
Ja′b∂

+
c Ja′

a + Jc′
c∂

+
c′ Jba

]

+ (cyc in abc)

= −1
4

[
∂+

c Jba + J d
c J f

a (∂+
d Jfb)

]
+

i
4

[
J d

a ∂+
c Jdb + J d

c ∂+
d Jab

]

+ (cyc in abc)

=
1
4
J d

c Nabd − i
4
Nabc.

Thus, the integrability condition says that ∂+
[c Jab] is of type (2,1)+(1,2).

This reinterpretation of integrability is analogous to the description of the
integrability of the almost complex structure J on the Hermitian manifold
(J, g). The almost complex structure is integrable if and only if dω is of a
type (2,1)+(1,2), where ω = gJ .

Appendix B Change of coordinates

Consider the symplectic graded manifold M of degree 2 associated to a
vector bundle E with fiberwise nondegenerate symmetric inner product 〈 , 〉.
In local Darboux coordinates the symplectic structure is given by (A.1). Now
assume that we have endomorphisms Ja

b of E such that Ja
bJ

b
c = −δa

c and
Jab = gacJ

c
b = −Jba. Thus, this endomorphism defines a splitting of E into

two maximally isotropic subbundles, E ⊗ C = L ⊕ L̄. Then the symplectic
manifold M is symplectomorphic to T ∗[2]L[1] = T ∗[2]L̄[1]. Let us show this
explicitly.

Introduce the vielbein F a
A which can simply be understood as the i-

eigenvector of the endomorphism Ja
b labeled by index A. We lower and

raise the Euclidean indices with the pairing gab and its inverse gab. The
following properties of the vielbein follow from their interpretation as the
eigenvectors of Ja

b:

Ja
bF

b
A = iF a

A; Ja
bF

Ab = −iFAa definition,

FA
a FBbg

ab = δA
B; FA

a FB
b gab = F a

AF b
Bgab = 0 orthonormality,

F a
AFA

b = Πa
−b, FAaFAb = Πa

+b completeness.
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We introduce the following new coordinates:


A = FA
a ea; 
̄A = FAae

a,

p̃μ = pμ +
1
2
(∂μFAa)F a

B
A
B +
1
2
(∂μFA

a )FBa
̄A
̄B − FA
a (∂μF a

B)
̄A
B,

which are adopted to the splitting E ⊗ C = L ⊕ L̄. The symplectic form
(A.1) goes to ω = dp̃μdxμ + d
̄Ad
A. The Liouville form changes as follows:

Ξ = pμdXμ +
1
2
eagabdeb ⇒ p̃μdxμ +

1
2

̄Ad
A +

1
2

Ad
̄A.

Next, assume that the endomorphism Ja
b is integrable in sense we have

discussed in the previous appendix. We can give the integrability condition
more concisely in this new basis. Recall that Nabc = (∂+

[aJbc])(3,0)+(0,3), we
have

0 =
1
2
F a

AF b
BF c

C(∂+
[aJbc]) = F a

AF b
BF c

C(∂aJbc − 1
3
f d

a bJdc +
1
3
f d

a cJdb)

+ cyc in ABC

= 2i((∂AF c
C)FBc +

1
3
F a

AF b
BF c

Cfabc) + cyc in ABC, (B.1)

where we used the following notations: ∂A := F a
AAμ

a∂μ, ∂A := FA
a Aaμ∂μ.

Using this identity we can show that

[
A, 
B] = {{pμAμ
aea +

1
6
fabce

aebec, FA
a ea}, FB

b eb}

= 
C
(
F a

C(∂[aF
A
c] )F

Bc + F b
C∂AFB

b + F c
CFBbFAafcba

)

and similarly the other combination

[
̄A, 
̄B] = 
̄C

(
FCa(∂[aFc]A)F c

B + FC
c ∂AF c

B + FCcF b
BF a

Afcba

)
.

In this new basis the corresponding Hamiltonian of degree 3 takes very
simple form

S + i{J,S} = 2(Π−e)aAμ
apμ +

1
3
(Π−e)afabce

bec − i
2
(∂+

c Jab)eaebec

By using the fact ∂+
[c Jab] is (2,1) and (1,2), we can simplify the last term in

this expression.
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Thus, we can finally rewrite the Hamiltonian in the following form:

S + i{J,S} = 2
CAμ
C p̃μ − 
A
B 
̄CfC

AB,

where we use the data for the Lie algebroid L

Aμ
C = F a

CAμ
a ,

fC
AB = FCa(∂[aFc]A)F c

B + FC
c ∂AF c

B + FCcF b
BF a

Afcba.

Here we performed the calculations for the complex bialgebroid (L, L̄).
The generalization for the real bialgebroid is a straightforward modifications
of the present calculation.
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