
c© 2005 International Press
Adv. Theor. Math. Phys. 9 (2005) 253–284

U(n) vector bundles on

Calabi–Yau three-folds for string

theory compactifications

Björn Andreas1, Daniel Hernández Ruipérez2
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Abstract

An explicit description of the spectral data of stable U(n) vector bun-
dles on elliptically fibered Calabi–Yau three-folds is given, extending pre-
vious work of Friedman, Morgan and Witten. The characteristic classes
are computed and it is shown that part of the bundle cohomology van-
ishes. The stability and the dimension of the moduli space of the U(n)
bundles are discussed. As an application, it is shown that the U(n)
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bundles are capable to solve the basic topological constraints imposed
by heterotic string theory. Various explicit solutions of the Donaldson–
Uhlenbeck–Yau equation are given. The heterotic anomaly cancellation
condition is analyzed; as a result, an integral change in the number of
fiber wrapping 5-branes is found. This gives a definite prediction for
the number of 3-branes in a dual F -theory model. The net-generation
number is evaluated, showing more flexibility compared with the SU(n)
case.

1 Introduction

Three approaches to construct holomorphic vector bundles, with structure
group the complexification GC of a compact Lie group G, on elliptically
fibered Calabi–Yau three-folds have been introduced in ref. [40]. The para-
bolic bundle approach applies for any simple G. One considers deformations
of certain minimally unstable G-bundles corresponding to special maximal
parabolic subgroups of G. The spectral cover approach applies for SU(n)
and Sp(n) bundles and can be essentially understood as a relative Fourier–
Mukai transformation. The del Pezzo surface approach applies for E6, E7
and E8 bundles and uses the relation between subgroups of G and singular-
ities of del Pezzo surfaces. Various aspects of these approaches have been
further explored in refs. [1, 10, 12, 13, 15, 16, 17, 23, 24, 28, 30, 31, 41, 42, 53].

The present paper continues the discussion of the spectral cover approach.
Our aim is to give an explicit description of the spectral cover data and
characteristic classes of stable U(n) vector bundles V on elliptically fibered
Calabi–Yau three-folds X. As an application, we will study the question
whether the U(n) bundles, which have non-zero first Chern class, are capable
to solve the topological conditions

c1(V ) = 0 (mod 2), ch2(X) = ch2(V ), (1.1)

that have to be imposed [26, 47, 60] for a consistent heterotic string compact-
ification. The first condition guarantees that the bundle V admits spinors,
while the second condition is the known anomaly cancellation condition
which has to be generalized in the presence of 5-branes.

Moreover, in order to have unbroken supersymmetry in four dimensions,
the vector bundle has to satisfy the Donaldson-Uhlenbeck-Yau equation [22].
A solution to this equation is guaranteed [59] if V is a stable and satisfies
the integrability (or zero slope) condition (J denotes the Kähler form on X)∫

X
c1(V ) ∧ J2 = 0. (1.2)
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Due to the zero-slope condition, the search for explicit solutions of equation
(1.1) has been restricted mainly to vector bundles with vanishing first Chern
class (see, for instance [26, 27]). If c1(V ) is non-zero, then one typically has
to work on manifolds for which the dimension of H1,1(X) is greater than or
equal to 2; a condition which is satisfied for the class of elliptically fibered
Calabi–Yau three-folds considered in this paper.

Let us also note, while the importance of vector bundles with vanishing
first Chern class for the heterotic string theory is clear from a physics point
of view, that there is no reason to prefer bundles with vanishing first Chern
class as long as mathematics is concerned. Actually, moduli spaces of stable
or semistable vector bundles (or sheaves) with arbitrary Chern classes have
been constructed. Also most mathematical operations with vector bundles
and sheaves, for instance, twisting by a line bundle or elementary transforms,
do not preserve the vanishing of the first Chern class.

Clearly solving the topological constraints is only a first step to under-
stand heterotic string compactifications based on U(n) vector bundles. Fur-
ther, issues such as the embedding properties of the U(n) structure group
into E8 or the cancellation of an U(1) anomaly arising on the string world
sheet have to be addressed [6].

1.1 Significance for D-branes at large volume

To conclude this section, let us mention a second application of U(n) vector
bundles (or more generally sheaves) on Calabi–Yau manifolds.

It has been shown that D-branes on Calabi–Yau manifolds, in the large
volume limit, can be described by vector bundles (or sheaves) [18, 32–34].
For D-branes wrapping all the Calabi–Yau manifold, supersymmetry
requires that the holomorphic connection A on V has to satisfy

F 1,1
A ∧ J2 =

2π

i
µ(V )IV . (1.3)

Since the U(n) vector bundles (and sheaves) we consider in this paper are
stable, they provide solutions to equation (1.3), in contrast to heterotic
string theory where one has to impose the stronger (zero-slope) condition
µ(V ) = 0.

In particular, vector bundles (or sheaves) with non-zero first Chern class
have been predicted, using the correspondence between the spectrum of D-
branes at large volume and the Gepner point [18], at which a particular
conformal field theory is exactly solvable. The basic strategy which had
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been applied to establish this correspondence relied on a comparison of two
central charges: the central charge corresponding to an integral vector in
the middle cohomology lattice H3(Y, Z) of the mirror manifold Y of a given
Calabi–Yau three-fold and the central charge associated to a D-brane state
represented by a K-theory class and measured by the Mukai vector in the
even cohomology. The comparison of these central charges gives a relation
between the low-energy charges and the topological invariants of the K-
theory class and leads in many cases to a prediction of vector bundles (and
sheaves) that have non-zero first Chern class. For elliptically and K3-fibered
Calabi–Yau manifolds, this correspondence has been worked out in many
examples [7, 25, 36, 48].

Thus finding stable vector bundles (or sheaves) with non-zero first Chern
class gives a direct proof that the corresponding moduli spaces, predicted in
this correspondence, are not empty.

Another advantage to treat vector bundles (or sheaves) as D-branes on
elliptically fibered Calabi–Yau three-folds is that the relative Fourier–Mukai
transformation can be viewed as a fiberwise T-duality transformation [7,
8, 31]. This gives a concrete physical interpretation of the spectral cover
approach for vector bundles.

This paper is organized as follows. In Section 2, we first review the spec-
tral cover approach as originally introduced in ref. [40], then we review the
more general description of vector bundles and sheaves in terms of a relative
Fourier–Mukai transformation. In Section 3.1, we analyze the relation of the
Fourier–Mukai transformation and its inverse, and this leads to a first simple
example of an U(n) vector bundle. It also shows that every stable SU(n)
vector bundle constructed in ref. [40] automatically determines a stable U(n)
vector bundle via the inverse Fourier–Mukai transformation. In Section 3.2,
we compute the characteristic classes of U(n) vector bundles and comment
on the finiteness of vector bundles (and sheaves) in this construction. In
Section 3.3, we derive the precise conditions which the spectral data of U(n)
vector bundle have to satisfy. In Section 3.4, we study the reduction to SU(n)
bundles and recover the known expressions for the spectral data and char-
acteristic classes derived in ref. [40]. In Section 3.5, we review the known
arguments and conditions for the stability of vector bundles which have
been constructed in the spectral cover approach, or equivalently, by a rela-
tive Fourier–Mukai transformation. This section also prepares the analysis
of the Donaldson–Uhlenbeck–Yau equation presented in Section 4.1. In Sec-
tion 3.6, we compute the bundle cohomology and show that the U(n) bundles
have no sections which is relevant for the evaluation of the net-number of
generations in a heterotic string compactification. In Section 3.7, we discuss
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the moduli of U(n) vector bundles. In Section 4.1, we show that U(n) bun-
dles are capable to solve the Donaldson–Uhlenbeck–Yau equation and give
several explicit examples illustrating that. In Section 4.2, we discuss the
anomaly constraint and find a change in the number of 5-branes wrapping
the elliptic fiber. This leads to a definite prediction for the number of 3-
branes required for a consistent F -theory compactification. In Section 4.3,
we give the expression for the net-number of generations which receives a
new term compared to the SU(n) case.

There are three appendices. In Appendix A, we provide some back-
ground on the Hermite–Einstein equations. In Appendix B, we review the
Grothendieck–Riemann–Roch computation which led to the characteristic
classes of U(n) vector bundles in Section 3.2. In Appendix C, we give a
simplified derivation of the net-generation number for SU(n) vector bundles
which are constructed via the inverse Fourier–Mukai transformation. The
same result has been obtained in ref. [24] using Leray spectral sequence
technics.

2 Review

In this section, we review the basic strategy of Friedman et al. [40] which
led to the construction of vector bundles on elliptically fibered Calabi–Yau
three-folds X with a section σ. In the following, we will denote by E a single
elliptic curve, i.e., a 2-torus with a complex structure and a distinguished
point p, the identity element in the group law on E. We are interested in
G-bundles on E and X. We also recall the coherent description of vector
bundles (and sheaves) in terms of a relative Fourier–Mukai transformation
which will be our essential tool in this paper.

2.1 SU(n) bundles on E

An SU(n) bundle on E is a rank n vector bundle V of trivial determinant.
Any SU(n) vector bundle V on E can be expressed, as a smooth bundle,
in the form V = ⊕n

i=1Li, where Li are holomorphic line bundles.1 Note
that, as a holomorphic vector bundle, V has only a filtration with quotients
given by the Li’s. The SU(n) condition is imposed if ⊗n

i=1Li is the trivial

1In fact, Atiyah [11] showed for a smooth vector bundle V on E and G = GLr(C) that
V = ⊕n

i=1Li as smooth bundles, where each Li is indecomposable and of degree zero.
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line bundle. Further, V is semistable if all Li are of degree zero. The
Li are uniquely determined up to permutations and further determine a
unique point qi in E; conversely, every qi in E determines a degree zero line
bundle Li = O(qi − p) on E. Further, a semistable smooth SU(n) bundle
V = ⊕n

i=1Li is determined due to the additional condition
∑n

i=1(qi − p) = 0
(as divisors). The qi can be realized as roots of

s = a0 + a2x + a3y + a4x
2 + a5x

2y + · · · + anxn/2 = 0, (2.1)

and give a moduli space of bundles P
n−1, as stated by a theorem of Looijenga

[50, 51]. Note that if n is odd, the last term in s = 0 is given by anx(n−3)/2y.
The roots are determined by the coefficients ai only up to an overall scale
factor so that the ai become the homogeneous coordinates on P

n−1.

2.2 SU(n) bundles on X

The basic strategy of Friedman et al. [40] to construct SU(n) vector bundles
on X is a two-step process. First, they use the bundle description of SU(n)
bundles on E and then “glue” the bundle data together over the base mani-
fold B of X. More precisely, the variation of the n points in the fiber over B
leads to a hypersurface C embedded in X, i.e., C is a ramified n-fold cover
— the spectral cover — of the base. The line bundle on X determined by
C is given by OX(C) = OX(nσ) ⊗ M, where σ denotes the section and M
is a line bundle on X whose restriction to the fiber is of degree zero. It fol-
lows that the cohomology class of C in H2(X, Z) is given by [C] = nσ + η,
where η = c1(M). Let πC : C → B and denote by Eb the general elliptic
fiber over a point b in B, then we have C ∩ Eb = π−1

C (b) = q1 + · · · + qn and
σ ∩ Eb = p. Now, each qi determines a line bundle Li of degree zero on Eb

whose sections are the meromorphic functions on Eb with first-order poles
at qi and vanishing at p. The restriction of V to Eb is then V|Eb

= ⊕n
i=1Li as

smooth bundles. As b moves in the base, the Li move in one-to-one corre-
spondence with the n points qi above b. This specifies a unique line bundle
L on C such that πC∗L = V|B. Thus in addition to C one has to specify a
line bundle L on C to completely specify a rank n vector bundle on X.

This procedure leads typically to U(n) vector bundles and will be our
starting point. In ref. [40], the authors are interested in SU(n) vector bun-
dles. Therefore, they impose two further conditions: M if restricted to the
fiber is the trivial bundle and L has to be specified such that c1(V ) = 0. For
the study of U(n) vector bundles, we shall keep the first condition.
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2.3 Coherent description via Fourier–Mukai transform

Fourier–Mukai transformations have been introduced originally in ref. [56]
as a tool for studying coherent sheaves on abelian varieties (or complex tori)
and the corresponding derived categories. The transform has been extended
later to other classes of manifolds, the first example being a Fourier–Mukai
transformation for certain K3 surfaces [12]. Also the relative situation for
families of abelian varieties has been analyzed in ref. [57]. After that the
Fourier–Mukai transformation has been studied in many references, both in
the absolute and the relative cases [13, 14, 16, 17, 46, 53, 62] and in special
connection with mirror symmetry and D-branes [5, 7, 8, 10] or heterotic/M-
theory [30, 31].

Now a coherent description of V can be given using a relative Fourier–
Mukai transform [7, 8, 10, 13, 16]. Note that any sheaf constructed as a rel-
ative Fourier–Mukai transformation in terms of spectral data has trivial
restriction to the fibers, so that it may be considered as a parametrization
of SU(n) bundles. Moreover, sheaves on an elliptic fibrations having degree
zero on the fibers admit a spectral cover description and can be reconstructed
by the inverse Fourier–Mukai transformation from their spectral data. This
is the reason why the condition of vanishing degree on the fibers is usually
imposed, an assumption we will adopt also in this paper.

For the description of the Fourier–Mukai transform, it is appropriate to
work on X ×B X̃, where X̃ is the compactified relative Jacobian of X. X̃
parameterizes torsion-free rank 1 and degree zero sheaves on the fibers of
X → B and it is actually isomorphic with X so that we can identify X̃ with
X. We have a diagram:

X ×B X
π2 ��

π1

��

X

π

��
X

π �� B

(2.2)

and the Poincaré sheaf

P = O(∆) ⊗ O(−π∗
1σ) ⊗ O(−π∗

2σ) ⊗ q∗K−1
B (2.3)

normalized to make P trivial along σ × X̃ and X × σ. Here q = π1 ◦ π1 =
π2 ◦ π2 and O(∆) is the dual of the ideal sheaf of the diagonal, which is
torsion-free of rank 1.
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We define two Fourier–Mukai transforms on the derived category D(X)
of bounded complexes of coherent sheaves on X in the usual way

Φ(G) = Rπ1∗(π∗
2(G) ⊗ P) ,

Φ̂(G) = Rπ1∗(π∗
2(G) ⊗ P̂) .

(2.4)

Here
P̂ = P∗ ⊗ q∗K−1

B . (2.5)

We can also define the Fourier–Mukai functors Φi and Φ̂i, i = 0, 1, in terms
of single sheaves V by taking Φi(V ) and Φ̂i(V ) as the ith cohomology sheaves
of the complexes Φ(V ) and Φ̂(V ), we have

Φi(V ) = Riπ1∗(π∗
2(V ) ⊗ P) ,

Φ̂i(V ) = Riπ1∗(π∗
2(V ) ⊗ P̂) .

(2.6)

As it is usual, we say that a sheaf is WITj with respect to Φ (or Φ̂) if
Φj(F ) = 0 (or Φ̂j(F ) = 0) for j �= i.

Further, we note that one obtains for any complex G (or any element in
the category) an invertibility result

Φ(Φ̂(G)) = G[−1] , Φ̂(Φ(G)) = G[−1] . (2.7)

Concerning the meaning of the −1 shift, we first recall that if we denote
by Gi the cohomology sheaves of a complex G, the cohomology sheaves of
the shifted complex G[n] are G[n]i = Gi+n; then if we consider a complex
given by a single sheaf V located at the “degree zero” position. Φ̂(Φ(V )) =
V [−1] means that the complex Φ̂(Φ(V )) has only one cohomology sheaf,
i.e., V , but located at “degree 1”, [Φ̂(Φ(V ))]1 = V, [Φ̂(Φ(V ))]i = 0, i �= 1.
When Φ0(V ) = 0 the complex Φ(V ) reduces to a single sheaf, i.e., the unique
Fourier–Mukai transform Φ1(V ), but located at “degree 1”, that is, SΦ(V ) =
Φ1(V )[−1] and the complex Φ̂(Φ(V )) = Φ̂(Φ1(V ))[−1] has two cohomology
sheaves, one at degree 1, given by Φ̂0(Φ1(V )), and one at degree 2, given by
Φ̂1(Φ1(V )). So one has Φ̂0(Φ1(V )) = V and Φ̂1(Φ1(V )) = 0.

3 U(n) vector bundles on elliptic Calabi–Yau
three-folds

In what follows, we require that our elliptically fibered Calabi–Yau three-
fold π : X → B has a section σ (in addition to the smoothness of B and
X). This (and the Calabi–Yau condition) restricts the base B to be a
Hirzebruch surface (Fm, m ≥ 0), a del Pezzo surface (dPk, k = 0, . . . , 8), a
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rational elliptic surface (dP9), blown-up Hirzebruch surfaces or an Enriques
surface [30, 55].

From equation (2.6), it follows that we can construct vector bundles on
elliptically fibered Calabi–Yau three-folds X using either a relative Fourier–
Mukai transform or its inverse. In both cases, one starts from the spectral
data (C, L), where C is a surface in X and L is a torsion-free rank 1 sheaf
on C.2 We take C = nσ + π∗η, more precisely C ∈ |nσ + π∗η| with η some
effective curve in B. So we have two possibilities to define a sheaf on X

V = Φ0(i∗L), πC∗L = σ∗V, (3.1)

W = Φ̂0(i∗L), πC∗L = σ∗W ⊗ KB, (3.2)

where i : C ↪→ X is the closed immersion of C into X. When C is irreducible
and L is a line bundle, the first definition agrees with the description of
vector bundles given by Friedman et al. which we reviewed above.

3.1 Relation of V to W

We will now show that there is a relation between V and W . For this, let us
write τ : X → X for the elliptic involution on X → B. We can consider the
induced involution on X ×B X given by τ(x, y) = (τ(x), y) = (−x, y), where
x and y are points of X such that π(x) = π(y). One easily sees that π1 ◦ τ =
τ ◦ π1, τ ◦ π2 = π2 and τ̂∗P = P∗. If we denote by q = π1 ◦ π = π1 ◦ π the
projection of X ×B X onto B, then for any object G in the derived category
we have

Φ̂(G) = Rπ1∗(π∗
2G ⊗ P∗ ⊗ q∗K−1

B ) = Rπ1∗(τ∗(π∗
2G ⊗ P)) ⊗ π∗K−1

B

= τ∗(Rπ1∗(π∗
2G ⊗ P)) ⊗ π∗K−1

B = τ∗Φ(G) ⊗ π∗K−1
B

(3.3)

by base change in the derived category [44]. Then in our current situation
we get

W = τ∗V ⊗ π∗K−1
B . (3.4)

So if we start with a vector bundle V (as given in ref. [40]) with vanishing
first Chern class, the new bundle we obtain has non-zero first Chern class
and gives our first simple example of an U(n) vector bundle.

2For reducible C, a sheaf is torsion-free if it is pure of dimension 1. A pure sheaf of
dimension i is a sheaf whose support has dimension i and it has no subsheaves concentrated
on smaller dimension.
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3.2 Characteristic classes of V and W

The goal of this section is to compute the characteristic classes of V and W .

3.2.1 Computation of ch(V )

In order to do so, we first recall from Appendix B the formulae giving the
topological invariants of both the Fourier–Mukai transform and the inverse
Fourier–Mukai transform of a general complex G in the derived category.
Using those formulae we find that, if we start with the sheaf E = i∗L with
Chern characters given by

ch0(i∗L) = 0,

ch1(i∗L) = nσ + π∗η,

ch2(i∗L) = σπ∗ηE + aEF,

ch3(i∗L) = sE ,

(3.5)

with ηE , η ∈ H2(B), then the Chern characters of the Fourier–Mukai trans-
form V = Φ0(i∗L) of i∗L are given by

ch0(V ) = n,

ch1(V ) = π∗
(

ηE − 1
2
nc1

)
,

ch2(V ) = (−π∗η)σ +
(

sE − 1
2
π∗ηEc1σ +

1
12

nc2
1σ

)
F,

ch3(V ) = −aE +
1
2
σc1π

∗η.

(3.6)

3.2.2 Computation of ch(W )

The characteristic classes of W can be determined directly from equation
(3.4) using two facts. First, the Chern character is multiplicative, then
applying to our situation we get ch(W ) = ch(τ∗V ) ch(π∗K−1

B ); second, we
note that all the sheaves E we are considering (including V , i∗L and W )
have Chern characters of the type (B.5). All those classes are invariant
under τ∗ because both the fiber and the section are so; it follows that
chi(τ∗E) = chi(E) for every i ≥ 0. Thus we get ch(W ) = ch(V ) ch (π∗K−1

B ).
Now because B is a surface we have the relations (π∗a)3 = π∗(a3) = 0 and
(π∗ω)π∗a = π∗(ωa) = 0, where a ∈ H2(B) and ω ∈ H4(B); using these
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we find

ch0(W ) = n,

ch1(W ) = π∗
(

ηE +
1
12

nc1

)
,

ch2(W ) = (−π∗η)σ +
(

sE +
1
2
π∗ηEc1σ +

1
12

nc2
1σ

)
F,

ch3(W ) = −aE − 1
2
σc1π

∗η + nσc2
1.

(3.7)

The above formulae follow also directly from Appendix B taking into account
that W = Φ̂0(i∗L) equation (3.2). Note that the number of moduli of W
agrees with the number of moduli of the vector bundle V since in general
twisting a vector bundle by a line bundle N does not change the dimension
of the moduli space of V as h1(End(V )) = h1(End(V ⊗ N)).

3.2.3 Remark on finiteness of sheaves

Having computed ch(V ) and ch(W ), one could ask whether there are bounds
on possible values of chi. This type of question fits into a recently initiated
program which studies the vacuum selection problem of string/M-theory
from a statistical point of view [9, 29, 35, 37, 38]. A partial answer can be
given as a consequence of theorems by Maruyama [54] which characterize
the boundedness of families of torsion-free sheaves. Maruyama proved (see
[[54], Corollary 4.9]) that if we have a smooth projective complex manifold
X of dimension r with a polarization H and fix n ∈ Z, c1 the numerical
class of a divisor on X and a ∈ Z, then the set Ci(n, c1, a) of the algebraic
equivalence classes of ith Chern classes ci(V ) of all semistable vector bundles
E on X with c1(V ) = c1, rk(V ) = n and c2(V )Hr−2 ≤ a is finite for all
2 ≤ i ≤ r. In particular, if X is a three-dimensional Calabi–Yau manifold,
and we fix n, c1 and c2, then the number of possible values of c3(V ) for a
semistable vector bundle V of rank n on X with c1(V ) = c1 and c2(V ) = c2
is finite.

3.3 Fixing c1 of the spectral line bundle

One should note that ηE , aE and sE are not completely arbitrary. One needs
to ensure that there exists a line bundle L on C whose Chern characters are
given by equation (3.5) which we will determine now. We also given an
explicit expression for c1(L).
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For this, we analyze the Grothendieck–Riemann–Roch theorem applied
to the n-sheeted cover πC : C → B which gives

ch(πC∗L) Td(B) = πC∗(ch(L) Td(C)) (3.8)

from which we derive

c1(σ∗V ) +
n

2
c1(B) = πC∗

(
c1(L) +

c1(C)
2

)
. (3.9)

For (1, 1) classes α on B we have πC∗π∗
Cα = nα and σ∗ applied to V gives

c1(σ∗V ) = ηE − (1/2)nc1(B), so we get

πC∗(c1(L)) = πC∗

(
−c1(C)

2
+

π∗
CηE

n

)
, (3.10)

which gives

c1(L) = −c1(C)
2

+
π∗

CηE

n
+ γ , (3.11)

where γ ∈ H1,1(C, Z) is some cohomology class satisfying πC∗γ = 0 ∈
H1,1(B, Z). The general solution for γ has been derived in ref. [40] and
is given by γ = λ(nσ|C − π∗

Cη + nπ∗
Cc1(B)) with λ some rational number

which we will specify below. Let us also note that γ restricted to S = C ∩ σ
is given by γ|S = −λπ∗η(π∗η − nπ∗c1(B))σ.

3.3.1 Specification of ηE

So far we assumed that ηE is an element of H2(B). We need to find now an
ηE such that both c1(V ) and c1(L) are integer classes; otherwise, we had to
impose conditions directly on n or c1(B). It turns out that there are many
solutions for ηE satisfying the integer class condition. For our purposes,
it will be sufficient to restrict to the case ηE = (n/2)β with β ∈ H2(B, Z).
This is in agreement with ch2(i∗L) being an element of H4(X, Q) and if
we reduce to the SU(n) case by setting ηE = (1/2)nc1(B), we find that
equation (3.11) reduces to the expression for c1(L) of SU(n) bundles derived
in ref. [40].

For ηE = (1/2)nβ we find that c1(V ) is always an integer class if n is
even. If n is odd, we have to impose the additional constraint β = c1(B)
(mod 2).

The conditions for the right-hand side of equation (3.11) to be an inte-
ger class are given for U(n) bundles with n odd by λ = m + 1/2 and β =
nc1(B) (mod 2) (with m ∈ Z). Thus if n is odd, we have to find simultane-
ously solutions to β = c1(B) (mod 2) and β = nc1(B) (mod 2). This can be
solved since (n − 1)c1(B) = 0 (mod 2) and (n − 1) is even.
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For U(n) bundles with n even we find two solutions; we can either work
with λ = m and η = β (mod 2) or with λ = m + 1/2 and β = nc1(B)
(mod 2).

Let us briefly discuss how the conditions change if we modify ηE slightly.
For ηE = nβ we find again c1(V ) is always an integer class if n is even.
However, if n is odd we find c1(B) = 0 (mod 2) which restricts the choice of
B. There are two solutions for n even such that c1(L) is an integer class:
λ = m and η = 0 (mod 2) or λ = m + 1/2. If n is odd, we find λ = m + 1/2
and c1(B) = 0 (mod 2).

3.3.2 Specification of aE and sE

Having fixed c1(L) we can now go on and determine aE and sE in terms of
ηE . For this, apply the Grothendieck–Riemann–Roch theorem to i : C → X
which gives ch(i∗L) Td(X) = i∗(ch(L) Td(C)). We note that i∗(1) = C and
using the fact that i∗(c1(B)γ) = 0 a simple computation gives

aE = γ|S +
1
n

ηEη,

sE =
1
24

nc2
1 +

1
2n

η2
E − ω,

(3.12)

where ω is given by

ω = − 1
24

c1(B)2(n3 − n) +
1
2
(
λ2 − 1

4
)
nη(η − nc1(B)). (3.13)

3.4 Reduction to SU(n)

To make contact with the work of Friedman et al. [40], let us describe the
reduction from U(n) to SU(n) and thus recover the second Chern class of an
SU(n) vector bundles originally computed in ref. [40] and the third Chern
class evaluated in refs. [1, 23, 24].

In order to describe the reduction to SU(n), we specify the class ηE = 1
2nc1

giving c1(V ) = 0. If we insert this into equation (3.12), we find the new
expressions for aE and sE which are given by

aE = γ|S +
1
2
c1η,

sE =
1
6
nc2

1σ − ω ,

(3.14)
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and with equation (3.6) we find the Chern classes of an SU(n) vector bundle
V on the elliptic fibered Calabi–Yau three-fold

r(V ) = n, c1(V ) = 0, c2(V ) = π∗(η)σ + π∗(ω), c3(V ) = −2γ|S

(3.15)

in agreement with [1, 23, 24, 40].

As we were enforcing c1(V ) = 0 by setting ηE = (1/2)nc1, one could ask
are there other possibilities to reduce U(n) to SU(n) vector bundles on X
such that the Chern classes differ from equation (3.15). For this, recall that
it is often possible to twist a given vector bundle with non-zero first Chern
class such that the resulting bundle has zero first Chern class. Assume
we have V with c1(V ) �= 0. If we twist as W = V ⊗ N where N is a line
bundle on X, we have c1(W ) = c1(V ) + nc1(N) (with n the rank of V ).
Then c1(W ) = 0 implies that c1(V ) = −nc1(N). A natural choice for N
would be to take a root of the inverse of the determinant line bundle, i.e.,
c1(N) = −1/nc1(V ) = c1(det V −1/n)), assuming that it exists.

Since all our bundles have vanishing first Chern class on the fibers, this
implies that the restrictions of N to the fibers have also vanishing first
Chern class, so they are trivial (the general fiber being an elliptic curve).
Thus N = π∗L for some line bundle L on B.

Using c1(V ) = π∗(ηE − 1/2nc1(B)), the equation c1(V ) + nc1(N) = 0
reduces to π∗(nc1(L) + ηE − 1/2nc1(B)) = 0 and using ηE = 1/2nβ we get
c1(L) + 1/2β − 1/2c1(B) = 0. This equation can be solved for L if 1/2(β −
c1(B)) is an integer class, and if so, the space of solutions is isomorphic
to the Jacobian (or Picard scheme) of B. Thus if c1(L) is represented by
an integer class, all twists lead to SU(n) vector bundles with characteristic
classes given by equation (3.15).

3.5 Stability of V and W

The discussion of stability of V and W depends on the properties of the
defining data C and L. If C is irreducible and L a line bundle over C, then
V and W will be vector bundles stable with respect to

J = εJ0 + π∗HB, ε > 0, (3.16)

if ε is sufficiently small (cf. [42, Theorem 7.1] where the statement is proven
under the additional assumption that the restriction of V to the generic fiber
is regular and semistable). Here J0 refers to some arbitrary Kähler class on
X and HB a Kähler class on the base B. It implies that the bundle V can
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be taken to be stable with respect to J while keeping the volume of the
fiber F of X arbitrarily small compared to the volumes of effective curves
associated with the base. That J is actually a good polarization can be seen
by assuming ε = 0. Now one observes that π∗HB is not a Kähler class on
X since its integral is non-negative on each effective curve C in X, however,
there is one curve, the fiber F , where the integral vanishes. This means that
π∗HB is on the boundary of the Kähler cone and to make V stable, one has
to move slightly into the interior of the Kähler cone, i.e., into the chamber
which is closest to the boundary point π∗HB.

Also we note that although π∗HB is in the boundary of the Kähler cone,
we can still define the slope µπ∗HB

(V ) with respect to it. Since (π∗HB)2 is
some positive multiple of the class of the fiber F , semistability with respect
to π∗HB is implied by semistability of the restrictions V|F to the fibers.
Assume that V is not stable with respect to J , then there is a destabiliz-
ing subbundle V ′ ⊂ V with µJ(V ′) ≥ µJ(V ). But semistability along the
fibers says that µπ∗HB

(V ′) ≤ µπ∗HB
(V ). If we had equality, it would fol-

low that V ′ arises by the spectral construction from a proper sub-variety
of the spectral cover of V , contradicting the assumption that this cover is
irreducible. So we must have a strict inequality µπ∗HB

(V ′) < µπ∗HB
(V ).

Now taking ε small enough, we can also ensure that µJ(V ′) < µJ(V ) thus
V ′ cannot destabilize V .

3.5.1 Generalization to reducible spectral covers

Let us now consider the case that C is flat over B. If C is not irreducible,
then there may exist line bundles such that V = Φ0(i∗L) is not stable with
respect to the polarization given by equation (3.16); however, the condition
one has to impose to the spectral data in order that V is a stable sheaf on
X with respect to equation (3.16) has been derived in ref. [5]. Actually, if
C is flat over B and L is a pure dimension sheaf on C, then V is stable
with respect to J̄ = ε̄σ + π∗HB for sufficiently small ε̄ if and only if i∗L is
stable with respect to this polarization. Let us note here that stability with
respect to equation (3.16) for ε sufficiently small is equivalent to stability
with respect to J̄ for sufficiently small ε̄ if we take J0 = aσ + bπ∗HB for
some positive a and b. Furthermore, note that if C is irreducible and L is a
line bundle, the latter condition is automatically satisfied.

Moreover, V and W are simultaneously stable with respect to J̃ . This is
not a surprise because from chi(τ∗V ) = ch(V ) we know that V and τ∗V are
simultaneously stable and from W = τ∗V ⊗ π∗K−1

B we know that stability
is the same for W and τ∗V .
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Note that assuming C is flat and L a pure dimension 1 sheaf, one finds
a larger class of stable sheaves V (and W ) than originally constructed in
ref. [40], because we do not need an irreducible spectral cover and that the
restriction of the bundle (sheaf) to the generic fiber is regular.

3.6 Bundle cohomology and index computation

In this section, we will show that the U(n) bundles constructed via a relative
Fourier–Mukai transform have no sections. This simplifies the index of the
Dirac operator with values in the respective vector bundle which is related
to the net-number of generations of chiral fermions in heterotic string com-
pactifications.

To begin with let us recall, for stable SU(n) vector bundles the Riemann–
Roch theorem reduces to h2(X, V ) − h1(X, V ) = 1/2c3(V ) since h0(X, V )
and by Serre duality h3(X, V ) vanish. Otherwise, a non-zero element of
H0(X, V ) would define a mapping from the trivial line bundle into V but
since the trivial line bundle has rank 1, this would violate the slope inequal-
ity. Since V ∗ is stable as well, Serre duality gives h3(X, V ) = h0(X, V ∗) = 0.

In case of vector bundles E with arbitrary first Chern class, the index is
given by

3∑
i=0

(−1)i dim H i(X, E) =
∫

ch3(E) +
1
12

c2(X)c1(E) . (3.17)

Let us now examine the left-hand side of equation (3.17) and show that
h0(X, E) = h3(X, E) = 0 for E given by a relative Fourier–Mukai transfor-
mation. That is, we assume that the restriction of E to the fibers are
semistable of degree zero. We also assume that the rank of E is bigger
than 1. Then the spectral cover of E is different from the section σ because
if it were σ, then Φ1(E) = σ∗(N) for N a line bundle on B and one would
find that E = π∗(N ⊗ K−1

B ).

Since both E and the structure OX sheaf are WIT1 with respect to Φ with
transforms Φ1(E) = i∗L, Φ1(OX) = σ∗KB, where σ : B → X is the section,
we can apply the Parseval theorem for the relative Fourier–Mukai transform.

Assume that we have sheaves F and Ḡ that are, respectively, WITh and
WITj for certain h and j. The Parseval theorem says that one has

Exti
X(F, G) = Exth−j+i

X (Φh(F ), Φj(G)) , (3.18)
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thus giving a correspondence between the extensions of F and G and the
extensions of their Fourier–Mukai transforms. The proof is very simple,
and relies on two facts. The first one is that the extension groups can be
computed in terms of the derived category, namely

Exti
X(F, G) = HomD(X)(F, G[i]). (3.19)

The second one is that the Fourier–Mukai transforms of F and G in the
derived category D(X) are Φ(F ) = Φh(F )[−h] and Φ(G) = Φj(G)[−j].
Now, since the Fourier–Mukai transform is an equivalence of categories,
one has

HomD(X)(F, G[i]) = HomD(X)(Φ(F ), Φ(G[i]))

= HomD(X)(Φ
h(F )[−h], Φj(G)[−j + i])

= HomD(X)(Φ
h(F ), Φj(G)[h − j + i]) (3.20)

so that equation (3.19) gives the Parseval theorem equation (3.18). Thus
we obtain (cf. [7] or [5])

Exti
X(E, OX) = Exti

X(i∗L, σ∗(KB)),

Exti
X(OX , E) = Exti

X(σ∗(KB), i∗L), i ≥ 0.
(3.21)

Then we have

H0(X, E) = HomX(OX , E) = HomX(σ∗(KB), i∗L)

= HomC(i∗(σ∗KB), L) = 0, (3.22)

because i∗(σ∗KB) is concentrated on S = C ∩ σ and L is a line bundle on
C. Analogously we get

H3(X, E) = HomX(E, OX) = HomX(i∗L, σ∗(KB))

= HomB(σ∗(i∗L), KB) = 0 , (3.23)

because σ∗(i∗L) is concentrated on S and KB is a line bundle on B.

The same reasoning applies to Φ̂, so that both V and W constructed in
equations (3.1) and (3.2) as well as τ∗V have vanishing groups H0 and H3.

3.7 Moduli of U(n) vector bundles

In this section, let us briefly discuss whether the expression for the number of
moduli of a rank n vector bundle constructed in the spectral cover approach
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depends on the first Chern class or not. In case of an X being a K3 surface
it is known that the number of bundle moduli is given by

h1(X, End(V )) = 2nc2(V ) − (n − 1)c1(V )2 − 2n2 + 2, (3.24)

which follows from a Riemann–Roch index computation [49] and shows the
dependence on c1(V ). This formula can also be derived using the spectral
cover approach. For this, let us recall that if V is given by the spectral data
(C, L) we get [7, 8]

h1(X, End(V )) = h1(OC) + h0(NC) = C2 + 2, (3.25)

where NC denotes the normal bundle of the spectral cover in X and the
last equality follows from h0(NC) = h0(KC) (because X = K3), which using
Serre duality is equal to h1(OC). A Grothendieck–Riemann–Roch index
computation gives for ch1(i∗L) = C the following expression [46]

C = −c1(V ) + rσ − (ch2(V ) − c1(V )σ)F, (3.26)

and using equation (3.25) we recover equation (3.24).

Now in case of X being a Calabi–Yau three-fold the spectral cover C does
not depend on c1(V ) and so we expect the number of bundle moduli of an
U(n) vector bundle to agree with the corresponding number of moduli of an
SU(n) vector bundle. This number is related to the number of parameters
specifying the spectral cover C and the dimension of the space of holomor-
phic line bundles L on C determines the moduli. The first number is given
by the dimension of the linear system |C| = |nσ + η|. The second number is
given by the dimension of the Picard group Pic(C) = H1(C,O∗

C) of C. One
thus expects the moduli of V to be given by [19]

dim H1(X, End(V )) = dim |C| + dim Pic(C) . (3.27)

This formula was proven in refs. [7, 8] under the equivalent form

h1(X, End(V )) = h1(OC) + h0(NC) = h(0,1)(C) + h(2,0)(C), (3.28)

when C is a divisor in X using the Parseval isomorphism

Ext1X(V, V ) = Ext1X(i∗L, i∗L), (3.29)

and an argument of spectral sequences associated to Grothendieck dual-
ity for the closed immersion i : C ↪→ X. Here equation (3.29) follows from
equation (3.18) since i∗L is WIT0 with unique transform V .
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Still assuming that C is a divisor, we have NC = KC since X is Calabi–
Yau, and then h0(NC) = h2(OC), so that we get

h1(X, End(V )) = h1(OC) + h2(OC) (3.30)

(for C connected). If we assume moreover that C is smooth, then Lef-
schetz theorem on hyperplane sections [43, p. 156] implies that h1(OC) = 0
and then,

h1(X, End(V )) = h2(OC) . (3.31)

4 Application to heterotic string theory

In this section, we present a systematic analysis of the Donaldson–Uhlenbeck
–Yau equation and of the anomaly cancellation condition for U(n) vector
bundles on elliptic Calabi–Yau three-folds. We also give an explicit expres-
sion for the net-generation number Ngen using the above index computation
of Section 3.6.

4.1 Solving the Donaldson–Uhlenbeck–Yau equation

As mentioned in Section 1 a geometric compactification of the 10-dimen-
sional heterotic string is specified by a holomorphic stable G-bundle V over
a Calabi–Yau manifold X. The Calabi–Yau condition, the holomorphicity
and stability of V are a direct consequence of the required supersymmetry
in the uncompactified space–time. More precisely, supersymmetry requires
that a connection A on V has to satisfy

F 2,0
A = F 0,2

A = 0, F 1,1
A ∧ J2 = 0 , (4.1)

where the first condition implies the holomorphicity of V . A theorem by
Uhlenbeck and Yau guarantees the existence and uniqueness of a solution
to the second equation which can be written as (cf. Appendix A)∫

X
c1(V ) ∧ J2 = 0 . (4.2)

This equation can be solved if the first Chern class of a given vector bundle
vanishes or if the underlying manifold X has h11(X) greater than or equal
to 2; for h11(X) = 1 the first Chern class is a multiple of the Kähler form J
of X and J3 is never zero as its integral is the volume of X.

Let us discuss whether the stable U(n) vector bundles with characteris-
tic classes given by equations (3.6) and (3.12) can solve the Donaldson–
Uhlenbeck–Yau equation. The U(n) bundles are stable with respect to
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J̄ = ε̄σ + π∗HB. To simplify the analysis, let us make the following assump-
tions: we take as before ηE = 1/2nβ with β ∈ H2(B, Z) and we set HB =
c1(B) which restricts us to work on base manifolds whose anti-canonical line
bundle is ample, i.e., we consider del Pezzo surfaces which are isomorphic
either to P

1 × P
1 or P

2 with k points (0 ≤ k ≤ 8) blown up, usually denoted
by dPk. Some of those surfaces can also be viewed as Hirzebruch surfaces,
P

1 × P
1 = F0 and dP1 = F1. The Donaldson–Uhlenbeck–Yau equation can

then be written as

π∗(c1(B)(β − c1(B)))σ = 0 . (4.3)

Furthermore, we have to make sure that c1(V ) and c1(L) are integer classes,
thus we have to solve in case n is even equation (4.3) simultaneously with
β = η (mod 2) or β = nc1(B) (mod 2) depending on whether we take λ = m
or λ = m + 1/2. If n is odd, we have to solve equation (4.3) simultaneously
with β = c1(B) (mod 2) and β = nc1(B) (mod 2).

To give a concrete example, let us analyze these conditions in more detail
for the Hirzebruch surfaces Fm with m = 0, 1 and an U(n) bundle with n
being odd. Recall that c1(Fm) = 2b + (2 + m)f where b2 = −m, bf = 1 and
f2 = 0 and since Fm is a rational surface we have c1(Fm)2 = 8. Thus we
have to look for solutions of (we set c1 = c1(B))

βc1 = 8 , β = c1 (mod 2), β = nc1 (mod 2) . (4.4)

Since β is a generic element of H2(Fm, Z) we take β = xb + yf with x and
y being not restricted. Thus the first part in equation (4.4) reduces to
x + y = 4. Now for m = 0 we have c1 = 0 (mod 2) and thus the last two
terms in equation (4.4) reduce to β = 0 (mod 2) and so we have to take
x = 2x′ and y = 4 − 2x′ with x′ ∈ Z.

If m = 1 the first term in equation (4.4) reduces to x + 2y = 8. The
last two terms in equation (4.4) can be written as β = f (mod 2) and β =
nf (mod 2) which can be solved since (n − 1)f = 0 (mod 2) and n − 1 is even.
Thus we have to require only β = f (mod 2), i.e., xb + (y − 1)f = 0 (mod 2)
which restricts x to be an even and y to be odd number, i.e., we take x = 2x′

and y = 2y′ + 1 with x′, y′ ∈ Z, such that x′ + 2y′ = 3.

A similar analysis can be done for U(n) bundles with n even. For this,
we only have to note that if we want the spectral surface C to be irreducible
we have to make sure that the linear system |η| is base point free in B and
η − nc1(B) is effective. For B = Fm and η = vb + wf , the corresponding
conditions have been derived in ref. [58] and are given by v ≥ 2m, w ≥ n(m +
2) and w ≥ mv. Taking these into account, one easily obtains solutions to
βc1 = 8 and η = β (mod 2).



U(n) VECTOR BUNDLES ON CALABI–YAU THREE-FOLDS 273

4.1.1 Solutions for arbitrary ample HB

So far we assumed in our analysis that HB = c1(B). Let us now study the
situation for arbitrary ample HB and ηE = 1/2nβ as before. In order to
solve the Donaldson–Uhlenbeck–Yau equation, we must solve in addition to
equation (4.3) the constraint

π∗(HB(β − c1(B)))σ = 0 . (4.5)

Now let us consider again U(n) bundles with n odd and take as base
manifolds the Hirzebruch surfaces Fm whose c1 is even, the odd case will
be discussed below. It is instructive to solve first equation (4.4) and then
find solutions to equation (4.5). Similar to our analysis above, we start with
a generic β ∈ H2(Fm, Z) and find solutions to equation (4.4) in terms of
x, y and m. The first term in equation (4.4) reduces to 2x + 2y − xm = 8.
For m even we have c1 = 0 (mod 2) and thus we find again the constraint
β = 0 (mod 2) which determines the coefficients of β to be given by x = 2x′

and y = 4 + (m − 2)x′ and x′ ∈ Z.

We can now solve equation (4.5). For this, let us recall that he Kähler
cone (the very ample classes) of Fm is equals the positive (ample) classes and
is given [45] by the numerically effective classes wb + zf = (w, z) with w >
0, z > mw. So if we insert HB = ub + vf and β = (2x′)b + (4 + (m − 2)x′)f
into equation (4.5), we find the condition

v =
(
1 +

m

2

)
u , (4.6)

where u > 0, so we have to restrict to the Hirzebruch surface F0, otherwise
v > mu is violated.

To complete the analysis, let us consider B = Fm with m odd. From
equation (4.4) we find β = mf (mod 2) and β = nmf (mod 2) which can
be solved since m(n − 1)f = 0 (mod 2) is always satisfied. Thus to solve
β = mf (mod 2) we have to take β = xb + yf with x = 2x′ and y = 2y′ + 1
with x′, y′ ∈ Z. Moreover, from βc1 = 8 we find that y′ = 1/2(3 − x′(2 −
m)). If we insert these expressions in equation (4.5), we find the condition
(with u > 0)

v =
(

1 +
x′m

2x′ − 2

)
u , (4.7)

with x′ �= 1 and (x′/(2x′ − 2)) > m − 1/m which guarantees that HB is
ample. Thus if x′ > 0 (and m �= 1) we find x′ has to satisfy the bound x′ <
(2m − 2)/(m − 2) and if x′ < 0 (and m �= 1) we find x′ > (2m − 2)/(m − 2).
For m = 1, equation (4.7) always satisfies v > u, so there are no bounds
for x′.
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4.2 The anomaly constraint

In a heterotic string compactifications (without 5-branes) on a Calabi–Yau
three-fold X, one has to specify, in addition to a stable holomorphic G vector
bundle V , a B-field on X of field strength H. In order to get an anomaly
free theory, the structure group G of V is fixed to be either E8 × E8 or
Spin(32)/Z2 or one of their subgroups and H has to satisfy the generalized
Bianchi identity which, if integrated over a 4-cycle in X, gives the topological
constraint c2(X) = c2(V ). This constraint has to be modified in the presence
of 5-branes and if V has a non-zero first Chern class.

The inclusion of 5-branes3 changes this topological constraint [26, 39, 40].
The magnetic 5-brane contributes a source term to the Bianchi identity for
the 3-form H with dH = trR ∧ R − TrF ∧ F − n5

∑
δ
(4)
5 , where the sum is

taken over all 5-branes and δ
(4)
5 is a current that integrates to 1 in the direc-

tion transverse to a single 5-brane whose class is denoted by [W ], an element
of H2(X, Z). Integration over a 4 cycle in X gives [W ] = c2(TX) − c2(V ).
Now if V has a non-vanishing first Chern class, we expect this relation to
be modified such that

[W ] = c2(TX) + ch2(V ) (4.8)

which is an integer class if c1(V ) = 0 (mod 2) or equivalently if β = c1(B)
(mod 2). Note that the latter condition is automatically given for U(n)
bundles with n odd as a consistency condition for c1(V ) and c1(L). For n
even, we have to impose β = c1(B) (mod 2) as an additional constraint.

Supersymmetry and the condition to get positive magnetic charges which
are carried by the 5-brane constrain [W ] to be represented by an effective
holomorphic curve in X. Following the conventions of Donagi et al. [30], we
write the 5-brane class as W = WB + aF F and using equation (4.8) we find

WB = σπ∗(12c1(B) − η),

af = c2(B) + 11c1(B)2 − ω +
1
8
nc1(B)2 +

1
2n

ηE(ηE − nc1(B)) .
(4.9)

As in the SU(n) case, W is an effective class in X if and only if WB is
effective and aF ≥ 0 (this was originally shown in ref. [30] for SU(n) vector
bundles).

3In refs. [20, 21] magnetic 5-brane solutions to heterotic string theory were discussed;
the gauge 5-brane, the symmetric 5-brane and the neutral 5-brane. The gauge and sym-
metric 5-brane solutions involve finite size instantons of an unbroken non-abelian gauge
group. Neutral 5-branes can be interpreted as zero size instantons of the SO(32) heterotic
string [61].
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4.2.1 An outlook to F-theory

In ref. [40] it has been shown that the number of 5-branes af which are
required for the anomaly cancellation in case V = E8 × E8 agrees with the
number of 3-branes N required for anomaly cancellation in F -theory on a
Calabi–Yau four-fold Y given by (χ(Y )/24). If the structure group G of
V being contained in E8, then the observed physical gauge group in four-
dimensions corresponds to the commutant H̃ of G in E8, typically being of
ADE type. This leads to a generalized physical set-up. The heterotic string
compactified on X and a pair of G-bundles is dual to F -theory compactified
on a Calabi–Yau fourfold Y with section and a section θ of ADE singularities.
The generalized set-up has been analyzed in refs. [2–4, 15, 40]. Now if we
consider, for instance, an U(n) × E8 vector bundle on X we expect a section
of singularities in Y corresponding to the commutant of U(n) in the E8
gauge group and thus a modified relation (χ(Y )/24) = aE8 + af , where aE8

corresponds to the number of 5-branes associated to the E8 vector bundle
and af as given in equation (4.9).

4.3 The net-generation number

The net-number of generations Ngen in a given heterotic string compactifi-
cation on a Calabi–Yau three-fold is determined by the index (3.17) if the
vector bundle V has non-zero first Chern class. If we insert the expressions
for c2(X) and chi(V ), we find the net-generation number

Ngen = −γ|S +
1
2
π∗((η − nc1)(c1 − β))σ . (4.10)

For U(n) vector bundles with n even, we found the consistency condition
λ = m and η = β (mod 2) or λ = m + 1/2 and β = nc1(B) (mod 2) which
guarantees that c1(V ) and c1(L) are integer classes. In the first case, we can
take λ = 0 which implied for SU(n) vector bundles the vanishing of Ngen.
However, although the “gamma”-class vanishes for U(n) bundles, we still
have Ngen non-zero.

4.3.1 The enriques surface revisited

In case of SU(n) vector bundles on elliptically fibered Calabi–Yau three-
folds, it has been argued [30] that the Enriques surfaces will never satisfy
the effectivity condition for WB and at the same time lead to a realistic net-
number of generations. The argument is as follows: WB has to be effective
but K⊗12

B = OB because 12 is even and thus WB = −π∗ησ; since η is an
effective class it follows WB can be effective only if η is trivial. Now the



276 BJÖRN ANDREAS AND DANIEL HERNÁNDEZ RUIPÉREZ

net-generation number Ngen for SU(n) vector bundles is given by equation
(3.15) which vanishes for η being trivial.

For U(n) vector bundles, the situation does not change which can be
seen as follows. We still have to require that η is trivial to guarantee
the effectivity of WB, which reduces the net-generation number to Ngen =
1/2nπ∗c1(B)π∗βσ which is zero since Ngen is a number which can be multi-
plied by any even number.
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Appendix A Notes on the Hermite–Einstein equations

In this section, we recall for the reader’s convenience some well-known facts
about the Donaldson–Uhlenbeck–Yau and Hermite–Einstein equations.

Let X be a complex n-dimensional Kähler manifold with Kähler form J .
We denote by Ωp the bundle of complex differential p-forms on X.

Holomorphic vector bundles can be characterized in terms of connec-
tions (see, for instance, [49]). We now that if E is a holomorphic vector
bundle, then there exist a connection A : E → E ⊗ Ω1 whose (0, 1) com-
ponent A0,1 : E → E ⊗ Ω0,1 equals the natural δ̄E operator whose kernel is
formed by the homolorphic sections of E. The (0, 2) component of the cur-
vature FA = A ◦ A : E → E ⊗ Ω2 vanishes. Conversely, whenever we have a
connection A on a smooth vector bundle E with F 0,2

A = 0, then there exists
a unique holomorphic structure on E such that A0,1 = δ̄E .

The Chern classes of E can be computed in terms of any complex con-
nection. In particular, we have

c1(E) =
i

2π
Tr(FA) . (A.1)
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We now consider Hermitian bundles (E, h), i.e., smooth complex vector bun-
dles E on X endowed with a Hermitian metric h. In this case a connection
A on E is Hermitian if it derives the Hermitian metric, i.e.,

d(h(e, e′)) = h(A(e), e′) + h(e, A(e′)),

where e and e′ are local sections of E.

For Hermitian bundles, we can refine the above discussion. A holomorphic
Hermitian bundle has a unique Hermitian connection A such that A0,1 =
δ̄E . Moreover, the curvature FA is of type 1, 1. We call S the associated
Hermitian connection to the Hermitian holomorphic bundle (E, h).

Conversely, we have the following result: if (E, h) is a Hermitian bundle
and A is a Hermitian connection on E whose curvature is of type (1, 1), then
there exists a unique holomorphic structure in E such that A is the associ-
ated Hermitian connection to the Hermitian holomorphic bundle (E, h).

Let (E, h) be a Hermitian holomorphic vector bundle and A the associated
Hermitian connection. Then (E, h) is said to be a Hermite–Einstein bundle
if the curvature FA satisfies the Hermite–Einstein equations

FA ∧ Jn−1 = c · IF · Jn , (A.2)

where c is a complex constant and IE the identity operator on E. When the
constant c is zero, we get the Donaldson–Uhlenbeck–Yau equations:

FA ∧ Jn−1 = 0 . (A.3)

Both the Hermite–Enstein and the Donaldson–Uhlenbeck–Yau equations
can be taught as equations on the Hermitian metric h (because the con-
nection A is completely determined by h and the holomorphic structure).

If we take the trace on both sides of equation (A.2), we find

Tr(FA) ∧ Jn−1 = c · Tr(IE) · Jn = c · r · Jn . (A.4)

Now using equation (A.1), we get∫
X

c1(E) ∧ Jn−1 =
i · c · r

2π

∫
X

Jn, (A.5)

which determines the constant c (compare [49, eq. (2.7)]). With equation
(A.5), we can now write equation (A.2) as

FA ∧ Jn−1 =
2π · c1(E) ∧ Jn−1

i · rk(E)
IE =

2π

i
µ(E)JnIE (A.6)

making apparent that for zero slope µ(E) = 0, the Hermite–Enstein equation
reduces to the Donaldson–Uhlenbeck–Yau equation from above.
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It follows from a deep result due to Donaldson, Uhlenbeck and Yau that
the Hermite–Einstein conditions for holomorphic vector bundles are equiv-
alent to slope (poly)stability. The precise statement is as follows (cf. for
instance, [52]):

Let (E, h) be a holomorphic Hermite–Einstein vector bundle. Then E
is µ-polystable (i.e., is a direct sum of semistable vector bundles with the
same slope). Moreover, if it is irreducible (in the sense that it cannot be
represented as a sum of Hermite–Einstein bundles), then E is µ-stable.

The converse is more subtle: if E is a holomorphic µ-stable vector bundle
on X, then there exists a Hermitian metric h on E such that (E, h) is
Hermite–Einstein, i.e., h satisfies the Hermite–Einstein equations (A.2).

Appendix B Characteristic classes of the Fourier–Mukai
transform

In this section we recall from ref. [7] the formulae giving the topological
invariants of both the FM transform and the inverse FM transform of a
general complex G in the derived category. They are obtained of course by
simply applying GRR for the projection π2 to get

ch(Φ(G)) = π2∗[π∗
1(G) · ch(P) · Td(TX/B)], (B.1)

where Td(TX/B) = 1 − 1/2c1 + 1/12(13c2
1 + 12σc1) − 1/2σc2

1 (with c1 =
π∗c1(B)) is the Todd class of the relative tangent bundle TX/B = TX/π∗TB.

To compute equation (B.1), we use that the Poincaré sheaf is

P = O(∆) ⊗ O(−π∗
1σ) ⊗ O(−π∗

2σ) ⊗ q∗K−1
B ,

where O(∆) is the dual of the ideal sheaf I of the diagonal. Note first that
ch(I) = 1 − ch(δ∗OX) with the diagonal immersion δ. Riemann–Roch gives

ch(δ∗OX) Td(X ×B X) = δ∗(ch(OX) Td(X)), (B.2)

where one has the expressions for Td(X) and Td(X ×B X) given by

Td(X) = 1 +
1
12

(c2 + 11c2
1 + 12σc1),

Td(X ×B X) = π∗
2 Td(X)π∗

1 Td(TX/B).
(B.3)

The Chern character of the ideal sheaf is then given by (with the diagonal
class ∆ = δ∗(1))

ch(I) = 1 − ∆ − 1
2
∆ · π∗

2c1 + ∆ · π∗
2(σ · c1) +

5
6
∆ · π∗

2(c
2
1) +

1
2
∆ · π∗

2(σc2
1),

(B.4)
and one can compute ch(P) from that expression.
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Assume now that the Chern characters of the object E of the derived
category are of the type

ch0(E) = nE , ch1(E) = xEσ + π∗SE ,

ch2(E) = σπ∗ηE + aEF, ch3(E) = sE (B.5)

(ηE , SE ∈ H2(B)). We note that all the sheaves we are considering (includ-
ing V , i∗L and W ) have Chern characters of that type.

It follows from ref. [7] that the Chern characters of the FM of E and of
the inverse FM of E are

ch0(Φ(E)) = xE ,

ch1(Φ(E)) = −nEσ + π∗ηE − 1
2
xEc1,

ch2(Φ(E)) =
(

1
2
nEc1 − π∗SE

)
σ +

(
sE − 1

2
π∗ηEc1σ +

1
12

xEc2
1σ

)
F,

ch3(Φ(E)) = −1
6
nEσc2

1 − aE +
1
2
σc1π

∗SE ,

(B.6)
and

ch0(Φ̂(E)) = xE ,

ch1(Φ̂(E)) = −nEσ + π∗ηE +
1
2
xEc1,

ch2(Φ̂(E)) =
(

−1
2
nEc1 − π∗SE

)
σ +

(
sE +

1
2
π∗ηEc1σ +

1
12

xEc2
1σ

)
F,

ch3(Φ̂(E)) = −1
6
nEσc2

1 − aE − 1
2
σc1π

∗SE + xEσc2
1.

(B.7)

Appendix C Alternative derivation of N gen for SU(n) bun-
dles

The aim of this section is to give a concrete application of the inverse
Fourier–Mukai transformation. We give an alternative derivation of the
net-generation number Ngen to the derivation given in refs. [23, 24] which
adopted the bundle construction of Friedman et al. [40], i.e., consider bundles
as given by equation (3.1) with c1(V ) = 0. It has been shown in refs. [23, 24]
that c3(V ) and therefore Ngen can be computed from an Riemann–Roch
index computation on the matter curve S = C ∪ σ. The index reduction
was derived using Leray spectral sequence technics [24]. We will now give a
shortened derivation of their result. For this, we start from equation (3.2)
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instead of starting from equation (3.1). We start with the vector bundle W
on X given by (3.2) and require c1(W ) = 0. A similar computation as in
Section 3.3 gives

c1(L|S) =
1
2
(C2σ + Cσ2) + γ|S . (C.1)

Now we can apply the Grothendieck–Riemann–Roch theorem and use the
expressions for the characteristic classes given in Appendix B and compute
1/2c3(V ) as

1
2
c3(V ) =

1
2
(C2σ + σ2C) − c1(L|S) . (C.2)

Further, we have
2g(S) − 2 = C2σ + Cσ2, (C.3)

so that
1
2
c3(V ) = −(c1(L|S) − g(S) + 1) . (C.4)

This shows that the right-hand side of equation(C.2) can be understood as
a Riemann–Roch index computation on S which is

χ(S, L|S) = h0(S, L|S) − h1(S, L|S)

=
∫

S
ch(L|S) Td(S)

= c1(L|S) − g(S) + 1, (C.5)

thus the standard index computation evaluating c3(V ) reduces to an index
computation on the matter curve S

1
2
c3(V ) = h2(X, V ) − h1(X, V )

= h1(S, L|S) − h0(S, L|S), (C.6)

which is in agreement with Diaconesco and Ionesei [24].

References

[1] B. Andreas, On vector bundles and chiral matter in N = 1 heterotic
compactifications, J. High Energy Phys. 03 (1999), 011–022.

[2] B. Andreas and G. Curio, Three-branes and five-branes in N = 1 dual
string pairs, Phys. Lett. B 417 (1998), 41–44.

[3] B. Andreas and G. Curio, On discrete twist and four-flux in N = 1
heterotic/F-theory compactifications, Adv. Theor. Math. Phys. 3
(1999), 1325–1413.

[4] B. Andreas and G. Curio, Horizontal and vertical five-branes in
heterotic/F-theory duality, J. High Energy Phys. 01 (2000), 013–033.



U(n) VECTOR BUNDLES ON CALABI–YAU THREE-FOLDS 281

[5] B. Andreas and D. Hernández Ruipérez, Comments on N = 1 heterotic
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