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1. Introduction. A properly embedded surface ¥ in H? x R, invariant by a
non-trivial discrete group of isometries of H? x R, will be called a periodic surface.
We will discuss periodic minimal and constant mean curvature surfaces. At this time,
there is little theory of these surfaces in H? x R and other homogeneous 3-manifolds,
with the exception of the space forms.

The theory of doubly periodic minimal surfaces (invariant by a Z? group of isome-
tries) in R? is well developed. Such a surface in R?, not a plane, is given by a properly
embedded minimal surface in T x R, T some flat 2-torus. One main theorem is that a
finite topology complete embedded minimal surface in T x R has finite total curvature
and one knows the geometry of the ends [11]. It is very interesting to understand this
for such minimal surfaces in M2 x R, M? a closed hyperbolic surface.

In this paper we will consider periodic surfaces in H? x R. The discrete groups G
of isometries of H2 x R we consider are generated by horizontal translations ¢; along
geodesics v of H? and/or a vertical translation T'(h) by some h > 0. We denote by M
the quotient of H? x R by G.

In the case G is the Z2 subgroup of the isometry group generated by ¢; and
T(h), M is diffeomorphic but not isometric to T x R. Moreover M is foliated by the
family of tori T(s) = (d(s) X R)/G (here d(s) is an equidistant to 7). All the T(s)
are intrinsically flat and have constant mean curvature; T(0) is totally geodesic. In
Section 3, we will prove an Alexandrov-type theorem for doubly periodic H-surfaces,
i.e., an analysis of compact embedded constant mean curvature surfaces in such a M
(Theorem 3.1).

The remainder of the paper is devoted to construct examples of periodic minimal
surfaces in H? x R.

The first example we want to illustrate is the singly periodic Scherk minimal
surface. In R3, it can be understood as the desingularization of two orthogonal planes.
H. Karcher [5] has generalized this to desingularize k planes of R® meeting along a
line at equal angles, these are called Saddle Towers. In H? x R, two situations are
similar to these examples: the intersection of a vertical plane with the horizontal slice
H? x {0} and the intersection of k vertical planes meeting along a vertical geodesic at
equal angles. These surfaces, constructed in Section 4, are singly periodic and called,
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respectively, “horizontal singly periodic Scherk minimal surfaces” and “vertical Saddle
Towers”. For vertical intersections, the situation is in fact more general and was
treated by F. Morabito and the second author in [13]; here we give another approach
which is more direct (see also J. Pyo [17]).

In Section 5, we construct doubly periodic minimal examples. The first exam-
ples we obtain, called “doubly periodic Scherk minimal surfaces” bounded by four
horizontal geodesics; two at height zero, and two at height A > w. The latter two
geodesics are the vertical translation of the two at height zero. Each one of these
Scherk surfaces has two “left-side” ends asymptotic to two vertical planar strips, and
two “right-side” ends, asymptotic to the horizontal slices at heights zero and h. By
recursive rotations by m about the horizontal geodesics, we obtain a doubly periodic
minimal surface.

The other doubly periodic minimal surfaces of H? x R constructed in Section 5 are
analogous to some of Karcher’s Toroidal Halfplane Layers of R? (more precisely, the
ones denoted by My o /2, Mo r/2,0 and Mg in [19]). The examples we construct,
also called Toroidal Halfplane Layers, are all bounded by two horizontal geodesics at
height zero, and its translated copies at height h > 0. Each ot these Toroidal Halfplane
Layers has two “left-side” ends and two “right-side” ends, all of them asymptotic to
either vertical planar strips or horizontal strips, bounded by the horizontal geodesics
in its boundary. By recursive rotations by 7 about the horizontal geodesics, we obtain
a doubly periodic minimal surface. In the quotient of H? xR by a horizontal hyperbolic
translation and a vertical translation leaving invariant the surface, we get a finitely
punctured minimal torus and Klein bottle in T x R, T some flat 2-torus.

Finally, in Section 6, we construct a periodic minimal surface in H? x R analogous
to the most symmetric Karcher’s Toroidal Halfplane Layer in R* (denoted by Mp g0
n [19]). A fundamental domain of this latter surface can be viewed as two vertical
strips with a handle attached. This piece is a bigraph over a domain 2 in the par-
allelogram of the R? x {0} plane whose vertices are the horizontal projection of the
four vertical lines in the boundary of the domain, and the upper graph has boundary
values 0 and +oo: The trace of the surface on R? x {0} is the two concave curves
in the boundary of 2. They are geodesic lines of curvature on the surface and their
concavity makes the construction of these surfaces delicate. We refer to [5, 11, 19],
where they are constructed by several methods. The complete surface is obtained
by rotating by 7w about the vertical lines in the boundary. Considering the quotient
of R3 by certain horizontal translations leaving invariant the surface, yields finitely
punctured minimal tori and Klein bottles in T x R.

The surface we construct in H? x R will have a fundamental domain ¥ which
may be viewed as k vertical strips (k > 3) to which one attaches a sphere with &
disks removed. X is a vertical bigraph over a domain Q C H? x {0} = H?; 99 has 2k
smooth arcs Ay, By, -+, Ak, By, in that order. Each A; is a geodesic and each Bj is
concave towards 2. The A;’s are of equal length and the B;’s as well. The convex
hull of the vertices of € is a polygonal domain Q that tiles H2; the interior angles of
the vertices of 2 are 7/2. Thus X extends to a periodic minimal surface in H? x R by
symmetries: rotation by m about the vertical geodesic lines over the vertices of 9.

The surface ¥, = ¥ N (H? x RT) is a graph over  with boundary values as
indicated in Figure 1 (here k = 4). ¥, is orthogonal to H? x {0} along the concave
arcs Bj so X is the extension of ¥ by symmetry through H? x {0}.

3 will be constructed by solving a Plateau problem for a certain contour and
taking the conjugate surface of this Plateau solution. The result will be the part of
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Fic. 1. The domain Q

3+ which is a graph over the shaded region on €2 in the Figure 1. This graph meets the
vertical plane over v and 7y orthogonally, so extends by symmetry in these vertical
planes. ¥ is then obtained by going around 0 by k symmetries.

2. Preliminaries.

2.1. Notation. In this paper, the Poincaré disk model is used for the hyperbolic

plane, i.e.

H? = {(2,y) e R? | 2?2 + ¢ < 1}
1_I24_y2)2 go, where gg is the Euclidean metric in
R2. Thus z and y will be used as coordinates in the hyperbolic plane. We denote
by 0 the origin (0,0) of H2. In this model, the asymptotic boundary 9, H? of H? is
identified with the unit circle. So any point in the closed unit disk is viewed as either
a point in H? or a point in J, H?2.

Let § € R. In H?, we denote by g the geodesic line {—xcosf + ysinf = 0}
and by v, the half geodesic line from 0 to (sinf,cos6). We also denote by Ty the
hyperbolic angular sector {(rsinu,r cosu) € H?,7 € [0,1),u € [0,6]}.

For p € (—1,1) we denote by g(u) the complete geodesic of H? orthogonal to 7o
at ¢, = (0,1). We have g(0) = 7,/2. We also denote g™ (u) = g(p) N {x > 0}.

Fixed 0 € R, there exists a Killing vector field Yy which has length 1 along -y and
generated by the hyperbolic translation along vy with (sind, cos#) as attractive fixed
point at infinity. For I € (—1,1), we denote by ¢; the hyperbolic translation along
79 with ¢;(0) = (Isin®,lcosf). (é1)ie(—1,1) is called the “flow” of Yy, even though

with the hyperbolic metric g1 = C
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Fia. 2. The hyperbolic angular sector Ty corresponds to the shadowed domain.

the family (¢1)ic(—1,1) is not parameterized at the right speed. We notice that, if
(¢1)1e(~1,1) 1s the flow of Yo, g(u) = ¢,(9(0)).

For 6 € R, there is another interesting vector field that we denote by Zy. This
vector field is the unit vector field normal to the foliation of H? by the equidistant
lines to Yg4x /2 such that Zy(0) = (1/2)(sin 09, + cos#9,). We notice that Zy is not
a Killing vector field. This time, we define (1)5)scr the flow of Zy (with the right
speed). If (¢s)ser is the flow of Z /5, we define d(s) = 1)s(o) for s in R. d(s) is one
of the equidistant lines to 7o at distance |s|. We remark that Z,/, is tangent to the
geodesic lines g(p).

In the sequel, we denote by t the height coordinate in H? x R. Besides, we will
often identify the hyperbolic plane H? with the horizontal slice {¢ = 0} of H? x R.
The Killing vector field Yy and its flow naturally extend to a horizontal Killing vector
field and its flow in H? x R. The same occurs for Zy and its flow.

We denote by 7 : H? x R — H? the vertical projection and by T'(h) the vertical
translation by h. Given two points p and ¢ of H? or H? x R, we denote by pg the
geodesic arc between these two points.

2.2. Conjugate minimal surface. B. Daniel [2] and L. Hauswirth, R. Sa Earp
and E. Toubiana [4] have proved that minimal disks in H? x R have an associated
family of locally isometric minimal surfaces. In this subsection we briefly recall how
they are defined.

Let X = (¢,h) : ¥ — H2 x R be a conformal minimal immersion, with ¥ a simply
connected Riemann surface. Then h is a real harmonic function and ¢ =70 X is a
harmonic map to H2. Let h* be the real harmonic conjugate function of h and Q. be
the Hopf differential of . Since X is conformal, we have

on\ >
Qkp:_ (82’) dZ27

where z is a conformal parameter on X. In [2] and [4] it has been proved that, for any
f € R, there exists a minimal immersion Xy = (g, hy) : ¥ — H? x R whose induced
metric on ¥ coincides with the one induced by X, and such that hy = cos Oh +sin 0h*
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and the Hopf differential of ¢y is Q,, = ¢ Q.. If N (resp. Nj) denotes the unit
normal to X (resp. Xp), then (N,d;) = (Np, ;) (i.e. their angle maps coincide).

All these immersions Xy are well-defined up to an isometry of H? x R. The
immersion X/, is called the conjugate immersion of X (and X, /3(X¥) is usually
called conjugate minimal surface of X (X)), and it is denoted by X*.

The data for the conjugate surface are the same as for X (X), except that one
rotates S and T by 7/2: S* = JS, and T* = JT. Here S (resp. S*) denotes the
symmetric operator on ¥ induced by the shape operator of X (X) (resp. X*(X)); T
(resp. T*) is the vector field on ¥ such that dX (T) (resp. dX*(T*)) is the projection
of 0; on the tangent plane of X (X) (resp. X*(3)); and J is the rotation of angle 7/2
on T'Y. See [2] for more details.

For C' a curve on X, the normal curvature of X(C) in the surface X(X) is
—(C",S(C")), and the normal torsion is (J(C’),S(C”)). Thus the normal torsion
of X*(C) on the conjugate surface X*(X) is minus the normal curvature of X (C') on
X (%), and the normal curvature of X*(C) on X*(X) is the normal torsion of X (C) on
X (¥). In particular, if X(C) is a vertical ambient geodesic on X (X), then X*(C) is a
horizontal line of curvature on the conjugate surface X*(X) whose geodesic curvature
in the horizontal plane is the normal torsion on X (X). Arguing similarly, we get that
the correspondence X <+ X* maps:

e vertical geodesic lines to horizontal geodesic curvature lines along which the
normal vector field of the surface is horizontal; and
e horizontal geodesics to geodesic curvature lines contained in vertical geodesic
planes II (i.e. 7(II) is a geodesic of H?) along which the normal vector field
is tangent to II.
Moreover, this correspondence exchanges the corresponding Schwarz symmetries of
the surfaces X and X*. For more definitions and properties, we refer to [2, 4].

2.3. Some results about graphs. In H? x R, there exist different notions of
graphs, depending on the vector field considered.
If u is a function on a domain Q of H?, the graph of u, defined as

Yu = A{(p,ulp)) | p € Q},

is a surface in H? x R. This surface is minimal (a vertical minimal graph) if u satisfies
the vertical minimal graph equation

Vu
1 div [ ———= ] =0,
S <\/1+ Vu||2>

where all terms are calculated with respect to the hyperbolic metric.

If u is a solution of equation (1) on a convex domain of H?, L. Hauswirth,
R. Sa Earp and E. Toubiana have proved in [4] that the conjugate minimal surface
3 of 3, is also a vertical graph.

Assume € is simply connected. The differential on €2 of the height coordinate of

3y is the closed 1-form

Vut

77)( 2’
VI+ [Vl )

where V™ is the vector Vu rotated by 7 /2. The height coordinate of X7 is a primitive
hi of w! and is the conjugate function of h,, on ¥,. The formula (2) comes from the

(2) wy (X) = (
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following computation. Let h be the height function along the graph surface and h*
its conjugate harmonic function. Let (e, e3) be an orthonormal basis of the tangent
space to H? and X = z1e; + xge; a tangent vector. Then

Wi (X) = dh* (X + (Vu, X)2dy) = dh(Ny A (X + (Vu, X)528,)),

where N, = (Vu — 0t)/W (with W = /1 + ||Vu||?). If Vu = uje; + uges we have

Nu A (X + (Vi, X)) = 2V fﬁ)H tozg, - iV fV)H e

Thus

UrTy — UpT1 _ ( Vaut Xy
W V14 [Vul?’

Let us now fix # € R. Recall that (¢;);c(—1,1) is the flow of the Killing vector
field Yp. Let D be a domain in the vertical geodesic plane v51 /2 x R (this plane is
orthogonal to 7y, viewed as a geodesic of {¢t = 0}). Let v be a function on D with
values in (—1,1). Then, the surface {¢,)(p) | p € D} is called a Yy-graph. It is
a graph with respect to the Killing vector field Yy in the sense that it meets each
orbit of Yy in at most one point. If such a surface is minimal, it is called a minimal
Yy-graph. Let v’ be a second function defined on a domain of vg1 /2 x R. If v' > v
on the intersection of their domains of definition, we say that the Yy-graph of v’ lies
on the positive Yp-side of the Yy-graph of v.

The same notion can be defined for the vector field Zy. If D is a domain in the
vertical geodesic plane vy, /2 X R and v is a function on D with values in R, the
surface {1y (p) | p € D} is called a Zp-graph ((vs)ser is the flow of Zg). This
surface is a graph with respect to Zy since it meets each orbit of Zy in at most one
point.

Wi(X) =

u

3. The Alexandrov problem for doubly periodic constant mean curva-
ture surfaces. Let (¢1);e(—1,1) be the flow of Yy and consider G' the Z2 subgroup of
Isom(H? x R) generated by ¢; and T'(h), for some positive [ and h. We denote by M
the quotient of H? x R by G. The manifold M is diffeomorphic to T? x R. Moreover,
M is foliated by the family of tori T(s) = (d(s) x R)/G, s € R (we recall that d(s)
is an equidistant to ~p). All the T(s) are intrinsically flat and have constant mean
curvature tanh(s)/2; T(0) is totally geodesic.

In this section, we study compact embedded constant mean curvature surfaces in
M. The tori T'(s) are examples of such surfaces when 0 < H < 1/2.

First, let us observe what happens in (H? x R)/G’, where G’ is the subgroup
generated by T'(h). This quotient is isometric to H? x S!. Let ¥ be a compact
embedded constant mean curvature H surface in H? x S'. The surface ¥ separates
H? x S'. Indeed, if it is not the case, there exists a smooth Jordan curve whose
intersection number with ¥ is 1 modulo 2. In H? x S!, this Jordan curve can be moved
so that it does not intersect ¥ any more, which is impossible since the intersection
number modulo 2 is invariant by homotopy.

Now, we consider v a geodesic in H? and (¢,)ser the family of geodesics in H?
orthogonal to v that foliates H2. By the maximum principle using the vertical annuli
L, xS, we get that H > 0, since ¥ is compact. We can apply the standard Alexandrov
reflection technique with respect to the family (¢, x S!);cr. We obtain that ¥ is
symmetric with respect to some £5, x S'. Doing this for every ~, one proves that X is
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a rotational surface around a vertical axis {p} xS* (p € H?). ¥ is then either a constant
mean curvature sphere coming from the spheres of H? x R or the quotient by G’ of a
vertical cylinder or unduloid of axis {p} x R. This proves that, necessarily, H > 1/2.
These surfaces are the only ones in H? x S! which have a compact projection on
HZ2. In H? x R, determining which properly embedded CMC surfaces have a bounded
projection on H? (i.e. is included in a vertical cylinder) is an open question. Laurent
Mazet has made progress on this problem [8].

The spheres, the cylinders and the unduloids can also be quotiented by G, if they
are well placed in H? x R with respect to 79 x R. They give examples of compact
embedded CMC surfaces in M for H > 1/2.

We remark that the vector field Z /, is invariant by the group G, so it is well
defined in M. Moreover its integral curves are the geodesics orthogonal to T(0). This
implies that the notion of Z/, graph is well defined in M. We have the following
answer to the Alexandrov problem in M.

THEOREM 3.1. Let X C M be a compact constant mean curvature embedded
surface. Then, X is either:
1. a torus T(s), for some s; or
2. a “rotational” sphere; or
3. the quotient of a vertical unduloid (in particular, a vertical cylinder over a
circle); or
4. a Zy jo-bigraph with respect to T(0).
Moreover, if 3 is minimal, then ¥ = T(0).

The first thing we have to remark is that the last item can occur. Let v be
an embedded compact geodesic in the totally geodesic torus T(0). From a result by
R. Mazzeo and F. Pacard [10], we know that there exist embedded constant mean
curvature tubes that partially foliate a tubular neighborhood of v. So if 7y is not verti-
cal, these cmc surfaces can not be of one of the three first type. If fact, these surfaces
can be also directly derived from [18] (see also [15]). They have mean curvature larger
than 1/2.

The second remark is that we do not know if there exist constant mean curvature
1/2 examples. If they exist, they are of the fourth type.

Very recently, J.M. Manzano and F. Torralbo [6] construct, for each value of
H > 1/2, a l-parameter family of “horizontal unduloidal-type surfaces” in H? x R of
bounded height which are invariant by a fixed ¢;. All these examples are embedded
vertical bigraphs. The limit surfaces in the boundary of this family are a rotational
sphere and a horizontal cylinder.

Proof. Let ¥ be a compact embedded constant mean curvature surface in M and
consider a connected component ¥ of its lift to H? x St. If ¥ is compact, the above
study proves that we are then in cases 2 or 3. We then assume that ¥ is not compact.
Even if X is not compact, the same argument as above proves that it separates H?2 x St
into two connected components. We also assume that ¥ # 4 x S' (otherwise we are
in Case 1). Then, up to a reflection symmetry with respect to 7o x S, we can assume
that X N ({z > 0} x S!) is non empty.

Let v be an integral curve of Z /5, i.e. a geodesic orthogonal to 7o x St We
denote by P(s) the totally geodesic vertical annulus of H? x S! which is normal to ~y
and tangent to d(s) x SL. Since ¥ is a lift of the compact surface ¥, & stays at a finite
distance from vy x S!. Far from 7, the distance from P(s) to 7o x S* = P(0) tends
to 400, if s # 0. Thus P(s) N S is compact for s # 0, and it is empty if |s| is large
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enough. So start with s close to 400 and let s decrease until a first contact point
between 3 and P(s), for s = s > 0. If Y is minimal, by the maximum principle we
get ¥ = P(sq). But the quotient of P(sg) is not compact in M. We then deduce that
Y is not minimal. This proves that the only compact embedded minimal surface in
M is T(0).

By the maximum principle, we know that the (non-zero) mean curvature vector
of ¥ does not point into Ug>s, P(s). Let us continue decreasing s and start the
Alexandrov reflection procedure for ¥ and the family of vertical totally geodesic annuli
P(s) Suppose there is a first contact point between the reflected part of Y and
E for some s; > 0. Then Y is symmetric with respect to P(s1). Since s; > 0,
then N (Us;<s<soP(8)) is compact. We get that % is compact, a contradiction.
Hence we can continue the Alexandrov reflection procedure until s = 0 without a first
contact point. This implies that N ({z > 0} x S!) is a Killing graph above vy x S*,
for the Killing vector field Y corresponding to translations along v (we notice that,
along v, Y and Z,, coincide). Hence vy has at most one intersection point p with
>N ({z >0} x S) and this intersection is transverse.

Since at the first contact point between 3 and P(s) (for s = s¢) the mean curva-
ture vector of & does not point into Ug>s, P(s), we have that, for any s’ € (0, s¢], the
mean curvature vector of ¥ on % NP(s") does not point into Us>« P(s). In particular,
the mean curvature vector of 3 at p points to the opposite direction as Z /. Doing
this for every geodesic v orthogonal to vy x S!, we get that N ({zr >0} xSY)isa
Zy 2 graph.

Now let us suppose that 3 is included in {x >0} xS!, and let s > 0 and s3 > 0
be the minimum and the maximum of the distance from ¥ to ~o x S!, respectively.
Thus ¥ is contained between d(s3) x S! and d(s3) x S*. Because of the orientation of

the mean curvature vector at the contact points of  with d(sz) x S! and d(s3) x S,
we get

Hgy(sy)xst = Hg > Hg(syyxst -

But Hgs,yxst < Ha(sy)xst, hence sy = s3 and Y= d(s2) x S'. This is, we are in Case
1.

Then we assume that N ({x < 0} x S!) is non empty. Using the totally geodesic
vertical annuli P(s) for s < 0, we prove as above that X N ({z < 0} x S') is a Z, /s
graph. Moreover the mean curvature vector points in the same direction as Z; /5. This

implies that Y is normal to ~o x S'. Thus, in the Alexandrov reflection procedure, a
first contact point between the reflected part of Y and ¥ occurs for s = 0. ¥ is then
symmetric with respect to P(0) = vo x S': we are in Case 4. O

4. Minimal surfaces invariant by a Z subgroup. In this section, we are
interested in constructing minimal surfaces which are invariant by a Z subgroup of
Isom(H? x R). At this time, only few non-trivial singly periodic examples are known:
There are examples invariant by a one-parameter group of isometries [14, 20, 18, 21,
15, 9]; invariant by a vertical translation [3, 13]; or invariant by a horizontal translation
along a horizontal geodesic [16].

The subgroups we consider are those generated by a translation ¢; along a hori-
zontal geodesic or by a vertical translation T'(h) along d;. The surfaces we construct
are similar to Scherk’s singly periodic minimal surfaces and Karcher’s Saddle Towers
of R3.
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Fic. 3. The shadowed domain is QU(R), with the prescribed boundary data. The ruled region
corresponds to DT .

4.1. Horizontal singly periodic Scherk minimal surfaces. In this subsec-
tion we construct a 1-parameter family of minimal surfaces in H? x R, called ”hori-
zontal singly periodic Scherk minimal surfaces”. Each of these surfaces can be seen
as the desingularization of the intersection of a vertical geodesic plane and the hori-
zontal slice H? x {0}, and it is invariant by a horizontal hyperbolic translation along
the geodesic of intersection.

We fix 1 € (0,1) and define ¢, = (0,1) and ¢, = (0,—p). Given R > 0, we
denote by Q(R) the compact domain in {x > 0} between E(R) and the geodesic lines
g(u), g(—u), Y0, where E(R) is the arc contained in the equidistant line d(R) which
goes from g(u) to g(—pu), see Figure 3. Let ur be the solution to (1) over Q(R) with
boundary values zero on 9Q(R) \ 7y and value R on g,g—, (minus its endpoints). By
the maximum principle, ur: > ug on Qg, for any R’ > R.

Let us denote DT = {x > 0} the hyperbolic halfplane bounded by ~o. On DT,
we consider the solution v of (1) discovered by U. Abresch and R. Sa Earp, which
takes value +0o on vy and 0 on the asymptotic boundary 9., D™ (see Appendix B).
Such a v is a barrier from above for our construction, since we have ug < v for any
R.

Since (ug)g is a monotone increasing family bounded from above by v, we get
that ug converges as R — 400 to a solution u of (1) on Q(c0) = Ugso2(R), with
boundary values 400 over g,g—, (minus its endpoints) and 0 over the remaining
boundary (including the asymptotic boundary E(co) at infinity). In fact, this solution
u, which is unique, can be directly derived from Theorem 4.9 in [9].

Let ¥z be the minimal graph of ur. X g is in fact the solution to a Plateau
problem in H? x R whose boundary is composed of horizontal and vertical geodesic
arcs and the arc E(R) x {0}. Let ¢; denote the flow of Y. Using the foliation of
H? x R by the vertical planes ¢;(v,/2 x R) = g(I) x R, I € (=1,1), the Alexandrov
reflection technique proves that ¥ is a Yp-bigraph with respect to v,/2 x R. So
EE =Y grN{y > 0} is a Yy-graph. Thus, the same is true for the minimal graph ¥ of
wand for Xt =¥ N {y > 0}.

The boundary of ¥ is composed of the vertical half-lines {q,} x R*, {q_,} x RT
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Fi1a. 4. The domain Q(oco) with the prescribed boundary data.

and the two halves g*(u), 9" (—p) of the horizontal geodesics g(u), g(—p). The ex-
pected “horizontal singly periodic Scherk minimal surface” is obtained by rotating
recursively ¥ an angle 7 about the vertical and horizontal geodesics in its boundary.
This “horizontal singly periodic Scherk minimal surface” is properly embedded, in-
variant by the horizontal translation qu; along o and, far from v x {0}, it looks like
(’70 X R) @] {t = 0}

PROPOSITION 4.1. For any u € (0,1), there exists a properly embedded minimal
surface M,, in H? x R invariant by the horizontal hyperbolic translation gbﬁ along o,
that we call horizontal singly periodic Scherk minimal surface. In the quotient by gbﬁ,
M, is topologically a sphere minus four points corresponding to its ends: it has one
top end asymptotic to (yo X RY) /@1, one bottom end asymptotic to (vo xR™) /¢y, one
left end asymptotic to {t =0,z < O}/qﬁﬁ, and one right end asymptotic to {t = 0,x >
0}/¢},. Moreover, M, /¢, contains the vertical lines {q+,} X R and the horizontal
geodesics g(u) x {0}, and it is invariant by reflection symmetry with respect to the

vertical geodesic plane vy o X R.

REMARK 4.2. “Generalized horizontal singly periodic Scherk minimal
surfaces”.

Consider the domain Q(co0) with prescribed boundary data +oco on g,g—,, 0 on
g7 (1) UgT(—p) and a continuous function f on the asymptotic boundary E(co) of
Q(oc0) at infinity. By Theorem 4.9 in [9], we know there exists a (unique) solution to
this Dirichlet problem associated to equation (1).

By rotating recursively such a graph surface an angle w about the vertical and
horizontal geodesics in its boundary, we get a “generalized horizontal singly periodic
Scherk minimal surface” M, (f), which is properly embedded and invariant by the
horizontal translation qzﬁﬁ along vp. Such a M, (f) can be seen as the desingularization
of the vertical geodesic plane vy X R and a periodic minimal entire graph invariant
by the horizontal translation ¢ﬁ along 79. Moreover, the surface M, (f) contains the
vertical lines {¢+,} x R and the horizontal geodesics g(+pu) x {0}.

In general, M, (f) contains vertical geodesic arcs at the infinite boundary 9.H? x
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Fig. 5. The embedded minimal disk ¥y x,,, bounded by 'y x ;.-

R (over the endpoints of g(£p) and their translated copies). To avoid such vertical
segments, we take f vanishing on the endpoints of F(c0).

4.2. A Plateau construction of vertical Saddle Towers. In this section, we
construct the 1-parameter family of most symmetric vertical Saddle Towers in H? x R,
which can be seen as the desingularization of n vertical planes meeting at a common
axis with angle § = 7/n, for some n > 2. When n = 2, the corresponding examples
are usually called “vertical singly periodic Scherk minimal surfaces”. For any fixed
n > 2, these examples are included in the (2n — 3)-parameter family of vertical Saddle
Towers constructed by Morabito and the second author in [13]. These surfaces are all
invariant by a vertical translation T'(h).

A fundamental piece of the Saddle Tower we want to construct is obtained by
solving a Plateau problem. We now consider a more general Plateau problem, that
will be also used in Sections 5 and 6.

Given an integer n > 2, we fix # = 7/n. We consider in H? the points

px = (Asin@, Acosd) and ¢, = (0,p),

for any A € (0,1] and any p € (0,1] (see Figure 5). Given h > 0, we call Wy 5, C
H? x R the triangular prism whose top and bottom faces are two geodesic triangular
domains at heights 0 and h: the bottom triangle has vertices (py,0), (0,0), (¢g,,0) and
the top triangle is its vertical translation to height h.

If A <1and p <1, we consider the following Jordan curve in the boundary of
Wh,A,;ﬁ

L= (qu,0)(0,0)U(0,0) (px,0) U (px,0) (px, h)
U(pa, 1) (0,h) U (0, R) (g, h) U (qu, ) (qu, 0)
(see Figure 5). Since OWj, » ,, is mean-convex and I' » , is contractible in Wp, » .,

there exists an embedded minimal disk ¥p x , C Wj,y,, whose boundary is I'y x ,
(see Meeks and Yau [12]).

CLAIM 4.3. X5, is the only compact minimal surface in H? x R bounded by
Cpoapu- Moreover, ¥y, x ,, is a minimal Yy 2-graph and it lies on the positive Yy 9-side
of X a s for any N < X and any ' < p.

Proof. Let ¥,% C H? x R be two compact minimal surfaces with 0¥ = | VAW
and 0Y' =Ty, v, where X' < X\ and ' < p. First observe that, by the convex hull
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Fic. 6. The embedded minimal disk 3y bounded by I'y,.

property (or by the maximum principle using vertical geodesic planes and horizontal
slices), ¥ C Whx,, and X' C Wy .

Let (¢1)ie(—1,1) be the flow of Yy/5. For I close to —1, ¢y(Whar ) " Wi au =0
and, for —1 < 1 < 0, ¢ (Fh,)\’,u’> and Wp, x , do not intersect. So letting [ increase
from —1 to 0, we get by the maximum principle that ¢;(¥’) and ¥ do not intersect
until / = 0. When A = X and p = ¢/, this implies that ¥ = 3’ (hence ¥ = 3, )
and it is a minimal Yp/o-graph. Also this translation argument shows that ¥ lies on
the positive Yy o-side of X" when X < X and g/ < p. O

From Claim 4.3, we deduce the continuity of ¥, 5, in the A and p parameters.
The surfaces ¥y, will be used in Sections 5 and 6 for the construction of doubly
periodic minimal surfaces and surfaces invariant by a subgroup of Isom(H?). More
precisely, in the following subsection we construct surfaces from ¥ » , that we use in
the sequel.

Now we only consider the A = p case. As Yy p-graphs, the surfaces ¥, ,, , form
an increasing family in the p parameter. So if we construct a “barrier from above”,
we could ensure the convergence of ¥y, , , when pu — 1.

On the ideal triangular domain of vertices 0, p1, g1, there exists a solution u to
the vertical minimal graph equation (1) which takes boundary values 0 on ¢;0 and
0p; and +oo on prgqr. Let Sy and S, be, respectively, the graph surfaces of u and
h —u.

Using the same argument as in Claim 4.3, we conclude that both Sy and Sj
are Yy p-graphs and lie on the positive Yy o-side of ¥, ,, 4, for any p. They are the
expected “barriers from above”.

Using the monotonicity and the barriers, we conclude that there exists a limit >,
of the minimal Yy o-graphs ¥, ,, , when 4 — 1. And it is also a minimal Yp ,-graph.
The surface ¥, is a minimal disk bounded by

Ip= (QI7O)(07 0) U (070)(10170) U (qh h)(07 h) U (07 h)(ph h)

In fact, applying the techniques of Claim 4.3, we get that X, is the only minimal disk
of H? xR bounded by I';, which is contained in Wh.1,1- By uniqueness, 3, is symmetric
with respect to the vertical plane 75/o X R and the horizontal slice H? x {h/2}.

Now we can extend X, by doing recursive symmetries along the horizontal
geodesics in its boundary. The surface we obtain is properly embedded, invariant
by the vertical translation T'(2h) and asymptotic to the n vertical planes vgxo X R,
0 < k <n—1, outside of a large vertical cylinder with axis {0} x R.
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Fic. 7. The minimal disk 3j x bounded by I'p x, and the minimal vertical graph My x =
EpanN{0 <t < h/2} bounded by c1 Uca Ucz Ucy.

ProposiTiON 4.4. For any natural n > 2 and any h > 0, there exists a properly
embedded minimal surface Mp(n) in H? x R invariant by the vertical translation
T(2h) and asymptotic to the n vertical planes ye= X R, for 0 < k <n —1, far from
{0} xR. Moreover, My (n) contains the horizontal geodesics yix x {0}, 0 <k <n-—1,
and is invariant by reflection symmetry with respect to the vertical geodesic planes
Yimyz X R, with 0 < k <n—1, and respect to the horizontal slices H? x {£h/2}.
We call such a surface (most symmetric) vertical Saddle Tower.

4.3. The minimal surfaces ¥, » and M, . In order to prepare our work in
Sections 5 and 6, we continue to study the solutions of the Plateau problem introduced
in Subsection 4.2.

Recall that n > 2 is an integer, § = 7/n and A\, u € (0,1). We now fix A and
h > 0, and we consider the family of Yy, o-graphs Xy » , as p varies. This family is
monotone increasing in the p-parameter. And, for fixed h, the Yy o-graphs X x .
are bounded from above by the surface ¥; constructed in the preceding subsection.
Thus X x,, converges to a minimal Yy o-graph X, x when p — 1. This surface is an
embedded minimal disk bounded by

(qlv O) (O’ 0) U (Oa 0) (pM O) U (p)\v O) (pz\v h)
U(pa, h) (0,h) U (0,R) (g1, h).

In fact, applying the techniques of Claim 4.3, we conclude that X,  is the only
minimal disk contained in W}, 5 1 which is bounded by I'j, ».

The Alexandrov reflection method with respect to horizontal slices shows that
every Y5\, is a symmetric vertical bigraph with respect to H? x {h/2} (see Ap-
pendix C). Hence this is also true for ¥, .

We consider

Mh)\ = Zh,)\ ﬂ{O <t< h/2},

which is a minimal vertical graph bounded by c1, ¢, c3, ¢4 (see Figure 7), where:
e ¢; =(q1,0)(0,0) =~ is half a complete horizontal geodesic line;

e ¢ = (0,0) (pa,0) is a horizontal geodesic of length In (%), forming an

angle 6 with ¢; at Ag = (0,0);
e c3 = (px,0) (pr, h/2) is a vertical geodesic line of length h/2;
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e ¢y = My AN {t=h/2} is a horizontal geodesic curvature line with endpoints
(pk7 h’/2) and (q17 h/2)

The domain Qg over which M}, » is a graph is included in the triangular domain
of vertices 0, py, q1, and it is bounded by ¢10, Opy and w(cs). The latter curve goes
from py to g1 and is concave with respect to 2y because of the boundary maximum
principle using vertical geodesic planes, which implies that the mean curvature vector
of m(cq) x R points outside Qg x R.

On Mp,», we fix the unit normal vector field N whose associated angle function
v = (N, 0,) is non-negative. The vector field N extends smoothly to 9Mj, » (by
Schwarz symmetries). It is not hard to see that v only vanishes on ¢3 U ¢y, and v =1
at AO = (O, 0)

Since X, is a Yy o-graph, then it is stable, so it satisfies a curvature estimate
away from its boundary. Hence the curvature is uniformly bounded on Mj ) away
from ¢;, cp and c3. Besides, M}, can be extended by symmetry along c; and c; as a
vertical graph, thus as a stable surface. Hence, on Mj, 5, the curvature is uniformly
bounded away from cs.

Because of this curvature estimate and since Mj x C W a1, the angle function v
goes to zero as we approach ¢; X [0, /2], and the asymptotic intrinsic distance from
c1 to ¢q is h/2.

5. Doubly periodic minimal surfaces. In this section, we construct doubly
periodic minimal surfaces, i.e. properly embedded minimal surfaces invariant by a
subgroup of Isom(H? x R) isomorphic to Z2. In fact, we only consider subgroups gener-
ated by a hyperbolic translation along a horizontal geodesic and a vertical translation.
More precisely, let (¢;);c(—1,1) be the flow of Yy. We are interested in properly embed-
ded minimal surfaces which are invariant by the subgroup of Isom(H? x R) generated
by ¢; and T'(h), for fixed [ and h. We notice that the quotient M of H? x R by this
subgroup is diffeomorphic to T x R, where T is a 2-torus.

One trivial example of a doubly periodic minimal surface is the vertical plane
Y0 X R. The quotient surface is topologically a torus and it is in fact the only compact
minimal surface in the quotient (see Theorem 3.1). Other trivial examples are given
by the quotients of a horizontal slice H? x {to} or a vertical totally geodesic minimal
plane g(u) x R. Both cases give flat annuli in the quotient.

In the following subsections, we construct non-trivial examples, that are similar
to minimal surfaces of R? built by H. Karcher in [5]. Their ends are asymptotic to
the horizontal and/or the vertical flat annuli described above.

5.1. Doubly periodic Scherk minimal surfaces. In this subsection we con-
struct minimal surfaces of genus zero in M which have two ends asymptotic to two
vertical annuli and two ends asymptotic to two horizontal annuli in the quotient.
These examples are similar to the doubly periodic Scherk minimal surface in R?.

Let Ar, Br in g(—u) and Cg, Dg in g(u) at distance R from g such that Ag
and Dp are in {z < 0} and Bg and Cg are in {z > 0}, see Figure 8. We fix h > 7
and consider the following Jordan curve:

I'r = (AR, ) (BRﬂ ) U (E( ) {0}) (CR,O) (DR,O)
U(Dg,0) (Dg, h) U (Dg,h) (Cr,h) U (E(R) x {h})
U(BR’ ) (AR7 ) U (AR, ) (ARa )7

where E(R) is the subarc of the equidistant d(R) to 7o that joins Br to Cr. We
consider a least area embedded minimal disk >p with boundary I'y.




PERIODIC CONSTANT MEAN CURVATURE SURFACES IN H? x R 843

Fic. 8. The Jordan curve I'p and the embedded minimal disk ¥ p bounded by I'r.

Using the Alexandrov reflection technique with respect to horizontal slices, one
proves that Y is a vertical bigraph with respect to {t = h/2} (see Appendix C).

Since ¥ is area-minimizing, it is stable. This gives uniform curvature estimates
far from the boundary. Besides ¥ N {0 < ¢ < h/2} is a vertical graph that can be
extended by symmetry with respect to (Ag,0) (Bg,0) to a larger vertical graph. Thus
we also obtain uniform curvature estimates in a neighborhood of (Ag,0) (Br,0). This
is also true for the three other horizontal geodesic arcs in I'g.

Let As and Do, be the endpoints of g(—p) and g(p), that are limits of Ag and
Dg as R — +oco. For any R, ¥ is on the half-space determined by A,, D, x R that
contains I'g.

Since h > 7, we can consider the surface S; described in Appendix B: Sj C
H? x (0,h) is a vertical bigraph with respect to {t = h/2} which is invariant by
translations along o and whose boundary is (a x {0})U(0,1,0)(0,1,h) U (a x {h})U
(0,—1,h)(0,—1,0), where @ = OocH* N {& > 0}. Let (x1)ie(—1,1) be the flow of
the Killing vector field Y, ;. For I close to 1, x;(Sx) does not meet Xg. Since
(Dgr,0) (Dg,h) and (AR, h) (Ag,0) are the only part of I' in H? x (0, h), we can let [
decrease until [p < 0, where x;, (Sh) touches X, for the first time. Actually, there are
two first contact points: (Ag,h/2) and (Dg,h/2). By the maximum principle, the
surface X is contained between x;,(Sp) and A Do x R. We notice that lg > g/,
for any R’ > R, and lg — loo > —1, where x;__ (70) = AooDoo-

We recall that Z /5 is the unit vector field normal to the equidistant surfaces to
Yo X R.

Cramm 5.1. X\ Tg is a Z,5-graph over the open rectangle Ag Dy x (0,h) in
Yo X R.

Proof. Tt is clear that the projection of ¥z \ T'r over 79 x R in the direction of
Zy 2 coincides with Ag Do x (0,h). Let us prove that X g \ I'r is transverse to Z /5.
Assume that ¢ is a point in ¥p \ I'r where Xy is tangent to Z, /5. Thus there is a
minimal surface P given by Appendix B which is invariant by translation along Z /s,
passes through ¢ and is tangent to X . Near ¢, the intersection P N X g is composed
of 2n arcs meeting at ¢, with n > 2.

By definition of P and I'g, the intersection P N T'g is composed either by two
points, or by one point and one geodesic arc of type (Ag,0) (Bg,0), or by two arcs
of type (Ag,0) (Bg,0) and (Dg,h)(Cr,h). Since X is a disk, we get that there
exists a component of ¥ \ P which has all its boundary in P. This is impossible by
the maximum principle, since H? x R can be foliated by translated copies of P. The
surface X g is then transverse to Z.o.

Now let ¢ be a point in Ay Dy x (0,h), and ¢, be the geodesic passing by ¢
and generated by Z 5. The intersection of £, with Y is always transverse, so the
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number of intersection points does not depend on g. For ¢ = (Ag, h/2), this number
is 1. Therefore, ¥ \ I'r is a Z, jo-graph over the open rectangle Ag Dy x (0,h). O

Now let R tend to co. Because of the curvature estimates, and using that each
Yr is a Zy jo-graph bounded by x;, (Sk) and Ao Do x R, we obtain that, the surfaces
Y. r converge to a minimal surface X, satisfying the following properties:

e Y, lies in the region of {0 < t < h} bounded by g(—pu) x R, g(u) x R,
AooDoo x R and Xloo (Sh)7

® 0% = (g(—p) x {0}) U (g(p) x {0}) U (g(p) x {h}) U (9(—p) x {A});

e ¥ \ 0¥ is a vertical bigraph with respect to {t = h/2} and a Z/,-graph
over Ay Dy x (0, h);

o ¥ N{z < 0} is asymptotic to g(—u) %[0, h] and g(u) x[0, h]; and XcN{z > 0}
is asymptotic to {t = 0}/¢7 and {t = h} /2.

After extending Y., by successive symmetries with respect to the horizontal
geodesics contained in its boundary, we obtain a surface ¥ invariant by the subgroup
generated by the horizontal hyperbolic translation ¢ﬁ and the vertical translation
T(2h). In the quotient by qbﬁ and T'(2h), this surface is topologically a sphere minus
four points. Two of the ends of ¥ are vertical and two of them are horizontal. This
surface is similar to the doubly periodic Scherk minimal surface of R3.

PROPOSITION 5.2. For any h > w and any p € (0,1), there exists a properly
embedded minimal surface ¥ in H2 x R which is invariant by the vertical translation
T(2h) and the horizontal hyperbolic translation qbﬁ along vo. In the quotient by T'(2h)
and qi)ﬁ, 3 is topologically a sphere minus four points, and it has two ends asymptotic
to the quotients of {x > 0,t = 0} and {x > 0,t = h}, and two ends asymptotic to
the quotients of (g(—up) N{z < 0}) x [0,h] and (g(p) N {z < 0}) x [0,h]. Moreover,
Y contains the horizontal geodesics g(+u) x {0}, g(£p) x {h}, and is invariant by
reflection symmetry with respect to {t = h/2} and vr/2 x R. We call these examples
doubly periodic Scherk minimal surfaces. Finally, we remark that ¥ admits a non-
orientable quotient by d)ﬁ and T(h) o i

REMARK 5.3. When h < 7w and p is large enough, we can prove by using the
maximum principle with vertical catenoids and a fundamental piece of the surface ¥
described in Proposition 5.2, that the corresponding doubly periodic Scherk minimal
surface does not exist.

On the other hand, when A < 7 and p is small enough, we can solve the Plateau
problem above in the exterior of certain surface M(R, i) described in Proposition 5.8,
to prove that the corresponding doubly periodic Scherk minimal surface ¥ exists.

5.2. Doubly periodic minimal Klein bottle examples: horizontal and
vertical Toroidal Halfplane Layers. In this subsection, we construct non-trivial
families of examples of doubly periodic minimal surfaces.

Let us consider the surface ¥ » constructed in Subsection 4.3 for n = 2. By
successive extensions by symmetry along its boundary we get a properly embedded
minimal surface ¥ which is invariant by the vertical translation T'(2h) and the hor-
izontal translation x3, where (X1)ie(~1,1) is the flow of Y 5. The quotient surface
by the subgroup of isometries of H? x R generated by T(2h) and X?\ is topologically
a Klein bottle minus two points. The ends of the surface are asymptotic to vertical
annuli. If we consider the quotient by the group generated by T'(2h) and x5, we get
topologically a torus minus four points. This example corresponds to the Toroidal
Halfplane Layer of R? denoted by My g /> in [19].
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F1G. 9. The minimal surface by of Proposition 5.5 is obtained from the vertical minimal graph
w over 2(o0o0) (the shadowed domain) with the prescribed boundary data.

PROPOSITION 5.4. For any h > 0 and any A € (0,1), there exists a properly
embedded minimal surface in H? x R invariant by the vertical translation T(2h) and
the horizontal hyperbolic translation Xi along Yr /2, which is topologically a Klein
bottle minus two points in the quotient by T(2h) and Xi- The surface is invariant
by reflection symmetry with respect to {t = h/2}, contains the geodesics vy x {0, h},
Yus2 X 10, R} and {pr} x R, and its ends are asymptotic to the quotient of o x R.
Moreover, the surface is topologically a torus minus four points when considered in
the quotient by T'(2h) and X‘/{, We call these examples horizontal Toroidal Halfplane
Layers of type 1.

Let us see another example. This one is similar to the preceding one, but its
ends are now asymptotic to horizontal slices. We use the notation introduced in
Subsection 4.1. For R > 0, let wg be the solution to (1) over Q(R) with boundary
values zero on OQ(R) \ 70 and h/2 on 79 N OQ(R). By the maximum principle,
wr < wr < v on g, for any R' > R, where v is the Abresch-Sa Earp barrier
described in Appendix B. The graphs wgr converge as R — +00 to the unique solution
w of (1) on Q(oco) with boundary values h/2 on g,g—, minus its endpoints and 0 on
the remaining boundary, including the asymptotic boundary at infinity. (By [9], we
directly know that such a graph exists and is unique.)

By uniqueness, we know that such a graph is invariant by reflection symmetry with
respect to the vertical geodesic plane 7, /o xIR. Moreover, the boundary of this graph is
composed of two halves of g(u) and g(—p) and (g, 0)(qu, h/2) U (qu, h/2)(q—p, h/2)U
(q—ps h/2)(q—p; 0).

If we extend the graph of w by successive symmetries about the geodesic arcs in

its boundary, we obtain a properly embedded minimal surface ¥ which is invariant
by the Z? subgroup G of isometries of H? x R generated by T'(h) and (bﬁ. In the

quotient by Gy, 3 is a Klein bottle with two ends asymptotic to the quotient by G of
the two horizontal annuli obtained in the quotient of H? x {0}. The quotient by the
subgroup generated by T'(2h) and gbﬁ gives a torus minus four points. This example
also corresponds to the Toroidal Halfplane Layer of R? denoted by My 0,7 /2 in [19].

Finally, we remark that taking limits of S as h — 400, we get the horizontal
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F1G. 10. The embedded minimal disk ¥ g bounded by I'r (Subsection 5.3).

singly periodic Scherk minimal surface constructed in Subsection 4.1.

PROPOSITION 5.5. For any h > 0 and any p € (0,1), there exists a properly
embedded minimal surface ¥ in H2 x R which is invariant by the vertical translation
T(h) and the horizontal hyperbolic translation ¢ﬁ along vo. In the quotient by T(h)

and ¢;‘;, Y is topologically a Klein bottle minus two points. The ends ofi are asymp-
totic to the quotient of H? x {0}. The surface is invariant by reflection symmetry with
respect to v 2 X R, and contains the geodesics yo X {h/2}, {qx,} xR and g(£p) x {0}.
Moreover, in the quotient by T'(2h) and gbi, the surface is topologically a torus minus
four points corresponding to the ends of the surface (asymptotic to the quotient of
the horizontal slices {t = 0} and {t = h}). We call these examples vertical Toroidal
Halfplane Layers of type 1.

REMARK 5.6. “Generalized vertical Toroidal Halfplane Layers of type
1”. Consider the domain Q(co0) with prescribed boundary data h/2 on g,¢—, minus
its endpoints, 0 on (g(p) U g(—w)) N {z > 0} and a continuous function f on the
asymptotic boundary E(co) of Q(oco) at infinity, f vanishing on the endpoints of
E(c0) and satisfying |f| < h/2. By Theorem 4.9 in [9], we know there exists a
(unique) solution to this Dirichlet problem. By rotating recursively such a graph
surface an angle m about the vertical and horizontal geodesics in its boundary, we
get a “generalized vertical Toroidal Halfplane Layers of type 1”7, which is properly
embedded and invariant by the vertical translation 7'(h) and the horizontal hyperbolic
translation ¢ along yo. In the quotient by T'(h) and ¢y, such a surface is topologically
a Klein bottle minus two points corresponding to the ends of the surface, that are
asymptotic to the quotient of a entire minimal graph invariant by d)ﬁ which contains
the geodesics g(p) x {0} and g(—p) x {0}. In the quotient by T'(2h) and ¢y, the
surface is topologically a torus minus four points.

5.3. Other vertical Toroidal Halfplane Layers. The construction given in
this subsection is very similar to the one considered in Subsection 5.1, and we use the
notation introduced there. We consider h > 7w and I'g the following Jordan curve:

I'r = (Bo,0) (Br,0) U(E(R) x{0}) U (Cr,0)(Co,0)
U(Co,0) (Co, h) U (Co, h) (Cr, h) U (E(R) x {h})
U(BRa h) (B07 h) U (307 h) (B070)

I'r bounds an embedded minimal disk ¥z with minimal area. As in Subsec-
tion 5.1, X is a vertical bigraph with respect to {¢ = h/2}. So the sequence of
minimal surfaces X, as R varies, satisfies a uniform curvature estimate far from

(Co,0) (Co, h), (Bo,0) (Bo, h), E(R) x {0} and E(R) x {h}.
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FiG. 11. The embedded minimal disk Yoo from which we obtain, after successive symmetries
with respect to the geodesics in its boundary, the doubly periodic example described in Proposition 5.7.

Using the Alexandrov reflection technique with respect to the vertical planes
g(v) x R as in Subsection 4.1, we prove that X i is a Yj-bigraph with respect to
g(0) xR = v, /5 x R. Thus extending ¥ g by symmetry with respect to (By,0) (Bg,0),
(Bo,0) (Bo, h) and (By, h) (Br,h), we see that a neighborhood of (By,0) (Bg, h) is a
Y 2-graph. This neighborhood is then stable and we get curvature estimates there.
Therefore, the minimal surfaces Y i satisfy a uniform curvature estimate far from
E(R) x {0} and E(R) x {h}.

The surface Y is included in {z > 0} x [0,h]. If S}, is the same surface as in
Subsection 5.1 (described in Appendix B) and (x1)i(—1,1) is the flow of Yy 5, for [
close to 1, x;(Sk) does not meet X . Since (By,0) (Bo, k) and (Cp, h) (Cp,0) are the
only part of ' in H? x (0, k), we can let [ decrease until Iy < 0, where x;, (Sy,) touches
0%.g for the first time. Actually, Iy does not depend on R, and there are two first
contact points: (Bg, h/2) and (Cp, h/2). The surface £ is then between x;,(Sy) and
Yo X R.

As in Subsection 5.1, ¥ \I'r is a Z /o-graph over the open rectangle By Co x (0, h)
in 79 x R. Then let R tend to +oco. The surfaces ¥ converge to a minimal surface
Yoo satisfying:

o Y lies in the region of {0 <t < h} bounded by g(—x) X R, g(u) x R, v and
Xio (Sh)-

e X, is bounded by four half geodesic lines: (By,0) (Boo,0), (Bo, ) (Bs, h),
(C0,0) (Cx,0), (Co, h) (Coo, h), and by two vertical segments: (By,0) (Bo, h)
and (Cp,0) (Co, h). Here By, and Cy are the limits of the B and Cg as
R — 400, contained in O,H?2.

e ¥ \ 0¥ is a vertical bigraph with respect to {t = h/2} and a Z,-graph
over By Cy x (0, h).

e Y is asymptotic to {t =0} and {t = h}.

By successive symmetries of ¥, with respect to the geodesics in its boundary, we
get an embedded minimal surface ¥ invariant by the subgroup of isometries of H? x R
generated by QS;i and T(2h). The quotient surface is a torus minus four points. This
example corresponds to a Toroidal Halfplane Layer of R? denoted by My 72,0 in [19].

PROPOSITION 5.7. For any h > 0 and any p € (0,1), there exists a properly
embedded minimal surface ¥ in H? x R which is invariant by the vertical translation
T(2h) and the horizontal hyperbolic translation gbﬁ along vo. In the quotient by T'(2h)
and qﬁﬁ, such a surface is topologically a torus minus four points. The ends of ¥ are
asymptotic to the quotient of the horizontal slices {t = 0} and {t = h}. Moreover, &
contains the geodesics g(£p) x {0}, g(£p) x {h} and {q+,} x R, and is invariant by
reflection symmetry with respect to {t = h/2} and v,/ x R. Finally, we remark that,
in the quotient by (b;‘; and T(h)o i, 3. is topologically a Klein bottle minus two points
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removed. We call these examples vertical Toroidal Halfplane Layers of type 2.

Finally, we observe that, as h — 400, ¥ converges to a horizontal singly periodic
Scherk minimal surface described in Proposition 4.1.

5.4. Other horizontal Toroidal Halfplane Layers. In this subsection, we
also construct surfaces which are similar to some of Karcher’s most symmetric Toroidal
Halfplane Layers of R3. Now, its ends are asymptotic to vertical planes.

As in the preceding subsection, for R > 0, we consider the points Br and Cg in
g(—p)N{z > 0} and g(p)N{zx > 0} at distance R from ~yy. Let P(R) be the polygonal
domain in H? with vertices By, Br, Cr and Cy. Let u,, be the solution to (1) defined
in P(R) with boundary value 0 on CrCyUCyByU ByBg and n on BgCg. The graph
of u,, is bounded by a polygonal curve. As in Subsection 4.1, the sequence converges
to a solution us, of (1) on P(R) with boundary values 0 on CrCy U CyBy U BoBgr
and +oo on BrCr (by [14], we know that it exists and is unique). The graph of uq,
denoted by X g, is bounded by ({Cr} x RT) UCgrCoU CyBygU ByBr U ({Bgr} x RT)
and is asymptotic to CrBr x R.

By uniqueness of un,, ¥ g is symmetric with respect to v, /2 x R. We denote by 1
the geodesic curvature line of symmetry ¥z N (7,/2 X R), and by Fr the intersection

point of v./o with BRCr. We also consider the following points in the boundary of
ZR:

p1 = (0,0), p2=(Bo,0), ps=(Bg,0).

The boundary of ¥z N {y < 0} is composed of the union of the curves g1, S2 = pipa,
B3 = pap3 and By = {Br} x RT.

The vertical coordinate of the conjugate surface to X i is given by a function
h* defined on Pgr, which is a primitive of the closed 1-form w* defined by (2). We
fix the primitive such that h*(Bgr) = 0 (we recall that the conjugate surface is well
defined up to an isometry of H? x R. We can consider h*(Bg) = 0 up to a vertical
translation). By definition of w* and using the fact that us, > 0 in P(R), we get
that h* increases from 0 to h*(Bg) > 0 along BrBy; it increases from h*(By) to
ho = h*(0) > h*(By) along By0; h* is constant along 0Ff; and finally h* increases
from 0 to hg along BrFgr. In fact, hg is equal to the distance from Bg to Fg , i.e.
ho = ho(p, R) = §distyz (Bg, Cr) > In {74

We denote by X%, the conjugate minimal surface of ¥ N {y < 0}. We have that
0¥y = B7 U B5 U B3 U B, where each B corresponds by conjugation to 8;. We also
denote by p; the point in 9¥7% corresponding by conjugation to p;, ¢ = 1,2, 3.

Up to a vertical translation, we have fixed pi € {t = 0}. We can also take
ps = (0,h*(By)), after a horizontal translation.

On the other hand, we know from [4] that X% is a vertical graph over a do-
main P(R)*, since P(R) is convex. In particular, ¥}, is embedded. We now use the
properties conjugation introduced in Subsection 2.2 to describe the boundary of ¥%:

e [3F is half a horizontal geodesic with endpoint p}. Since pi = (7(p7), ho), then
we conclude that (7 is contained in {¢t = hg}.

e The arc (3 is a vertical geodesic curvature line of length In }f—z starting hor-
izontally at p5 and finishing at pj. In fact, 85 is the graph of a convex
increasing function over the (oriented) horizontal geodesic segment 0w (p7).

Up to a rotation, we can assume 07 (p}) C 'Yo+- Since 81 and B2 meet orthog-
onally at p; and conjugate surfaces are isometric, we get that 87 is orthogonal
to the vertical geodesic plane vy x R. In particular, we can assume up to a
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"
Py

FiG. 12. Left: ¥Xr N{y < 0}. Right: The conjugate surface X}, of Xp N {y < 0}, from which
we obtain after successive symmetries the doubly periodic example described in Proposition 5.8.

reflection symmetry with respect to 79 x R that 87 = g™ (v) x {ho}, for a
certain v € (0, p).

e The curve 33 is a vertical curvature line of length R starting horizontally at
p5 and finishing vertically at p5 = (m(p}),0). Since 3, 83 meet orthogonally
at p2, the same happens to 85,33 at p5. In particular, 83 C v,/2 X R, and
the normal to the surface along 33 is tangent to v,/ x R. Hence 35 is the
graph of a strictly decreasing concave function over the (oriented) horizontal
segment 07 (p3) C /2. Finally, since X% C {z > 0} in a neighborhood of

B3, we deduce 07(p3) C 7:/2.

e The curve g C {t = 0} is a horizontal curvature line with non-vanishing
geodesic curvature in {t = 0} = H2 Since the normal to X} points to
the positive direction of the z-axis at pj and X3 C {y > 0} in a small
neighborhood of 33, we get that 3 is orthogonal to 7,/ x R and lies inside
{y > 0} near p%. Moreover, the intrinsic distance in ¥ N {y < 0} between £,
and f4 is ho (which is the asymptotic distance at infinity), and Xz N {y < 0}
is isometric to ¥%, then B; is asymptotic to g(v) at OH?. This is, X% is
asymptotic to g(v) x [0,ho]. Finally, we know by the maximum principle
for surfaces with boundary that 85 is concave with respect to P(R)*. In
particular, it is contained in {y > 0}.

By the maximum principle, X3, C {0 <t < ho}. If we make reflection symmetries
with respect to H? x {0}, 70 x R and Tr/2 X R, we get a properly embedded minimal
annulus bounded by the geodesics g(£v) x {ho}. Then by successive symmetries
with respect to these geodesic boundary lines, we get a doubly periodic minimal
surface invariant by ¢% and T'(4hg). In the quotient by ¢ and T'(4hy), the surface is
topologically a torus minus four points. In the quotient by T'(4hg) and T'(2hg)o$?2, the
surface is topologically a Klein bottle minus two points. These examples correspond
to the Toroidal Halfplane Layers of R? denoted by My oo in [19]. We now have two
free parameters instead of only one.

PROPOSITION 5.8. For any R > 0 and any p € (0,1), there exist ho = ho(R, p) >

In }f—ﬁ and v = v(R,u) € (0,u) for which there exists a properly embedded minimal

surface M(R, p) in H? x R which is invariant by the vertical translation T(4hg) and
the horizontal hyperbolic translation ¢ along ~vo. In the quotient by T(4ho) and
4. M(R, i) is topologically a torus minus four points, whose ends are asymptotic
to the quotient of g(+v) x R. Moreover, M(R, u) contains the horizontal geodesics
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g(Fv)x{£ho}, and is invariant by reflection symmetry with respect to yo xR, vz /2 xR
and {t = 0}. In the quotient by T(4ho) and T(2hg) o ¢2, M(R, ) is topologically a
Klein bottle minus two points. We call these examples horizontal Toroidal Halfplane
Layers of type 2.

REMARK 5.9. Up to a hyperbolic horizontal translation along g, we can fix By =
0 in the construction above. Then the graph us = uso(p, R) converges as u — +00
to the unique minimal graph w over the geodesic triangle of vertices 0, Bg,¢1 = (0, 1)
with boundary values 0 over BR0 U 0,q; and +o0o over Brq;. Such a limit graph
produces, after successive rotations about the horizontal geodesics Br 0 U 0, ¢; and
the vertical geodesic {Br} x RT in its boundary, one of the “horizontal helicoids” H
described by Pyo in [16]. Then the conjugate surfaces M(R, i) converge as p — +00
to one of the “horizontal catenoids” constructed in [13, 16].

6. Minimal surfaces invariant by a subgroup of Isom(H?). In this section,
we construct some examples of minimal surfaces invariant by a subgroup G of the
isometries of Isom(H? x R) that fix the vertical coordinate. We will say that such a G
is a subgroup of the isometries of Isom(H?). In fact, the subgroups we consider come
from tilings of the hyperbolic plane. We will use some notation that we introduce in
Appendix A.

The horizontal slices are clearly invariant by any subgroup of the isometries of
Isom(H?). The first non-trivial example is the following: We consider n > 3 and
¢ = 7/n. From Appendix A, there is y € ~9/2 such that the polygon P, is a regular
convex polygon in H? with 2n edges of length 2h,, and inner angle /2 at the vertices
(see Appendix A for the definitions of P, and h,). On this polygon, there is a
solution u of (1) with boundary values +oco alternately on each edge. The graph of u
is a minimal surface bounded by 2n vertical lines over the vertices of P,. Since P, is
the fundamental piece of a colorable tiling of H? (see Proposition A.2) the graph of u
can be extended by successive symmetries along its boundary to a properly embedded
minimal surface in H? x R. This surface is invariant by the subgroup of Isom(H?)
generated by the symmetries with respect to the vertices of the tiling.

We now construct other non-trivial examples of properly embedded minimal sur-
faces invariant by a subgroup of the isometries of Isom(H?). The construction of
these surfaces is similar to the one for some of the most symmetric Karcher’s Toroidal
Halfplane Layers in R3.

Fix n > 3 and h > h,. By Claim A.1 and Proposition A, there exist £ < h,, and
a convex polygonal domain P(n,h) C H? with 2n edges of lengths h and ¢, disposed
alternately, whose inner angles are /2. Such a domain P(n, h) produces by successive
rotations about its vertices a colorable tiling of H?Z.

Consider the minimal graph ¥ over P(n, h) with boundary values 0 over the edges
of length h and +oco over the edges of length ¢. Such a graph exists, by [14], and is
unique. By uniqueness, Y is invariant by reflection symmetry across the vertical
geodesic planes passing through the origin of P(n,h) and the middle points of the
edges of the polygon. We rotate ¥ about the horizontal and vertical geodesics in its
boundary, producing a properly embedded minimal surface M invariant by a subgroup
of the group of isometries of the tiling produced from P(n,h) . M projects vertically
over the whole H?, and contains all the edges of the tiling coming from the edges of
P(n,h) of length h (identifying them with the corresponding horizontal geodesics at
height zero), and the vertical geodesics over the vertices of the tiling.
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ProposiTiON 6.1. For any n > 2 and any h > h,, there exists a properly em-
bedded minimal surface M invariant by the group of isometries of the tiling produced
by the polygon P(n,h) defined above. The vertical projection of M is the entire H?
and the ends of M are asymptotic to the vertical geodesic planes over the edges of the
tiling coming from the edges of P(n,h) with length £. Moreover, M contains all the
edges of the tiling coming from the edges of length h and the vertical geodesics over
the vertices of the tiling.

In the following subsections, we prove:

PropoSITION 6.2. For any n > 3 and any h > h,, there exists a properly
embedded minimal surface M invariant by the group of isometries of the tiling produced
by the polygon P(n,h). M projects vertically over the tiles in black and its ends are
asymptotic to the vertical geodesic planes over the edges of the tiling coming from the
edges of P(n,h) of length h. Moreover, M is invariant by reflection symmetry across
{t =0} and contains the vertical geodesics over the vertices of the tiling.

6.1. The conjugate minimal surfaces M ,. Let n > 3 be an integer and
9 = 7/n. We consider h > 0 and A € (0,1). In Subsection 4.3, we have constructed
the minimal surface M}, » which is bounded by the union of four curves: ¢y, c2, c3
and c4.

Let Mj; \ be the conjugate minimal surface of M}, x. The aim of this subsection is
to describe My , and prove that it is embedded. We notice that Mj; , is well defined
up to an isometry of H? x R. In the following, we will fix this isometry by making
some hypotheses on M .

The vertical coordinate h* of M. i is defined on €2y by a primitive of the closed
1-form w* defined in (2). Up to a vertical translation, we can assume h*(py) = 0.
Because of the definition of w* and since Mj , C H? x [0,h/2], h* increases along
m(cq) from py to g1, along co from py to 0 and along ¢; from O to g;. Thus A* is
non-negative.

The surface My , is bounded by ¢7, ¢3, 5, cj, where each ¢} corresponds by con-
jugation to ¢;. Let us give a first description of these curves (see Figure 13):

e (i is a vertical geodesic curvature line lying on a vertical geodesic plane II;,
with infinite length and endpoint Afj, the conjugate point to Ag. We can
assume that A is the point (0,2*(0)) and that II; is the plane 75 x R. The
unit tangent vector to ¢j at Af is horizontal and we assume it points to
{y > 0}. The angle function v* is positive along ¢; (as this was the case for
the angle function v of M}, 5 along ¢;) and the height function increases along
¢} when starting from A§. In the Euclidean plane 11y, ¢} is then the graph of
a convex increasing function over a part [0, a;) of 'yar (a1 could be a priori in
the asymptotic boundary of H?).

e ¢3 is a vertical geodesic curvature line of length In ( ) lying on a vertical

geodesic plane Il5. Since, the angle between ¢; and ¢z is 6 at Ag, we get that
the angle between II; and Il is 6 (M, h y is horizontal at Af and isometric
to Mpx). We take IIy the vertical plane 77 1(v9). Now Mj; , is uniquely
defined. Starting from A, the height function decreases along ¢ from h*(0)
to h*(px) = 0. In the Euclidean plane Ils, ¢} is then the graph of a concave
decreasing function over a part of the geodesic 73’ . We denote by A% the
endpoint of ¢ which is different from Aj. We have A3 = (as,0), with as € 7, .
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F1G. 13. The boundary of My |

e ¢} is a horizontal geodesic curvature line of length h/2 at height zero, going
from A% to a point A5 = (a3,0). The unit tangent vector to ¢ at A} is
orthogonal to IIy and points into the side of Il that contains cj. As a curve
of H? x {0}, the geodesic curvature of ¢ never vanishes. In fact, since the
normal vector field of M), 5 rotates less than 7 along c3, the total geodesic
curvature of 7(cj) C H? is less than 7. This implies that 7(c}) and ¢} are
embedded and 7(c}) does not intersect Oas.

e ¢ is the half vertical geodesic line {ag} x RY.

We know that the distance between ¢; and ¢4 is uniformly bounded (in the sense
that if ¢; and ¢4 are parameterized by arc-length then the distance between ¢;(t) and
¢4(t) is bounded) and the surface is isometric to its conjugate, so the same is true for
¢t and ¢j. Thus the distance between a; and ag is bounded. This is, a; is in H2, not
in O,,H2. Then, in the Euclidean plane II;, ¢} is the graph of a convex increasing
function over a part [0,a;) of 77 with limit +oo at a;.

Because of the asymptotic behaviour of My x near ¢, M , is asymptotic to
araz X R, and the geodesic arasz has length h/2. Besides, since the normal vector to
M;Z,,\ lies in II; along cj, the geodesic ajas is orthogonal to vy at a;, and a3 lies in
{z > 0}.

Let (é1)1e(—1,1) be the flow given by Y. Let v be the complete geodesic of H? that
contains a; and az. We know that - is orthogonal to . We consider the foliation of
H? x R by the vertical geodesic planes ¢;(y x R). Since every point in M, ho is at a
bounded distance from its boundary, for [ close to 1 we have ¢;(yxR)NM; , = 0. Let
[ decrease until a first contact point for [ = ly. Since My , is asymptotic to arjaz X R,
either o = 0 or Iy > 0. Let us assume [y > 0 and reach a contradiction. We have two
cases: the first contact point is contained on cj or it coincides with A%. In the first
case we get a contradiction using the maximum principle, since the normal vector
field of the surface is horizontal along c¢§ and ¢, (v X R) is on one side of M ,. Let us
now assume that the first contact point is A3. The unit tangent vector to)cg points
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into Up>i,¢i(y X R) at A3, this contradicts that we have the first contact point for
I =1lp. So My , never intersects ¢ (y x R) until / = 0. This implies that az and cj are
in the half hyperbohc space bounded by v which contains O.

Let 7/ be the geodesic passing through a3 and orthogonal to y. Using a similar
argument as above with the corresponding foliation by vertical geodesic planes, we
can prove that:

e ¢} is in the half hyperbolic plane {z > 0};
e ¢} and ag are in the half hyperbolic plane bounded by +" which contains 0.
For the second item, we need to extend Mj , by symmetry along c3.

Let © be the domain of H? bounded by @zar, a;0, Oag and c4. Since the angle
function v* never vanishes outside cj U ¢}, we conclude M hx C Q x R. In fact, since
A{ is the only point in My,  that projects on 0, My , is a vertical graph over Q. This
implies that M} , is embedded.

6.2. Symmetry and the period problem. We recall that n > 3. From now
on, we assume that h > h,, where h,, is defined in Appendix A (h,, is the length of
the edges of the regular geodesic polygon with 2n edges with interior angles 7/2). We
want to find a value for the parameter A for which we can construct an embedded
minimal surface extending M, hx by symmetry along its boundary.

Let us consider the surface ¥, » described in Subsection 4.3. The same argument
as in this subsection proves that ¥j » converges when A — 1. By uniqueness, we get
that this limit minimal surface must be Xy, described in Subsection 4.2 (see Figure 6).
Moreover, the surfaces ¥ » depend continuously on the parameter A. Thus a1, a2
and a3 depend continuously on A as well.

We define M;, = £, N {0 <t < h/2}, and Mj its conjugate surface. As both
My, » and My b\ are vertical minimal graphs and Mj, , converges to My as A — 1, we
can conclude as in [13] that the graphs My, \ converge to My when A — 1.

We translate vertically M; so that Af = (0,0). The curve My N {t = h/2}
corresponds by conjugation to a vertical geodesic {a’} x R, where a’ is the limit of
the points ag when A — 1. Since M}, is invariant by the reflection symmetric with
respect to the plane 7y, x R, then M} is invariant by the rotation of angle = about
the geodesic 74,2, contained in Mj. Therefore a’ € 74/, and this implies that, for A
sufficiently close to 1, ag lies in the hyperbolic angular sector Ty = {(rsinu, r cosu) €
H2,r € [0,1),u € [0,6]}.

Let a4 be the orthogonal projection of az over 79. As \ goes to 1, a3 goes to a’
and a4 goes to the projection ay of a’. We recall that a; is the orthogonal projection
of az on 7y so a1 goes to the projection ay of a’ on . Since h > h,, and M; (for
A = 1) is invariant by the rotation of angle m about 7/, we deduce that the angle
between a’iaé and TCL’Q is strictly smaller than 7/2. Thus the angle between aza; and
asay is strictly less than 7/2, for A close to 1.

Let us observe what happens when A is close to 0. By construction, ag is at
distance h/2 from the geodesic vy (i.e. az lies on d(h/2), the equidistant curve of 7
at distance h/2). Besides the distance from 0 to ag is less than the sum of the lengths

of ¢5 and cj. So this distance is less than In (H)‘) +h/2. So for A small, the distance

between 0 and a3 is close to h/2. This implies that ag lies outside the angular sector
Ty when A is close to zero.

By continuity, there is a largest A\, denoted by A, such that az € 4. In particular,
as is contained in Ty for any A > Ag. For A > \g close to A\g, ag € Ty is close to vp.
So the angle between aza; and Gzaz is bigger than 7/2. A continuity argument says
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that there exists A1 € (Mg, 1) such that ag € Ty and the angle between Gza; and azay
is equal to 7/2 (see the proof of Claim A.1 for a similar argument). This value A; is
the one we look for; so from now on, we fix A = A;.

The domain {2 is included in the convex polygonal domain of vertices 0, a1, a3
and ay. We denote by €2 the domain obtained from 2 by reflection with respect to
the geodesics vo and 7y successively. The boundary of €2 has 2n vertices which are
the images of az and is composed of n geodesic arcs corresponding to a;as and n
concave arcs corresponding to c¢5. This domain is included in the convex polygonal
domain P, which is constructed by the same symmetries from the geodesic polygon
of vertices 0, a1, ag, ag (this polygon corresponds to the polygon P,, in Appendix A).
P has 2n vertices coming from ag, all of them with interior angle 7/2; and its edges
have lengths h and b, alternatively, where b is twice the length of the geodesic arc
@saz. Such a polygon P is then the fundamental piece of a colorable tiling of H? (see
Proposition A.2).

Let us now extend M}, by successive reflection symmetries with respect to the

planes vo X R and 79 x R. We get a minimal surface M which is a vertical graph
over 2 with value 0 along the concave arcs and +o0o on the geodesic arcs. Moreover,
this surface is in {t > 0} and has all the symmetries of the polygonal domain P. By
reflection symmetry with respect to the horizontal slice {t = 0}, we get an embedded
minimal surface whose boundary consists of 2n vertical geodesic lines passing through
the vertices of P. Such a surface is topologically a sphere minus n points.

From Proposition A.2, P is the fundamental piece of a hyperbolic colorable tiling.
Thus we can extend the surface by successive reflection symmetries along the vertical
geodesics contained in its boundary, getting a properly embedded minimal surface M
which is invariant by the group of symmetries generated by the rotation around the
vertices of the tiling. Moreover the surface projects only on tiles in black of P. This
proves Proposition 6.2.

REMARK 6.3. If n = 2, the above contruction can be done without selecting
the value of the parameter A. Thus we get the surface M that can be extended by
symmetry with respect to {¢ = 0} to get a minimal surface whose boundary consists
of 4 vertical geodesic lines. This surface is topologically an annulus. So this surface
is a solution to the following Plateau problem: finding a minimal annulus bounded
by four vertical geodesic lines. In this sense, it is very similar to the Karcher saddle
[5] of R3. But in our situation it can’t be extended by symmetry along its boundary
into an embedded minimal surface of H? x R.

Appendix A. Geodesic polygonal domains with right angles. In this
appendix, we give some facts about the tilings of the hyperbolic plane that we consider
in the paper.

Let n > 3 be an integer and define § = w/n. Let y; be the point
(Isin(6/2),1cos(6/2)) in H?, for 0 < [ < 1. Rotating y; around 0 by kf (k =
1,---,2n — 1), we get the 2n vertices of a regular convex geodesic polygon in H?2.

We denote by h the length of one of its 2n edges. h is an increasing function of [.
When [ varies from 0 to 1, the interior angle of the polygon at y; decreases from = — 6
to 0. Thus there is one value of I such that this angle is /2. We denote by h,, the
associated value of h.

Let y be in Ty. Considering the successive image of y by the reflections with
respect to vge ((k = 1,---,2n), we construct the 2n vertices of a convex polygon
whose edges have alternative lengths a, and b,, where a,/2 is the distance from y to
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vo and b, /2 the one to 9. We denote by P, this polygon and by c, the interior angle
of P, at the vertex y (the angle is the same at every vertex).

CrLAM A.1. For any a > hy,, there is y € Ty such that a, = a and oy = /2.

Proof. Let d(a/2) be the equidistant curve to vy at distance a/2 in {z > 0}. Let
y be on the part of d(a/2) between g/, and 9. Then a, = a. If y € 75/2, Py is
a regular convex polygon (a, = b,) and «, < 7/2, since a > h,,. For y close to s,
o, > m/2. By continuity, there is y such that o, = 7/2. O

PROPOSITION A.2. Lety € Ty be such that oy = w/2. Then Py is the fundamen-
tal piece of a tiling of H2. This tiling is given by considering the successive images
of Py by reflection with respect to its edges. Moreover, this tiling is colorable i.e. we
can associate to any tile a color (black or white) such that two tiles having a common
edge do not have the same color.

For such a tiling, every vertex lies in four tiles: two are black and two are white.
Two tiles of the same color with a common vertex are exchanged by the symme-
try around this vertex. Proposition A.2 is a consequence of Poincaré’s polyhedron
Theorem [7].

Appendix B. Some interesting minimal surfaces. In this appendix, we
recall some known minimal surfaces in H? x R that we used in the paper.

Let us consider the half-space model for the hyperbolic plane : H? = {(x1,12) €
R x RT} with the hyperbolic metric g = w%(dx% + dx2).

On {x; > 0}, the function v(z1,z2) = log(%)
graph is then a minimal surface in H? x R. On the boundary of {z; > 0}, v takes
the value +00 on the geodesic line {x; = 0} and takes the value 0 on the asymptotic
boundary of {x; > 0}. This solution was discovered independently by U. Abresch
and R. Sa Earp. This surface is used in Subsection 4.1

On the entire H?, another solution to (1) is given by uq (71, 72) = alog(x? + x3).
This solution is invariant by the Z-flow, for Z normal to {z; = 0}. In fact the
graph of u, is a minimal surface foliated by horizontal geodesics in H? x R normal
to {x; = 0} x R. Adding a constant ¢ to u,, we create a foliation of H? x R by such
surfaces. When a varies in R, we get a family of minimal surfaces which are similar
to planes in R3. Moreover, for any non vertical tangent plane at (0,1,0) which is
tangent to Z, one surface in this family is tangent to this tangent plane. In order to
have the complete family, we can add the vertical minimal plane {z% + 23 = 1} x R.
These surfaces are the P surfaces used in the proof of Claim 5.1.

If we look for solutions of (1) of the form u(xzy,z2) = f(x1/x2), we obtain solutions
which are invariant by a translation along the geodesic {z; = 0}. The above solution v
is one such solution. In fact, for any h > m, there is dj, > 0 and a function f;, which is
defined on [dp,, +00) such that up (21, z2) = fr(x1/22) is a solution to (1) (see [18, 9]).
This function fp, is a decreasing function with f5(dn) = h/2 and lim, o, fr = 0 and
limg, f; = —oo. The function uy, is then defined on the set of points at distance
larger than dj, from {x; = 0} and has boundary value h/2 on the equidistant and
0 on the asymptotic boundary. When h — 400, uj converge to the above solution
v. The graph of wy, is a minimal surface inside {0 < ¢ < h/2} which is foliated by
horizontal equidistant lines to {#; = 0} X R and is vertical along its boundary. Then
this graph can be extended by symmetry with respect to {¢ = h/2} to a complete
minimal surface S;, which is a vertical bigraph, included in {0 < t < h}, foliated by

is a solution to (1). Its
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horizontal equidistant lines to {z; = 0} x R. Moreover, the supremum of the vertical
gap on Sy is h. The surfaces Sy, are used in Subsections 5.1 and 5.3 as barriers in our
construction.

Appendix C. Alexandrov reflection. In Subsection 5.1, we construct a min-
imal surface Y, as the limit of surfaces X r. These surfaces X p are minimal disks
bounded by a Jordan curve I'r. We claim that the Alexandrov reflection technique
can be applied with respect to horizontal slices to prove that ¥ is a vertical bigraph
with respect to {t = h/2}. Since there are two vertical arcs in I'g, we need to explain
how the classical Alexandrov reflection technique works along these vertical edges.

In order to lighten the notation, we put ¥ = ¥ and I' = I'g. For [ € [0, h],
we define II; the horizontal slice {¢ = [}. We denote by P, and Q; the points in the
vertical edges of T' at height [ (since the arguments work the same for both points in
the sequel, we will assume that there is only one). Let ¥; = (X Nm) \ {P, Qi}. We
also define ¥ (resp. ¥;) the part of ¥ above (resp. below) II; minus its boundary.
Finally we denote by E;‘* and ;" the symmetric of El"’ and ¥; by II;.

The main step of the Alexandrov reflection technique is to prove that, for any

€ (h/2,h], ¥, NE* =0 and ¥ is never vertical along ¥;.

The property is true for [ = h since EZ* = () and X is inside the convex hull of
its boundary.

We notice that for any [ € (h/2,h), if £; NS = 0 is proved, then ¥ is never
vertical along ¥; follows easily.

Now we consider Iy € (h/2, h] such that the property is satisfied for any I > lj.
Let us assume that there exists a sequence of I < ly with I — [y and, for any k,
there is py, € ¥; N E;}:*.

Since ¥; N E;g* = (), the limit po of py is either in ¥;, or in the vertical edge.
Since ¥ is not vertical along X, Poo ¢ Xi,- SO Doo 18 in the vertical edge. Since
2, N Z;g* = 0, the tangent space to ¥,  and El‘;* are different for any point in the
the vertical edge except at P}, so the only possible limit is po, = P, .

Let us first consider the case lgp < h, and let (x,y, z) be an orthogonal coordinate
system at Pj, such that (z,y) are euclidean coordinates in the vertical plane tangent
to X at Fj,, where 0, is a vertical down pointing vector field and J, is a horizontal
vector field. X is then locally the graph of a function z = w(x,y) over {y > 0}.
w vanishes on {y = 0} and has vanishing differential at the origin. We notice that
{# = 0} is a minimal surface thus from the proof of Theorem 5.3 in [1], w can be
written in the following way:

w(z,y) = p(z,y) + q(z,y),
where p is a homogeneous harmonic polynomial of degree d and ¢ satisfies
|a(X)| + 1X[[Vg(X)] + - + | X[ VIg(X)] < ClX |

Since X, N Z+* = (), then w(z,y) — w(—=,y) has a sign for any |(z,y)| < e with
x #0and y 7& 0. We assume that the coordinate z is chosen such that this sign is +.
Thus 0 < w(z,y) —w(—=z,y) = p(z,y) — p(—z,y) + q(x,y) — ¢(—=x,y) for x and y non
negative close to 0, and it does not vanish for positive values of = and y. Thus the
degree of p(x,y) — p(—xz,y) has to be 2, and p(z,y) = ary with « > 0.

When Iy = h, we also get that 3 is the graph of function w over [0,¢]? with
w(z,y) = azy + g(x,y), for the same choice of coordinate system, with « and ¢
satifying the same hypotheses as above.
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Since pr, — P, for k large enough we get pr, = (g, Yk, w(Tk, yi)), with (zg, yx) €
[~lk,€] x [0,€]. Since py, € X N EZJ]:*, we have :

(3) w(@e, ye) = w(2(lo — lk) — T, Yi)
But if (z,y) € [\, €] x [0,¢] we have:

w(z,y) —w2A —z,y) 2 20(z = A)y =2 sup  [02q(u,y)|(z — ).

u€[—e,e]
Since 0 = w(z,0) = ¢q(z,0), we get

|02q(u,y)| < sup |0,0.q(u,v)ly < CvVu? + £2y.

ve(0,e

Thus

w(z,y) —w2A — z,y) > 2a(z — )y — C2v/2e(z — Ny
> 2o — V2Ce](z — Ny,

which is positive if £ > A, y > 0 and ¢ is small enough. This contradicts (3) when &
is large enough.

We then have proved that: for any [ € (h/2,h], &; N7 = 0 and ¥ is never
vertical along ¥;.

Therefore, we obtain that either E;/Z = EZ/*Q and it is a vertical bigraph with
respect to {t = h/2}, or %),/ and EZ/’E are two non intersecting minimal surfaces
with the same boundary. In this second case, Z;/z is clearly below E;/*Q along the
'NIlg. By symmetry by IIj /o this implies that EZ/Z is below 2}72 along I'N1I;. But
doing Alexandrov reflection technique as above with the slices I1;, I € [0, h/2], we get
that EZ/Q is above E;/Z along I' N II,. Finally, we have proved ¥, = ZZ/*Q.
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