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Abstract

We prove that a Kéhler supermetric on a supermanifold with one
complex fermionic dimension admits a super Ricci-flat supermetric, if and
only if the bosonic metric has vanishing scalar curvature. As a corollary,
it follows that Yau’s theorem does not hold for supermanifolds.

Calabi [1] proposed that if a Ké&hler manifold has vanishing first Chern
class, that is, the Ricci-form obeys R;3(g) = 9;v; — d;v; for a globally defined
1-form v, or, equivalently, a complex n-dimensional Kahler manifold has a
globally defined holomorphic top form €2;, _;., then there exists a unique
metric ¢’ which is a smooth deformation of g and obeys R;;(g') = 0. Yau [2]
proved this theorem for ordinary manifolds.

Recently, there has been a lot of interest in Calabi—Yau supermanifolds
[3-5]; though these papers use only the topological properties of such spaces,
it is interesting to ask whether they also admit Ricci-flat supermetrics. This
paper studies the generalization of Calabi’s conjecture to supermanifolds
with one complex fermionic dimension. We find that such a Kéahler super-
manifold admits a Ricci-flat supermetric if and only if the bosonic metric
has vanishing scalar curvature. For a given scalar-flat bosonic Kéhler met-
ric with Kahler potential Kpqse, the super-extension is unique, and has the
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super Kéahler potential:

o o 92 _
K(z',77,0,0) = Kpose(2',27) + det(WKBose) 66. (1.1)
As complex projective spaces do not admit scalar-flat metrics, but do admit
super Calabi—Yau extensions with one fermionic dimension, it follows that
Yau’s theorem does not hold for supermanifolds.

A supermanifold is a generalization of a usual manifold with fermionic
as well as bosonic coordinates.!  The bosonic coordinates are ordinary
numbers, whereas the fermionic coordinates are grassmann numbers.

Grassmann numbers are odd elements of a grassmann algebra and anti-
commute: §16% = —626! and 0'0' = 0.

On bosonic Kéhler manifolds, the Ricci tensor
R;; = —(In det(g)) ;5- (1.2)

For this to vanish, Indet(g)) (locally) must be the real part of a holomorphic
function, and hence, det(g)) = |f(z)|? for some holomorphic f(z). This can
always be absorbed by a holomorphic coordinate transformation, and hence
a Kahler manifold is Ricci-flat if its Kahler potential K obeys the Monge—
Ampere equation

det(g) = det(K ;;) = 1. (1.3)
On supermanifolds, because elements of g contain grassmann numbers, the

determinant is not well-defined and a new definition of the determinant is
needed. For any non-degenerate supermatrix

A B
where A and D are bosonic and B and C are fermionic,
det(A) det(A — BD~1C)
det(g) = = . 1.
sdet(9) = QoD — A1) det(D) (1.5)

For arbitrary supermatrices X, Y, this definition is consistent with the basic
relation sdet(XY) = sdet(X)sdet(Y). In addition, the supertrace is
defined as

str(g) = tr(A) — tr(D), (1.6)

!More rigorous and technical definitions can be found in the literature (see e.g., [6, 7],
but this simple treatment suffices for our results.
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which is consistent with str(XY') = str(Y X). These two definitions imply
an identity that is useful in simplifying expressions that use grassmann
numbers:

Insdet(g) = strin(g) (1.7)

Simple examples [5] of Kéahler supermanifolds are provided by superpro-
jective spaces, SP(m|n). These can be described in terms of m +n +1
homogeneous coordinates:

(24,22, 2mhet, e (1.8)

related by the equivalence relations z° ~ Az’ and 6 ~ \@*. There are m + 1
coordinate patches where z° # 0 in the i-th coordinate patch. In the i-th
patch, we can introduce inhomogeneous coordinates 7 = 27 /z%. Other exam-
ples include weighted superprojective space, WSP(ki,...,knt1
[l1,...,1,); the coordinates are identified under the equivalence relations
2t~ ANzt and 00 ~ Nigt. A direct calculation of the Ricci-form of the stan-
dard Fubini-Study metric reveals that SP(m|m + 1) are Calabi-Yau and
have a vanishing Ricci-form, whereas WSP(1,...,1|m) are Calabi-Yau but
have a non-vanishing Ricci-form (see below).

We now show that for an arbitrary Kéhler space with only one complex
fermionic coordinate, R;; = 0 implies that the bosonic part of the Kéhler
potential yields a space with a Ricci scalar s = 0. Consider an arbitrary
super Kahler potential K, on a supermanifold M (m|1) with one complex
fermionic coordinate # and m bosonic coordinates. The super Kahler poten-
tial can be written as K = f0 + f100. We use the convention that holomor-
phic derivatives are taken from the left and anti-holomorphic derviatives are
taken from the right. The supermetric g is the block matrix

O+ f00 116
g = ) : (1.9)
e
Its superdeterminant is

det[f0 + (f15 — f1fL/ )60

sdet(g) =

7l
et(/%5) (o BN
— TJ det|6F + g™ f 15 — T] 06|, (1.10)
where g% = ( f%)_l is the inverse metric of the bosonic manifold. Using the

ij
identity (1.7), we can rewrite this as:

det (% , Ll
sdet(g) = et(f’lj)ll + gij(fij — fﬂfﬁ)@é] . (1.11)

f! f!
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On a super Ricci-flat manifold, the superdeterminant can be chosen to be
1. The #-independent term of sdet(g) = 1 implies

fH=det(f3;). (1.12)

The remaining term must vanish on a super Ricci-flat Kahler manifold. This
implies

Fif5
g”<f,%; - f) — FgT (Y] ; =0. (1.13)
Substituting (1.12) implies
g7 In det(f9%) ;= gV Ry; =0, (1.14)

which is precisely the Ricci scalar of the bosonic space with Kahler poten-
tial f°. This proves our main result: a Kihler supermanifold with one
complex fermionic dimension admits a super Ricci-flat extension, if and
only if the bosonic Kahler manifold that it is based on has vanishing scalar
curvature s. Many such bosonic manifolds are known and have been stud-
ied; (see e.g., [9-11]; such spaces all admit supermanifolds with Calabi-Yau
supermetrics. A simple example is the space CP! x ¥, where ¥ is a Rie-
mann surface with a metric with constant curvature chosen so that the total
scalar curvature vanishes. The super Ricci-flat Kéhler potential on such a
space is

00
(1 + 2151)2(1 — 2252)2 '

K = 11’1(1 + 2121) — ln(l — 2222) + (115)

There are many other s = 0 metrics which can be studied this way.

A corollary of our result is that there are many Kéhler supermanifolds with
vanishing first Chern class that do not admit super Ricci-flat supermetrics,
thus proving that Yau’s theorem does not apply to supermanifolds. Clearly,
since no projective space admits an s = 0 metric, no supermanifold with
one complex fermionic coordinate that is based on projective space admits
a super Ricci-flat supermetric. To find our counterexample, it suffices to
prove that such supermanifolds may have vanishing first Chern class.

We now consider the explicit example W SP(1,1|2). The superprojective
space W SP(1,1]2) has a bosonic base which is just CP!, and In det(g) of the
Fubini-Study supermetric is the globally defined scalar, 60/(1 + zz)2. The
gradient of this scalar is a globally defined vector that fulfills the conditions
of the super Calabi—Yau conjecture. Equivalently, the top form dz A df is
a globally defined holomorphic top-form (the superdeterminant of the coor-
dinate transformation z — —1/z, 6 — 0/2% between the two patches that
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cover CP! is 1). As the bosonic part of WSP(1,1]2), CP!, has no metric

with Ricci scalar s = 0, this space does not satisfy the super Calabi—Yau

conjecture. This result can be generalized to WSP(1,...,1|m). These
——

m
spaces have a globally defined vector on them that fulfill the conditions of
the super Calabi—Yau conjecture or equivlently they have globally defined
holomorphic top-forms that exist in every coordinate patch. In [8], it is
observed that WSP(1,1]|2) appears to violate the super Calabi-Yau con-
jecture, though no explicit proof is given, and it is conjectured that W.SP
(1,...,1|m) for m > 2 will satisfy the conjecture; here we have shown that
no WSP(1,...,1lm) admits a super Ricci-flat supermetric.
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