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1. Introduction. A properly embedded surface Σ in H
2 × R, invariant by a

non-trivial discrete group of isometries of H2 × R, will be called a periodic surface.
We will discuss periodic minimal and constant mean curvature surfaces. At this time,
there is little theory of these surfaces in H

2 ×R and other homogeneous 3-manifolds,
with the exception of the space forms.

The theory of doubly periodic minimal surfaces (invariant by a Z2 group of isome-
tries) in R

3 is well developed. Such a surface in R
3, not a plane, is given by a properly

embedded minimal surface in T×R, T some flat 2-torus. One main theorem is that a
finite topology complete embedded minimal surface in T×R has finite total curvature
and one knows the geometry of the ends [11]. It is very interesting to understand this
for such minimal surfaces in M

2 × R, M2 a closed hyperbolic surface.

In this paper we will consider periodic surfaces in H
2×R. The discrete groups G

of isometries of H2 ×R we consider are generated by horizontal translations φl along
geodesics γ of H2 and/or a vertical translation T (h) by some h > 0. We denote by M

the quotient of H2 × R by G.

In the case G is the Z
2 subgroup of the isometry group generated by φl and

T (h), M is diffeomorphic but not isometric to T × R. Moreover M is foliated by the
family of tori T(s) = (d(s) × R)/G (here d(s) is an equidistant to γ). All the T(s)
are intrinsically flat and have constant mean curvature; T(0) is totally geodesic. In
Section 3, we will prove an Alexandrov-type theorem for doubly periodic H-surfaces,
i.e., an analysis of compact embedded constant mean curvature surfaces in such a M

(Theorem 3.1).

The remainder of the paper is devoted to construct examples of periodic minimal
surfaces in H

2 × R.

The first example we want to illustrate is the singly periodic Scherk minimal
surface. In R

3, it can be understood as the desingularization of two orthogonal planes.
H. Karcher [5] has generalized this to desingularize k planes of R3 meeting along a
line at equal angles, these are called Saddle Towers. In H

2 × R, two situations are
similar to these examples: the intersection of a vertical plane with the horizontal slice
H

2×{0} and the intersection of k vertical planes meeting along a vertical geodesic at
equal angles. These surfaces, constructed in Section 4, are singly periodic and called,
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respectively, “horizontal singly periodic Scherk minimal surfaces” and “vertical Saddle
Towers”. For vertical intersections, the situation is in fact more general and was
treated by F. Morabito and the second author in [13]; here we give another approach
which is more direct (see also J. Pyo [17]).

In Section 5, we construct doubly periodic minimal examples. The first exam-
ples we obtain, called “doubly periodic Scherk minimal surfaces” bounded by four
horizontal geodesics; two at height zero, and two at height h > π. The latter two
geodesics are the vertical translation of the two at height zero. Each one of these
Scherk surfaces has two “left-side” ends asymptotic to two vertical planar strips, and
two “right-side” ends, asymptotic to the horizontal slices at heights zero and h. By
recursive rotations by π about the horizontal geodesics, we obtain a doubly periodic
minimal surface.

The other doubly periodic minimal surfaces of H2×R constructed in Section 5 are
analogous to some of Karcher’s Toroidal Halfplane Layers of R3 (more precisely, the
ones denoted by Mθ,0,π/2, Mθ,π/2,0 and Mθ,0,0 in [19]). The examples we construct,
also called Toroidal Halfplane Layers, are all bounded by two horizontal geodesics at
height zero, and its translated copies at height h > 0. Each ot these Toroidal Halfplane
Layers has two “left-side” ends and two “right-side” ends, all of them asymptotic to
either vertical planar strips or horizontal strips, bounded by the horizontal geodesics
in its boundary. By recursive rotations by π about the horizontal geodesics, we obtain
a doubly periodic minimal surface. In the quotient of H2×R by a horizontal hyperbolic
translation and a vertical translation leaving invariant the surface, we get a finitely
punctured minimal torus and Klein bottle in T× R, T some flat 2-torus.

Finally, in Section 6, we construct a periodic minimal surface in H
2×R analogous

to the most symmetric Karcher’s Toroidal Halfplane Layer in R
3 (denoted by Mθ,0,0

in [19]). A fundamental domain of this latter surface can be viewed as two vertical
strips with a handle attached. This piece is a bigraph over a domain Ω in the par-
allelogram of the R

2 × {0} plane whose vertices are the horizontal projection of the
four vertical lines in the boundary of the domain, and the upper graph has boundary
values 0 and +∞: The trace of the surface on R

2 × {0} is the two concave curves
in the boundary of Ω. They are geodesic lines of curvature on the surface and their
concavity makes the construction of these surfaces delicate. We refer to [5, 11, 19],
where they are constructed by several methods. The complete surface is obtained
by rotating by π about the vertical lines in the boundary. Considering the quotient
of R3 by certain horizontal translations leaving invariant the surface, yields finitely
punctured minimal tori and Klein bottles in T× R.

The surface we construct in H
2 × R will have a fundamental domain Σ which

may be viewed as k vertical strips (k ≥ 3) to which one attaches a sphere with k
disks removed. Σ is a vertical bigraph over a domain Ω ⊂ H

2 × {0} ≡ H
2; ∂Ω has 2k

smooth arcs A1, B1, · · · , Ak, Bk in that order. Each Ai is a geodesic and each Bj is
concave towards Ω. The Ai’s are of equal length and the Bj ’s as well. The convex

hull of the vertices of Ω is a polygonal domain Ω̃ that tiles H2; the interior angles of
the vertices of Ω̃ are π/2. Thus Σ extends to a periodic minimal surface in H

2×R by
symmetries: rotation by π about the vertical geodesic lines over the vertices of ∂Ω.

The surface Σ+ = Σ ∩ (H2 × R
+) is a graph over Ω with boundary values as

indicated in Figure 1 (here k = 4). Σ+ is orthogonal to H
2 × {0} along the concave

arcs Bj so Σ is the extension of Σ+ by symmetry through H
2 × {0}.

Σ will be constructed by solving a Plateau problem for a certain contour and
taking the conjugate surface of this Plateau solution. The result will be the part of
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Fig. 1. The domain Ω

Σ+ which is a graph over the shaded region on Ω in the Figure 1. This graph meets the
vertical plane over γ0 and γθ orthogonally, so extends by symmetry in these vertical
planes. Σ+ is then obtained by going around 0 by k symmetries.

2. Preliminaries.

2.1. Notation. In this paper, the Poincaré disk model is used for the hyperbolic
plane, i.e.

H
2 = {(x, y) ∈ R

2 | x2 + y2 < 1}

with the hyperbolic metric g−1 =
4

(1−x2−y2)2 g0, where g0 is the Euclidean metric in

R
2. Thus x and y will be used as coordinates in the hyperbolic plane. We denote

by 0 the origin (0, 0) of H2. In this model, the asymptotic boundary ∂∞H
2 of H2 is

identified with the unit circle. So any point in the closed unit disk is viewed as either
a point in H

2 or a point in ∂∞H
2.

Let θ ∈ R. In H
2, we denote by γθ the geodesic line {−x cos θ + y sin θ = 0}

and by γ+θ the half geodesic line from 0 to (sin θ, cos θ). We also denote by Tθ the
hyperbolic angular sector {(r sinu, r cosu) ∈ H

2, r ∈ [0, 1), u ∈ [0, θ]}.
For μ ∈ (−1, 1) we denote by g(μ) the complete geodesic of H2 orthogonal to γ0

at qμ = (0, μ). We have g(0) = γπ/2. We also denote g+(μ) = g(μ) ∩ {x > 0}.
Fixed θ ∈ R, there exists a Killing vector field Yθ which has length 1 along γθ and

generated by the hyperbolic translation along γθ with (sin θ, cos θ) as attractive fixed
point at infinity. For l ∈ (−1, 1), we denote by φl the hyperbolic translation along
γθ with φl(0) = (l sin θ, l cos θ). (φl)l∈(−1,1) is called the “flow” of Yθ, even though
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Fig. 2. The hyperbolic angular sector Tθ corresponds to the shadowed domain.

the family (φl)l∈(−1,1) is not parameterized at the right speed. We notice that, if
(φl)l∈(−1,1) is the flow of Y0, g(μ) = φμ(g(0)).

For θ ∈ R, there is another interesting vector field that we denote by Zθ. This
vector field is the unit vector field normal to the foliation of H2 by the equidistant
lines to γθ+π/2 such that Zθ(0) = (1/2)(sin θ∂x + cos θ∂y). We notice that Zθ is not
a Killing vector field. This time, we define (ψs)s∈R the flow of Zθ (with the right
speed). If (ψs)s∈R is the flow of Zπ/2, we define d(s) = ψs(γ0) for s in R. d(s) is one
of the equidistant lines to γ0 at distance |s|. We remark that Zπ/2 is tangent to the
geodesic lines g(μ).

In the sequel, we denote by t the height coordinate in H
2 × R. Besides, we will

often identify the hyperbolic plane H
2 with the horizontal slice {t = 0} of H2 × R.

The Killing vector field Yθ and its flow naturally extend to a horizontal Killing vector
field and its flow in H

2 × R. The same occurs for Zθ and its flow.
We denote by π : H2 × R → H

2 the vertical projection and by T (h) the vertical
translation by h. Given two points p and q of H2 or H

2 × R, we denote by pq the
geodesic arc between these two points.

2.2. Conjugate minimal surface. B. Daniel [2] and L. Hauswirth, R. Sa Earp
and E. Toubiana [4] have proved that minimal disks in H

2 × R have an associated
family of locally isometric minimal surfaces. In this subsection we briefly recall how
they are defined.

Let X = (ϕ, h) : Σ→ H
2×R be a conformal minimal immersion, with Σ a simply

connected Riemann surface. Then h is a real harmonic function and ϕ = π ◦X is a
harmonic map to H

2. Let h∗ be the real harmonic conjugate function of h and Qϕ be
the Hopf differential of ϕ. Since X is conformal, we have

Qϕ = −4
(
∂h

∂z

)2

dz2,

where z is a conformal parameter on Σ. In [2] and [4] it has been proved that, for any
θ ∈ R, there exists a minimal immersion Xθ = (ϕθ, hθ) : Σ→ H

2 × R whose induced
metric on Σ coincides with the one induced by X, and such that hθ = cos θh+sin θh∗
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and the Hopf differential of ϕθ is Qϕθ
= e−2iθQϕ. If N (resp. Nθ) denotes the unit

normal to X (resp. Xθ), then 〈N, ∂t〉 = 〈Nθ, ∂t〉 (i.e. their angle maps coincide).
All these immersions Xθ are well-defined up to an isometry of H2 × R. The

immersion Xπ/2 is called the conjugate immersion of X (and Xπ/2(Σ) is usually
called conjugate minimal surface of X(Σ)), and it is denoted by X∗.

The data for the conjugate surface are the same as for X(Σ), except that one
rotates S and T by π/2: S∗ = JS, and T ∗ = JT . Here S (resp. S∗) denotes the
symmetric operator on Σ induced by the shape operator of X(Σ) (resp. X∗(Σ)); T
(resp. T ∗) is the vector field on Σ such that dX(T ) (resp. dX∗(T ∗)) is the projection
of ∂t on the tangent plane of X(Σ) (resp. X

∗(Σ)); and J is the rotation of angle π/2
on TΣ. See [2] for more details.

For C a curve on Σ, the normal curvature of X(C) in the surface X(Σ) is
−〈C ′, S(C ′)〉, and the normal torsion is 〈J(C ′), S(C ′)〉. Thus the normal torsion
of X∗(C) on the conjugate surface X∗(Σ) is minus the normal curvature of X(C) on
X(Σ), and the normal curvature of X∗(C) on X∗(Σ) is the normal torsion of X(C) on
X(Σ). In particular, if X(C) is a vertical ambient geodesic on X(Σ), then X∗(C) is a
horizontal line of curvature on the conjugate surface X∗(Σ) whose geodesic curvature
in the horizontal plane is the normal torsion on X(Σ). Arguing similarly, we get that
the correspondence X ↔ X∗ maps:

• vertical geodesic lines to horizontal geodesic curvature lines along which the
normal vector field of the surface is horizontal; and

• horizontal geodesics to geodesic curvature lines contained in vertical geodesic
planes Π (i.e. π(Π) is a geodesic of H2) along which the normal vector field
is tangent to Π.

Moreover, this correspondence exchanges the corresponding Schwarz symmetries of
the surfaces X and X∗. For more definitions and properties, we refer to [2, 4].

2.3. Some results about graphs. In H
2 × R, there exist different notions of

graphs, depending on the vector field considered.
If u is a function on a domain Ω of H2, the graph of u, defined as

Σu = {(p, u(p)) | p ∈ Ω},
is a surface in H

2×R. This surface is minimal (a vertical minimal graph) if u satisfies
the vertical minimal graph equation

(1) div

(
∇u√

1 + ‖∇u‖2

)
= 0,

where all terms are calculated with respect to the hyperbolic metric.
If u is a solution of equation (1) on a convex domain of H

2, L. Hauswirth,
R. Sa Earp and E. Toubiana have proved in [4] that the conjugate minimal surface
Σ∗u of Σu is also a vertical graph.

Assume Ω is simply connected. The differential on Ω of the height coordinate of
Σ∗u is the closed 1-form

(2) ω∗u(X) = 〈
∇u⊥√

1 + ‖∇u‖2 , X〉H2 ,

where∇u⊥ is the vector∇u rotated by π/2. The height coordinate of Σ∗u is a primitive
h∗u of ω

∗
u and is the conjugate function of hu on Σu. The formula (2) comes from the
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following computation. Let h be the height function along the graph surface and h∗

its conjugate harmonic function. Let (e1, e2) be an orthonormal basis of the tangent
space to H

2 and X = x1e1 + x2e2 a tangent vector. Then

ω∗u(X) = dh∗(X + 〈∇u,X〉H2∂t) = dh(Nu ∧ (X + 〈∇u,X〉H2∂t)),

where Nu = (∇u− ∂t)/W (with W =
√
1 + ‖∇u‖2). If ∇u = u1e1 + u2e2 we have

Nu ∧ (X + 〈∇u,X〉H2∂t) =
u2〈∇u,X〉H2 + x2

W
e1 − u1〈∇u,X〉H2 + x1

W
e2 +

u1x2 − u2x1

W
∂t.

Thus

ω∗u(X) =
u1x2 − u2x1

W
= 〈 ∇u⊥√

1 + ‖∇u‖2 , X〉H2 .

Let us now fix θ ∈ R. Recall that (φl)l∈(−1,1) is the flow of the Killing vector
field Yθ. Let D be a domain in the vertical geodesic plane γθ+π/2 × R (this plane is
orthogonal to γθ, viewed as a geodesic of {t = 0}). Let v be a function on D with
values in (−1, 1). Then, the surface {φv(p)(p) | p ∈ D} is called a Yθ-graph. It is
a graph with respect to the Killing vector field Yθ in the sense that it meets each
orbit of Yθ in at most one point. If such a surface is minimal, it is called a minimal
Yθ-graph. Let v

′ be a second function defined on a domain of γθ+π/2 × R. If v′ ≥ v
on the intersection of their domains of definition, we say that the Yθ-graph of v

′ lies
on the positive Yθ-side of the Yθ-graph of v.

The same notion can be defined for the vector field Zθ. If D is a domain in the
vertical geodesic plane γθ+π/2 × R and v is a function on D with values in R, the
surface {ψv(p)(p) | p ∈ D} is called a Zθ-graph ((ψs)s∈R is the flow of Zθ). This
surface is a graph with respect to Zθ since it meets each orbit of Zθ in at most one
point.

3. The Alexandrov problem for doubly periodic constant mean curva-
ture surfaces. Let (φl)l∈(−1,1) be the flow of Y0 and consider G the Z2 subgroup of
Isom(H2 × R) generated by φl and T (h), for some positive l and h. We denote by M

the quotient of H2 ×R by G. The manifold M is diffeomorphic to T
2 ×R. Moreover,

M is foliated by the family of tori T(s) = (d(s) × R)/G, s ∈ R (we recall that d(s)
is an equidistant to γ0). All the T(s) are intrinsically flat and have constant mean
curvature tanh(s)/2; T(0) is totally geodesic.

In this section, we study compact embedded constant mean curvature surfaces in
M. The tori T (s) are examples of such surfaces when 0 ≤ H < 1/2.

First, let us observe what happens in (H2 × R)/G′, where G′ is the subgroup
generated by T (h). This quotient is isometric to H

2 × S
1. Let Σ be a compact

embedded constant mean curvature H surface in H
2 × S

1. The surface Σ separates
H

2 × S
1. Indeed, if it is not the case, there exists a smooth Jordan curve whose

intersection number with Σ is 1 modulo 2. In H
2×S

1, this Jordan curve can be moved
so that it does not intersect Σ any more, which is impossible since the intersection
number modulo 2 is invariant by homotopy.

Now, we consider γ a geodesic in H
2 and (
s)s∈R the family of geodesics in H

2

orthogonal to γ that foliates H2. By the maximum principle using the vertical annuli

s×S

1, we get that H > 0, since Σ is compact. We can apply the standard Alexandrov
reflection technique with respect to the family (
s × S

1)s∈R. We obtain that Σ is
symmetric with respect to some 
s0 × S

1. Doing this for every γ, one proves that Σ is
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a rotational surface around a vertical axis {p}×S1 (p ∈ H
2). Σ is then either a constant

mean curvature sphere coming from the spheres of H2 ×R or the quotient by G′ of a
vertical cylinder or unduloid of axis {p} ×R. This proves that, necessarily, H > 1/2.
These surfaces are the only ones in H

2 × S
1 which have a compact projection on

H
2. In H

2×R, determining which properly embedded CMC surfaces have a bounded
projection on H

2 (i.e. is included in a vertical cylinder) is an open question. Laurent
Mazet has made progress on this problem [8].

The spheres, the cylinders and the unduloids can also be quotiented by G, if they
are well placed in H

2 × R with respect to γ0 × R. They give examples of compact
embedded CMC surfaces in M for H > 1/2.

We remark that the vector field Zπ/2 is invariant by the group G, so it is well
defined in M. Moreover its integral curves are the geodesics orthogonal to T(0). This
implies that the notion of Zπ/2 graph is well defined in M. We have the following
answer to the Alexandrov problem in M.

Theorem 3.1. Let Σ ⊂ M be a compact constant mean curvature embedded
surface. Then, Σ is either:

1. a torus T(s), for some s; or
2. a “rotational” sphere; or
3. the quotient of a vertical unduloid (in particular, a vertical cylinder over a

circle); or
4. a Zπ/2-bigraph with respect to T(0).

Moreover, if Σ is minimal, then Σ = T(0).

The first thing we have to remark is that the last item can occur. Let γ be
an embedded compact geodesic in the totally geodesic torus T(0). From a result by
R. Mazzeo and F. Pacard [10], we know that there exist embedded constant mean
curvature tubes that partially foliate a tubular neighborhood of γ. So if γ is not verti-
cal, these cmc surfaces can not be of one of the three first type. If fact, these surfaces
can be also directly derived from [18] (see also [15]). They have mean curvature larger
than 1/2.

The second remark is that we do not know if there exist constant mean curvature
1/2 examples. If they exist, they are of the fourth type.

Very recently, J.M. Manzano and F. Torralbo [6] construct, for each value of
H > 1/2, a 1-parameter family of “horizontal unduloidal-type surfaces” in H

2 ×R of
bounded height which are invariant by a fixed φl. All these examples are embedded
vertical bigraphs. The limit surfaces in the boundary of this family are a rotational
sphere and a horizontal cylinder.

Proof. Let Σ be a compact embedded constant mean curvature surface in M and
consider a connected component Σ̃ of its lift to H

2 × S
1. If Σ̃ is compact, the above

study proves that we are then in cases 2 or 3. We then assume that Σ̃ is not compact.
Even if Σ̃ is not compact, the same argument as above proves that it separates H2×S

1

into two connected components. We also assume that Σ̃ �= γ0 × S
1 (otherwise we are

in Case 1 ). Then, up to a reflection symmetry with respect to γ0×S
1, we can assume

that Σ̃ ∩ ({x ≥ 0} × S
1) is non empty.

Let γ be an integral curve of Zπ/2, i.e. a geodesic orthogonal to γ0 × S
1. We

denote by P (s) the totally geodesic vertical annulus of H2 × S
1 which is normal to γ

and tangent to d(s)×S
1. Since Σ̃ is a lift of the compact surface Σ, Σ̃ stays at a finite

distance from γ0 × S
1. Far from γ, the distance from P (s) to γ0 × S

1 = P (0) tends

to +∞, if s �= 0. Thus P (s) ∩ Σ̃ is compact for s �= 0, and it is empty if |s| is large
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enough. So start with s close to +∞ and let s decrease until a first contact point
between Σ̃ and P (s), for s = s0 > 0. If Σ̃ is minimal, by the maximum principle we

get Σ̃ = P (s0). But the quotient of P (s0) is not compact in M. We then deduce that

Σ̃ is not minimal. This proves that the only compact embedded minimal surface in
M is T(0).

By the maximum principle, we know that the (non-zero) mean curvature vector

of Σ̃ does not point into ∪s≥s0P (s). Let us continue decreasing s and start the

Alexandrov reflection procedure for Σ̃ and the family of vertical totally geodesic annuli
P (s). Suppose there is a first contact point between the reflected part of Σ̃ and

Σ̃, for some s1 > 0. Then Σ̃ is symmetric with respect to P (s1). Since s1 > 0,

then Σ̃ ∩ (∪s1≤s≤s0P (s)) is compact. We get that Σ̃ is compact, a contradiction.
Hence we can continue the Alexandrov reflection procedure until s = 0 without a first
contact point. This implies that Σ̃ ∩ ({x ≥ 0} × S

1) is a Killing graph above γ0 × S
1,

for the Killing vector field Y corresponding to translations along γ (we notice that,
along γ, Y and Zπ/2 coincide). Hence γ has at most one intersection point p with

Σ̃ ∩ ({x ≥ 0} × S
1) and this intersection is transverse.

Since at the first contact point between Σ̃ and P (s) (for s = s0) the mean curva-

ture vector of Σ̃ does not point into ∪s≥s0P (s), we have that, for any s
′ ∈ (0, s0], the

mean curvature vector of Σ̃ on Σ̃∩P (s′) does not point into ∪s≥s′P (s). In particular,

the mean curvature vector of Σ̃ at p points to the opposite direction as Zπ/2. Doing

this for every geodesic γ orthogonal to γ0 × S
1, we get that Σ̃ ∩ ({x ≥ 0} × S

1) is a
Zπ/2 graph.

Now let us suppose that Σ̃ is included in {x ≥ 0}× S
1, and let s2 ≥ 0 and s3 > 0

be the minimum and the maximum of the distance from Σ̃ to γ0 × S
1, respectively.

Thus Σ̃ is contained between d(s2)× S
1 and d(s3)× S

1. Because of the orientation of

the mean curvature vector at the contact points of Σ̃ with d(s2)× S
1 and d(s3)× S

1,
we get

Hd(s2)×S1 ≥ H
˜Σ ≥ Hd(s3)×S1 .

But Hd(s2)×S1 ≤ Hd(s3)×S1 , hence s2 = s3 and Σ̃ = d(s2)×S
1. This is, we are in Case

1.
Then we assume that Σ̃∩ ({x < 0}×S

1) is non empty. Using the totally geodesic

vertical annuli P (s) for s ≤ 0, we prove as above that Σ̃ ∩ ({x ≤ 0} × S
1) is a Zπ/2

graph. Moreover the mean curvature vector points in the same direction as Zπ/2. This

implies that Σ̃ is normal to γ0 × S
1. Thus, in the Alexandrov reflection procedure, a

first contact point between the reflected part of Σ̃ and Σ̃ occurs for s = 0. Σ̃ is then
symmetric with respect to P (0) = γ0 × S

1: we are in Case 4.

4. Minimal surfaces invariant by a Z subgroup. In this section, we are
interested in constructing minimal surfaces which are invariant by a Z subgroup of
Isom(H2×R). At this time, only few non-trivial singly periodic examples are known:
There are examples invariant by a one-parameter group of isometries [14, 20, 18, 21,
15, 9]; invariant by a vertical translation [3, 13]; or invariant by a horizontal translation
along a horizontal geodesic [16].

The subgroups we consider are those generated by a translation φl along a hori-
zontal geodesic or by a vertical translation T (h) along ∂t. The surfaces we construct
are similar to Scherk’s singly periodic minimal surfaces and Karcher’s Saddle Towers
of R3.
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Fig. 3. The shadowed domain is Ω(R), with the prescribed boundary data. The ruled region
corresponds to D+.

4.1. Horizontal singly periodic Scherk minimal surfaces. In this subsec-
tion we construct a 1-parameter family of minimal surfaces in H

2 × R, called ”hori-
zontal singly periodic Scherk minimal surfaces”. Each of these surfaces can be seen
as the desingularization of the intersection of a vertical geodesic plane and the hori-
zontal slice H2 × {0}, and it is invariant by a horizontal hyperbolic translation along
the geodesic of intersection.

We fix μ ∈ (0, 1) and define qμ = (0, μ) and q−μ = (0,−μ). Given R > 0, we
denote by Ω(R) the compact domain in {x ≥ 0} between E(R) and the geodesic lines
g(μ), g(−μ), γ0, where E(R) is the arc contained in the equidistant line d(R) which
goes from g(μ) to g(−μ), see Figure 3. Let uR be the solution to (1) over Ω(R) with
boundary values zero on ∂Ω(R) \ γ0 and value R on qμq−μ (minus its endpoints). By
the maximum principle, uR′ > uR on ΩR, for any R

′ > R.
Let us denote D+ = {x ≥ 0} the hyperbolic halfplane bounded by γ0. On D+,

we consider the solution v of (1) discovered by U. Abresch and R. Sa Earp, which
takes value +∞ on γ0 and 0 on the asymptotic boundary ∂∞D+ (see Appendix B).
Such a v is a barrier from above for our construction, since we have uR ≤ v for any
R.

Since (uR)R is a monotone increasing family bounded from above by v, we get
that uR converges as R → +∞ to a solution u of (1) on Ω(∞) = ∪R>0Ω(R), with
boundary values +∞ over qμq−μ (minus its endpoints) and 0 over the remaining
boundary (including the asymptotic boundary E(∞) at infinity). In fact, this solution
u, which is unique, can be directly derived from Theorem 4.9 in [9].

Let ΣR be the minimal graph of uR. ΣR is in fact the solution to a Plateau
problem in H

2 × R whose boundary is composed of horizontal and vertical geodesic
arcs and the arc E(R) × {0}. Let φl denote the flow of Y0. Using the foliation of
H

2 × R by the vertical planes φl(γπ/2 × R) = g(l) × R, l ∈ (−1, 1), the Alexandrov
reflection technique proves that ΣR is a Y0-bigraph with respect to γπ/2 × R. So

Σ+
R = ΣR ∩ {y ≥ 0} is a Y0-graph. Thus, the same is true for the minimal graph Σ of

u and for Σ+ = Σ ∩ {y ≥ 0}.
The boundary of Σ is composed of the vertical half-lines {qμ} ×R

+, {q−μ} ×R
+
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Fig. 4. The domain Ω(∞) with the prescribed boundary data.

and the two halves g+(μ), g+(−μ) of the horizontal geodesics g(μ), g(−μ). The ex-
pected “horizontal singly periodic Scherk minimal surface” is obtained by rotating
recursively Σ an angle π about the vertical and horizontal geodesics in its boundary.
This “horizontal singly periodic Scherk minimal surface” is properly embedded, in-
variant by the horizontal translation φ4μ along γ0 and, far from γ0 × {0}, it looks like
(γ0 × R) ∪ {t = 0}.

Proposition 4.1. For any μ ∈ (0, 1), there exists a properly embedded minimal
surface Mμ in H

2 ×R invariant by the horizontal hyperbolic translation φ4μ along γ0,
that we call horizontal singly periodic Scherk minimal surface. In the quotient by φ4μ,
Mμ is topologically a sphere minus four points corresponding to its ends: it has one
top end asymptotic to (γ0×R

+)/φ4μ, one bottom end asymptotic to (γ0×R
−)/φ4μ, one

left end asymptotic to {t = 0, x < 0}/φ4μ, and one right end asymptotic to {t = 0, x >
0}/φ4μ. Moreover, Mμ/φ

4
μ contains the vertical lines {q±μ} × R and the horizontal

geodesics g(±μ) × {0}, and it is invariant by reflection symmetry with respect to the
vertical geodesic plane γπ/2 × R.

Remark 4.2. “Generalized horizontal singly periodic Scherk minimal
surfaces”.

Consider the domain Ω(∞) with prescribed boundary data +∞ on qμq−μ, 0 on
g+(μ) ∪ g+(−μ) and a continuous function f on the asymptotic boundary E(∞) of
Ω(∞) at infinity. By Theorem 4.9 in [9], we know there exists a (unique) solution to
this Dirichlet problem associated to equation (1).

By rotating recursively such a graph surface an angle π about the vertical and
horizontal geodesics in its boundary, we get a “generalized horizontal singly periodic
Scherk minimal surface” Mμ(f), which is properly embedded and invariant by the
horizontal translation φ4μ along γ0. Such aMμ(f) can be seen as the desingularization
of the vertical geodesic plane γ0 × R and a periodic minimal entire graph invariant
by the horizontal translation φ4μ along γ0. Moreover, the surfaceMμ(f) contains the
vertical lines {q±μ} × R and the horizontal geodesics g(±μ)× {0}.

In general,Mμ(f) contains vertical geodesic arcs at the infinite boundary ∂∞H
2×
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Fig. 5. The embedded minimal disk Σh,λ,μ bounded by Γh,λ,μ.

R (over the endpoints of g(±μ) and their translated copies). To avoid such vertical
segments, we take f vanishing on the endpoints of E(∞).

4.2. A Plateau construction of vertical Saddle Towers. In this section, we
construct the 1-parameter family of most symmetric vertical Saddle Towers in H

2×R,
which can be seen as the desingularization of n vertical planes meeting at a common
axis with angle θ = π/n, for some n ≥ 2. When n = 2, the corresponding examples
are usually called “vertical singly periodic Scherk minimal surfaces”. For any fixed
n ≥ 2, these examples are included in the (2n−3)-parameter family of vertical Saddle
Towers constructed by Morabito and the second author in [13]. These surfaces are all
invariant by a vertical translation T (h).

A fundamental piece of the Saddle Tower we want to construct is obtained by
solving a Plateau problem. We now consider a more general Plateau problem, that
will be also used in Sections 5 and 6.

Given an integer n ≥ 2, we fix θ = π/n. We consider in H
2 the points

pλ = (λ sin θ, λ cos θ) and qμ = (0, μ),

for any λ ∈ (0, 1] and any μ ∈ (0, 1] (see Figure 5). Given h > 0, we call Wh,λ,μ ⊂
H

2 ×R the triangular prism whose top and bottom faces are two geodesic triangular
domains at heights 0 and h: the bottom triangle has vertices (pλ, 0), (0, 0), (qμ, 0) and
the top triangle is its vertical translation to height h.

If λ < 1 and μ < 1, we consider the following Jordan curve in the boundary of
Wh,λ,μ:

Γh,λ,μ = (qμ, 0) (0, 0) ∪ (0, 0) (pλ, 0) ∪ (pλ, 0) (pλ, h)
∪(pλ, h) (0, h) ∪ (0, h) (qμ, h) ∪ (qμ, h) (qμ, 0)

(see Figure 5). Since ∂Wh,λ,μ is mean-convex and Γh,λ,μ is contractible in Wh,λ,μ,
there exists an embedded minimal disk Σh,λ,μ ⊂ Wh,λ,μ whose boundary is Γh,λ,μ

(see Meeks and Yau [12]).

Claim 4.3. Σh,λ,μ is the only compact minimal surface in H
2 × R bounded by

Γh,λ,μ. Moreover, Σh,λ,μ is a minimal Yθ/2-graph and it lies on the positive Yθ/2-side
of Σh,λ′,μ′ , for any λ′ ≤ λ and any μ′ ≤ μ.

Proof. Let Σ,Σ′ ⊂ H
2 × R be two compact minimal surfaces with ∂Σ = Γh,λ,μ

and ∂Σ′ = Γh,λ′,μ′ , where λ′ ≤ λ and μ′ ≤ μ. First observe that, by the convex hull
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Fig. 6. The embedded minimal disk Σh bounded by Γh.

property (or by the maximum principle using vertical geodesic planes and horizontal
slices), Σ ⊂Wh,λ,μ and Σ′ ⊂Wh,λ′,μ′ .

Let (φl)l∈(−1,1) be the flow of Yθ/2. For l close to −1, φl(Wh,λ′,μ′) ∩Wh,λ,μ = ∅
and, for −1 < l < 0, φl(Γh,λ′,μ′) and Wh,λ,μ do not intersect. So letting l increase
from −1 to 0, we get by the maximum principle that φl(Σ

′) and Σ do not intersect
until l = 0. When λ = λ′ and μ = μ′, this implies that Σ = Σ′ (hence Σ = Σh,λ,μ)
and it is a minimal Yθ/2-graph. Also this translation argument shows that Σ lies on
the positive Yθ/2-side of Σ

′ when λ′ < λ and μ′ < μ.

From Claim 4.3, we deduce the continuity of Σh,λ,μ in the λ and μ parameters.
The surfaces Σh,λ,μ will be used in Sections 5 and 6 for the construction of doubly
periodic minimal surfaces and surfaces invariant by a subgroup of Isom(H2). More
precisely, in the following subsection we construct surfaces from Σh,λ,μ that we use in
the sequel.

Now we only consider the λ = μ case. As Yθ/2-graphs, the surfaces Σh,μ,μ form
an increasing family in the μ parameter. So if we construct a “barrier from above”,
we could ensure the convergence of Σh,μ,μ when μ→ 1.

On the ideal triangular domain of vertices 0, p1, q1, there exists a solution u to
the vertical minimal graph equation (1) which takes boundary values 0 on q10 and
0p1 and +∞ on p1q1. Let S0 and Sh be, respectively, the graph surfaces of u and
h− u.

Using the same argument as in Claim 4.3, we conclude that both S0 and Sh

are Yθ/2-graphs and lie on the positive Yθ/2-side of Σh,μ,μ, for any μ. They are the
expected “barriers from above”.

Using the monotonicity and the barriers, we conclude that there exists a limit Σh

of the minimal Yθ/2-graphs Σh,μ,μ when μ→ 1. And it is also a minimal Yθ/2-graph.
The surface Σh is a minimal disk bounded by

Γh = (q1, 0)(0, 0) ∪ (0, 0)(p1, 0) ∪ (q1, h)(0, h) ∪ (0, h)(p1, h).

In fact, applying the techniques of Claim 4.3, we get that Σh is the only minimal disk
of H2×R bounded by Γh which is contained inWh,1,1. By uniqueness, Σh is symmetric
with respect to the vertical plane γθ/2 × R and the horizontal slice H2 × {h/2}.

Now we can extend Σh by doing recursive symmetries along the horizontal
geodesics in its boundary. The surface we obtain is properly embedded, invariant
by the vertical translation T (2h) and asymptotic to the n vertical planes γkθ × R,
0 ≤ k ≤ n− 1, outside of a large vertical cylinder with axis {0} × R.
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Fig. 7. The minimal disk Σh,λ bounded by Γh,λ, and the minimal vertical graph Mh,λ =
Σh,λ ∩ {0 ≤ t ≤ h/2} bounded by c1 ∪ c2 ∪ c3 ∪ c4.

Proposition 4.4. For any natural n ≥ 2 and any h > 0, there exists a properly
embedded minimal surface Mh(n) in H

2 × R invariant by the vertical translation
T (2h) and asymptotic to the n vertical planes γ kπ

n
× R, for 0 ≤ k ≤ n − 1, far from

{0}×R. Moreover,Mh(n) contains the horizontal geodesics γ kπ
n
×{0}, 0 ≤ k ≤ n−1,

and is invariant by reflection symmetry with respect to the vertical geodesic planes
γ( 1

2+k)π
n
× R, with 0 ≤ k ≤ n − 1, and respect to the horizontal slices H

2 × {±h/2}.
We call such a surface (most symmetric) vertical Saddle Tower.

4.3. The minimal surfaces Σh,λ and Mh,λ. In order to prepare our work in
Sections 5 and 6, we continue to study the solutions of the Plateau problem introduced
in Subsection 4.2.

Recall that n ≥ 2 is an integer, θ = π/n and λ, μ ∈ (0, 1). We now fix λ and
h > 0, and we consider the family of Yθ/2-graphs Σh,λ,μ as μ varies. This family is
monotone increasing in the μ-parameter. And, for fixed h, the Yθ/2-graphs Σh,λ,μ

are bounded from above by the surface Σh constructed in the preceding subsection.
Thus Σh,λ,μ converges to a minimal Yθ/2-graph Σh,λ when μ→ 1. This surface is an
embedded minimal disk bounded by

Γh,λ =
(q1, 0) (0, 0) ∪ (0, 0) (pλ, 0) ∪ (pλ, 0) (pλ, h)
∪(pλ, h) (0, h) ∪ (0, h) (q1, h).

In fact, applying the techniques of Claim 4.3, we conclude that Σh,λ is the only
minimal disk contained in Wh,λ,1 which is bounded by Γh,λ.

The Alexandrov reflection method with respect to horizontal slices shows that
every Σh,λ,μ is a symmetric vertical bigraph with respect to H

2 × {h/2} (see Ap-
pendix C). Hence this is also true for Σh,λ.

We consider

Mh,λ = Σh,λ ∩ {0 ≤ t ≤ h/2},
which is a minimal vertical graph bounded by c1, c2, c3, c4 (see Figure 7), where:

• c1 = (q1, 0) (0, 0) = γ+0 is half a complete horizontal geodesic line;

• c2 = (0, 0) (pλ, 0) is a horizontal geodesic of length ln
(

1+λ
1−λ

)
, forming an

angle θ with c1 at A0 = (0, 0);
• c3 = (pλ, 0) (pλ, h/2) is a vertical geodesic line of length h/2;
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• c4 =Mh,λ ∩ {t = h/2} is a horizontal geodesic curvature line with endpoints
(pλ, h/2) and (q1, h/2).

The domain Ω0 over which Mh,λ is a graph is included in the triangular domain
of vertices 0, pλ, q1, and it is bounded by q10, 0pλ and π(c4). The latter curve goes
from pλ to q1 and is concave with respect to Ω0 because of the boundary maximum
principle using vertical geodesic planes, which implies that the mean curvature vector
of π(c4)× R points outside Ω0 × R.

On Mh,λ, we fix the unit normal vector field N whose associated angle function
ν = 〈N, ∂t〉 is non-negative. The vector field N extends smoothly to ∂Mh,λ (by
Schwarz symmetries). It is not hard to see that ν only vanishes on c3 ∪ c4, and ν = 1
at A0 = (0, 0).

Since Σh,λ is a Yθ/2-graph, then it is stable, so it satisfies a curvature estimate
away from its boundary. Hence the curvature is uniformly bounded on Mh,λ away
from c1, c2 and c3. Besides, Mh,λ can be extended by symmetry along c1 and c2 as a
vertical graph, thus as a stable surface. Hence, on Mh,λ, the curvature is uniformly
bounded away from c3.

Because of this curvature estimate and since Mh,λ ⊂Wh,λ,1, the angle function ν
goes to zero as we approach q1 × [0, h/2], and the asymptotic intrinsic distance from
c1 to c4 is h/2.

5. Doubly periodic minimal surfaces. In this section, we construct doubly
periodic minimal surfaces, i.e. properly embedded minimal surfaces invariant by a
subgroup of Isom(H2×R) isomorphic to Z2. In fact, we only consider subgroups gener-
ated by a hyperbolic translation along a horizontal geodesic and a vertical translation.
More precisely, let (φl)l∈(−1,1) be the flow of Y0. We are interested in properly embed-
ded minimal surfaces which are invariant by the subgroup of Isom(H2×R) generated
by φl and T (h), for fixed l and h. We notice that the quotient M of H2 × R by this
subgroup is diffeomorphic to T× R, where T is a 2-torus.

One trivial example of a doubly periodic minimal surface is the vertical plane
γ0×R. The quotient surface is topologically a torus and it is in fact the only compact
minimal surface in the quotient (see Theorem 3.1). Other trivial examples are given
by the quotients of a horizontal slice H2 × {t0} or a vertical totally geodesic minimal
plane g(μ)× R. Both cases give flat annuli in the quotient.

In the following subsections, we construct non-trivial examples, that are similar
to minimal surfaces of R3 built by H. Karcher in [5]. Their ends are asymptotic to
the horizontal and/or the vertical flat annuli described above.

5.1. Doubly periodic Scherk minimal surfaces. In this subsection we con-
struct minimal surfaces of genus zero in M which have two ends asymptotic to two
vertical annuli and two ends asymptotic to two horizontal annuli in the quotient.
These examples are similar to the doubly periodic Scherk minimal surface in R

3.
Let AR, BR in g(−μ) and CR, DR in g(μ) at distance R from γ0 such that AR

and DR are in {x < 0} and BR and CR are in {x > 0}, see Figure 8. We fix h > π
and consider the following Jordan curve:

ΓR = (AR, 0) (BR, 0) ∪ (E(R)× {0}) ∪ (CR, 0) (DR, 0)

∪(DR, 0) (DR, h) ∪ (DR, h) (CR, h) ∪ (E(R)× {h})
∪(BR, h) (AR, h) ∪ (AR, h) (AR, 0),

where E(R) is the subarc of the equidistant d(R) to γ0 that joins BR to CR. We
consider a least area embedded minimal disk ΣR with boundary ΓR.
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Fig. 8. The Jordan curve ΓR and the embedded minimal disk ΣR bounded by ΓR.

Using the Alexandrov reflection technique with respect to horizontal slices, one
proves that ΣR is a vertical bigraph with respect to {t = h/2} (see Appendix C).

Since Σ is area-minimizing, it is stable. This gives uniform curvature estimates
far from the boundary. Besides ΣR ∩ {0 ≤ t ≤ h/2} is a vertical graph that can be
extended by symmetry with respect to (AR, 0) (BR, 0) to a larger vertical graph. Thus
we also obtain uniform curvature estimates in a neighborhood of (AR, 0) (BR, 0). This
is also true for the three other horizontal geodesic arcs in ΓR.

Let A∞ and D∞ be the endpoints of g(−μ) and g(μ), that are limits of AR and
DR as R→ +∞. For any R, ΣR is on the half-space determined by A∞D∞×R that
contains ΓR.

Since h > π, we can consider the surface Sh described in Appendix B: Sh ⊂
H

2 × (0, h) is a vertical bigraph with respect to {t = h/2} which is invariant by
translations along γ0 and whose boundary is (α×{0})∪ (0, 1, 0)(0, 1, h)∪ (α×{h})∪
(0,−1, h)(0,−1, 0), where α = ∂∞H

2 ∩ {x > 0}. Let (χl)l∈(−1,1) be the flow of
the Killing vector field Yπ/2. For l close to 1, χl(Sh) does not meet ΣR. Since

(DR, 0) (DR, h) and (AR, h) (AR, 0) are the only part of ΓR in H
2× (0, h), we can let l

decrease until lR < 0, where χlR(Sh) touches ΣR for the first time. Actually, there are
two first contact points: (AR, h/2) and (DR, h/2). By the maximum principle, the
surface ΣR is contained between χlR(Sh) and A∞D∞ × R. We notice that lR > lR′ ,
for any R′ > R, and lR → l∞ > −1, where χl∞(γ0) = A∞D∞.

We recall that Zπ/2 is the unit vector field normal to the equidistant surfaces to
γ0 × R.

Claim 5.1. ΣR \ ΓR is a Zπ/2-graph over the open rectangle A0D0 × (0, h) in
γ0 × R.

Proof. It is clear that the projection of ΣR \ ΓR over γ0 × R in the direction of
Zπ/2 coincides with A0D0 × (0, h). Let us prove that ΣR \ ΓR is transverse to Zπ/2.
Assume that q is a point in ΣR \ ΓR where ΣR is tangent to Zπ/2. Thus there is a
minimal surface P given by Appendix B which is invariant by translation along Zπ/2,
passes through q and is tangent to ΣR. Near q, the intersection P ∩ ΣR is composed
of 2n arcs meeting at q, with n ≥ 2.

By definition of P and ΓR, the intersection P ∩ ΓR is composed either by two
points, or by one point and one geodesic arc of type (AR, 0) (BR, 0), or by two arcs
of type (AR, 0) (BR, 0) and (DR, h) (CR, h). Since ΣR is a disk, we get that there
exists a component of ΣR \ P which has all its boundary in P . This is impossible by
the maximum principle, since H

2 × R can be foliated by translated copies of P . The
surface ΣR is then transverse to Zπ/2.

Now let q be a point in A0D0 × (0, h), and 
q be the geodesic passing by q
and generated by Zπ/2. The intersection of 
q with ΣR is always transverse, so the
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number of intersection points does not depend on q. For q = (A0, h/2), this number
is 1. Therefore, ΣR \ ΓR is a Zπ/2-graph over the open rectangle A0D0 × (0, h).

Now let R tend to ∞. Because of the curvature estimates, and using that each
ΣR is a Zπ/2-graph bounded by χlR(Sh) and A∞D∞×R, we obtain that, the surfaces
ΣR converge to a minimal surface Σ∞ satisfying the following properties:

• Σ∞ lies in the region of {0 ≤ t ≤ h} bounded by g(−μ) × R, g(μ) × R,
A∞D∞ × R and χl∞(Sh);

• ∂Σ∞ = (g(−μ)× {0}) ∪ (g(μ)× {0}) ∪ (g(μ)× {h}) ∪ (g(−μ)× {h});
• Σ∞ \ ∂Σ∞ is a vertical bigraph with respect to {t = h/2} and a Zπ/2-graph

over A0D0 × (0, h);
• Σ∞∩{x ≤ 0} is asymptotic to g(−μ)×[0, h] and g(μ)×[0, h]; and Σ∞∩{x ≥ 0}
is asymptotic to {t = 0}/φ2μ and {t = h}/φ2μ.

After extending Σ∞ by successive symmetries with respect to the horizontal
geodesics contained in its boundary, we obtain a surface Σ invariant by the subgroup
generated by the horizontal hyperbolic translation φ4μ and the vertical translation
T (2h). In the quotient by φ4μ and T (2h), this surface is topologically a sphere minus
four points. Two of the ends of Σ are vertical and two of them are horizontal. This
surface is similar to the doubly periodic Scherk minimal surface of R3.

Proposition 5.2. For any h > π and any μ ∈ (0, 1), there exists a properly
embedded minimal surface Σ in H

2 × R which is invariant by the vertical translation
T (2h) and the horizontal hyperbolic translation φ4μ along γ0. In the quotient by T (2h)
and φ4μ, Σ is topologically a sphere minus four points, and it has two ends asymptotic
to the quotients of {x > 0, t = 0} and {x > 0, t = h}, and two ends asymptotic to
the quotients of (g(−μ) ∩ {x < 0}) × [0, h] and (g(μ) ∩ {x < 0}) × [0, h]. Moreover,
Σ contains the horizontal geodesics g(±μ) × {0}, g(±μ) × {h}, and is invariant by
reflection symmetry with respect to {t = h/2} and γπ/2 × R. We call these examples
doubly periodic Scherk minimal surfaces. Finally, we remark that Σ admits a non-
orientable quotient by φ4μ and T (h) ◦ φ2μ.

Remark 5.3. When h < π and μ is large enough, we can prove by using the
maximum principle with vertical catenoids and a fundamental piece of the surface Σ
described in Proposition 5.2, that the corresponding doubly periodic Scherk minimal
surface does not exist.

On the other hand, when h < π and μ is small enough, we can solve the Plateau
problem above in the exterior of certain surfaceM(R, μ̃) described in Proposition 5.8,
to prove that the corresponding doubly periodic Scherk minimal surface Σ exists.

5.2. Doubly periodic minimal Klein bottle examples: horizontal and
vertical Toroidal Halfplane Layers. In this subsection, we construct non-trivial
families of examples of doubly periodic minimal surfaces.

Let us consider the surface Σh,λ constructed in Subsection 4.3 for n = 2. By
successive extensions by symmetry along its boundary we get a properly embedded
minimal surface Σ which is invariant by the vertical translation T (2h) and the hor-
izontal translation χ2

λ, where (χl)l∈(−1,1) is the flow of Yπ/2. The quotient surface
by the subgroup of isometries of H2 × R generated by T (2h) and χ2

λ is topologically
a Klein bottle minus two points. The ends of the surface are asymptotic to vertical
annuli. If we consider the quotient by the group generated by T (2h) and χ4

λ, we get
topologically a torus minus four points. This example corresponds to the Toroidal
Halfplane Layer of R3 denoted by Mθ,0,π/2 in [19].
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Fig. 9. The minimal surface ˜Σ of Proposition 5.5 is obtained from the vertical minimal graph
w over Ω(∞) (the shadowed domain) with the prescribed boundary data.

Proposition 5.4. For any h > 0 and any λ ∈ (0, 1), there exists a properly
embedded minimal surface in H

2 × R invariant by the vertical translation T (2h) and
the horizontal hyperbolic translation χ2

λ along γπ/2, which is topologically a Klein
bottle minus two points in the quotient by T (2h) and χ2

λ. The surface is invariant
by reflection symmetry with respect to {t = h/2}, contains the geodesics γ0 × {0, h},
γπ/2 × {0, h} and {pλ} × R, and its ends are asymptotic to the quotient of γ0 × R.
Moreover, the surface is topologically a torus minus four points when considered in
the quotient by T (2h) and χ4

λ. We call these examples horizontal Toroidal Halfplane
Layers of type 1.

Let us see another example. This one is similar to the preceding one, but its
ends are now asymptotic to horizontal slices. We use the notation introduced in
Subsection 4.1. For R > 0, let wR be the solution to (1) over Ω(R) with boundary
values zero on ∂Ω(R) \ γ0 and h/2 on γ0 ∩ ∂Ω(R). By the maximum principle,
wR < wR′ < v on ΩR, for any R′ > R, where v is the Abresch-Sa Earp barrier
described in Appendix B. The graphs wR converge as R→ +∞ to the unique solution
w of (1) on Ω(∞) with boundary values h/2 on qμq−μ minus its endpoints and 0 on
the remaining boundary, including the asymptotic boundary at infinity. (By [9], we
directly know that such a graph exists and is unique.)

By uniqueness, we know that such a graph is invariant by reflection symmetry with
respect to the vertical geodesic plane γπ/2×R. Moreover, the boundary of this graph is
composed of two halves of g(μ) and g(−μ) and (qμ, 0)(qμ, h/2)∪ (qμ, h/2)(q−μ, h/2)∪
(q−μ, h/2)(q−μ, 0).

If we extend the graph of w by successive symmetries about the geodesic arcs in
its boundary, we obtain a properly embedded minimal surface Σ̃ which is invariant
by the Z

2 subgroup G1 of isometries of H
2 × R generated by T (h) and φ4μ. In the

quotient by G1, Σ̃ is a Klein bottle with two ends asymptotic to the quotient by G1 of
the two horizontal annuli obtained in the quotient of H2 × {0}. The quotient by the
subgroup generated by T (2h) and φ4μ gives a torus minus four points. This example
also corresponds to the Toroidal Halfplane Layer of R3 denoted by Mθ,0,π/2 in [19].

Finally, we remark that taking limits of Σ̃ as h → +∞, we get the horizontal
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Fig. 10. The embedded minimal disk ΣR bounded by ΓR (Subsection 5.3).

singly periodic Scherk minimal surface constructed in Subsection 4.1.

Proposition 5.5. For any h > 0 and any μ ∈ (0, 1), there exists a properly

embedded minimal surface Σ̃ in H
2 × R which is invariant by the vertical translation

T (h) and the horizontal hyperbolic translation φ4μ along γ0. In the quotient by T (h)

and φ4μ, Σ̃ is topologically a Klein bottle minus two points. The ends of Σ̃ are asymp-
totic to the quotient of H2×{0}. The surface is invariant by reflection symmetry with
respect to γπ/2×R, and contains the geodesics γ0×{h/2}, {q±μ}×R and g(±μ)×{0}.
Moreover, in the quotient by T (2h) and φ4μ, the surface is topologically a torus minus
four points corresponding to the ends of the surface (asymptotic to the quotient of
the horizontal slices {t = 0} and {t = h}). We call these examples vertical Toroidal
Halfplane Layers of type 1.

Remark 5.6. “Generalized vertical Toroidal Halfplane Layers of type
1”. Consider the domain Ω(∞) with prescribed boundary data h/2 on qμq−μ minus
its endpoints, 0 on (g(μ) ∪ g(−μ)) ∩ {x > 0} and a continuous function f on the
asymptotic boundary E(∞) of Ω(∞) at infinity, f vanishing on the endpoints of
E(∞) and satisfying |f | ≤ h/2. By Theorem 4.9 in [9], we know there exists a
(unique) solution to this Dirichlet problem. By rotating recursively such a graph
surface an angle π about the vertical and horizontal geodesics in its boundary, we
get a “generalized vertical Toroidal Halfplane Layers of type 1”, which is properly
embedded and invariant by the vertical translation T (h) and the horizontal hyperbolic
translation φ4μ along γ0. In the quotient by T (h) and φ

4
μ, such a surface is topologically

a Klein bottle minus two points corresponding to the ends of the surface, that are
asymptotic to the quotient of a entire minimal graph invariant by φ4μ which contains
the geodesics g(μ) × {0} and g(−μ) × {0}. In the quotient by T (2h) and φ4μ, the
surface is topologically a torus minus four points.

5.3. Other vertical Toroidal Halfplane Layers. The construction given in
this subsection is very similar to the one considered in Subsection 5.1, and we use the
notation introduced there. We consider h > π and ΓR the following Jordan curve:

ΓR = (B0, 0) (BR, 0) ∪ (E(R)× {0}) ∪ (CR, 0) (C0, 0)

∪(C0, 0) (C0, h) ∪ (C0, h) (CR, h) ∪ (E(R)× {h})
∪(BR, h) (B0, h) ∪ (B0, h) (B0, 0).

ΓR bounds an embedded minimal disk ΣR with minimal area. As in Subsec-
tion 5.1, ΣR is a vertical bigraph with respect to {t = h/2}. So the sequence of
minimal surfaces ΣR, as R varies, satisfies a uniform curvature estimate far from
(C0, 0) (C0, h), (B0, 0) (B0, h), E(R)× {0} and E(R)× {h}.
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Fig. 11. The embedded minimal disk Σ∞ from which we obtain, after successive symmetries
with respect to the geodesics in its boundary, the doubly periodic example described in Proposition 5.7.

Using the Alexandrov reflection technique with respect to the vertical planes
g(ν) × R as in Subsection 4.1, we prove that ΣR is a Y0-bigraph with respect to
g(0)×R = γπ/2×R. Thus extending ΣR by symmetry with respect to (B0, 0) (BR, 0),

(B0, 0) (B0, h) and (B0, h) (BR, h), we see that a neighborhood of (B0, 0) (B0, h) is a
Yπ/2-graph. This neighborhood is then stable and we get curvature estimates there.
Therefore, the minimal surfaces ΣR satisfy a uniform curvature estimate far from
E(R)× {0} and E(R)× {h}.

The surface ΣR is included in {x ≥ 0} × [0, h]. If Sh is the same surface as in
Subsection 5.1 (described in Appendix B) and (χl)l∈(−1,1) is the flow of Yπ/2, for l

close to 1, χl(Sh) does not meet ΣR. Since (B0, 0) (B0, h) and (C0, h) (C0, 0) are the
only part of ΓR in H

2×(0, h), we can let l decrease until l0 < 0, where χl0(Sh) touches
∂ΣR for the first time. Actually, l0 does not depend on R, and there are two first
contact points: (B0, h/2) and (C0, h/2). The surface ΣR is then between χl0(Sh) and
γ0 × R.

As in Subsection 5.1, ΣR\ΓR is a Zπ/2-graph over the open rectangle B0 C0×(0, h)
in γ0 × R. Then let R tend to +∞. The surfaces ΣR converge to a minimal surface
Σ∞ satisfying:

• Σ∞ lies in the region of {0 ≤ t ≤ h} bounded by g(−μ)×R, g(μ)×R, γ0 and
χl0(Sh).

• Σ∞ is bounded by four half geodesic lines: (B0, 0) (B∞, 0), (B0, h) (B∞, h),
(C0, 0) (C∞, 0), (C0, h) (C∞, h), and by two vertical segments: (B0, 0) (B0, h)
and (C0, 0) (C0, h). Here B∞ and C∞ are the limits of the BR and CR as
R→ +∞, contained in ∂∞H

2.
• Σ∞ \ ∂Σ∞ is a vertical bigraph with respect to {t = h/2} and a Zπ/2-graph

over B0 C0 × (0, h).
• Σ∞ is asymptotic to {t = 0} and {t = h}.

By successive symmetries of Σ∞ with respect to the geodesics in its boundary, we
get an embedded minimal surface Σ invariant by the subgroup of isometries of H2×R

generated by φ4μ and T (2h). The quotient surface is a torus minus four points. This
example corresponds to a Toroidal Halfplane Layer of R3 denoted by Mθ,π/2,0 in [19].

Proposition 5.7. For any h > 0 and any μ ∈ (0, 1), there exists a properly
embedded minimal surface Σ in H

2 × R which is invariant by the vertical translation
T (2h) and the horizontal hyperbolic translation φ4μ along γ0. In the quotient by T (2h)
and φ4μ, such a surface is topologically a torus minus four points. The ends of Σ are
asymptotic to the quotient of the horizontal slices {t = 0} and {t = h}. Moreover, Σ
contains the geodesics g(±μ)× {0}, g(±μ)× {h} and {q±μ} ×R, and is invariant by
reflection symmetry with respect to {t = h/2} and γπ/2×R. Finally, we remark that,
in the quotient by φ4μ and T (h)◦φ2μ, Σ is topologically a Klein bottle minus two points
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removed. We call these examples vertical Toroidal Halfplane Layers of type 2.

Finally, we observe that, as h→ +∞, Σ converges to a horizontal singly periodic
Scherk minimal surface described in Proposition 4.1.

5.4. Other horizontal Toroidal Halfplane Layers. In this subsection, we
also construct surfaces which are similar to some of Karcher’s most symmetric Toroidal
Halfplane Layers of R3. Now, its ends are asymptotic to vertical planes.

As in the preceding subsection, for R ≥ 0, we consider the points BR and CR in
g(−μ)∩{x ≥ 0} and g(μ)∩{x ≥ 0} at distance R from γ0. Let P(R) be the polygonal
domain in H

2 with vertices B0, BR, CR and C0. Let un be the solution to (1) defined
in P(R) with boundary value 0 on CRC0∪C0B0∪B0BR and n on BRCR. The graph
of un is bounded by a polygonal curve. As in Subsection 4.1, the sequence converges
to a solution u∞ of (1) on P(R) with boundary values 0 on CRC0 ∪ C0B0 ∪ B0BR

and +∞ on BRCR (by [14], we know that it exists and is unique). The graph of u∞,
denoted by ΣR, is bounded by ({CR} ×R

+) ∪ CRC0 ∪ C0B0 ∪B0BR ∪ ({BR} ×R
+)

and is asymptotic to CRBR × R.
By uniqueness of u∞, ΣR is symmetric with respect to γπ/2×R. We denote by β1

the geodesic curvature line of symmetry ΣR ∩ (γπ/2 ×R), and by FR the intersection

point of γπ/2 with BRCR. We also consider the following points in the boundary of
ΣR:

p1 = (0, 0), p2 = (B0, 0), p3 = (BR, 0).

The boundary of ΣR ∩ {y ≤ 0} is composed of the union of the curves β1, β2 = p1p2,
β3 = p2p3 and β4 = {BR} × R

+.
The vertical coordinate of the conjugate surface to ΣR is given by a function

h∗ defined on PR, which is a primitive of the closed 1-form ω∗ defined by (2). We
fix the primitive such that h∗(BR) = 0 (we recall that the conjugate surface is well
defined up to an isometry of H2 × R. We can consider h∗(BR) = 0 up to a vertical
translation). By definition of ω∗ and using the fact that u∞ ≥ 0 in P(R), we get
that h∗ increases from 0 to h∗(B0) > 0 along BRB0; it increases from h∗(B0) to
h0 = h∗(0) > h∗(B0) along B00; h

∗ is constant along 0FR; and finally h
∗ increases

from 0 to h0 along BRFR. In fact, h0 is equal to the distance from BR to FR , i.e.
h0 = h0(μ,R) =

1
2distH2(BR, CR) > ln 1+μ

1−μ .

We denote by Σ∗R the conjugate minimal surface of ΣR ∩ {y ≤ 0}. We have that
∂Σ∗R = β∗1 ∪ β∗2 ∪ β∗3 ∪ β∗4 , where each β∗i corresponds by conjugation to βi. We also
denote by p∗i the point in ∂Σ

∗
R corresponding by conjugation to pi, i = 1, 2, 3.

Up to a vertical translation, we have fixed p∗3 ∈ {t = 0}. We can also take
p∗2 = (0, h∗(B0)), after a horizontal translation.

On the other hand, we know from [4] that Σ∗R is a vertical graph over a do-
main P(R)∗, since P(R) is convex. In particular, Σ∗R is embedded. We now use the
properties conjugation introduced in Subsection 2.2 to describe the boundary of Σ∗R:

• β∗1 is half a horizontal geodesic with endpoint p∗1. Since p∗1 = (π(p∗1), h0), then
we conclude that β∗1 is contained in {t = h0}.

• The arc β∗2 is a vertical geodesic curvature line of length ln
1+μ
1−μ starting hor-

izontally at p∗2 and finishing at p∗1. In fact, β∗2 is the graph of a convex
increasing function over the (oriented) horizontal geodesic segment 0π(p∗1).
Up to a rotation, we can assume 0π(p∗1) ⊂ γ+0 . Since β1 and β2 meet orthog-
onally at p1 and conjugate surfaces are isometric, we get that β

∗
1 is orthogonal

to the vertical geodesic plane γ0 × R. In particular, we can assume up to a
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Fig. 12. Left: ΣR ∩ {y ≤ 0}. Right: The conjugate surface Σ∗
R of ΣR ∩ {y ≤ 0}, from which

we obtain after successive symmetries the doubly periodic example described in Proposition 5.8.

reflection symmetry with respect to γ0 × R that β∗1 = g+(ν) × {h0}, for a
certain ν ∈ (0, μ).

• The curve β∗3 is a vertical curvature line of length R starting horizontally at
p∗2 and finishing vertically at p

∗
3 = (π(p∗3), 0). Since β2, β3 meet orthogonally

at p2, the same happens to β
∗
2 , β

∗
3 at p∗2. In particular, β

∗
3 ⊂ γπ/2 × R, and

the normal to the surface along β∗3 is tangent to γπ/2 × R. Hence β∗3 is the
graph of a strictly decreasing concave function over the (oriented) horizontal
segment 0π(p∗3) ⊂ γπ/2. Finally, since Σ

∗
R ⊂ {x > 0} in a neighborhood of

β∗2 , we deduce 0π(p∗3) ⊂ γ+π/2.

• The curve β∗4 ⊂ {t = 0} is a horizontal curvature line with non-vanishing
geodesic curvature in {t = 0} ≡ H

2. Since the normal to Σ∗R points to
the positive direction of the x-axis at p∗3 and Σ∗R ⊂ {y > 0} in a small
neighborhood of β∗3 , we get that β

∗
4 is orthogonal to γπ/2 × R and lies inside

{y > 0} near p∗3. Moreover, the intrinsic distance in ΣR∩{y ≤ 0} between β1
and β4 is h0 (which is the asymptotic distance at infinity), and ΣR ∩{y ≤ 0}
is isometric to Σ∗R, then β

∗
4 is asymptotic to g(ν) at ∂∞H

2. This is, Σ∗R is
asymptotic to g(ν) × [0, h0]. Finally, we know by the maximum principle
for surfaces with boundary that β∗4 is concave with respect to P(R)∗. In
particular, it is contained in {y > 0}.

By the maximum principle, Σ∗R ⊂ {0 ≤ t ≤ h0}. If we make reflection symmetries
with respect to H

2 × {0}, γ0 ×R and γπ/2 ×R, we get a properly embedded minimal
annulus bounded by the geodesics g(±ν) × {±h0}. Then by successive symmetries
with respect to these geodesic boundary lines, we get a doubly periodic minimal
surface invariant by φ4ν and T (4h0). In the quotient by φ

4
ν and T (4h0), the surface is

topologically a torus minus four points. In the quotient by T (4h0) and T (2h0)◦φ2ν , the
surface is topologically a Klein bottle minus two points. These examples correspond
to the Toroidal Halfplane Layers of R3 denoted by Mθ,0,0 in [19]. We now have two
free parameters instead of only one.

Proposition 5.8. For any R > 0 and any μ ∈ (0, 1), there exist h0 = h0(R,μ) >
ln 1+μ

1−μ and ν = ν(R,μ) ∈ (0, μ) for which there exists a properly embedded minimal

surface M(R,μ) in H
2 × R which is invariant by the vertical translation T (4h0) and

the horizontal hyperbolic translation φ4ν along γ0. In the quotient by T (4h0) and
φ4ν , M(R,μ) is topologically a torus minus four points, whose ends are asymptotic
to the quotient of g(±ν) × R. Moreover, M(R,μ) contains the horizontal geodesics
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g(±ν)×{±h0}, and is invariant by reflection symmetry with respect to γ0×R, γπ/2×R

and {t = 0}. In the quotient by T (4h0) and T (2h0) ◦ φ2ν , M(R,μ) is topologically a
Klein bottle minus two points. We call these examples horizontal Toroidal Halfplane
Layers of type 2.

Remark 5.9. Up to a hyperbolic horizontal translation along γ0, we can fix B0 =
0 in the construction above. Then the graph u∞ = u∞(μ,R) converges as μ → +∞
to the unique minimal graph w over the geodesic triangle of vertices 0, BR, q1 = (0, 1)
with boundary values 0 over BR 0 ∪ 0, q1 and +∞ over BR q1. Such a limit graph
produces, after successive rotations about the horizontal geodesics BR 0 ∪ 0, q1 and
the vertical geodesic {BR} ×R

+ in its boundary, one of the “horizontal helicoids” H
described by Pyo in [16]. Then the conjugate surfacesM(R,μ) converge as μ→ +∞
to one of the “horizontal catenoids” constructed in [13, 16].

6. Minimal surfaces invariant by a subgroup of Isom(H2). In this section,
we construct some examples of minimal surfaces invariant by a subgroup G of the
isometries of Isom(H2×R) that fix the vertical coordinate. We will say that such a G
is a subgroup of the isometries of Isom(H2). In fact, the subgroups we consider come
from tilings of the hyperbolic plane. We will use some notation that we introduce in
Appendix A.

The horizontal slices are clearly invariant by any subgroup of the isometries of
Isom(H2). The first non-trivial example is the following: We consider n ≥ 3 and
θ = π/n. From Appendix A, there is y ∈ γθ/2 such that the polygon Py is a regular
convex polygon in H

2 with 2n edges of length 2hn and inner angle π/2 at the vertices
(see Appendix A for the definitions of Py and hn). On this polygon, there is a
solution u of (1) with boundary values ±∞ alternately on each edge. The graph of u
is a minimal surface bounded by 2n vertical lines over the vertices of Py. Since Py is
the fundamental piece of a colorable tiling of H2 (see Proposition A.2) the graph of u
can be extended by successive symmetries along its boundary to a properly embedded
minimal surface in H

2 × R. This surface is invariant by the subgroup of Isom(H2)
generated by the symmetries with respect to the vertices of the tiling.

We now construct other non-trivial examples of properly embedded minimal sur-
faces invariant by a subgroup of the isometries of Isom(H2). The construction of
these surfaces is similar to the one for some of the most symmetric Karcher’s Toroidal
Halfplane Layers in R

3.

Fix n ≥ 3 and h > hn. By Claim A.1 and Proposition A, there exist 
 < hn and
a convex polygonal domain P(n, h) ⊂ H

2 with 2n edges of lengths h and 
, disposed
alternately, whose inner angles are π/2. Such a domain P(n, h) produces by successive
rotations about its vertices a colorable tiling of H2.

Consider the minimal graph Σ over P(n, h) with boundary values 0 over the edges
of length h and +∞ over the edges of length 
. Such a graph exists, by [14], and is
unique. By uniqueness, Σ is invariant by reflection symmetry across the vertical
geodesic planes passing through the origin of P(n, h) and the middle points of the
edges of the polygon. We rotate Σ about the horizontal and vertical geodesics in its
boundary, producing a properly embedded minimal surfaceM invariant by a subgroup
of the group of isometries of the tiling produced from P(n, h) . M projects vertically
over the whole H

2, and contains all the edges of the tiling coming from the edges of
P(n, h) of length h (identifying them with the corresponding horizontal geodesics at
height zero), and the vertical geodesics over the vertices of the tiling.
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Proposition 6.1. For any n ≥ 2 and any h > hn, there exists a properly em-
bedded minimal surface M invariant by the group of isometries of the tiling produced
by the polygon P(n, h) defined above. The vertical projection of M is the entire H

2

and the ends of M are asymptotic to the vertical geodesic planes over the edges of the
tiling coming from the edges of P(n, h) with length 
. Moreover, M contains all the
edges of the tiling coming from the edges of length h and the vertical geodesics over
the vertices of the tiling.

In the following subsections, we prove:

Proposition 6.2. For any n ≥ 3 and any h > hn, there exists a properly
embedded minimal surfaceM invariant by the group of isometries of the tiling produced
by the polygon P(n, h). M projects vertically over the tiles in black and its ends are
asymptotic to the vertical geodesic planes over the edges of the tiling coming from the
edges of P(n, h) of length h. Moreover, M is invariant by reflection symmetry across
{t = 0} and contains the vertical geodesics over the vertices of the tiling.

6.1. The conjugate minimal surfaces M∗
h,λ. Let n ≥ 3 be an integer and

θ = π/n. We consider h > 0 and λ ∈ (0, 1). In Subsection 4.3, we have constructed
the minimal surface Mh,λ which is bounded by the union of four curves: c1, c2, c3
and c4.

LetM∗
h,λ be the conjugate minimal surface ofMh,λ. The aim of this subsection is

to describe M∗
h,λ and prove that it is embedded. We notice that M∗

h,λ is well defined

up to an isometry of H2 × R. In the following, we will fix this isometry by making
some hypotheses on M∗

h,λ.

The vertical coordinate h∗ of M∗
h,λ is defined on Ω0 by a primitive of the closed

1-form ω∗ defined in (2). Up to a vertical translation, we can assume h∗(pλ) = 0.
Because of the definition of ω∗ and since Mh,λ ⊂ H

2 × [0, h/2], h∗ increases along
π(c4) from pλ to q1, along c2 from pλ to 0 and along c1 from 0 to q1. Thus h∗ is
non-negative.

The surface M∗
h,λ is bounded by c∗1, c

∗
2, c

∗
3, c

∗
4, where each c

∗
i corresponds by con-

jugation to ci. Let us give a first description of these curves (see Figure 13):

• c∗1 is a vertical geodesic curvature line lying on a vertical geodesic plane Π1,
with infinite length and endpoint A∗0, the conjugate point to A0. We can
assume that A∗0 is the point (0, h

∗(0)) and that Π1 is the plane γ0 × R. The
unit tangent vector to c∗1 at A∗0 is horizontal and we assume it points to
{y ≥ 0}. The angle function ν∗ is positive along c∗1 (as this was the case for
the angle function ν ofMh,λ along c1) and the height function increases along
c∗1 when starting from A∗0. In the Euclidean plane Π1, c

∗
1 is then the graph of

a convex increasing function over a part [0, a1) of γ
+
0 (a1 could be a priori in

the asymptotic boundary of H2).

• c∗2 is a vertical geodesic curvature line of length ln
(

1+λ
1−λ

)
lying on a vertical

geodesic plane Π2. Since, the angle between c1 and c2 is θ at A0, we get that
the angle between Π1 and Π2 is θ (M

∗
h,λ is horizontal at A∗0 and isometric

to Mh,λ). We take Π2 the vertical plane π−1(γθ). Now M∗
h,λ is uniquely

defined. Starting from A∗0, the height function decreases along c
∗
2 from h∗(0)

to h∗(pλ) = 0. In the Euclidean plane Π2, c
∗
2 is then the graph of a concave

decreasing function over a part of the geodesic γ+θ . We denote by A∗2 the
endpoint of c∗2 which is different from A∗0. We have A∗2 = (a2, 0), with a2 ∈ γ+θ .
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Fig. 13. The boundary of M∗
h,λ

• c∗3 is a horizontal geodesic curvature line of length h/2 at height zero, going
from A∗2 to a point A∗3 = (a3, 0). The unit tangent vector to c∗3 at A∗2 is
orthogonal to Π2 and points into the side of Π2 that contains c

∗
1. As a curve

of H2 × {0}, the geodesic curvature of c∗3 never vanishes. In fact, since the
normal vector field of Mh,λ rotates less than π along c3, the total geodesic
curvature of π(c∗3) ⊂ H

2 is less than π. This implies that π(c∗3) and c
∗
3 are

embedded and π(c∗3) does not intersect 0a2.
• c∗4 is the half vertical geodesic line {a3} × R

+.

We know that the distance between c1 and c4 is uniformly bounded (in the sense
that if c1 and c4 are parameterized by arc-length then the distance between c1(t) and
c4(t) is bounded) and the surface is isometric to its conjugate, so the same is true for
c∗1 and c

∗
4. Thus the distance between a1 and a3 is bounded. This is, a1 is in H

2, not
in ∂∞H

2. Then, in the Euclidean plane Π1, c
∗
1 is the graph of a convex increasing

function over a part [0, a1) of γ
+
0 with limit +∞ at a1.

Because of the asymptotic behaviour of Mh,λ near q1, M
∗
h,λ is asymptotic to

a1a3 × R, and the geodesic a1a3 has length h/2. Besides, since the normal vector to
M∗

h,λ lies in Π1 along c
∗
1, the geodesic a1a3 is orthogonal to γ0 at a1, and a3 lies in

{x ≥ 0}.
Let (φl)l∈(−1,1) be the flow given by Y0. Let γ be the complete geodesic of H

2 that
contains a1 and a3. We know that γ is orthogonal to γ0. We consider the foliation of
H

2 × R by the vertical geodesic planes φl(γ × R). Since every point in M∗
h,λ is at a

bounded distance from its boundary, for l close to 1 we have φl(γ×R)∩M∗
h,λ = ∅. Let

l decrease until a first contact point for l = l0. Since M
∗
h,λ is asymptotic to a1a3 ×R,

either l0 = 0 or l0 > 0. Let us assume l0 > 0 and reach a contradiction. We have two
cases: the first contact point is contained on c∗3 or it coincides with A

∗
2. In the first

case we get a contradiction using the maximum principle, since the normal vector
field of the surface is horizontal along c∗3 and φl0(γ×R) is on one side of M∗

h,λ. Let us
now assume that the first contact point is A∗2. The unit tangent vector to c

∗
3 points
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into ∪l≥l0φl(γ × R) at A∗2, this contradicts that we have the first contact point for
l = l0. So M

∗
h,λ never intersects φl(γ×R) until l = 0. This implies that a2 and c

∗
3 are

in the half hyperbolic space bounded by γ which contains 0.
Let γ′ be the geodesic passing through a3 and orthogonal to γθ. Using a similar

argument as above with the corresponding foliation by vertical geodesic planes, we
can prove that:

• c∗3 is in the half hyperbolic plane {x ≥ 0};
• c∗3 and a2 are in the half hyperbolic plane bounded by γ′ which contains 0.

For the second item, we need to extend M∗
h,λ by symmetry along c

∗
2.

Let Ω be the domain of H2 bounded by a3a1, a10, 0a2 and c
∗
3. Since the angle

function ν∗ never vanishes outside c∗3 ∪ c∗4, we conclude M∗
h,λ ⊂ Ω× R. In fact, since

A∗0 is the only point in M
∗
h,λ that projects on 0, M∗

h,λ is a vertical graph over Ω. This
implies that M∗

h,λ is embedded.

6.2. Symmetry and the period problem. We recall that n ≥ 3. From now
on, we assume that h > hn, where hn is defined in Appendix A (hn is the length of
the edges of the regular geodesic polygon with 2n edges with interior angles π/2). We
want to find a value for the parameter λ for which we can construct an embedded
minimal surface extending M∗

h,λ by symmetry along its boundary.
Let us consider the surface Σh,λ described in Subsection 4.3. The same argument

as in this subsection proves that Σh,λ converges when λ→ 1. By uniqueness, we get
that this limit minimal surface must be Σh, described in Subsection 4.2 (see Figure 6).
Moreover, the surfaces Σh,λ depend continuously on the parameter λ. Thus a1, a2
and a3 depend continuously on λ as well.

We define Mh = Σh ∩ {0 ≤ t ≤ h/2}, and M∗
h its conjugate surface. As both

Mh,λ and M
∗
h,λ are vertical minimal graphs and Mh,λ converges to Mh as λ→ 1, we

can conclude as in [13] that the graphs M∗
h,λ converge to M

∗
h when λ→ 1.

We translate vertically M∗
h so that A∗0 = (0, 0). The curve Mh ∩ {t = h/2}

corresponds by conjugation to a vertical geodesic {a′} × R, where a′ is the limit of
the points a3 when λ → 1. Since Mh is invariant by the reflection symmetric with
respect to the plane γθ/2 × R, then M∗

h is invariant by the rotation of angle π about
the geodesic γθ/2, contained in M

∗
h . Therefore a

′ ∈ γθ/2 and this implies that, for λ
sufficiently close to 1, a3 lies in the hyperbolic angular sector Tθ = {(r sinu, r cosu) ∈
H

2, r ∈ [0, 1), u ∈ [0, θ]}.
Let a4 be the orthogonal projection of a3 over γθ. As λ goes to 1, a3 goes to a

′

and a4 goes to the projection a
′
θ of a

′. We recall that a1 is the orthogonal projection
of a3 on γ0 so a1 goes to the projection a

′
0 of a

′ on γ0. Since h > hn and M∗
h (for

λ = 1) is invariant by the rotation of angle π about γθ/2, we deduce that the angle

between a′a′0 and a′a
′
θ is strictly smaller than π/2. Thus the angle between a3a1 and

a3a4 is strictly less than π/2, for λ close to 1.

Let us observe what happens when λ is close to 0. By construction, a3 is at
distance h/2 from the geodesic γ0 (i.e. a3 lies on d(h/2), the equidistant curve of γ0
at distance h/2). Besides the distance from 0 to a3 is less than the sum of the lengths

of c∗2 and c
∗
3. So this distance is less than ln

(
1+λ
1−λ

)
+h/2. So for λ small, the distance

between 0 and a3 is close to h/2. This implies that a3 lies outside the angular sector
Tθ when λ is close to zero.

By continuity, there is a largest λ, denoted by λ0, such that a3 ∈ γθ. In particular,
a3 is contained in Tθ for any λ > λ0. For λ > λ0 close to λ0, a3 ∈ Tθ is close to γθ.
So the angle between a3a1 and a3a4 is bigger than π/2. A continuity argument says
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that there exists λ1 ∈ (λ0, 1) such that a3 ∈ Tθ and the angle between a3a1 and a3a4
is equal to π/2 (see the proof of Claim A.1 for a similar argument). This value λ1 is
the one we look for; so from now on, we fix λ = λ1.

The domain Ω is included in the convex polygonal domain of vertices 0, a1, a3
and a4. We denote by Ω̃ the domain obtained from Ω by reflection with respect to
the geodesics γ0 and γθ successively. The boundary of Ω̃ has 2n vertices which are
the images of a3 and is composed of n geodesic arcs corresponding to a1a3 and n
concave arcs corresponding to c∗3. This domain is included in the convex polygonal
domain P, which is constructed by the same symmetries from the geodesic polygon
of vertices 0, a1, a3, a4 (this polygon corresponds to the polygon Pa3 in Appendix A).
P has 2n vertices coming from a3, all of them with interior angle π/2; and its edges
have lengths h and b, alternatively, where b is twice the length of the geodesic arc
a3a4. Such a polygon P is then the fundamental piece of a colorable tiling of H2 (see
Proposition A.2).

Let us now extend M∗
h,λ1

by successive reflection symmetries with respect to the

planes γ0 × R and γθ × R. We get a minimal surface M̃ which is a vertical graph
over Ω̃ with value 0 along the concave arcs and +∞ on the geodesic arcs. Moreover,
this surface is in {t ≥ 0} and has all the symmetries of the polygonal domain P. By
reflection symmetry with respect to the horizontal slice {t = 0}, we get an embedded
minimal surface whose boundary consists of 2n vertical geodesic lines passing through
the vertices of P. Such a surface is topologically a sphere minus n points.

From Proposition A.2, P is the fundamental piece of a hyperbolic colorable tiling.
Thus we can extend the surface by successive reflection symmetries along the vertical
geodesics contained in its boundary, getting a properly embedded minimal surface M
which is invariant by the group of symmetries generated by the rotation around the
vertices of the tiling. Moreover the surface projects only on tiles in black of P. This
proves Proposition 6.2.

Remark 6.3. If n = 2, the above contruction can be done without selecting
the value of the parameter λ. Thus we get the surface M̃ that can be extended by
symmetry with respect to {t = 0} to get a minimal surface whose boundary consists
of 4 vertical geodesic lines. This surface is topologically an annulus. So this surface
is a solution to the following Plateau problem: finding a minimal annulus bounded
by four vertical geodesic lines. In this sense, it is very similar to the Karcher saddle
[5] of R3. But in our situation it can’t be extended by symmetry along its boundary
into an embedded minimal surface of H2 × R.

Appendix A. Geodesic polygonal domains with right angles. In this
appendix, we give some facts about the tilings of the hyperbolic plane that we consider
in the paper.

Let n ≥ 3 be an integer and define θ = π/n. Let yl be the point
(l sin(θ/2), l cos(θ/2)) in H

2, for 0 < l < 1. Rotating yl around 0 by kθ (k =
1, · · · , 2n − 1), we get the 2n vertices of a regular convex geodesic polygon in H

2.
We denote by h the length of one of its 2n edges. h is an increasing function of l.
When l varies from 0 to 1, the interior angle of the polygon at yl decreases from π− θ
to 0. Thus there is one value of l such that this angle is π/2. We denote by hn the
associated value of h.

Let y be in Tθ. Considering the successive image of y by the reflections with
respect to γkθ ((k = 1, · · · , 2n), we construct the 2n vertices of a convex polygon
whose edges have alternative lengths ay and by, where ay/2 is the distance from y to
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γ0 and by/2 the one to γθ. We denote by Py this polygon and by αy the interior angle
of Py at the vertex y (the angle is the same at every vertex).

Claim A.1. For any a ≥ hn, there is y ∈ Tθ such that ay = a and αy = π/2.

Proof. Let d(a/2) be the equidistant curve to γ0 at distance a/2 in {x ≥ 0}. Let
y be on the part of d(a/2) between γθ/2 and γθ. Then ay = a. If y ∈ γθ/2, Py is
a regular convex polygon (ay = by) and αy ≤ π/2, since a ≥ hn. For y close to γθ,
αy > π/2. By continuity, there is y such that αy = π/2.

Proposition A.2. Let y ∈ Tθ be such that αy = π/2. Then Py is the fundamen-
tal piece of a tiling of H2. This tiling is given by considering the successive images
of Py by reflection with respect to its edges. Moreover, this tiling is colorable i.e. we
can associate to any tile a color (black or white) such that two tiles having a common
edge do not have the same color.

For such a tiling, every vertex lies in four tiles: two are black and two are white.
Two tiles of the same color with a common vertex are exchanged by the symme-
try around this vertex. Proposition A.2 is a consequence of Poincaré’s polyhedron
Theorem [7].

Appendix B. Some interesting minimal surfaces. In this appendix, we
recall some known minimal surfaces in H

2 × R that we used in the paper.
Let us consider the half-space model for the hyperbolic plane : H2 = {(x1, x2) ∈

R× R
+} with the hyperbolic metric g = 1

x2
2
(dx21 + dx22).

On {x1 > 0}, the function v(x1, x2) = log(

√
x2
1+x2

2+x2

x1
) is a solution to (1). Its

graph is then a minimal surface in H
2 × R. On the boundary of {x1 > 0}, v takes

the value +∞ on the geodesic line {x1 = 0} and takes the value 0 on the asymptotic
boundary of {x1 > 0}. This solution was discovered independently by U. Abresch
and R. Sa Earp. This surface is used in Subsection 4.1

On the entire H2, another solution to (1) is given by ua(x1, x2) = a log(x21 + x22).
This solution is invariant by the Z-flow, for Z normal to {x1 = 0}. In fact the
graph of ua is a minimal surface foliated by horizontal geodesics in H

2 × R normal
to {x1 = 0} × R. Adding a constant c to ua, we create a foliation of H

2 × R by such
surfaces. When a varies in R, we get a family of minimal surfaces which are similar
to planes in R

3. Moreover, for any non vertical tangent plane at (0, 1, 0) which is
tangent to Z, one surface in this family is tangent to this tangent plane. In order to
have the complete family, we can add the vertical minimal plane {x21 + x22 = 1} × R.
These surfaces are the P surfaces used in the proof of Claim 5.1.

If we look for solutions of (1) of the form u(x1, x2) = f(x1/x2), we obtain solutions
which are invariant by a translation along the geodesic {x1 = 0}. The above solution v
is one such solution. In fact, for any h > π, there is dh > 0 and a function fh which is
defined on [dh,+∞) such that uh(x1, x2) = fh(x1/x2) is a solution to (1) (see [18, 9]).
This function fh is a decreasing function with fh(dh) = h/2 and lim+∞ fh = 0 and
limdh

f ′h = −∞. The function uh is then defined on the set of points at distance
larger than dh from {x1 = 0} and has boundary value h/2 on the equidistant and
0 on the asymptotic boundary. When h → +∞, uh converge to the above solution
v. The graph of uh is a minimal surface inside {0 < t ≤ h/2} which is foliated by
horizontal equidistant lines to {x1 = 0} ×R and is vertical along its boundary. Then
this graph can be extended by symmetry with respect to {t = h/2} to a complete
minimal surface Sh which is a vertical bigraph, included in {0 < t < h}, foliated by
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horizontal equidistant lines to {x1 = 0}×R. Moreover, the supremum of the vertical
gap on Sh is h. The surfaces Sh are used in Subsections 5.1 and 5.3 as barriers in our
construction.

Appendix C. Alexandrov reflection. In Subsection 5.1, we construct a min-
imal surface Σ∞ as the limit of surfaces ΣR. These surfaces ΣR are minimal disks
bounded by a Jordan curve ΓR. We claim that the Alexandrov reflection technique
can be applied with respect to horizontal slices to prove that ΣR is a vertical bigraph
with respect to {t = h/2}. Since there are two vertical arcs in ΓR, we need to explain
how the classical Alexandrov reflection technique works along these vertical edges.

In order to lighten the notation, we put Σ = ΣR and Γ = ΓR. For l ∈ [0, h],
we define Πl the horizontal slice {t = l}. We denote by Pl and Ql the points in the
vertical edges of Γ at height l (since the arguments work the same for both points in
the sequel, we will assume that there is only one). Let Σl = (Σ ∩ πl) \ {Pl, Ql}. We
also define Σ+

l (resp. Σ−l ) the part of Σ above (resp. below) Πl minus its boundary.
Finally we denote by Σ+∗

l and Σ−∗l the symmetric of Σ+
l and Σ−l by Πl.

The main step of the Alexandrov reflection technique is to prove that, for any
l ∈ (h/2, h], Σ−l ∩ Σ+∗

l = ∅ and Σ is never vertical along Σl.
The property is true for l = h since Σ+∗

h = ∅ and Σ is inside the convex hull of
its boundary.

We notice that for any l ∈ (h/2, h), if Σ−l ∩ Σ+∗
l = ∅ is proved, then Σ is never

vertical along Σl follows easily.
Now we consider l0 ∈ (h/2, h] such that the property is satisfied for any l ≥ l0.

Let us assume that there exists a sequence of lk < l0 with lk → l0 and, for any k,
there is pk ∈ Σ−lk ∩ Σ+∗

lk
.

Since Σ−l0 ∩ Σ+∗
l0

= ∅, the limit p∞ of pk is either in Σl0 or in the vertical edge.
Since Σ is not vertical along Σl0 , p∞ /∈ Σl0 . So p∞ is in the vertical edge. Since
Σ−l0 ∩ Σ+∗

l0
= ∅, the tangent space to Σ−l0 and Σ+∗

l0
are different for any point in the

the vertical edge except at Pl0 so the only possible limit is p∞ = Pl0 .
Let us first consider the case l0 < h, and let (x, y, z) be an orthogonal coordinate

system at Pl0 such that (x, y) are euclidean coordinates in the vertical plane tangent
to Σ at Pl0 , where ∂x is a vertical down pointing vector field and ∂y is a horizontal
vector field. Σ is then locally the graph of a function z = w(x, y) over {y ≥ 0}.
w vanishes on {y = 0} and has vanishing differential at the origin. We notice that
{z = 0} is a minimal surface thus from the proof of Theorem 5.3 in [1], w can be
written in the following way:

w(x, y) = p(x, y) + q(x, y),

where p is a homogeneous harmonic polynomial of degree d and q satisfies

|q(X)|+ |X||∇q(X)|+ · · ·+ |X|d|∇dq(X)| ≤ C|X|d+1.

Since Σ−l0 ∩ Σ+∗
l0

= ∅, then w(x, y)− w(−x, y) has a sign for any |(x, y)| < ε with
x �= 0 and y �= 0. We assume that the coordinate z is chosen such that this sign is +.
Thus 0 ≤ w(x, y)−w(−x, y) = p(x, y)− p(−x, y) + q(x, y)− q(−x, y) for x and y non
negative close to 0, and it does not vanish for positive values of x and y. Thus the
degree of p(x, y)− p(−x, y) has to be 2, and p(x, y) = αxy with α > 0.

When l0 = h, we also get that Σ is the graph of function w over [0, ε]2 with
w(x, y) = αxy + q(x, y), for the same choice of coordinate system, with α and q
satifying the same hypotheses as above.
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Since pk → Pl0 , for k large enough we get pk = (xk, yk, w(xk, yk)), with (xk, yk) ∈
[−lk, ε]× [0, ε]. Since pk ∈ Σ−lk ∩ Σ+∗

lk
, we have :

(3) w(xk, yk) = w(2(l0 − lk)− xk, yk)
But if (x, y) ∈ [λ, ε]× [0, ε] we have:

w(x, y)− w(2λ− x, y) ≥ 2α(x− λ)y − 2 sup
u∈[−ε,ε]

|∂xq(u, y)|(x− λ).

Since 0 = w(x, 0) = q(x, 0), we get

|∂xq(u, y)| ≤ sup
v∈[0,ε]

|∂y∂xq(u, v)|y ≤ C
√
u2 + ε2y.

Thus

w(x, y)− w(2λ− x, y) ≥ 2α(x− λ)y − C2
√
2ε(x− λ)y

≥ 2[α−
√
2Cε](x− λ)y,

which is positive if x > λ, y > 0 and ε is small enough. This contradicts (3) when k
is large enough.

We then have proved that: for any l ∈ (h/2, h], Σ−l ∩ Σ+∗
l = ∅ and Σ is never

vertical along Σl.

Therefore, we obtain that either Σ−h/2 = Σ+∗
h/2 and it is a vertical bigraph with

respect to {t = h/2}, or Σ−h/2 and Σ+∗
h/2 are two non intersecting minimal surfaces

with the same boundary. In this second case, Σ−h/2 is clearly below Σ+∗
h/2 along the

Γ∩Π0. By symmetry by Πh/2 this implies that Σ
+
h/2 is below Σ−∗h/2 along Γ∩Πh. But

doing Alexandrov reflection technique as above with the slices Πl, l ∈ [0, h/2], we get
that Σ+

h/2 is above Σ
−∗
h/2 along Γ ∩Πh. Finally, we have proved Σ

−
h/2 = Σ+∗

h/2.
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