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R-matrices in rime

Oleg Ogievetsky1,∗,† and Todor Popov2
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Abstract

We replace the ice Ansatz on matrix solutions of the Yang–Baxter
equation by a weaker condition which we call rime. Rime solutions
include the standard Drinfeld–Jimbo R-matrix. Solutions of the Yang–
Baxter equation within the rime Ansatz which are maximally different
from the standard one we call strict rime. A strict rime non-unitary
solution is parameterized by a projective vector �φ. We show that in
the finite dimension this solution transforms to the Cremmer–Gervais
R-matrix by a change of basis with a matrix containing symmetric func-
tions in the components of �φ. A strict unitary solution (the rime Ansatz
is well adapted for taking a unitary limit) in the finite dimension is shown
to be equivalent to a quantization of a classical “boundary” r-matrix of
Gerstenhaber and Giaquinto. We analyze the structure of the elementary
rime blocks and find, as a by-product, that all non-standard R-matrices
of GL(1|1)-type can be uniformly described in a rime form. We dis-
cuss then connections of the classical rime solutions with the Bézout
operators. The Bézout operators satisfy the (non-)homogeneous associa-
tive classical Yang–Baxter equation which is related to the Rota–Baxter
operators. We calculate the Rota–Baxter operators corresponding to the
Bézout operators. We classify the rime Poisson brackets: they form a
three-dimensional pencil. A normal form of each individual member of
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the pencil depends on the discriminant of a certain quadratic polyno-
mial. We also classify orderable quadratic rime associative algebras. For
the standard Drinfeld–Jimbo solution, there is a choice of the multipa-
rameters, for which it can be non-trivially rimed. However, not every
Belavin–Drinfeld triple admits a choice of the multiparameters for which
it can be rimed. We give a minimal example.
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1 From ice to rime

A well-known class of solutions R̂ ∈ End (V ⊗ V ), V is a vector space, of the
Yang–Baxter equation YB(R̂) = 0, where

YB(R̂) := (R̂ ⊗ 1)(1 ⊗ R̂)(R̂ ⊗ 1) − (1 ⊗ R̂)(R̂ ⊗ 1)(1 ⊗ R̂), (1.1)

is characterized by the so-called ice condition (see lectures [21] for details),
which says that R̂ij

kl can be different from zero only if the set of the upper
and the set of the lower indices coincide,

R̂ij
kl �= 0 ⇒ {i, j} ≡ {k, l}. (1.2)

We introduce the “rime” Ansatz, relaxing the ice condition: the entry R̂ij
kl

can be different from zero if the set of the lower indices is a subset of the
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set of the upper indices,

R̂ij
kl �= 0 ⇒ {k, l} ⊂ {i, j}. (1.3)

Matrices for which it holds will be referred to as “rime” matrices. Figura-
tively, in the rime, in contrast to the ice, situation, putting an apple and a
banana in a fridge, there is a non-zero amplitude to find next morning two
apples instead (but never an apple and an orange).

The Yang–Baxter equation for a matrix R̂ is equivalent to the equality of
two different reorderings of xiyjzk, using xiyj = R̂ij

kly
kxl, xizj = R̂ij

klz
kxl and

yizj = R̂ij
klz

kyl, to the form z•y•x•. One of advantages of the rime Ansatz
is that only indices i, j and k appear in the latter expression. Another
advantage is that for fixed values of i and j, the elements x• and y• with
these values of indices form a subsystem.

A rime R-matrix has the following structure:

R̂ij
kl = αijδ

i
lδ

j
k + βijδ

i
kδ

j
l + γijδ

i
kδ

i
l + γ′

ijδ
j
kδ

j
l (no summation). (1.4)

To avoid redundancy, fix βii = 0, γii = 0 = γ′
ii. We denote by αi the diagonal

elements R̂ii
ii, αi = αii. Throughout the text we shall assume that the matrix

R̂ is invertible which, in particular, implies that αi �= 0 for all i.

The order of growth of the number of unknowns in the Yang–Baxter
system for a rime matrix is n2, where n = dimV .

Arbitrary permutations and rescalings of coordinates preserve the rime
condition.

The ice and rime matrices are made of 4 × 4 elementary building blocks,
respectively,

R̂ice =

⎛
⎜⎜⎝

α1 0 0 0
0 β12 α12 0
0 α21 β21 0
0 0 0 α2

⎞
⎟⎟⎠ and R̂rime =

⎛
⎜⎜⎝

α1 0 0 0
γ12 β12 α12 γ′

12
γ′

21 α21 β21 γ21
0 0 0 α2

⎞
⎟⎟⎠.

(1.5)

In Appendix B we analyze the structure of the 4 × 4 rime blocks.

We call a rime matrix strict if αijγij �= 0 ∀ i and j, i �= j. Note that strict
rime matrices are necessarily not ice.
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Proposition 1.1. Let R̂ be a rime matrix (1.4). Then R̂ is a solution of
the Yang–Baxter equation if it is of the form

R̂ij
kl = (1 − βji)δi

lδ
j
k + βijδ

i
kδ

j
l + γijδ

i
kδ

i
l − γjiδ

j
kδ

j
l (1.6)

where βij and γij satisfy the system

βijβji = γjiγij , (1.7)

βij + βji = βjk + βkj =: β, (1.8)

βijβjk = (βjk − βji)βik = (βij − βkj)βik, (1.9)

γijγjk = (βji − βjk)γik = (βkj − βij)γik. (1.10)

Proof. The Yang–Baxter system of equations Y B(R̂)ijk
abc = 0 for a rime

matrix is given in Appendix A. The subset (A.3)–(A.5) together with its
image under the involution (A.2) reads

αijγ
′
ij(γij + γ′

ji) = 0 = αijγij(γji + γ′
ij) (1.11)

αij(βijβji + γijγ
′
ij) = 0 = αij(βijβji − γijγji), (1.12)

αijγ
′
ij(αij + βji − αi) = 0 = αijγij(αij + βji − αj), (1.13)

αijγ
′
ij(αji + βij − αi) = 0 = αijγij(αji + βij − αj). (1.14)

These equations are implied by (and, in the strict rime situation, are equiv-
alent to) the following system

γ′
ij = −γji, αij + βji = αi, αji + βij = αi, (1.15)

βijβji = γjiγij . (1.16)

One checks that other equations Y B(R̂)ijk
abc = 0, for which two indices among

{i, j, k} are different, follow from (1.15) and (1.16). The last two equations
from (1.15) imply αi = αj for all i and j. As an overall rescaling of a solution
of the Yang–Baxter equation by a constant is again a solution of the Yang–
Baxter equation, we can, without loss of generality, set it to one,

αi = 1. (1.17)

Equations (1.15) and (1.17) yield the form (1.6) of the matrix R̂ and equa-
tion (1.7).
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Using (1.15), we rewrite the subset (A.12)–(A.14) together with its image
under the involution (A.2) in the form

(βij + βji − βik − βki)γijγik = 0, (1.18)

αij(βijβjk + βikβji − βikβjk) = 0 = αji(βjiβkj + βkiβij − βkiβkj), (1.19)

αij(γijγjk + γik(βjk − βji)) = 0 = αji(γjiγkj + γki(βkj − βij)). (1.20)

These equations are implied by (and, in the strict rime situation, are equiva-
lent to) equations (1.8), (1.9) and (1.10), respectively. One checks that other
equations Y B(R̂)ijk

abc = 0 with three different indices {i, j, k} follow from the
system (1.7)–(1.10). The proof is finished. �

Lemma 1.1. The rime Yang–Baxter solution R (1.6) is of Hecke type,

R̂2 = βR̂ + (1 − β)1 ⊗ 1. (1.21)

Moreover, when β �= 2, R is of GL-type: it has two eigenvalues 1 and β − 1
with multiplicities n(n+1)

2 and n(n−1)
2 , respectively. When β = 2 the matrix

R̂ has a non-trivial Jordanian structure.

Proof. In view of the block structure of rime matrices it is enough to check
the Hecke relation (1.21) for one elementary (4 × 4) block which follows from
(1.7) and (1.8). When β �= 2 the multiplicities m1 and mβ−1 are solutions
of the system

m1 + mβ−1 = n2, m1 + (β − 1)mβ−1 = n +
n(n − 1)

2
β(≡ TrR̂). (1.22)

When β = 2 the matrix R̂ has only one eigenvalue 1 but R̂ �= 1 ⊗ 1 due to
(1.7) and (1.8). �

Unitary solutions, R̂2 = 1 ⊗ 1 are singled out by the value of the para-
meter β = 0.

Lemma 1.2. A strict rime Yang–Baxter solution R (1.6) can be brought to
a rime matrix

R̂ij
kl = (1 − βji)δi

lδ
j
k + βijδ

i
kδ

j
l − βijδ

i
kδ

i
l + βjiδ

j
kδ

j
l , (1.23)

that is, to a solution (1.6) with γij = −βij, by a change of basis.
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Proof. The strict rime condition αijγij �= 0 implies βijβji �= 0 in view of
(1.7). Thus for a strict rime R-matrix all βij and γij are non-vanishing.
The ratio of equations (1.9) and (1.10) is well-defined and it follows from
equations (1.7) and (1.8) that

γijγjk

βijβjk
= − (βji − βjk)γik

(βji − βjk)βik
= −γik

βik
,

γijγji

βijβji
= 1, (1.24)

or

ξijξjk = ξik, ξijξji = 1, (1.25)

where ξij = − γij

βij
. Equation (1.25) is solved by ξij = di

dj
with di �= 0, i = 1,

. . . , n, hence β’s and γ’s are related by

γij = −di

dj
βij . (1.26)

A change of basis with a matrix D,

R̂ 
−→ (D ⊗ D) R̂ (D−1 ⊗ D−1), (1.27)

where Di
j = djδ

i
j , transforms R to the form (1.23). �

Under the strict rime condition, the Yang–Baxter system of equations
(see Appendix A) reduces to equations (1.8) and (1.9). However, the matrix
(1.23), where the parameters βij are subject to equations (1.8) and (1.9),
is a solution of the Yang–Baxter equation without a strict rime
assumption.

Remark. Right and left even quantum spaces are defined by, respectively,

Rij
klx

kxl = xixj , xjxiR
ij
kl = xlxk; (1.28)

right and left odd quantum spaces are defined by, respectively,

Rij
klξ

kξl = (β − 1)ξiξj , ξjξiR
ij
kl = (β − 1)ξlξk. (1.29)
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Assume that β �= 2. The left even space is classical1 as well as the right
odd space

[xi, xj ] = 0, [ξi, ξj ]+ = 0, (1.30)

where [, ] and [, ]+ stand for the commutator and the anti-commutator. The
relations for the right even space are

[xi, xj ] + (βijx
i + βjix

j)(xi − xj) = 0; (1.31)

the relations for the left odd space read

(2 − β)ξ2
i + ξiρ + (1 − β)ρξi = 0, (1.32)

[ξi, ξj ]+ − βijξiξj − βjiξjξi = 0, i �= j, (1.33)

where ρ =
∑

j ξj .

2 Rime Yang–Baxter solutions

In this section we solve equations (1.8) and (1.9) thus obtaining explicitly
rime Yang–Baxter solutions.

2.1 Non-unitary rime R-matrices

Proposition 2.1. The non-unitary strict rime Yang–Baxter solutions (1.23)
with a parameter β = βji + βij �= 0 are parameterized by a point φ ∈ PC

n

in a projective space, φ = (φ1 : φ2 : . . . : φn), such that φi �= 0 for all i and
φi �= φj for all i and j, i �= j. These solutions are given by

βij =
βφi

φi − φj
. (2.1)

1Let R̂ be a rime R-matrix (not necessarily strict). When β �= 2, the following statement
holds. If (i) the left even space is classical (which implies that γ′

ij = −γji, αij + βji = 1
and αi = 1 in our normalization) and (ii) the R-matrix is Hecke (which implies that
βij + βji = β), then the system of equations from Appendix A again reduces to (1.7),
(1.9) and (1.10) as in the strict rime situation.
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Proof. Taking the ratio of the following pairs of equations from (1.9)

βijβjk = (βjk − βji)βik, βkjβji = (βji − βjk)βki (2.2)

we find that quantities ηij = −βij/βji verify equations

ηijηjk = ηik, ηijηji = 1, (2.3)

whose solutions are ηij = φi/φj for some constants φi �= 0, i = 1, . . . , n.

Substituting the relation βji = −φj

φi
βij into β = βij + βji, we obtain

βij − φj

φi
βij = β which establishes (2.1). �

Remark. There is a different parameterization, βij = − βφj

φi − φj
, of strict

rime solutions; it is related to the parameterization (2.1) by φi 
−→ (φi)−1.

A direct check shows that the condition φi �= 0 is not necessary: the
formula (2.1) with φi �= φj for all i and j, i �= j, gives a rime solution of the
Yang–Baxter equation. However when one of φi is 0, the matrix (1.23) is no
more strict.

2.2 Unitary rime R-matrices

For a unitary strict rime Yang–Baxter solution (1.23), R̂2 = 1, we have
β = 0, so βij = −βji.

Proposition 2.2. The unitary strict rime Yang–Baxter solutions (1.23) are
parameterized by a vector (μ1, . . . , μn) such that μi �= μj,

βij =
1

μi − μj
. (2.4)

Proof. Since βij = −βji we can rewrite βijβjk = (βjk − βji)βik as βijβjk =
(βij + βjk)βik or

1
βik

=
1

βij
+

1
βjk

. (2.5)
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These equations are solved by

1
βij

= μi − μj , (2.6)

which is equivalent to (2.4). �

Remark. The unitary R-matrices of Proposition 2.2 can be obtained as a
limit β → 0 of the non-unitary R-matrices of Proposition 2.1. Indeed, for
the following expansion of the parameters φi in the “small” parameter β,

φi = 1 + βμi + o(β), (2.7)

the expression (2.1) has a limit (2.4),

βij =
β(1 + βμi + o(β))
βμi − βμj + o(β)

β→0−→ βij =
1

μi − μj
. (2.8)

2.3 Properties

1. Denote the R-matrix (1.23) with βij as in (2.1) by R̂(�φ ). Let R̂21 =
PR̂12P , where P is the permutation operator. Then the following holds:

R̂21(�φ) = F−1 ⊗ F−1R12(�φ−1) F ⊗ F, (2.9)

where F = diag(φ1, φ2, . . . , φn) and �φ−1 is a vector with components φ−1
i .

Denote the R-matrix (1.23) with βij as in (2.4) by R̂(�μ ). Then the
following holds:

R̂21(�μ) = R̂12(−�μ). (2.10)

2. The R-matrix (1.23) is skew invertible in the sense that there exists an
operator Ψ̂R, which satisfies (see, e.g., [21])

Tr2(R̂12(Ψ̂R)23) = P13. (2.11)

The matrices of the left and right quantum traces (that is, the left
and right traces of the skew inverse Ψ̂R), (QR)1 = Tr2((Ψ̂R)12) and
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(Q̃R)2 = Tr1((Ψ̂R)12) are given by the formulas

(QR)k
j = −βjk

∏
l: l �=k

(1 − βjl), k �= j, and (QR)j
j =

∏
l

(1 − βjl); (2.12)

(Q̃R)k
j = βjk

∏
l:l �=k

(1 − βlj), k �= j, and (Q̃R)j
j =

∏
l

(1 − βlj). (2.13)

The matrices QR and Q̃R satisfy QRQ̃R = (1 − β)n−11.

For (2.1), one has SpecQR = Spec Q̃R = {(1 − β)a, a= 0, . . . , n − 1}. The
eigenvector wa(�φ) of the matrix QR with the eigenvalue (1 − β)n−1−a coin-
cides with the eigenvector of the matrix Q̃R with the eigenvalue (1 − β)a.
One has (wa(�φ))j = eĵ

a(�φ), where eĵ
i (�φ) is the ith elementary symmetric func-

tion of (φ1, φ2, . . . , φn) with φj omitted.

For (2.4), the Jordanian form of the matrix QR, as well as of Q̃R, is non-
trivial: it is a single block. In the basis {wi(�μ)}, i = 0, 1, 2, . . . , n − 1, where
(wi(�μ))j = eĵ

i (�μ), one has

QR wi(�μ) =
i∑

s=0

(
n − 1 − s

i − s

)
ws(�μ). (2.14)

3. For an R-matrix R̂, the group of invertible matrices Y satisfying

R̂12Y1Y2 = Y1Y2R̂12 (2.15)

form the invariance group GR of R̂. The matrices QR and Q̃R belong to
the invariance group as well as the matrices proportional to the identity
matrix. One can write down formulas for the group GR for a rime R-matrix
(1.23) uniformly in terms of βij as in (2.12) and (2.13) but the properties
are different in the non-unitary and unitary cases and we describe them
separately.

3a. The invariance group G
R(�φ) for the R-matrix R̂(�φ) is 2-parametric. It

consists of matrices Y (u, v), u, v �= 0, where

Y (u, v)j
j =

∏
l:l �=j

uφj − vφl

φj − φl
and

Y (u, v)i
j =

(u − v)φj

φj − φi

∏
l:l �=i,j

uφj − vφl

φj − φl
, i �= j. (2.16)
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One has

Q
R(�φ) = Y (1 − β, 1), Q̃

R(�φ) = Y (1, 1 − β). (2.17)

The composition law is the component-wise multiplication of the parameters
{u, v},

Y (u1, v1)Y (u2, v2) = Y (u1u2, v1v2). (2.18)

The point u = v = 1 corresponds to the identity matrix, Y (1, 1) = 1; the
determinant of Y (u, v) is (uv)n(n−1)/2; u = v corresponds to global rescal-
ings; the connected component of unity of the subgroup SG

R(�φ) consisting
of matrices with determinant 1 is uv = 1; the generator η of the connected
component of unity of the subgroup SG

R(�φ) is traceless and reads

ηi
j =

φj

φj − φi
, i �= j and η j

j = −n − 1
2

+
∑
l:l �=j

1
φj − φl

. (2.19)

3b. For the R-matrix R̂(�μ), the group SGR(�μ), consisting of matrices with
determinant 1 is 1-parametric as well. It is formed by matrices Y (0)(a),
where

Y (0)(a)j
j =

∏
l:l �=j

(
1 +

a

μj − μl

)
and

Y (0)(a)i
j =

a

μj − μi

∏
l:l �=i,j

(
1 +

a

μj − μl

)
, i �= j. (2.20)

The expression (2.20) can be obtained by taking a limit of (2.16), similarly to
(2.8) and letting additionally u = 1 + aβ/2 + o(β) and v = 1 − aβ/2 + o(β).

One has

QR(�μ ) = Y (0)(−1), Q̃R(�μ) = Y (0)(1). (2.21)

The composition law is Y (0)(a1)Y (0)(a2) = Y (0)(a1 + a2).

The point a = 0 in (2.20) corresponds to the identity matrix, Y (0)(0) = 1;
the generator η(0) of the invariance group SGR(�μ) is

(η(0))i
j =

1
μj − μi

, i �= j and (η(0))j
j =

∑
l:l �=j

1
μj − μl

. (2.22)
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3 Rime and Cremmer–Gervais R-matrices

The Cremmer–Gervais R-matrix arises in the exchange relations of the chiral
vertex operators in the non-linearly W -extended Virasoro algebra [6]. The
Cremmer–Gervais solution [6] of the Yang–Baxter equation in its general
two-parametric form reads (see, e.g., [17]; we use a rescaled matrix with
eigenvalues 1 and −q−2)

(R̂CG,p)
ij
kl = q−2θijpi−jδi

lδ
j
k + (1 − q−2)

∑
s:i≤s<j

pi−sδs
kδ

i+j−s
l

− (1 − q−2)
∑

s:j<s<i

pi−sδs
kδ

i+j−s
l , (3.1)

where θij is the step function (θij = 1 when i > j and θij = 0 when i ≤ j).

The parameter value p = q2/n specifies the SL(n) Cremmer–Gervais
R-matrix (its diagonal twist being the GL(n) solution (3.1)). The Cremmer–
Gervais solution is a non-diagonal twist of the standard Drinfeld–Jimbo
solution [9, 18].

Let R̂CG := R̂CG,1, that is, the solution (3.1) with p = 1. The matrix

D(p)i
j = δi

jp
i−1 (3.2)

with arbitrary p satisfies (R̂CG)12D(p)1D(p)2 = D(p)1D(p)2(R̂CG)12. It was
observed in [10] that if R̂12D1D2 = D1D2R̂12 for some R-matrix R̂ and
operator D then D1R̂12D

−1
1 is again an R-matrix (this operation was also

used in [15] to partially change the statistics of ghosts in the super-symmetric
situation). The two-parametric matrix R̂CG,p (3.1) can be obtained from the
Cremmer–Gervais matrix R̂CG by this operation as well,

(R̂CG,p)12 = D(p)1(R̂CG)12D(p)−1
1 . (3.3)

Let R̂ be the non-unitary rime matrix from Proposition 2.1 with φi �= φj .

Proposition 3.1. The matrix R̂ transforms into the Cremmer–Gervais
solution R̂CG

R̂ = (X ⊗ X) R̂CG(X−1 ⊗ X−1) (3.4)

by a change of basis with the invertible matrix

Xk
j = ej−1(φ1, . . . , φ̂k, . . . , φn) =: ek̂

j−1 (3.5)
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whose inverse is

(X−1)j
i =

(−1)j−1φn−j
i∏

k:k �=i(φi − φk)
. (3.6)

Here the hat over φj means that this entry is omitted in the expression and ei

are the elementary symmetric polynomials ei(x1, . . . , xN ) =
∑

s1<...<si

xs1xs2 . . . xsi. The projective parameters (φ1 : φ2 : . . . : φn) are removed by
the transformation X and the only essential parameter β in R̂ is related to
the parameter q in R̂CG by

q−2 = 1 − β. (3.7)

Proof. Due to the Lagrange interpolation formula, the matrix, inverse to the
Vandermonde matrix

‖V j
k ‖n

j,k=1 = φn−j
k is (V −1)k

j =
(−1)j−1ek̂

j−1∏
l:l �=k

(φk − φl)
. (3.8)

The matrix X (3.5) has the form X = DV −1 d, where Dm
k = δm

k

∏
l:l �=k

(φk − φl) and di
j = (−1)j−1δi

j are diagonal n × n matrices. Thus, its inverse
is X−1 = d−1 V D−1, which establishes (3.6).

We now prove the matrix identity (3.4) in the form

R̂(X ⊗ X) = (X ⊗ X) R̂CG. (3.9)

The substitution of the explicit form of the rime matrix R̂ (1.23) with
βij = βφi/(φi − φj) and R̂CG (3.1) reduces (3.9) to a set of relations between
the symmetrical polynomials eâ

k−1

∑
a,b

R̂ij
abe

â
k−1e

b̂
l−1 =

∑
a,b

eî
a−1e

ĵ
b−1(R̂CG)ab

kl . (3.10)

There are two subcases: (i) i = j and (ii) i �= j.

(i) The left-hand side of equation (3.10) with i = j is just eî
k−1e

î
l−1 due

to the rime condition. Equation (3.10) is satisfied because of the sym-
metry relation (R̂CG)ab

kl = δa
kδb

l + δa
l δb

k − (R̂CG)ba
kl .
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(ii) For i �= j equation (3.10), where q−2 = 1 − β, reduces, after some alge-
braic manipulations, to

1
φi − φj

(φie
î
k−1 − φje

ĵ
k−1)(e

î
l−1 − eĵ

l−1)

=
∑

s:s≥max(1,k−l+2)

(eî
l+s−2e

ĵ
k−s − eĵ

l+s−2e
î
k−s), 1 ≤ i, j, k, l ≤ n.

(3.11)

In fact, the sum in the right-hand side goes till s = min(k, n + 1 − l) since
eĵ
r = 0 when r ≥ n − 1; moreover, we can start the summation from s = 1

because when 1 < k − l + 2 the sum for 1 ≤ s ≤ k − l + 1 is anti-symmetric
under s ←→ k − l + 2 − s and thus vanishes.

To prove (3.11) we write er = eî
r + φie

î
r−1; therefore eî

r = eîĵ
r + φje

îĵ
r−1 and

eĵ
r = eîĵ

r + φie
îĵ
r−1 and equation (3.11) becomes

−(φi − φj)e
îĵ
k−1e

îĵ
l−2 = (φi − φj)

∑
s≥1

(eîĵ
l+s−2e

îĵ
k−s−1 − eîĵ

l+s−3e
îĵ
k−s). (3.12)

The sum in the right-hand side telescopes to the value of (−eîĵ
l+s−3e

îĵ
k−s) at

s = 1, that is, to (−eîĵ
k−1e

îĵ
l−2). The proof is complete. �

It should be noted that the matrix X = X(�φ) does not depend on q. The
change of the basis with the matrix X(�φ′)X(�φ)−1 transforms the R-matrix
R̂(�φ) to R̂(�φ′). We have

(X(�φ′)X(�φ )−1)i
j =

1
φj − φ′

i

∏
k

(φj − φ′
k)

∏
l:l �=j

(φj − φl)
. (3.13)

The structure of the matrices X and X−1 shows that when the dimension
is infinite, the R-matrices R̂CG,1 and R̂(�φ) (as well as the R-matrices R̂(�φ)
and R̂(�φ′) for different φ and φ′) are in general not equivalent.

The right even quantum plane for the Cremmer–Gervais matrix R̂CG,1 is
defined by the following equations:

yiyj = q2yjyi + (q2 − 1)(yi+1yj−1 + . . . + yj−1yi+1), i < j. (3.14)
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If i + 1 < j − 1, one uses the formula (3.14) recursively to get the ordering
relations.

The change of basis with the matrix X,

xi =
n∑

j=1

eî
j−1y

j , (3.15)

transformes the quantum plane (3.14) into the rime quantum plane (1.31)
exhibiting coordinate two-dimensional subplanes. The change of basis (3.15)
can be written in terms of a “generating function”: let

G :=
∑

j

ej(φ1, . . . , φn)yj . (3.16)

Then

xi =
∂G

∂φi
. (3.17)

Remark. The standard Drinfeld–Jimbo R-matrix admits, for a certain
choice of multi-parameters, a different rime form. The relations uivj =
(R̂c)

ij
klv

kul for this choice are

uivi = viui,

uivj = vjui + (1 − q−2)viuj , i < j,

uivj = q−2vjui, i > j.

(3.18)

The left even space for this R-matrix is classical.

The change of variables with the matrix X̃i
j = 1 − θji,

U i := u1 + u2 + . . . + ui, V i := v1 + v2 + · · · + vi, (3.19)

transforms the relations (3.18) into

U iV i = V iU i,

U iV j = V jU i + (1 − q−2)V iU j − (1 − q−2)V iU i, i < j,

U iV j = q−2V jU i + (1 − q−2)V jU j , i > j.

(3.20)

The matrix X, defined by equation (3.5), degenerates if φi = φj for some
i and j. Interestingly, the R-matrix X ⊗ XR̂c X−1 ⊗ X−1 admits limits
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limφσ(2)→0 limφσ(3)→0 . . . limφσ(n)→0 for an arbitrary permutation σ ∈ Sn and
the result is always rime. In particular,

X̃ ⊗ X̃R̂cX̃
−1 ⊗ X̃−1 = lim

φ2→0
lim

φ3→0
. . . lim

φn→0
X ⊗ XR̂cX

−1 ⊗ X−1. (3.21)

4 Classical rime r-matrices

The classical limit of an R-matrix is a classical r-matrix, a solution of the
classical Yang–Baxter (cYB) equation

[r12, r13] + [r12, r23] + [r13, r23] = 0. (4.1)

We are going to show that the classical limits of the rime R-matrices
from Section 2 are equivalent to the Cremmer–Gervais r-matrices in the
non-skew-symmetric case and to the “boundary” r-matrix of Gerstenhaber
and Giaquinto [14] (see also [4]; this r-matrix is attributed to A. G. Elashvili
there) in the skew-symmetric case. Similar equivalences appeared in the
study of the gauge transformations of the dynamical r-matrices in the
Calogero–Moser model [12,13].2

In the sequel we use the following conventions. An R-matrix acts in a
space V ⊗ V . A basis of V is {ei} (labeled by a lower index); an operator A

in V has matrix coefficients Aj
i , A(ei) = Aj

iej , so for a vector �v = viei one has
(A�v)i = Ai

j�v
j ; the matrix units are ei

j , ei
j(ek) = δi

kej , so the multiplication
rule is ei

je
k
l = δi

le
k
j ; eαi are the sl(n) simple positive root elements, eαi = ei+1

i ;
P is the permutation operator, P (ei ⊗ ej) = ej ⊗ ei, so P (ei

j ⊗ ek
l ) = ei

l ⊗ ek
j

and (PB)kl
ij = Blk

ij for an operator B in V ⊗ V having matrix coefficients
Bkl

ij , B(ei ⊗ ej) = Bkl
ij ek ⊗ el.

4.1 Non-skew-symmetric case

Proposition 4.1. The non-unitary rime R-matrix (Proposition 2.1) is a
quantization of the non-skew-symmetric r-matrix

r =
∑

i,j:i�=j

φi

φi − φj
(ei

j ⊗ ej
i − ei

i ⊗ ej
j + ei

i ∧ ei
j), (4.2)

2We thank László Fehér for drawing our attention to references [12,13].
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where x ∧ y := x ⊗ y − y ⊗ x. The change of basis with the matrix
Xj

k = ek−1 (φ1, . . . , φ̂j , . . . , φn) transforms r into the parameter-free cYB
solution rCG

rCG =
∑

i,j:i<j

j−i∑
s=1

(ei+s−1
j ⊗ ej−s+1

i − ei+s−1
i ⊗ ej−s+1

j ). (4.3)

Proof. The coefficients βij (2.1) are linear in the deformation parameter β
(β = 0 is the classical point). Hence

R = 1 ⊗ 1 + βr, (4.4)

where R = PR̂ and r is given by (4.2).

The matrix RCG − 1 ⊗ 1, where RCG = PR̂CG, is linear with respect to
the parameter β = 1 − q−2 as well,

RCG = 1 ⊗ 1 + βrCG (4.5)

thus the formula (3.4) implies r = (X ⊗ X)rCG(X−1 ⊗ X−1).

We mentioned two ways of obtaining the numerical two-parametric
R-matrix (R̂CG,p) from the R-matrix (R̂CG,1): by a diagonal twist and by
the operation (3.3). There is one more way which consists of changing the
representation. We shall illustrate it on the example of the classical GL
r-matrix (4.3). A change of representation of the Lie algebra GL,

ei
j 
→ ei

j + c δi
j1, (4.6)

where c is a constant, produces the following effect on the r-matrix (4.3):

rCG 
→ rCG + c (η ⊗ 1 − 1 ⊗ η − (n − 1)1 ⊗ 1), (4.7)

where n = dimV and

η = −n(n + 1)
2

1 +
∑

jej
j , tr η = 0. (4.8)

�
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The classical version of the operation (3.3) is as follows. Let η be an
arbitrary generator of the invariance group of an r-matrix r,

[r, η1 + η2] = 0. (4.9)

Then the operator

r(c) = r + c(η1 − η2), (4.10)

where c is a constant, is again a classical r-matrix (a solution of the cYBe).

The operator η in (4.8) is, up to a scale, the unique traceless generator of
the invariance group (see (3.2)) of the r-matrix (4.3). Thus, the representa-
tion change and the operation (4.10) give the same family of r-matrices (up
to an addition of a multiple of the identity operator, which does not violate
the cYBe).

4.2 BD triples

Each block in the strict rime classical r-matrix (4.2) looks even more
“rimed”,

⎛
⎜⎜⎝

0 0 0 0
β′

12 −β′
12 β′

21 −β′
21

−β′
12 β′

12 −β′
21 β′

21
0 0 0 0

⎞
⎟⎟⎠ , (4.11)

where β′
ij = βij/β = φi/(φi − φj). The multiplication from the left by P

acts on each block as a permutation of the second and third lines, so the
rime r-matrix (4.11) enjoys the symmetry Pr = −r. We shall now discuss
this symmetry property in the context of Belavin–Drinfeld triples.

In [3] Belavin and Drinfeld gave, for a simple Lie algebra g, a description
of non-unitary (non-skew-symmetric) cYB solutions r ∈ g ⊗ g, satisfying
r12 + r21 = t, where t ∈ g ⊗ g is the g-invariant element. The non-unitary
solutions are put into correspondence with combinatorial objects called
Belavin–Drinfeld triples (BD-triples for short). The BD triple (Π1, Π2, τ)
for a simple Lie algebra g consists of the following data: Π1, Π2 are sub-
sets of the set of simple positive roots Π of the algebra g and τ is an
invertible mapping: Π1 → Π2 such that 〈τ(ρ), τ(ρ′)〉 = 〈ρ, ρ′〉 for any
ρ, ρ′ ∈ Π1 and τk(ρ) �= ρ for any ρ ∈ Π1 and any natural k for which τk(ρ)
is defined.
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The r-matrix for a triple (Π1, Π2, τ) has the form

r = r0 +
∑

α∈Δ+

e−α ⊗ eα +
∑

α,β∈Δ+:α<β

e−α ∧ eβ, (4.12)

where < is a partial order on the set of positive roots Δ+ defined by the rule:
α < β for α, β ∈ Δ+ if there exists a natural k such that τk(α) = β. The
part r0 belongs to h ⊗ h, where h is the Cartan subalgebra of g; r0 contains
continuous “multiparameters”, which satisfy

(τ(α) ⊗ id + id ⊗ α)(r0) = 0 for all α ∈ Π1. (4.13)

We are dealing with matrix solutions r of the cYB equation,
r ∈ gl(n) ⊗ gl(n), so r12 + r21 can be a linear combination of P and 1 ⊗ 1.

Let Π = {α1, . . . , αn−1} be the set of the positive simple roots for the Lie
algebra sl(n).

There are two Cremmer–Gervais BD triples, T+ and T−. For the
Cremmer–Gervais BD triple T+, Π1 = {α1, α2, . . . , αn−2}, Π2 = {α2, α3, . . . ,
αn−1} and τ(αi) = αi+1. The data (Π1, Π2, τ) is encoded in the graph

•
���

��
� •

���
��

� •
���

��
� . . . •

���
��

� •
���

��
� •

• • • • . . . • •

(4.14)

The triple T− can be obtained from the triple T+ either by setting
Π′

1 = Π2, Π′
2 = Π1 and τ ′ = τ−1 or by applying the outer automorphism

of the underlying An−1 Dynkin diagram; the graph corresponding to the
triple T− is

• •
����

��
•

����
��

•
����

��
. . . •

����
��

•
����

��

• • • . . . • • •

(4.15)

The r-matrix (4.3) corresponds to the triple (4.14) for a certain choice of the
multiparameters. Here is the r-matrix r′ corresponding to the triple (4.15)

r′
CG =

∑
i,j:i<j

j−i∑
s=1

(ei
j−s+1 ⊗ ej

i+s−1 − ej
j−s+1 ⊗ ei

i+s−1) (4.16)

for a certain choice of the multiparameters, for which it satisfies r′P = −r′.
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For the r-matrices (4.3) and (4.16), one has r12 + r21 = P − 1 ⊗ 1. The
Cartan part of the r-matrices (4.3) and (4.16) are

r0 = −
∑

i,j:i<j

ei
i ⊗ ej

j , r′
0 = −

∑
i,j:i<j

ej
j ⊗ ei

i. (4.17)

The following lemma shows that a classical r-matrix r for a triple T can
have a symmetry with respect to the multiplication by P from one side if
and only if all segments (connected components) of Π1 are mapped by τ
according to either (4.14) or (4.15).

Lemma 4.1. A non-skew-symmetric classical r-matrix with a
Belavin–Drinfeld data (Π1, Π2, τ) can satisfy Pr = −r (respectively,
rP = −r) for a certain choice of the multiparameters if and only if
τ(αi) = αi+1 (respectively, τ(αi) = αi−1) for all i ∈ Π1.

Proof. Assume that τ(αm) = αm+k for some natural k, k ≥ 1. Then r con-
tains the term em+k

m+k+1 ∧ em+1
m with the coefficient 1. Such r-matrix can-

not satisfy rP = −r for if rP = −r then r contains the term em+1
m+k+1 ∧

em+k
m with the coefficient (−1) but the coefficient in e−α ∧ eβ is 1 in the

formula (4.12).

If Pr = −r then r should contain also the term em+1
m+k+1 ∧ em+k

m . It then
follows that

(i) the Lie subalgebra generated by Π1 contains em+k
m , therefore the inter-

val [αm, αm+1, . . . , αm+k−1] is contained in Π1;
(ii) the Lie subalgebra generated by Π2 contains em+1

m+k+1, therefore the
interval [αm+1, αm+2, . . . , αm+k] is contained in Π2;

(iii) the image of the interval [αm, αm+1, . . . , αm+k−1] under τ is the interval
[αm+1, αm+2, . . . , αm+k].

This implies that the interval [αm+1, αm+2, . . . , αm+k−1] is τ -invariant
(since τ(αm) = αm+k), which contradicts to the nilpotency of τ unless this
interval is empty, that is, k = 1.

Similarly, rP = −r is possible only if τ(αi) = αi−1 for all i ∈ Π1.

It is left to show that when τ(αi) = αi+1 (respectively, τ(αi) = αi−1) for
all i ∈ Π1 the multiparameters can indeed be adjusted to fulfill Pr = −r
(respectively, rP = −r). We leave it as an exercise for the reader to check
that with the assignment (4.17) for r (respectively, for r′) the compatibility
condition (4.13) is verified. The proof is finished. �
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Remark. Two extreme BD triples can be rimed, the empty (Drinfeld–
Jimbo) one and the “maximal” Cremmer–Gervais one. However, not every
triple can be rimed: already the triple

•
����������� • •

• • •

(4.18)

provides a counterexample. We outline a computer-aided proof in
Appendix C.

4.3 Skew-symmetric case

A skew-symmetric classical r-matrix r ∈ g ∧ g is canonically associated with
a quasi-Frobenius Lie subalgebra (f, ω) of g (see, e.g., [24]). A Lie algebra
f which admits a non-degenerate 2-cocycle ω is called quasi-Frobenius; it is
Frobenius if ω is a coboundary, i.e., ω(X, Y ) = λ([X, Y ]) for some λ ∈ f∗.

We describe now the skew-symmetric r-matrix arising in the classical limit
of the unitary rime R-matrix from Proposition 2.2.

Proposition 4.2. The unitary rime R-matrix (Proposition 2.2) is a quan-
tization of the skew-symmetric r-matrix

r =
∑

i,j:i<j

1
μi − μj

(ei
j − ej

j) ∧ (ej
i − ei

i) ∈ gl(n) ∧ gl(n). (4.19)

This skew-symmetric classical r-matrix corresponds to a Frobenius Lie alge-
bra (g0(n), δλn) spanned by the generators Zi

j := ei
j − ej

j, i �= j, with
the Frobenius structure determined by the coboundary of the 1-cochain
λn = −

∑
i,j:i�=j μiz

i
j, where {zi

j}, i �= j, is the basis in g∗
0(n), dual to the

basis {Zi
j} in g0(n), zi

j(Z
k
l ) = δi

lδ
k
j .

Proof. An artificial introduction of a small parameter c by a rescaling
μi 
→ c−1μi in the formula for the R-matrix R̂ in Proposition 2.2 gives

R = 1 ⊗ 1 + c r, (4.20)

where r is given by (4.19).
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The n(n − 1) matrices Zi
j := ei

j − ej
j , i �= j, form an associative subalgebra

of the matrix algebra,

Zj
i Z

k
l = (δj

l − δi
l)(Z

k
i − Z l

i) (4.21)

(we set Zi
i = 0 for all i); with respect to the commutators these matrices

form a Lie subalgebra g0(n) of the Lie algebra gl(n), g0(n) ⊂ gl(n):

[Zi
j , Z

j
i ] = Zj

i − Zi
j , [Zj

i , Z
k
i ] = Zj

i − Zk
i ,

[Zi
j , Z

j
k] = Zj

k − Zi
k, i �= j �= k �= i,

(4.22)

all other brackets vanish. The skew-symmetric solution (4.19) of the cYB
equation,

r =
∑

i,j:i<j

Zi
j ∧ Zj

i

μi − μj
(4.23)

is non-degenerate on the carrier subalgebra g0(n). The carrier subalge-
bra g0(n) is necessarily quasi-Frobenius, having a 2-cocycle ω given by the
inverse of the r-matrix, that is,

ω(ZA, ZB) = rAB, where rABrBC = δA
C , r =

∑
A,B

rABZA ∧ ZB. (4.24)

We have

ω(Zi
j , Z

k
l ) = −(μi − μj)δl

iδ
j
k. (4.25)

It is easy to check that the 2-cycle ω is a coboundary,

ω(Zi
j , Z

k
l ) = λn([Zi

j , Z
k
l ]), λn = −

∑
i,j:i�=j

μiz
i
j ∈ g

∗
0(n), (4.26)

thus the subalgebra g0(n) is Frobenius. �

The “Frobenius” r-matrix (4.19) (and its quantization) was considered in
the work [2].

Proposition 4.3. The skew-symmetric rime classical r-matrix (4.19),
r =

∑
i<j(μi − μj)−1Zi

j ∧ Zj
i , where μ = (μ1, μ2, . . . , μn) is an arbitrary
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vector such that μi �= μj belongs to the orbit of the parameter-free classi-
cal r-matrix

b =
∑

i,j:i<j

j−i∑
k=1

ei+k
i ∧ ej−k+1

j . (4.27)

More precisely,

r = AdXμ ⊗ AdXμ(b), (4.28)

where the element Xμ ∈ GL(n) is defined by (Xμ)j
k = ek−1 (μ1, . . . ,

μ̂j , . . . , μn).3

Proof. The equality r = AdXμ ⊗ AdXμ(b) is equivalent to a set of relations
for the elementary symmetric functions ei,

(Xμ ⊗ Xμ) b = r (Xμ ⊗ Xμ) ⇔
∑
r,s

eî
r−1e

ĵ
s−1b

rs
kl =

∑
a,b

rij
abe

â
k−1e

b̂
l−1,

(4.29)

where

bij
ab =

j−i∑
k=1

δj−k+1
b δi+k

a −
i−j∑
k=1

δi−k+1
a δj+k

b and

rij
ab =

{
(δi

aδ
i
b + δj

aδ
j
b − δi

aδ
j
b − δj

aδi
b)/(μi − μj), i �= j,

0, i = j.

Both operators bij
ab and rij

ab are symmetric in the lower indices and anti-
symmetric in the upper indices, that is,

Pb = −b, bP = b and Pr = −r, rP = r. (4.30)

Equations (4.29) have the following form

−
∑
s≥1

(eî
b+s−2e

ĵ
a−s−1 − eĵ

b+s−2e
î
a−s−1) =

1
μi − μj

(eî
a−1 − eĵ

a−1)(e
î
b−1 − eĵ

b−1).

(4.31)

3This matrix is the same X as in Proposition 3.1 but depending on variables μi.
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Due to (3.11), the left-hand side of (4.31) equals

− 1
μi − μj

(μie
î
a−2 − μje

ĵ
a−2)(e

î
b−1 − eĵ

b−1). (4.32)

The right-hand side of (4.31) equals (4.32) as well because eî
a−1 = ea−1 −

μie
î
a−2. �

As in the non-skew-symmetric case, in the infinite dimension the operators
b and r are in general not equivalent.

The sl(n) cYB solution. Let I =
∑n

i=1 ei
i be the central element of

gl(n). The generators Z̃i
j = Zi

j + 1
nI ∈ sl(n) satisfy the same relations (4.22)

as Zi
j thus they form a subalgebra g̃0(n) of the Lie algebra sl(n) which is

isomorphic to g0(n), g̃0(n) � g0(n). This isomorphism gives rise to another
solution r̃ ∈ sl(n) ∧ sl(n) of the cYB equation,

r̃ =
∑

i,j:i<j

Z̃i
j ∧ Z̃j

i

μi − μj
∈ sl(n) ∧ sl(n). (4.33)

We have the following lemma about the carrier Lie algebra of r̃ (the Lie
subalgebra of sl(n) spanned by the generators Z̃i

j).

Lemma 4.2. The subalgebra g̃0(n) ⊂ sl(n) of dimension dim g̃0(n) = n(n −
1) is isomorphic to the maximal parabolic subalgebra p of sl(n) obtained by
deleting the first negative root.

Proof. The vector v =
∑n

i=1 ei is an eigenvector for all elements Z̃i
j ,

Z̃i
j(v) =

1
n

v for all i and j, i �= j. (4.34)

In a basis in which the first vector is v, the linear span of the generators
Z̃i

j is

⎛
⎜⎜⎜⎝

∗ ∗ . . . ∗
0 ∗ ∗
...

...
...

0 ∗ . . . ∗

⎞
⎟⎟⎟⎠ , (4.35)

with the traceless condition. The comparison of dimensions finishes the
proof. �
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Gerstenhaber and Giaquinto [14] found a classical r-matrix bCG which
they called “boundary” because it lies in the closure of the solution space
of the YB equation. The cYB solution bCG corresponds to a Frobenius
subalgebra (p, Ω), where p is the parabolic subalgebra of sl(n) as above and
the 2-cocycle Ω is a coboundary,

Ω = δλbCG , λbCG =
n∑

i=1

(ei
i+1)

∗ ∈ p
∗. (4.36)

The r-matrix bCG is a twist of b (see [8]).

Since the carriers of r̃ and bCG are isomorphic, the r-matrices are equiv-
alent. We shall now prove that the same matrix Xμ transforms bCG into r̃.

Proposition 4.4. The boundary classical r-matrix bCG ∈ sl(n) ∧ sl(n),

bCG =
∑
i,j

(1 − j

n
) ei

i ∧ ej+1
j +

∑
i,j:i<j

j−i∑
k=1

ei+k
i ∧ ej−k+1

j , (4.37)

transforms into the cYB solution r̃ ∈ sl(n) ∧ sl(n),

r̃ =
∑

i,j:i<j

Z̃i
j ∧ Z̃j

i

μi − μj
, where Z̃i

j = ei
j − ej

j +
1
n

n∑
i=1

ei
i, (4.38)

by a change of basis with the matrix Xμ ∈ GL(n),

r̃ = AdXμ ⊗ AdXμ(bCG). (4.39)

Proof. Due to Proposition 4.3 we have r = AdXμ ⊗ AdXμ(b). The cYB
solution bCG is the sum of b and other terms, bCG = b +

∑
i,j(1 − j

n)ei
i ∧

ej+1
j . Therefore it is enough to show that r̃ − r = AdXμ ⊗ AdXμ(bCG − b).

One has

r̃ − r =
1
n

I ∧
∑

i,j:i�=j

Zj
i

μi − μj
, bCG − b = I ∧

∑
j

(1 − j

n
)ej+1

j . (4.40)

Thus we have to show that

Xμ

∑
j

(
1 − j

n

)
ej+1
j =

1
n

∑
i,j:i�=j

Zj
i

μi − μj
Xμ, (4.41)
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which amounts to the following identities for the elementary symmetric
functions:

(
1 − b − 1

n

)
eî
b−2 =

1
n

∑
j:j �=i

eĵ
b−1 − eî

b−1

μi − μj
. (4.42)

Replacing, in the right-hand side, eĵ
b−1 by eîĵ

b−1 + μie
îĵ
b−2, eî

b−1 by eîĵ
b−1 +

μje
îĵ
b−2 and noticing that

∑
i e

î
c = (n − c)ec, c = 1, 2, . . . , n (for the elemen-

tary symmetric functions in n variables) finishes the proof. �

The passage to the sl(n) solution is another instance of the representation
change. The general representation change (4.6) produces the following
effect on the numerical r-matrix (4.27):

b 
→ b − cη(0) ∧ 1, (4.43)

where η(0) is the generator of the invariance group of the r-matrix (4.27),

η(0) =
∑

(n − j)ej+1
j . (4.44)

The representation change and the operation (4.10) produce the same
1-parametric family (4.43) of skew-symmetric r-matrices. The choice c =
−1/n corresponds to the r-matrix bCG.

5 Bézout operators

The Bézout operator [5] is the following endomorphism b(0) of the space P

of polynomials of two variables x and y:

b
(0)f(x, y) =

f(x, y) − f(y, x)
x − y

or b
(0) =

1
x − y

(I − P ), (5.1)

where I is the identity operator and P is a permutation, Pf(x, y) = f(y, x).
For any natural n, the subspace Pn of polynomials of degree less than n
in x and less than n in y is invariant with respect to the operator b(0).
The matrix of the restriction of b(0) onto Pn, written in the basis {xayb} of
powers (in the decreasing order) coincides with the operator (4.27).
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The non-skew-symmetric matrix (4.3) is the matrix of the operator

b =
x

x − y
(I − P ) (5.2)

in this basis. The rime bases are formed by the non-normalized Lag-
range polynomials {li(x)lj(y)}, li(t) =

∏
s:s �=i(t − φs), at points {φi}, i = 1,

2, . . . , n.

We shall call the operators b(0) and b Bézout r-matrices. The Bézout
r-matrices were rediscovered in several different contexts related to the
Yang–Baxter equation (except the fact that they are the Cremmer–Gervais
r-matrices, they appear, for instance, in [7] and [19]).

The standard r-matrix r(s), for the choice of the multi-parameters for
which it can be non-trivially rimed (see the Remark at the end of Section 3),
has the following form in terms of polynomials

r(s) : xiyj 
→ θ(i − j)xiyj − θ(j − i)xjyi. (5.3)

The subspaces Pn are invariant with respect to r(s).

The properties of the Bézout r-matrices b(0) and b (and of the opera-
tor r(s)) become more transparent when they are viewed as operators on
polynomials. In particular,

(b(0))2 = 0, b
(0)P = −b

(0), Pb
(0) = b

(0), b
(0) + b

(0)
21 = 0, (5.4)

b
2 = b, bP = −b, b + b21 = I − P, (5.5)

(r(s))2 = r(s), r(s)P = −r(s), r(s) + r
(s)
21 = I − P. (5.6)

The description of the invariance groups of the operators b(0) and b is
especially transparent when these operators are viewed as operators on the
spaces of polynomials. Let ∂x and ∂y be the derivatives in x and y. We

have (∂x + ∂y)
(

1
x−y

)
= 0 which implies that ∂x is the generator of the

invariance group of b(0); the group is formed by translations. Similarly,
(x∂x + y∂y)

(
x

x−y

)
= 0 which implies that x∂x is the generator of the invari-

ance group of b; the group is formed by dilatations. The operation (4.10)
implies that the operators

b
(0) + c(∂x − ∂y), b + c(x∂x − y∂y) (5.7)

are solutions of the cYBe (the quantum version is easy as well) for an arbi-
trary constant c.
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5.1 Non-homogeneous associative classical
Yang–Baxter equation

The operators b(0), b and r(s) satisfy an equation stronger than the cYBe.
For an endomorphism r of V ⊗ V , define

r ◦ r := r12r13 + r13r23 − r23r12, r ◦′ r := r13r12 + r23r13 − r12r23. (5.8)

The equation r ◦ r = 0 (as well as r ◦′ r = 0) is called associative classical
Yang–Baxter equation (acYBe) [1, 20].

We introduce a non-homogeneous associative classical Yang–Baxter
equation (nhacYBe):

r ◦ r = cr13, (5.9)

where c is a constant.

Let F be the space of polynomials in one variable. For the space F ⊗ F of
polynomials in two variables, we denote by x (respectively, y) the generator
of the first (respectively, second) copy of F . For F ⊗ F ⊗ F , the generators
are denoted by x, y and z.

Lemma 5.1. 1. Let M be an operator on the space F ⊗ F . Assume that

M(xf) = f + yM(f), (5.10)

M(yf) = −f + xM(f) (5.11)

for an arbitrary f ∈ F ⊗ F . Then4

M ◦M(xF ) = z M ◦M(F ), M ◦M(yF ) = x M ◦M(F ),

M ◦M(zF ) = y M ◦M(F ) (5.12)

for an arbitrary F ∈ F ⊗ F ⊗ F .
2. The operator M = b(0) verifies (5.10) and (5.11).
3. Moreover, the unique solution of equations (5.10) and (5.11) (for

the operator M on the space F ⊗ F) together with the “initial” condi-
tion M(1) = 0 is M = b(0).

Proof. A direct calculation. �

4Equation M ◦M(xF ) = z M ◦M(F ) follows from (5.10) alone.
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Proposition 5.1. 1. The Bézout operator b(0) satisfies the acYBe.

2. The Bézout operator b and the operator r(s) satisfy the nhacYBe with
c = 1.

Proof. A direct calculation for b(0). Another way is to notice that the rela-
tions (5.12) for M = b(0) reduce the verification of b(0) ◦ b(0)(F ) = 0 for a
monomial F ∈ F ⊗ F ⊗ F to the case F = 1, which is trivial.

For the Bézout operator b ≡ xb(0) (x here is the operator of multiplication
by x), we have, for an arbitrary F ∈ F ⊗ F ⊗ F ,

b ◦ b (F ) = xb
(0)
12 (xb

(0)
13 (F )) + xb

(0)
13 (yb

(0)
23 (F )) − yb

(0)
23 (xb

(0)
12 (F ))

= x
(
b
(0)
13 (F ) + yb

(0)
12 b

(0)
13 (F )

)
+ xyb

(0)
13 b

(0)
23 (F ) − xyb

(0)
23 b

(0)
12 (F )

= xb
(0)
13 (F ) + xyb

(0) ◦ b
(0)(F ) = b13(F ). (5.13)

We used equation (5.10) for b(0) in the second equality.

For the operator r(s), the identity

θ(i − k)θ(i − j) + θ(i − k)θ(j − k) − θ(i − j)θ(j − k) = θ(i − k) (5.14)

for the step function θ is helpful. �

In each of cases (5.4–5.6), the operator r satisfies a quadratic equation
r2 = u1r + u2I, the relation r + r21 = αP + βI with some constants α and
β and the nhacYBe with some constant c. Several general comments about
relations between the constants appearing in these equations are in order
here.

1. Assume that an r-matrix (a solution of the cYBe) satisfies r ◦ r = cr13.
Then r ◦′ r = cr13. Taking the combinations (r ◦ r − cr13) − P23(r ◦′

r − cr13)P23 and (r ◦ r − cr13) − P12(r ◦′ r − cr13)P12, we find

r13(Sr)23 − (Sr)23r12 = c(r13 − r12), (Sr)12r13 − r23(Sr)12 = c(r13 − r23),

(5.15)

where (Sr)12 := r12 + r21. If (Sr)12 = αP12 + βI with some constants
α and β, as in (5.4)–(5.6), then it follows from (5.15) that (β − c)
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(r13 − r12) = 0 thus

c = β. (5.16)

This explains the value of the constant c in Lemma 5.1.
2. For an endomorphism r of V ⊗ V , assume that r ◦ r = βr13 and

(Sr)12 = αP12 + βI. Then

P23(r ◦ r − βr13)P23 = r13r12 + r12r32 − r32r13 − βr12

= r13r12 + r12(αP23 + βI − r23) − (αP23 + βI − r23)r13

− βr12 = r ◦′ r − βr13.

(5.17)

Thus, if (Sr)12 = αP12 + βI then r ◦ r = βr13 implies r ◦′ r = βr13.
3. Assume that r ◦ r = cr13 for an endomorphism r of V ⊗ V . Then for

r̃ = r + aI + bP , a and b are constants, we have

r̃ ◦ r̃ = (c + 2a)r̃13 + bP13(Sr)23 − a(a + c)I − bcP13 + b2P23P12. (5.18)

If, in addition, (Sr)12 = αP12 + βI, then

r̃ ◦ r̃ = (c + 2a)r̃13 − a(c + a)I + b(β − c)P13 + b(α + b)P23P12. (5.19)

This shows that the equation r ◦ r = c1r13 + c2I + c3P13 + c4P23P12,
c1, c2, c3 and c4 are constants, reduces to r ◦ r = c̃1r13 + c̃3P13 by a
shift r 
→ r + aI + bP .

If r ◦ r = βr13 and (Sr)12 = αP12 + βI then

r̃ ◦ r̃ = (β + 2a)r̃13 − a(β + a)I + b(α + b)P23P12. (5.20)

The combination P23P12 does not appear for b = 0 or b = −α. The
choice b = −α corresponds, modulo a shift of r by a multiple of I, to
r 
→ r21, so we consider only b = 0. Then, with the choice a = −β we
find that the operator r̃ = r − βI satisfies the nhacYBe (and (Sr)12 =
αP12 − βI). For the choice a = −β/2 we find that the operator r̃ =
r − β

2 I satisfies

r̃ ◦ r̃ =
β2

4
, (Sr̃)12 = αP12. (5.21)
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In particular, the operator

b̃ =
x + y

2(x − y)
I − x

x − y
P (5.22)

satisfies (5.21) with β = 1 and α = −1. Also, b̃2 =
1
4
I.

4. Assume that r2 = ur + v and r12 + r21 = αP12 + βI for an endomor-
phism r of V ⊗ V . Squaring the relation r12 − βI = αP12 − r21 and
using the same relation again, we obtain

(u − β)(2r12 − βI − αP12) = 0. (5.23)

Thus, if r is not a linear combination of I and P then

u = β. (5.24)

5. Assume that r ◦ r = cr13 and rP = −r for an endomorphism r of V ⊗
V . The nhacYBe has the following equivalent form:

[r13, r23] = (r12 − cI)r13P23. (5.25)

Indeed,

r13r23 − r23r13 = (−r13r23 + r23r12)P23 = (r12 − cI)r13P23. (5.26)

Here in the first equality we used r23P23 = −r23 and moved P23 to the
right; in the second equality we used the nhacYBe r ◦ r = cr13.

5.2 Linear quantization

Consider an algebra with three generators r12, r13 and r23 and relations

r13r23 = r23r12 − r12r13 + βr13,

r13r12 = r12r23 − r23r13 + βr13,

r2
12 = βr12 + v, r2

13 = βr13 + v, r2
23 = βr23 + v.

(5.27)

Choose an order, say, r13 > r23 > r12. Consider (5.27) as ordering relations.
The overlaps in (5.27) lead to exactly one more relation:

r23r12r23 = r12r23r12. (5.28)
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Thus the algebra in question is 12-dimensional (it follows from (5.27) and
(5.28) that a general element of the algebra is a product AB of an element
A of the Hecke algebra generated by r12 and r23 and a polynomial B, of
degree less than 2, in r13).

We conclude that the nhacYBe together with the quadratic equation for
r imply the YBe. Note that the other form of the YBe also follows:

r23r13r12 − r12r13r23 = (r12r23 − r13r12 + βr13)r12

− r12(r23r12 − r12r13 + βr13)r23

= −r13(βr12 + v) + βr13r12 + (βr12 + v)r13

− βr12r13 = 0. (5.29)

Here in the first equality both nhacYBe for r were used; the quadratic
relation for r was used in the second equality.

Therefore, the quantization of such r-matrix is “linear”5 : a combination

R = I + λr, (5.30)

where λ is an arbitrary constant, satisfies the YBe R12R13R23 = R23R13R12.

5.3 Algebraic meaning

We shall clarify the algebraic meaning of the non-homogeneous associative
classical Yang–Baxter equation in the general context of associative algebras.

Let A be an algebra. Let r ∈ A ⊗ A. The operation

δ(0) : A −→ A ⊗ A, δ(0)(u) = (u ⊗ 1)r − r(1 ⊗ u) (5.31)

(the algebra A does not need to be unital, (u ⊗ 1)(a ⊗ b) stands for ua ⊗ b
and (a ⊗ b)(u ⊗ 1) for au ⊗ b) is coassociative if and only if [1]

(u ⊗ 1 ⊗ 1) (r ◦′ r) = (r ◦′ r) (1 ⊗ 1 ⊗ u) ∀ u ∈ A. (5.32)

In particular, δ(0) is coassociative if (r ◦′ r) = 0.

5It was noted in [8] that the operator b(0) satisfies both forms of the YBe, squares to
zero and that its quantization has the simple form (5.30).
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Assume now that the algebra A is unital. Define the operations δ and
δ̃ : A → A ⊗ A,

δ(u) := (u ⊗ 1)r − r(1 ⊗ u) − c(u ⊗ 1), (5.33)

δ̃(u) := (u ⊗ 1)r − r(1 ⊗ u) + c (1 ⊗ u), (5.34)

where c is a constant.

Proposition 5.2. The coassociativity of each of the operations δ and δ̃ is
equivalent to

(u ⊗ 1 ⊗ 1) (r ◦′ r − c r13) = (r ◦′ r − c r13) (1 ⊗ 1 ⊗ u) ∀ u ∈ A. (5.35)

Proof. A straightforward calculation. �

In particular, the operations δ and δ̃ are coassociative if r ◦′ r = c r13.

The map (5.31) has the following property:

δ(0)(uv) = (u ⊗ 1)δ(0)(v) + δ(0)(u)(1 ⊗ v); (5.36)

that is, δ(0) is a derivation with respect to the standard structure of A ⊗ A

as a bi-module over A, uU := (u ⊗ 1)U and Uu := U(1 ⊗ u) for u ∈ A and
U ∈ A ⊗ A.

For the operations δ and δ̃, the analogue of the property (5.36) reads

δ(uv) = (u ⊗ 1)δ(v) + δ(u)(1 ⊗ v) + c(u ⊗ v), (5.37)

δ̃(uv) = (u ⊗ 1)δ̃(v) + δ̃(u)(1 ⊗ v) − c(u ⊗ v). (5.38)

5.4 Rota–Baxter operators

Let A be an algebra. An operator r : A → A is called Rota–Baxter operator
of weight α if

r(A)r(B) + αr(AB) = r (r(A)B + Ar(B)) (5.39)

for arbitrary A, B ∈ A (α is a constant). We refer to [22] for further infor-
mation about the Rota–Baxter operators.

The Rota–Baxter operators of weight zero are closely related to the acYBe
[23]. It turns out that the Rota–Baxter operators of non-zero weight are
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related to the nhacYBe. We shall discuss this relation and calculate the
Rota–Baxter operators corresponding to the Bézout operators.

It is surprising that the Bézout operators, which rather have the sense of
derivatives, become, being interpreted as operators on matrix algebras, the
Rota–Baxter operators which are designed to axiomatize the properties of
indefinite integrations and summations.

1. For an endomorphism r of V ⊗ V , define two endomorphisms, r and r′,
of the matrix algebra Mat(V ):

r(A)1 := Tr2(r12A2), r
′(A)2 := Tr1(r12A1), A ∈ Mat(V ), (5.40)

where Tri is the trace in the copy number i of the space V .

Assume that r satisfies the nhacYBe (5.9). Multiplying (5.9) by A2B3,
A, B ∈ Mat(V ), and taking traces in the spaces 2 and 3, we find

r(A)r(B) + r

(
r
′(A)B

)
− r

(
Ar(B)

)
= c Tr(A)r(B). (5.41)

Assume, in addition, that r12 + r21 = αP12 + βI. Then

r(A) + r
′(A) = αA + βTr(A) 1. (5.42)

If c = β then expressing r′(A) by (5.42) and substituting into (5.41), we
find that the term with Tr(A) drops out and r is the Rota–Baxter operator
of weight α on the algebra of matrices. Similarly, r′ is the Rota–Baxter
operator of weight α as well.

2. We shall calculate the Rota–Baxter operators corresponding to the Bézout
operators in the polynomial basis.

The action of the operator b(0) on monomials xkyl reads

b
(0)(xkyl) =

⎧⎪⎨
⎪⎩

−(xl−1yk + xl−2yk+1 + · · · + xkyl−1), k < l,

0, k = l,

xk−1yl + xk−2yl+1 + · · · + xlyk−1, k > l.

(5.43)

The action of the operator b on monomials xkyl reads

b(xkyl) =

⎧⎪⎨
⎪⎩

−(xlyk + xl−1yk+1 + · · · + xk+1yl−1), k < l,

0, k = l,

xkyl + xk−1yl+1 + · · · + xl+1yk−1, k > l.

(5.44)
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Shortly,

b
(0)(xkyl) = θ(k − l)

k−l−1∑
s=0

xl+syk−s−1 − θ(l − k)
l−k−1∑
s=0

xk+syl−s−1, (5.45)

b(xkyl) = θ(k − l)
k−l∑
s=1

xl+syk−s − θ(l − k)
l−k∑
s=1

xk+syl−s. (5.46)

We list several useful matrix forms of the operators b(0) and b in the basis
formed by monomials, ea ⊗ eb := xayb; for the operator b(0):

b
(0) =

∑
i,j,a,b

θ(j − a)θ(j − b)δi+j
a+b+1e

j
a ∧ ei

b

=
∑

i,j,a,b

(
θ(j − a)θ(j − b) − θ(i − b)θ(i − a)

)
δi+j
a+b+1e

j
a ⊗ ei

b

=
∑

i,j:i<j

j−i∑
a=1

ej
i+a−1 ∧ ei

j−a (5.47)

and for the operator b:

b =
∑

i,j,a,b

θ(j + 1 − a)θ(a − i)δi+j
a+b(e

j
a ⊗ ei

b − ei
a ⊗ ej

b)

=
∑

i,j,a,b

(
θ(j + 1 − a)θ(a − i) − θ(i + 1 − a)θ(a − j)

)
δi+j
a+be

j
a ⊗ ei

b

=
∑

i,j:i<j

j−i∑
a=1

(ej
i+a ⊗ ei

j−a − ei
i+a ⊗ ej

j−a)

=
∑

i,j:i<j

(
j−i−1∑
a=1

ej
i+a ∧ ei

j−a + ej
j ⊗ ei

i − ei
j ⊗ ej

i

)
, (5.48)

where x ∧ y = x ⊗ y − y ⊗ x.

The Rota–Baxter operator rb(0) corresponding to b(0) reads

rb(0)(A)i
j = θ(j − i)

∑
s≥0

Ai−s
j−s−1 − θ(i + 1 − j)

∑
s≥0

Ai+s+1
j+s . (5.49)

In the right-hand side of (5.49), the summations are over those s ≥ 0 for
which the corresponding matrix element in the sum makes sense; that is,
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the range of s in the first sum is s = 0, 1, . . . , i − 1 and, in the second sum,
s = 0, 1, . . . n − i − 1;

The Rota–Baxter operator rb corresponding to b reads (with the same
convention about the summation ranges)

rb(A)i
j = θ(j + 1 − i)

∑
s≥0

Ai−s−1
j−s−1 − θ(i − j)

∑
s≥0

Ai+s
j+s. (5.50)

Its weight is −1.

For the operator r(s), given by equation (5.3), the corresponding
Rota–Baxter operator r(s) is

r
(s)(A)i

j =

⎧⎪⎨
⎪⎩

−θ(j − i)Ai
j , i �= j,∑

s:s<i

As
s, i = j. (5.51)

Its weight is −1.

We shall give also the Rota–Baxter operator for the Bézout r-matrix b

in the rime basis, that is, for the r-matrix (4.2); it has weight 1 (since
r12 + r21 = P − I for r in (4.2)). The Rota–Baxter operator has the form

r(A)i
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φj

φj − φi
(Ai

j − Aj
j), i �= j,

∑
s:s �=i

φi

φi − φs
(Ai

s − As
s), i = j.

(5.52)

5.5 ∗-multiplication

1. Let r : A → A be a Rota–Baxter operator of weight α (see equation
(5.39)) on an algebra A. It is known that the operation

A ∗ B := r(A)B + Ar(B) − αAB, A, B ∈ A, (5.53)

defines an associative product on the space A. This product is closely related
to the coproducts (5.33) and (5.34) by duality. We shall illustrate it in the
context of the matrix algebras.
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Define an operation ∗̃ by

〈δ̃(u), B ⊗ A〉 = 〈u, A∗̃B〉, (5.54)

where δ̃ is given by (5.34). We have then

〈δ̃(u), B ⊗ A〉 = Tr12

(
u1rB1A2 − ru2B1A2 + cu2B1A2

)

= Tr1
(
u1 Tr2(rA2)B1

)
− Tr1

(
u1A1 Tr2(B2r21)

)

+ Tr1
(
cu1 Tr(B)A1

)

= Tr
(
u
[
r(A)B − Ar

′(B) + cA Tr(B)
])

, (5.55)

thus

A ∗̃ B = r(A)B − Ar
′(B) + cATr(B). (5.56)

In equation (5.55), xi stands for the copy of an element x in the space
number i in A ⊗ A; the operators r and r′ are given by (5.40); to obtain
the second and the third terms in the second line of (5.55) we renumbered
1 ↔ 2 and then moved r cyclically under the trace in the second term.

Assume, as before, that r12 + r21 = αP12 + βI and c = β. Then, express-
ing r′(A) by (5.42), we find that the term with Tr(B) drops out and it follows
that

A∗̃B = A ∗ B. (5.57)

2. We shall describe the ∗-multiplication in the simplest example of the
Rota–Baxter operators (5.49) and (5.50) corresponding to the Bézout oper-
ators for the the polynomials of degree less than 2 (that is, for 2 × 2 matrices

A =

(
a1

1 a1
2

a2
1 a2

2

)
≡ ai

je
j
i ).

For the operator b(0) = e2
1 ∧ e1

1, we have

rb(0)(A) =
(

−a2
1 a1

1
0 0

)
(5.58)
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and the ∗-multiplication reads

A ∗o Ã ≡ Arb(0)(Ã) + rb(0)(A)Ã =

(
−a2

1ã
1
1 −a2

1ã
1
2 + a1

1(ã
1
1 + ã2

2)

−a2
1ã

2
1 a2

1ã
1
1

)
. (5.59)

This algebra is isomorphic to the algebra of 3 × 3 matrices of the form

⎛
⎝

∗ ∗ ∗
0 0 ∗
0 0 0

⎞
⎠,

with the identification

e1
1 
→

⎛
⎝

0 1 0
0 0 1
0 0 0

⎞
⎠ , e1

2 
→

⎛
⎝

−1 0 0
0 0 0
0 0 0

⎞
⎠,

e2
1 
→

⎛
⎝

0 0 1
0 0 0
0 0 0

⎞
⎠ , e2

2 
→

⎛
⎝

0 0 0
0 0 1
0 0 0

⎞
⎠.

(5.60)

For the operator b = e2
2 ⊗ e1

1 − e1
2 ⊗ e2

1, we have

rb(A) =
(

0 0
−a2

1 a1
1

)
(5.61)

and the ∗-multiplication reads

A ∗ Ã ≡ Arb(Ã) + rb(A)Ã + AÃ =

(
a1

1ã
1
1 a1

1ã
1
2 + a1

2(ã
1
1 + ã2

2)

a1
1ã

2
1 a1

1ã
2
2 + a2

2(ã
1
1 + ã2

2)

)
. (5.62)

This algebra is isomorphic to the algebra of 3 × 3 matrices of the form

⎛
⎝

∗ ∗ ∗
0 ∗ 0
0 0 0

⎞
⎠ ,
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with the identification

e1
1 
→

⎛
⎝

1 0 0
0 1 0
0 0 0

⎞
⎠ , e1

2 
→

⎛
⎝

0 0 1
0 0 0
0 0 0

⎞
⎠,

e2
1 
→

⎛
⎝

0 1 0
0 0 0
0 0 0

⎞
⎠ , e2

2 
→

⎛
⎝

0 0 0
0 1 0
0 0 0

⎞
⎠.

(5.63)

6 Rime Poisson brackets

The Poisson brackets having the form

{xi, xj} = fij(xi, xj), i, j = 1, 2, . . . , n, (6.1)

with some functions fij of two variables, we shall call rime. In this section
we study quadratic rime Poisson brackets,

{xi, xj} = aij(xi)2 − aji(xj)2 + 2νijx
ixj , i, j = 1, 2, . . . , n. (6.2)

We show that there is a three-dimensional pencil of such Poisson brackets
and then find the invariance group and the normal form of each individual
member of the pencil.

6.1 Rime pencil

In this subsection we establish that the quadratic rime Poisson brackets form
a three-dimensional Poisson pencil.

The left-hand side of (6.2) contains a matrix aij with zeros on the diagonal,
aii = 0, and an anti-symmetric matrix νij , νij = −νji. The Jacobi identity
constraints these matrices to satisfy

aijajk + aik(νij + νjk) = 0, i �= j �= k �= i. (6.3)

We shall describe a general solution of equation (6.3) in the strict situation,
that is, when all aij and νij are different from zero for i �= j.

The left-hand side of νij + νjk = −aijajk/aik is anti-symmetric with
respect to (i, k), that is ΥijΥjkΥki = 1 for Υij = −aij/aji, which readily
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implies the existence of a vector φi such that Υij = φ2
i /φ2

j . Therefore,

aik = φicikφ
−1
k , (6.4)

where the matrix cij is anti-symmetric, cij = −cji. Next, 2νki = −(νij +
νjk) + (νjk + νki) + (νki + νij); using (6.3) to express each bracket in the
right-hand side, we find

νki =
1
2

(
cijcki

cjk
+

cjkcki

cij
− cijcjk

cki

)
. (6.5)

The right-hand side of equation (6.5) does not depend on j which imposes
further restrictions on the matrix cij when n > 3. Writing the sum
νij + νjk + νkl + νli in two ways, as (νij + νjk) + (νkl + νli) and as (νjk +
νkl) + (νli + νij), and using (6.3) to express each bracket in terms of the
matrix c, we obtain

cijcjk − cilclk

cik
=

cjkckl − cjicil

cjl
. (6.6)

Replacing j by m in (6.5) gives the condition on the matrix c:

cijcki

cjk
+

cjkcki

cij
− cijcjk

cki
=

cimcki

cmk
+

cmkcki

cim
− cimcmk

cki
. (6.7)

Using equation (6.6) to rewrite the combination
cijcjk

cki
− cimcmk

cki
, we find

(cjkckm − cjicim)Ψijkm = 0, where

Ψijkm =
(

1
cjkcim

+
1

cijckm
+

1
ckicjm

)
. (6.8)

The quantity Ψijkm is totally anti-symmetric with respect to its indices.
Therefore, if Ψijkm �= 0 then the combinations (cjkckm − cjicim) vanish for
all permutations of indices. This is however impossible: the system of three
linear equations

cijcjk − cimcmk = 0,
cikckm − cijcjm = 0,
cimcmj − cikckj = 0

(6.9)

for unknowns {cjk, ckm, cmj} has, by definition, a non-zero solution but the
determinant of the system is different from zero. Thus the Pfaffian Ψijkm

vanishes for each quadruple {i, j, k, m}; in other words, the coefficients of
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the matrix 1/cij satisfy the Plücker relations; therefore the form 1/cij is
decomposable, c−1

ij = sitj − sjti, for some vectors �s and �t. For each i, at
least one of si or ti is different from zero. Making, if necessary, a change
of basis in the two-dimensional plane spanned by �s and �t, we can therefore
always assume that all components of, say, the vector �s are different from
zero, si �= 0 ∀ i. We represent the bivector 1/cij in the form (u−1

i = si and
ψi = −ti/si)

1
cij

= u−1
i u−1

j (ψi − ψj). (6.10)

Substituting (6.10) into (6.5) we obtain

νki +
1
2

u2
k + u2

i

ψk − ψi
= −1

2

(
u2

i − u2
j

ψi − ψj
−

u2
k − u2

j

ψk − ψj

)
. (6.11)

Replacing j by m in the right-hand side and equating the resulting expres-
sions, we find that the independency of the right-hand side on j implies:

Eijkm :=
u2

i

(ψi − ψj)(ψi − ψk)(ψi − ψm)

+
u2

j

(ψj − ψi)(ψj − ψk)(ψj − ψm)

+
u2

k

(ψk − ψi)(ψk − ψj)(ψk − ψm)

+
u2

m

(ψm − ψi)(ψm − ψj)(ψm − ψk)
= 0 (6.12)

for every quadruple {i, j, k, m}.

The quantity Eijkm is totally symmetric. Selecting three values of the
index, say, 1, 2 and 3, we can form the quadruple {i, 1, 2, 3} for each i.
Solving Ei123 = 0, we obtain the following expression for u2

i :

u2
i = A1

(ψi − M2)(ψi − M3)
(M1 − M2)(M1 − M3)

+ A2
(ψi − M1)(ψi − M3)

(M2 − M1)(M2 − M3)

+ A3
(ψi − M1)(ψi − M2)

(M3 − M1)(M3 − M2)
(6.13)

for some constants A1, A2, A3, M1, M2 and M3. The right-hand side is the
value, at the point ψi, of a quadratic polynomial which equals to Aa at the
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points Ma, a = 1, 2, 3. Since A1, A2, A3, M1, M2 and M3 are arbitrary, we
can simply write

u2
i = aψ2

i + bψi + c. (6.14)

With the expressions (6.14) for u2
i , the equalities (6.12) are identically sat-

isfied which shows that (6.14) is the general solution.

Upon rescaling xi 
→ φiuix
i with φi from (6.4), the Poisson brackets (6.2)

simplify. The following statement is established (for n = 2 or 3, (6.14)
does not impose a restriction on the anti-symmetric matrix cij with all
off-diagonal entries different from zero).

Proposition 6.1. Up to a rescaling of variables, the general strict quadratic
rime Poisson brackets have the form

{xi, xj} =
�(ψj)(xi)2 + �(ψi)(xj)2

ψi − ψj
+

(
(ψi − ψj)a − �(ψi) + �(ψj)

ψi − ψj

)
xixj ,

(6.15)

where �ψ is an arbitrary vector with pairwise distinct components and
�(t) = at2 + bt + c is an arbitrary quadratic polynomial 6.

Thus the strict quadratic rime Poisson brackets form the three-
dimensional pencil (parameterized by the polynomial �).

The Poisson brackets (6.15) can be rewritten in the following forms:

{xi, xj} =
1

ψi − ψj

(
�(ψj)xi − �(ψi)xj

)
(xi − xj)

+ a(ψi − ψj)xixj , (6.16)

{xi, xj} =
au2

ij + buijvij + cv2
ij

ψi − ψj
≡

v2
ij

ψi − ψj
�

(
uij

vij

)
, (6.17)

where uij = ψjx
i − ψix

j and vij = xi − xj .

Remark 6.1. For �(t) = bt (respectively, �(t) = c) these Poisson brack-
ets appear in the classical limit of the commutation relations (1.31) in the
non-unitary (respectively, unitary) case (with the parameterization

βij = − βψj

ψi − ψj
in the non-unitary case).

6To have non-vanishing coefficients in the formula (6.15) one has to impose certain
inequalities for the components of the vector �ψ and the coefficients of the polynomial �;
however, the formula (6.15) defines Poisson brackets without these inequalities.
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Remark 6.2. The strict rime linear Poisson brackets

{xi, xj} = aijx
i − ajix

j , aij �= 0 for all i, j = 1, 2, . . . , n : i �= j
(6.18)

(or strict rime Lie algebras) are less interesting. The Jacobi identity is

aikakj = aijajk for all i �= j �= k �= i. (6.19)

Rescale variables x2, x3, . . . , xn to have a1i = 1, i = 2, . . . , n. Then the con-
dition (6.19) with one of i, j, k equal 1 implies aij = aji and aij = ai1/aj1,
i, j = 2, . . . , n; it follows that a2

i1 = a2
j1, i, j = 2, . . . , n. For n > 3, the con-

dition (6.19) with i, j, k > 1 forces ai1 = aj1, i, j = 2, . . . , n. Denote by ν
this common value, ai1 = ν, i, j = 2, . . . , n. After a rescaling x1 
→ νx1

we find a unique strict rime Lie algebra, [xi, xj ] = xi − xj for all i and
k, which is almost trivial: [xi, xk − xl] = −(xk − xl) for all i, k and l and
[xi − xj , xk − xl] = 0 for all i, j, k, l.

For n = 3, there is one more possibility: a31 = −a21. After a rescaling
x1 
→ a21x

1, the solution reads

[x1, x2] = x1 − x2, [x1, x3] = x1 + x3, [x2, x3] = −x2 + x3. (6.20)

This Lie algebra is isomorphic to sl(2); the isomorphism is given, for exam-
ple, by h 
→ x1 − x3, e 
→ x1 + x3 and f 
→ x2 − (x1 + x3)/4 (here h, e and f
are the standard generators of sl(2), [h, e] = 2e, [h, f ] = −2f and [e, f ] = h).

6.2 Invariance

In this subsection we analyze the invariance group of each individual member
of the Poisson pencil from Proposition 6.1. We find that the Poisson brackets
(6.15), with arbitrary (non-vanishing) �, admit a non-trivial 1-parametric
invariance group.

The transformation law of Poisson brackets {xi, xj} = f ij(x) under an
infinitesimal change of variables, x̃i = xi + εϕi(x), ε2 = 0, is {x̃i, x̃j} =
f ij(x̃) + εδxf ij , where δxf ij = {ϕi, xj} + {xi, ϕj} + ϕk∂kf

ij . For a linear
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infinitesimal transformation, ϕi(x) = Ai
jx

j , we have

δxf ij = Ai
k{xk, xj} + Aj

k{xi, xk} − xlAk
l ∂k{xi, xj}. (6.21)

Specializing to the Poisson brackets (6.15), we find

δxf ij = Uji − Uij (6.22)

with

Uij :=
∑

s

(
2Ai

s

�j

ψij
+ Aj

s

(
ψija − �i + �j

ψij

))
xixs

+
∑
s:s �=i

Aj
s

(
�i

ψsi
(xs)2 +

�s

ψsi
(xi)2 +

(
ψsia − �s + �i

ψsi

)
xixs

)
, (6.23)

where ψij = ψi − ψj and �s = �(ψs).

The Poisson brackets (6.15) remain rime under the infinitesimal linear
transformation with the matrix A if the coefficients in (xs)2, xsxi and xsxj ,
s �= i, j, in (6.22) vanish which gives the following system:

(xs)2, s �= i, j ⇒ Aj
s

�i

ψsi
− Ai

s

�j

ψsj
= 0, (6.24)

xixs, s �= i, j ⇒ 2Ai
s

�j

ψij
+ Aj

s

(
ψsja − �i + �j

ψij
− �s + �i

ψsi

)
= 0. (6.25)

Equation (6.24) implies that Al
k = νk�l/ψlk, l �= k, with arbitrary constants

νk. For a quadratic polynomial �, this solves equation (6.25) as well. The
coefficient in xjxs vanishes due to the anti-symmetry.

The Poisson brackets (6.15) are invariant under the infinitesimal linear
transformation with the matrix A if, in addition to (6.24) and (6.25), the
coefficients in (xi)2, (xj)2 and xixj in (6.22) vanish which gives:

xixj ⇒ �jA
i
j + �iA

j
i = 0, (6.26)

(xi)2 ⇒ Ai
i

�j

ψij
+ Aj

i

(
ψija − �i + �j

ψij

)
+

∑
s:s �=i

Aj
s

�s

ψsi
= 0. (6.27)

Equation (6.26) implies that νk are equal, νk = ν. The matrix A is defined
up to a multiplicative factor, so we can set ν to 1. Since the Poisson brackets
(6.15) are quadratic, a global rescaling leaves them invariant, so we can add
to A a matrix, proportional to the identity matrix and make A traceless.
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The traceless condition, together with equation (6.27) determines the diago-

nal entries, Ai
i = a(n − 1)ψi +

n − 1
2

b + �i

∑
s:s �=i

1
ψsi

. The coefficient in (xj)2

vanishes due to the anti-symmetry. We summarize the obtained results.

Proposition 6.2. (i) The infinitesimal linear transformation with the
matrix A leaves the Poisson brackets (6.15) rime if and only if

Al
k =

νk�l

ψlk
, l �= k, (6.28)

with arbitrary constants νk.
(ii) Up to a global rescaling of coordinates, the invariance group of the

Poisson brackets (6.15) is 1-parametric, with a generator A,

A(�)i
j =

�i

ψij
, i �= j, and A(�)i

i =
n − 1

2
�′

i + �iξi, ξi :=
∑
s:s �=i

1
ψsi

,

(6.29)

where �′
i is the value of the derivative of the polynomial � at the

point ψi.

Since the Poisson brackets transformed with the matrix (6.28) are still
rime, it follows from Proposition 6.1 that they can be written, after an
appropriate rescalings of coordinates, in the form (6.15). In other words,
the variation δx can be compensated by a variation of ψ’s and � and a
diagonal transformation of the coordinates. We have

−δxf ij = δ(1) + δ(2), (6.30)

where

δ(1) =
�i�j(xi − xj)2

ψ2
ij

(νi − νj) + a
(
νj�j(xi)2 − νi�i(xj)2

)
(6.31)

and

δ(2) = (Ãi
i − Ãj

j)
�j(xi)2 − �i(xj)2

ψij
, Ãi

i := Ai
i − �′

iνi −
∑
s:s �=i

νs�s

ψsi
. (6.32)

Choose Ai
i to set Ãi

i to 0; this is a diagonal transformation of the coordinates.
Then δ(2) vanishes and the variation of f ij is reduced to δ(1).
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On the other hand, under a variation of ψ′s, ψi 
→ ψi + δψi, the Poisson
brackets (6.15) transform in the following way:

δψf ij =
(xi − xj)2

ψ2
ij

(�iδψj − �jδψi) + a
(
(xj)2δψi − (xi)2δψj

)
(6.33)

and we conclude that with the choice

δψi = ε�iνi (6.34)

the variation δ(1) is compensated by the variation δψ. The coefficients of the
polynomial � stay the same. In the next subsection we will study relations
between the variation of ψ’s and the polynomial �.

Remark. With ξi as in (6.29), define three operators:

(B−)i
j =

1
ψij

, i �= j and (B−)i
i = −ξi, (6.35)

(B0)i
j =

ψi

ψij
, i �= j and (B0)i

i = −
(

n − 1
2

+ ψiξi

)
, (6.36)

(B+)i
j =

ψ2
i

ψij
, i �= j and (B+)i

i = −((n − 1)ψi + ψ2
i ξi). (6.37)

The operators B+, B0 and B− generate an action of the Lie algebra sl(2),

[B0, B−] = −B−, [B0, B+] = B+, [B+, B−] = −2B0 (6.38)

(to obtain the usual commutation relations for the generators of sl(2),
change the sign of B+).

This is the usual projective action of sl(2) on polynomials f(t) of degree
less than n,

B−: f(t) 
→ f ′(t), B0: f(t) 
→ tf ′(t) − n − 1
2

f(t),

B+: f(t) 
→ t2f ′(t) − (n − 1)t f(t),
(6.39)

written in the basis of the non-normalized Lagrange polynomials, li(t) =∏
s:s �=i

(t − ψs), at points {ψi}, i = 1, 2, . . . , n. Indeed, in the basis {li(t)}, a
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polynomial f(t), deg(f) ≤ n − 1, takes the form f =
∑

f ili, where
f i = li(ψi)−1f(ψi). We have

l′i(t) =
∑
a:a �=i

∏
b:b�=a,i

(t − ψb), so l′i(ψk) =
∏

b:b�=k,i

ψkb = lk(ψk)
1

ψki
, k �= i.

(6.40)

Also,

l′i(t) = li(t)
∑
s:s �=i

1
t − ψs

, so l′i(ψi) = −li(ψi)ξi. (6.41)

Therefore, l′i(t) = −ξili(t) +
∑

k:k �=i

1
ψki

lk(t), which is exactly (6.35). For func-

tions on the set of points {ψi}, the operator of multiplication by t acts as a
diagonal matrix Diag(ψ1, ψ2, . . . , ψn) and (6.36)–(6.37) follow.

Define an involution � on the space of matrices,7

�(Y )i
j = Y i

j , i �= j and �(Y )i
i = −Y i

i , Y ∈ Matn. (6.43)

Let

B(�) = aB+ + bB0 + cB−, B(�): f 
→ �(t)f ′(t) − n − 1
2

�′(t)f(t).

(6.44)

In the basis {li(t)} for B, the generator (6.29) of the invariance group is

A(�) = �(B(�)). (6.45)

Note that the operators �(B−), �(B0) and �(B+) do not form a Lie
algebra.

7The involution � is the difference of two complementary projectors. The involution
� satisfies

�(Y1)�(Y2) + �(Y1Y2) =

⎧
⎪⎨

⎪⎩

�(�(Y1)�(Y2)) + Y1Y2,

�(�(Y1)Y2) + Y1�(Y2),
�(Y1�(Y2)) + �(Y1)Y2

(6.42)

for arbitrary Y1, Y2 ∈ Matn. All other linear dependencies between Y1Y2, �(Y1)Y2,
Y1�(Y2), �(Y1)�(Y2), �(Y1Y2), �(�(Y1)Y2), �(Y1�(Y2)) and �(�(Y1)�(Y2)) are con-
sequences of the three identities (6.42).
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6.3 Normal form

In this subsection we derive a normal form of each individual member of the
Poisson pencil from Proposition 6.1. It depends only on the discriminant
of the polynomial �. When the discriminant of � is different from zero,
the Poisson brackets (6.15) are equivalent to the Poisson brackets defined
by the r-matrix (4.3). When the polynomial � is different from zero but
its discriminant is zero, the Poisson brackets (6.15) are equivalent to the
Poisson brackets defined by the r-matrix (4.27).

Under a variation of the polynomial �, �(t) 
→ (a + δa)t2 + (b + δb)t +
(c + δc), we have for the Poisson brackets (6.17):

δ	f
ij =

u2
ijδa + uijvijδb + v2

ijδc

ψi − ψj
. (6.46)

The variation of � can be compensated by a variation (6.33) of ψ’s if the
coefficients in (xj)2, xixj and (xi)2 in the combination (δψ + δ	)f ij vanish,
which gives the following system:

(xj)2 ⇒ �iδψj − �jδψi

ψ2
ij

+ aδψi +
ψ2

i δa + ψiδb + δc

ψij
= 0, (6.47)

xixj ⇒ −2(�iδψj − �jδψi)
ψ2

ij

− 2ψiψjδa + (ψi + ψj)δb + 2δc

ψij
= 0. (6.48)

A combination 2× (6.47) + (6.48) gives

2aδψi + 2ψiδa + δb = 0. (6.49)

Substituting the expression (6.49) for δψ’s into (6.47) gives

δD(�) = 0 where D(�) = b2 − 4ac. (6.50)

The coefficient in (xi)2 in (δψ + δ	)f ij vanishes due to the anti-symmetry.

Therefore, a necessary condition for a variation of � to be compensated
by a variation of ψ’s is that the discriminant D(�) does not vary. We shall
now see that the discriminant is the unique invariant.

Explicitly, under a shift ψj 
→ ψj + ζ, we have uij 
→ uij + ζvij and
vij 
→ vij (in the notation (6.17)), which produces the following effect on the
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coefficients of the polynomial �:

a 
→ a, b 
→ b + 2ζa, c 
→ c + ζb + ζ2a. (6.51)

A dilatation ψj 
→ λψj produces the following effect on the coefficients of �:

a 
→ λa, b 
→ b, c 
→ λ−1c. (6.52)

The inversion ψj 
→ ψ−1
j accompanied by a change of variables x̃i = ψ−1

i xi

produces the following effect on the coefficients of �:

a 
→ −c, b 
→ −b, c 
→ −a. (6.53)

The set of operators (6.51) and (6.52) generates the action of the affine
group on the space of the polynomials �. The affine group, together with
the inversion (6.53) generates an action8 of so(3) (the spin 1 representation
of sl(2)) on the space of the polynomials � and the classification reduces to
that of orbits. The orbits (in the complex situation) of non-zero polynomials
are of two types: “massive”, D(�) �= 0, or “light-like”, D(�) = 0. Particular
representatives of both types appear in the Poisson brackets, corresponding
to the rime r-matrices (see Remark 1 after Proposition 6.1) and thus to
the r-matrices studied in Subsections 4.1 and 4.3. We obtain the following
statement.

Proposition 6.3. Let �(t) be a non-zero quadratic polynomial.

If the discriminant of � is different from zero, D(�) �= 0, then there exists
a change of the parameters ψi in the Poisson brackets (6.15) which sets �(t)
to bt, �(t) 
→ bt; these are the Poisson brackets corresponding to the r-matrix
rCG (Subsection 4.1).

If the discriminant of � is zero, D(�) = 0, then there exists a change
of the parameters ψi in the Poisson brackets (6.15) which sets �(t) to c,
�(t) 
→ c; these are the Poisson brackets corresponding to the r-matrix bCG
(Subsection 4.3).

The generator A(�) of the invariance group can be easily described in both
cases, D(�) �= 0 and D(�) = 0, in the parameter-free basis (that is, for the
r-matrices rCG and bCG; in the rime basis the generators are given by (2.19)
and (2.22), respectively). For D(�) �= 0 (respectively, D(�) = 0), it coincides
with the matrix of the operator B0 (respectively, B−), as in the remark in

8Let e+ be the generator of the 1-parametric group (6.51) and h the generator of the
1-parametric group (6.52). Denote by I the inversion (6.53). The remaining generator
e− is Ie+I.
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Subsection 6.2, in the basis {ti} of powers of the variable t. This implies
somewhat unexpectedly that for an arbitrary polynomial �(t) the matrices
A(�) and �(A(�)) are related by a similarity transformation. Note that
in the basis {ti} of powers, the operators aB+ + bB0 + cB− and �(aB+ +
bB0 + cB−) are also related by a similarity transformation for arbitrary a, b
and c but here it is obvious: �(aB+ + bB0 + cB−) = aB+ − bB0 + cB−, so
the operator �(aB+ + bB0 + cB−) belongs to sl(2) and moreover lies on
the same (complex) orbit as aB+ + bB0 + cB− with respect to the adjoint
action.

7 Orderable quadratic rime associative algebras

Consider an associative algebra A defined by quadratic relations giving a
lexicographical order. This means that xjxk for j < k is a linear combination
of terms xaxb with a ≥ b and either a > j or a = j and b > k.

We shall say that such algebra A is rime if {a, b} ⊂ {j, k}. In other words,
the relations in the algebra are

xjxk = fjkx
kxj + gjkx

kxk, j < k. (7.1)

We shall classify the strict rime algebras A (that is, the algebras for which
all coefficients fij and gij are different from zero for i < j).

The only possible overlaps for the set of relations (7.1) are of the form
(xjxk)xl = xj(xkxl), j < k < l. The ordered form of the expression
(xjxk)xl is

(xjxk)xl = fjkfjlfkl xlxkxj + fjkfjlgkl xlxlxj + f2
klgjk xlxkxk

+ (fklgjkgkl + f2
kl(fjkgjl + gjkgkl)) xlxlxk

+ (fjkgjlgkl + gjkg
2
kl + fklgkl(fjkgjl + gjkgkl)) xlxlxl. (7.2)

The ordered form of the expression xj(xkxl) is

xj(xkxl) = fjkfjlfkl xlxkxj + f2
jlgkl xlxlxj + fklfjlgjk xlxkxk

+ fklgjl xlxlxk + (gklgjl + fjlgklgjl) xlxlxl. (7.3)

Equating coefficients, we find

xlxlxj : fjkfjlgkl = f2
jlgkl, (7.4)

xlxkxk: f2
klgjk = fklfjlgjk, (7.5)
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xlxlxk: fklgjkgkl + f2
kl(fjkgjl + gjkgkl) = fklgjl, (7.6)

xlxlxl: fjkgjlgkl + gjkg
2
kl + fklgkl(fjkgjl + gjkgkl) = gklgjl + fjlgklgjl.

(7.7)

In the strict situation, equations (7.4) and (7.5) simplify, respectively, to

fjk = fjl for j < k and j < l, (7.8)

fkl = fjl for j < l and k < l. (7.9)

Equations (7.8) and (7.9) imply that fjk’s are all equal,

fjk =: f. (7.10)

The substitution of (7.10) into (7.6) gives (in the strict situation)

(f + 1)
(
gjkgkl + gjl(f − 1)

)
= 0 for j < k < l. (7.11)

Equation (7.7) follows from (7.10) and (7.11).

We have thus two cases:

(i) f = −1 and no extra conditions on gjk’s;
(ii) f �= −1 and

gjkgkl = (1 − f) gjl for j < k < l; (7.12)

1 − f �= 0 since gjk �= 0 and gkl �= 0.

In the case (ii), make an appropriate rescaling of generators, xi 
→ dix
i to

achieve

gi,i+1 = 1 − f for all i = 1, . . . , n − 1. (7.13)

It then follows from equation (7.12) that

gij = 1 − f for all i < j. (7.14)

We summarize the obtained results.

Proposition 7.1. Up to a rescaling of variables, the general orderable
quadratic strict rime algebra has relations
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(i) either of the form

xjxk = −xkxj + gjkx
kxk, j < k, (7.15)

with no conditions on the coefficients gjk;
(ii) or of the form

xjxk = fxkxj + (1 − f)xkxk, j < k, (7.16)

with arbitrary f (it is strict when f �= 0, 1).

By construction, the algebras of types (i) and (ii) possess a basis formed
by ordered monomials and thus have the Poincaré series of the algebra of
commuting variables.

The algebra with defining relations (7.16) is the quantum space for the
R-matrix (3.20). The relations (7.16) can be written in the form

(xj − xk)xk = fxk(xj − xk), j < k; (7.17)

this is a quantization of the Poisson brackets

{xj , xk} = xk(xj − xk), j < k. (7.18)

It would be interesting to know if the algebra with the defining relations
(7.15) admits an R-matrix description.
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Appendix A. Equations

Here we give the list of the equations Y B(R̂)ijk
abc = 0 for the rime matrix

R̂ij
kl = αijδ

i
lδ

j
k + βijδ

i
kδ

j
l + γijδ

i
kδ

i
l + γ′

ijδ
j
kδ

j
l , (A.1)

with a convention αi = αii and βii = γii = γ′
ii = 0.

The rime Ansatz implies that Y B(R̂)ijk
abc can be different from zero only

if the set of lower indices is contained in the set of upper indices. Therefore,
the equations split into two lists: the first one with two different indices
among {i, j, k} and the second one with three different indices.

The full set of equations Y B(R̂)ijk
abc = 0 is invariant under the involution ι,

ι: αi ↔ αi, αij ↔ αji, βij ↔ βji, γij ↔ γ′
ji, (A.2)

for if R̂ is a solution of the YBe then R̂21 = PR̂P is a solution of the YBe
as well. We shall write only the necessary part of the equations, the rest
can be obtained by the involution ι.

The equations Y B(R̂)ijk
abc = 0 with two different indices are:

αijγij(γji + γ′
ij) = 0, (A.3)

αij(βijβji + γijγ
′
ij) = 0 = αij(βijβji − γijγji), (A.4)

αijγij(αij + βji − αj) = 0 = αijγij(αji + βij − αj), (A.5)

βij(α2
i − αijαji − αiβij) + (αi − βij)γijγ

′
ij = 0, (A.6)

(αi − αj)γ2
ij + αijγij(γij + γ′

ji) = 0, (A.7)

αijβijγ
′
ji + (αiβij + γ′

ijγij)γij = 0, (A.8)

(αij − αji − βij + βji)γijγ
′
ji = 0 = (αij − αji − βij + βji)βijβji, (A.9)

αijγ
′
ji(αj − αij) + βjiγij(αi − βji) + γij(βijβji + γjiγ

′
ji) = 0, (A.10)

(α2
i − αi(αji + βji) + βijβji − γijγji)γij

= (α2
i − αi(αij + βij) + βijβji − γ′

ijγ
′
ji)γ

′
ji. (A.11)

The equations with three different indices {i, j, k} are:

(αij − αki − βij + βki)γijγ
′
ki = 0, (A.12)

αij(βijβjk + βikβji − βikβjk) = 0, (A.13)

αij(γijγjk + γik(βjk − βji)) = αij(γijγ
′
kj + γik(βkj − βij)) = 0, (A.14)
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(αijαji − αjkαkj)βik + βijβjk(βij − βjk) = 0, (A.15)

(αi + βik − βji)βjiγik + γikγjiγ
′
ji + αik(γjkγ

′
ji + βjkγ

′
ki) = 0, (A.16)

(αi + αij − αkj − βkj)γijγik − γ2
ikγkj + γij(αikγ

′
ki − γijγ

′
kj) = 0, (A.17)

(αi − βkj)βijγik + (βikβkj + γijγ
′
ij)γik + αikβijγ

′
ki − (βij − βik)γijγ

′
kj = 0,
(A.18)

αij(γijγjk + γik(αjk − αji)) = αji(γijγjk + γik(αjk − αji))

= αij(γijγ
′
kj + γik(αkj − αij)) = 0. (A.19)

Appendix B. Blocks

We analyze here the structure of 4 × 4 blocks of an invertible and skew-
invertible rime R-matrix corresponding to two-dimensional coordinate
planes.

We denote the matrix elements as in (1.5).

The skew-invertibility of a rime R-matrix imposes restrictions on its
entries: in the line R̂i∗

j∗ only two entries can be non-zero, R̂ij
ji and R̂ij

jj ;
in the line R̂∗j

∗i only two entries can be non-zero, R̂ij
ji and R̂ij

ii . Therefore,

αij = 0 ⇒ γijγ
′
ij �= 0 and γijγ

′
ij = 0 ⇒ αij �= 0. (B.1)

Dealing with a single block, this becomes especially clear: to skew invert
a 4 × 4 block is the same as to invert the matrix

⎛
⎜⎜⎝

α1 0 γ12 β12
0 0 α12 γ′

12
γ′

21 α21 0 0
β21 γ21 0 α2

⎞
⎟⎟⎠ , (B.2)

whose determinant is

(α12β12 − γ12γ
′
12)(α21β21 − γ21γ

′
21) − α1α2α12α21. (B.3)

B.1 Solutions

Here we classify solutions which are neither ice nor strict rime. For an ice
R-matrix, α12 �= 0 and α21 �= 0. For a rime R-matrix, αij might vanish and
we consider the cases according to the number of αij ’s which can be zero.
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1. Both α12 and α21 do not vanish, α12α21 �= 0.

If γ12γ21 �= 0 then by (A.3), γ′
12γ

′
21 �= 0. This is strict rime.

If both γ12 = 0 and γ21 = 0 then equation (A.5) implies (αji + βij − αj)
γ′

ji = 0; equation (A.7) implies (αi − αj + αji)γ′
ji = 0 and equation (A.8)

implies βijγ
′
ji = 0. Combining these, we find γ′

ij = 0, this is ice.

It is left to analyze the situation when only one of γ’s is different from
zero, say γ12 �= 0 and γ21 = 0. We have the following chain of implications:

(A.3) ⇒ γ′
12 = 0, (B.4)

(A.5) ⇒
{

β12 = α2 − α21,

β21 = α2 − α12,
(B.5)

(A.4) ⇒ (α2 − α12)(α2 − α21) = 0, (B.6)

(A.6) ⇒
{

(α1 − α2)(α2 − α21)(α1 + α21) = 0,

(α1 − α2)(α2 − α12)(α1 + α12) = 0,
(B.7)

(A.7)&(A.11) ⇒
{

(α1 − α2 + α12)γ12 + α12γ
′
21 = 0,

(α1 − α2 + α21)γ′
21 + α21γ12 = 0.

(B.8)

Equations (A.8), (A.9) and (A.10) are satisfied. By the second line in (B.8),
γ′

21 �= 0.

Now the system of inequalities and equations is invariant under R̂ ↔ R̂21,
so up to this transformation we can solve eq. (B.6) by setting α21 = α2.
Then, by (B.8), γ′

21 = −γ12α2/α1, β’s are expressed in terms of α’s by
(B.5) and the remaining system for α’s reduces to a single equation
(α1 − α2)(α1 + α12) = 0. We obtain two solutions:

1a. α2 = α1; α1, α12 and γ12 are arbitrary non-zero numbers; we rescale
the R-matrix to set α1α12 = 1 and denote q = α1, γ = γ12:

R̂(q;γ) =

⎛
⎜⎜⎝

α1 0 0 0
γ12 0 α12 0

−γ12 α1 α1 − α12 0
0 0 0 α1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

q 0 0 0
γ 0 q−1 0

−γ q q − q−1 0
0 0 0 q

⎞
⎟⎟⎠. (B.9)

The R-matrix (B.9) is semi-simple if (and only if) q + q−1 �= 0 and it is then
an R-matrix of GL(2)-type, Spec(R̂) = {q, q, q, −q−1}. This solution is a
specialization of (1.15)–(1.16).
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1b. α12 = −α1; α1, α2 and γ12 are arbitrary non-zero numbers; we rescale
the R-matrix to set α1α2 = −1 and denote q = α1, γ = γ12/q:

R̂(q;γ) =

⎛
⎜⎜⎝

α1 0 0 0
γ12 0 −α1 0

−γ12α2/α1 α2 α1+α2 0
0 0 0 α2

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

q 0 0 0
qγ 0 −q 0

q−1γ −q−1 q − q−1 0
0 0 0 −q−1

⎞
⎟⎟⎠.

(B.10)

The R-matrix (B.10) is semi-simple if (and only if) q + q−1 �= 0 and it is
then an R-matrix of GL(1|1)-type, Spec(R̂) = {q, q, −q−1,−q−1}.

2. Assume that α12 = 0.

By the invertibility, β12β21 �= 0; by the skew-invertibility, γ12γ
′
12 �= 0;

now equations (A.3) and (A.4) imply β12β21 = γ12γ21, γ′
12 = −γ21 and

γ′
21 = −γ12. Equation (A.5) implies α2 = α1, β12 = α1 − α21 and β21 = α1.

The rest is satisfied and we obtain a solution, in which α1, β12 and γ12
are arbitrary non-zero numbers; we rescale the R-matrix to set α1β12 = −1
and denote q = α1, γ = γ12:

R̂(q;γ) =

⎛
⎜⎜⎝

α1 0 0 0
γ12 β12 0 −α1β12/γ12

−γ12 α1 − β12 α1 α1β12/γ12
0 0 0 α1

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

q 0 0 0
γ −q−1 0 1/γ

−γ q + q−1 q −1/γ
0 0 0 q

⎞
⎟⎟⎠.

(B.11)

The R-matrix (B.11) is semi-simple if (and only if) q + q−1 �= 0 and it is
then an R-matrix of GL(2)-type, Spec(R̂) = {q, q, q, −q−1}. This solution is
a specialization of (1.15)–(1.16).

3. Finally, assume that α12 = α21 = 0.

By the invertibility, β12β21 �= 0; by the skew-invertibility, γ12γ
′
12γ21γ

′
21 �= 0;

now equation (A.7) implies α2 = α1, equation (A.9) implies β21 = β12;
equation (A.8) implies γ12γ

′
12 = γ21γ

′
21 = −α1β12; equation (A.11) implies

that γ12γ21 can take three values: α2
1, β2

12 or (−α1β12).

The rest is satisfied and we obtain a solution, in which α1, β12 and γ12
are arbitrary non-zero numbers; we rescale the R-matrix to set α1β12 = −1
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and denote q = α1, γ = γ12:

R̂(q,ω;γ) =

⎛
⎜⎜⎝

α1 0 0 0
γ12 β12 0 −α1β12/γ12

−α1β12γ12/ω 0 β12 ω/γ12
0 0 0 α1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

q 0 0 0
γ −q−1 0 1/γ

γ/ω 0 −q−1 ω/γ
0 0 0 q

⎞
⎟⎟⎠, (B.12)

where ω = q2, 1, q−2. The R-matrix (B.12) is semi-simple if (and only if)
q + q−1 �= 0 and it is then an R-matrix of GL(1|1)-type, Spec(R̂) = {q, q,
−q−1,−q−1}.

It follows from the analysis above that if γij �= 0 in an invertible and
skew-invertible rime R-matrix then γ′

ji �= 0.

In each of the cases (B.9)–(B.12), the parameter γ �= 0 can be set to an
arbitrary (non-zero) value by a diagonal change of basis. The R-matrices
(B.9)–(B.12) are skew-invertible.

B.2 GL(2) and GL(1|1) R-matrices

1. In dimension 2, except the standard R-matrices of GL-type,

R̂
GL(2)
(q,p) =

⎛
⎜⎜⎝

q 0 0 0
0 0 p 0
0 p−1 q − q−1 0
0 0 0 q

⎞
⎟⎟⎠, R̂

GL(1|1)
(q,p) =

⎛
⎜⎜⎝

q 0 0 0
0 0 p 0
0 p−1 q − q−1 0
0 0 0 −q−1

⎞
⎟⎟⎠,

(B.13)

there are two non-standard one-parametric families of non-unitary
R-matrices of the type GL(1|1): the eight-vertex one,

R̂I
(q) =

1
2

⎛
⎜⎜⎝

q − q−1 + 2 0 0 q − q−1

0 q − q−1 q + q−1 0
0 q + q−1 q − q−1 0

q − q−1 0 0 q − q−1 − 2

⎞
⎟⎟⎠, (B.14)
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and the matrix R̂(II) for which the matrix R = PR̂ can be given an upper-
triangular form,

R̂II
(q,ε) =

⎛
⎜⎜⎝

q 0 0 q + q−1

0 0 εq−1 0
0 εq q − q−1 0
0 0 0 −q−1

⎞
⎟⎟⎠, (B.15)

where ε = ±1.

The R-matrices (B.13), (B.14) and (B.15) are semi-simple if (and only if)
q + q−1 �= 0.

Up to the transformations R̂ ↔ R̂21 and R̂ ↔ R̂t (the transposition), basis
changes and rescalings R̂ 
→ c R̂ (where c is a constant), the complete list
of semi-simple invertible and skew-invertible R-matrices includes (see [16]
for a description of all solutions of the Yang–Baxter equation in two dimen-
sions and [11] for the classification of GL(2)-type R-matrices), in addition
to (B.13)–(B.15), the one-parametric family of Jordanian solutions R̂

(J)
(h1:h2),

R̂
(J)
(h1:h2) =

⎛
⎜⎜⎝

1 h1 −h1 h1h2
0 0 1 −h2
0 1 0 h2
0 0 0 1

⎞
⎟⎟⎠ (B.16)

(the Jordanian R-matrix is of GL(2)-type; it is unitary; the essential para-
meter is the projective vector (h1 : h2)), as well as the permutation-like
solution R̂

(P )
(a,b,c) and one more solution R̂

(′)
(a),

R̂
(P )
(a,b,c) =

⎛
⎜⎜⎝

1 0 0 0
0 0 a 0
0 b 0 0
0 0 0 c

⎞
⎟⎟⎠, R̂

(′)
(a) =

⎛
⎜⎜⎝

0 0 0 a
0 1 0 0
0 0 1 0
a 0 0 0

⎞
⎟⎟⎠. (B.17)

The R-matrix R̂
(P )
(a,b,c) is Hecke when ab = 1 and c = ±1 and it is then stan-

dard (and unitary). The R-matrix R̂
(′)
(a) is Hecke when a2 = 1; it is then

unitary and related to the standard R-matrix by a change of basis with the
matrix

(
1 1

−1 1
)
.
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Without the demand of semi-simplicity, the full list of invertible and skew-
invertible R-matrices contains two more solutions,

R̂
(′′)
(h1:h2:

√
h3)

=

⎛
⎜⎜⎝

1 h1 h2 h3
0 0 1 h1
0 1 0 h2
0 0 0 1

⎞
⎟⎟⎠, R̂(′′′) =

⎛
⎜⎜⎝

1 0 0 1
0 0 −1 0
0 −1 0 0
0 0 0 1

⎞
⎟⎟⎠. (B.18)

The essential parameter for the R-matrix R̂
(′′)
(h1:h2:

√
h3)

is the projective vec-

tor (h1 : h2 :
√

h3). The R-matrix R̂
(′′)
(h1:h2:

√
h3)

is semi-simple if and only if

h2 = −h1 and h3 = −h2
1; it then belongs to the family (B.16) of Jordanian

R-matrices.

2. For the R-matrices from the list above, the transformations R̂ ↔ R̂21,
R̂ ↔ R̂t and R̂ ↔ R̂−1 partly overlap or reduce to parameter or basis
changes. We shall write formulas for the Hecke R-matrices only.

For the standard R-matrix R̂(q,p) := R̂
GL(2)
(q,p) ,

R̂t
(q,p) = R̂(q,p−1), (R̂(q,p))21 = (π ⊗ π)R̂(q,p)(π

−1 ⊗ π−1),

R̂−1
(q,p) = (R̂(q−1,p−1))21,

(B.19)

where π = ( 0 1
1 0 ).

For the standard R-matrix R̂(q,p) := R̂
GL(1|1)
(q,p) ,

R̂t
(q,p) = R̂(q,p−1), (R̂(q,p))21 = (π ⊗ π)R̂(−q−1,p)(π

−1 ⊗ π−1),

R̂−1
(q,p) = (R̂(q−1,p−1))21. (B.20)

For the non-standard GL(1|1) R-matrix R̂(q) := R̂I
(q),

R̂t
(q) = R̂(q), (R̂(q))21 = R̂(q), R̂−1

(q) = (D ⊗ D)R̂(q−1)(D ⊗ D)−1, (B.21)

where D =
(

1 0
0

√
−1

)
.
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For the non-standard GL(1|1) R-matrix R̂(q,ε) := R̂II
(q,ε),

R̂t
(q,ε) = (π̃ ⊗ π̃)(R̂(−q−1,−ε))21(π̃−1 ⊗ π̃−1), R̂−1

(q,ε) = (R̂(q−1,ε))21, (B.22)

where π̃ =
( 0 1

√
−1 0

)
.

For the Jordanian R-matrix R̂(h1:h2) := R̂
(J)
(h1:h2),

R̂t
(h1:h2) = (π ⊗ π)R̂(h2:h1)(π

−1 ⊗ π−1),

(R̂(h1:h2))21 = R̂(−h1:−h2),

R̂−1
(h1:h2) = R̂(h1:h2).

(B.23)

B.3 Riming

We shall now identify the rime R-matrices (B.9)–(B.12).

1. GL(2)

The R-matrices (B.9) and (B.11) are related by a change of basis (the num-
ber in brackets refers to the corresponding equation),

R̂
(B.9)
(q;γ) T ⊗ T = T ⊗ T R̂

(B.11)
(q;γ) , T =

(
q −1/γ
γ 0

)
. (B.24)

In turn, the R-matrix (B.9) is related to the standard R-matrix R̂
GL(2)
(q,q−1) by

a change of basis,

R̂
(B.9)
(q;γ) T ⊗ T = T ⊗ T R̂

GL(2)
(q,q−1), T =

(
q − q−1 0

γ γ

)
. (B.25)

In the unitary situation (that is, q − q−1 =0), the R-matrix R̂
(B.9)
(q;γ) belongs

to the family of Jordanian R-matrices.

Note that for the R-matrices (B.9) and (B.11), the left even quantum
spaces are classical.
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2. GL(1|1)

The R-matrix (B.10) is related to the R-matrix (B.12) with the choice ω =
β2

12,

R̂
(B.10)
(q;γ) T ⊗ T = T ⊗ T R̂

(B.12)
(−q−1,q2;1), T =

(
1 q
0 γq

)
. (B.26)

We have

R̂
(B.12)
(q,1;γ) T ⊗ T = T ⊗ T R̂I

(q), T =
(

1 τ
γ −γτ

)
, where τ2 =

q − 1
q + 1

,

(B.27)

R̂
(B.12)
(q,q2;γ) T ⊗ T = T ⊗ T R̂II

(q,1), T =
(

1 1
γq−1 −γq−1

)
, (B.28)

R̂
(B.12)
(q,q−2;γ) T ⊗ T = T ⊗ T (R̂II

(q,1))21, T =
(

1 1
γq −γq

)
. (B.29)

In the unitary situation (that is, for q = ±1) only equation (B.27) changes;
but now different choices for ω coincide.

3. Since the standard R-matrices are rime as well, we conclude that in
dimension 2, all non-unitary Hecke R-matrices fit into the rime Ansatz.
When h1 = 0, the Jordanian R-matrix R̂

(J)
(0:h2) is rime as well. However,

when h1 �= 0, the Jordanian R-matrix R̂
(J)
(h1:h2) cannot be rimed. Indeed,

assume that h1 �= 0 and let A = (T ⊗ T )R̂(J)
(h1:h2)(T ⊗ T )−1 with some invert-

ible matrix T . Then

(Det(T ))2 A11
12 = h1 (T 1

1 )2 (Det(T ) − h2 T 1
1 T 2

1 ),

(Det(T ))2 A11
21 = −h1 (T 1

1 )2 (Det(T ) + h2 T 1
1 T 2

1 ),

(Det(T ))2 A22
12 = h1 (T 2

1 )2 (Det(T ) − h2 T 1
1 T 2

1 ),

(Det(T ))2 A11
21 = −h1 (T 2

1 )2 (Det(T ) + h2 T 1
1 T 2

1 ).

(B.30)

For an invertible T , the non-rime entries (B.30) of A cannot vanish simul-
taneously.

4. We remark also that all non-standard R-matrices of GL(1|1)-type are
uniformly described by the formula (B.12). The right quantum spaces for



R-MATRICES IN RIME 501

the R-matrix R̂
(B.12)
(q,ω;γ), with γ = 1, read

(R̂ − q1 ⊗ 1ij
kl xkxl = 0 :

⎧⎨
⎩

(q + q−1)xy = x2 + y2,

(q + q−1)xy = ω−1x2 + ωy2;
(B.31)

(R̂ + q−11 ⊗ 1)ij
kl xkxl = 0 :

⎧⎨
⎩

x2 = 0,

y2 = 0.
(B.32)

Using the diamond lemma, it is straightforward to verify that the Poincaré
series of the quantum space (B.31) is of GL(1|1)-type if and only if ω = q−2,
1 or q2.

Appendix C. Rimeless triple

We sketch here a proof that the triple (4.18) cannot be rimed. Relations
xiyj = R̂ij

kly
kxl, where R̂ is the R-matrix for the triple (4.18) with arbitrary

multiparameters, read

xiyi = yixi, i = 1, 2, 3, 4 (C.1)

and

x1y2 =
p

q
y2x1, x2y1 =

1
pq

y1x2 + (1 − q−2)y2x1,

x1y3 =
r

q2 y3x1, x2y3 =
s

pq
y3x2,

x1y4 =
pr

q
y4x1 − rs

q
y3x2, x2y4 =

s

q2 y4x2,

(C.2)

x3y1 =
1
r

y1x3+(1 − q−2)y3x1, x4y1 =
1

pqr
y1x4+(1 − q−2)y4x1+

1
q
y2x3,

x3y2 =
p

qs
y2x3 + (1 − q−2)y3x2, x4y2 =

1
s

y2x4 + (1 − q−2)y4x2,

x3y4 =
pr

qs
y4x3, x4y3 =

s

pqr
y3x4 + (1 − q−2)y4x3.

(C.3)
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The parameter q enters the characteristic equation for R̂, R̂2 = (1 − q−2)R̂ +
q−21 ⊗ 1; p, r and s are the multiparameters. The only needed restriction
is q2 �= 1.

Denote by 〈l(1), l(2)〉 a two-dimensional plane spanned by l(1) and l(2). We
say that two linear forms l(1) and l(2) (in four variables) form a rime pair if,
for the ordering relations (C.1) and (C.2)–(C.3), each product l(α)(x)l(β)(y),
α = 1, 2, β = 1, 2, is a linear combination of l(1)(y)l(1)(x), l(1)(y)l(2)(x),
l(2)(y)l(1)(x) and l(2)(y)l(2)(x). If, in addition, l(α)(x)l(α)(y) is proportional
to l(α)(y)l(α)(x) for α = 1 and 2, we say that l(1) and l(2) form a rime basis
in the plane 〈l(1), l(2)〉. We call a plane rime if it admits a rime basis.

Fork Lemma. Assume that l(1)(x) = x1 + a2x
2 + a3x

3 and l(4)(x) = b2x
2 +

b3x
3 + x4 form a rime pair for some a2, a3, b2 and b3. Then either a3b2 �= 0

and a2 = b3 = 0 or a2b3 �= 0 and a3 = b2 = 0.

If a3b2 �= 0 then

r = s = 1, l(1)(x) = x1 + wx3 and l(4)(x) = x4 +
1

q − q−1
1
w

x2,

w �= 0 is arbitrary. (C.4)

If a2b3 �= 0 then

p =
1
q
, r = s, l(1)(x) = x1 + wx2 and l(4)(x) = x4 +

s

q − q−1
1
w

x3,

w �= 0 is arbitrary. (C.5)

Moreover, if r = s = 1 and p �= q−1 then the rime plane 〈l(1), l(4)〉 admits
a unique, up to rescalings, rime basis {l(1), l(4)}; if p = q−1 and r = s �= 1
then the rime plane 〈l(1), l(4)〉 admits a unique, up to rescalings, rime basis
{l(1), l(4)}; if p = q−1 and r = s = 1 then any two independent linear combi-
nations of l(1) and l(4) form a rime basis in the plane 〈l(1), l(4)〉.

Proof. A straightforward calculation. �

Assume that a rime basis {x̃i} for the triple (4.18) exists, x̃i = Ai
jx

j , the
matrix Ai

j is invertible. Rename the rime variables x̃i in such a way that

the minor
∣∣∣∣

A1
1 A1

4

A4
1 A4

4

∣∣∣∣ is non-zero and A1
1A

4
4 �= 0; normalize the variables x̃1 and
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x̃4 to have A1
1 = A4

4 = 1. The plane 〈x̃1, x̃4〉 is, by definition, rime, with a
rime basis {x̃1, x̃4}.

Suppose that r = s = 1 and p �= q−1 or p = q−1 and r = s �= 1. Then, by
Fork Lemma, the rime basis in the plane 〈x̃1, x̃4〉 is, up to proportionality,
unique, so we know the variables x̃1 and x̃4. The variables x̃1 and x̃2 form a
rime plane. Therefore, if the variable x̃2 contains x4 with a non-zero coeffi-
cient then, by Fork Lemma, x̃2 must be proportional to x̃4, contradicting to
the linear independence of the variables x̃2 and x̃4. Similarly, the variable
x̃2 cannot contain x1 with a non-zero coefficient (the plane 〈x̃2, x̃4〉 is rime).
Thus, x̃2 is a linear combination of x2 and x3. Same for x̃3: it is a linear
combination of x2 and x3. One of the variables, x̃2 or x̃3, say, x̃2, contains
x2 with a non-zero coefficient. Writing rime equations for the plane 〈x̃1, x̃2〉
in the case r = s = 1 and p �= q−1 (for the plane 〈x̃2, x̃4〉 in the case p = q−1

and r = s �= 1) quickly leads to a contradiction.

Therefore, if the relations (C.1) and (C.2)–(C.3) can be rimed then
p = q−1 and r = s = 1. It follows from Fork Lemma that

x̃4 = (q − q−1)c2c3x
1 + c2x

2 + c3x
3 + x4

for some c2 and c3. The planes 〈x̃a, x̃4〉, a = 1, 2, 3, are rime. Subtracting
from the variables x̃a the variable x̃4 with appropriate coefficients, we find
three linearly independent combinations

l(x) = d1x
1 + d2x

2 + d3x
3, (C.6)

each forming a rime pair with x̃4. We must have: l(x)l(y) is a linear com-
bination of l(y)l(x), l(y)x̃4, ỹ4l(x) and ỹ4x̃4. It follows, after a straight-
forward calculation, that d2d3 = 0. Moreover, d2 = d3 = 0 is excluded by
Fork Lemma. In the case d2 �= 0 and d3 = 0 (respectively, d3 �= 0 and d2 =
0), the rime condition implies that d1 = (q − q−1)c2d3 (respectively, d1 =
(q − q−1)c3d2). Thus, only two linearly independent combinations (C.6)
can form a rime pair with x̃4, the final contradiction.
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504–512.

[23] M. A. Semenov-Tyan-Shanskii, What is a classical r-matrix, Funkt-
sional. Analiz i Prilozhen. 17(4) (1983), 17–33.

[24] A. Stolin, On the rational solutions of the classical Yang–Baxter equa-
tion, Ph. D. Thesis, Stockholm, 1991.




