THE OVERCONVERGENT FROBENIUS*

ROBERT F. COLEMAN ${ }^{\dagger}$

Key words. Overconvergence, frobenius, modular forms, U-operator.

AMS subject classifications. 11F33, 13A35.
We will improve some estimates of Dwork and Gouvêa concerning the the U operators on overconvergent forms of integral weight. One consequence of our estimates that is not evident from earlier results is that the U-operator applied to an overconvergent form of integral weight bounded by one on a neighborhood of the ordinary locus is still bounded by one on a neighborhood of the ordinary locus.

Let K be a complete local field contained in \mathbf{C}_{p} with ring of integers R_{K}. Fix N, $(N, p)=1$. For $r \in R_{K}, Z(N, r)$ will denote the affinoid subdomain of $X_{1}(N)$ defined over K where $\left|E_{p-1}\right| \geq|r|$ (so a neighborhood of the component of the ordinary locus containing the cusp ∞). Let $\phi: Z(N, r) \rightarrow Z\left(N, r^{p}\right)$ be the canonical Frobenius, which is defined when $v(r)<1 /(p+1)$. Let $S(N, r):=S\left(R_{K}, N, r\right)$ denote the $R_{K^{-}}$ module of forms of weight 0 on $Z(N, r)$ of absolute value at most $1, S(K, N, r)=$ $S\left(R_{K}, N, r\right) \otimes K, Z(r)=Z(1, r)$ and $S(r)=S(1, r)$. For $\alpha \in R_{K} / p R_{K}$, we set $v(\alpha)=v(\tilde{\alpha})$ for any $\tilde{\alpha} \in R_{K}$ which reduces to α, if $\alpha \neq 0$ and $v(\alpha)=\infty$ otherwise.

Proposition 1. When $N=1$, ϕ is defined on $Z(r), v(r)<p /(p+1)$. Let $h(j)$ denote the Hasse invariant of any elliptic curve modulo p with j-invariant $j \bmod p$. Then

$$
\begin{equation*}
\left|\phi(j)-j^{p}\right| \leq|p / h(j)| \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Tr}_{\phi}(S(r)) \subseteq p r^{-(p+1)} S\left(r^{p}\right) \tag{ii}
\end{equation*}
$$

Proof. For a supersingular point e let $i_{e}=3$ if $j(e)=0, i_{e}=2$ if $j(e)=1728$ and $i_{e}=1$ otherwise. Dwork asserts, at formula (7.8) of " p-adic Cycles," that

$$
\phi(j)=j^{p}+p k(j)+\sum_{e} \sum_{n=1}^{\infty} \frac{A_{e, n}}{\left(j-\beta_{e}\right)^{n}}
$$

where $k(j)$ is a polynomial in j of degree at most $p-1$ over \mathbf{Z}_{p}, e runs over the supersingular points modulo p, β_{e} is a point in the residue class above e defined over $\mathbf{Q}_{p}^{u n r}$ such that $\beta_{\bar{a}}=a$ when $a=0$ or 1728 and $A_{e, n} \in \mathbf{Q}_{p}^{u n r}$ such that

$$
v\left(A_{e, n}\right) \geq \frac{1}{p+1}+i_{e} n\left(\frac{p}{p+1}\right) .
$$

Now $v\left(j-\beta_{e}\right)=i_{e} v(h(j))$, if $e=\bar{j}$ is supersingular and $0<v(h(j))<1$.
Thus

$$
v\left(\frac{A_{e, n}}{\left(j-\beta_{e}\right)^{n}}\right) \geq 1+\left(n i_{e}-1\right)\left(\frac{p}{p+1}-v(h(j))\right)-v(h(j)),
$$

[^0]and (i) follows.
Part (ii) follows from part (i). Indeed, suppose $v(r)=H$ and $s=r^{i_{e}}$. For a supersingular point e, let $Y_{e}(s)(j)=\left(j-\beta_{e}\right) / s$ so that $Y_{e}(s)$ is a parameter on the annulus $A_{e}(r)=A\left[\beta_{e},|s|\right]=\left\{x \in X(1):\left|j(x)-\beta_{e}\right|=|s|\right\}$ around β_{e}. Then (i) implies ϕ induces a rigid analtytic morphism from $A_{e}(r)$ to $A_{e^{p}}\left(r^{p}\right)$ such that $\left|\phi^{*}\left(Y_{e^{p}}\left(s^{p}\right)\right)-Y_{e}(s)^{p}\right| \leq\left|p / s^{p+1}\right|$. It follows that $A^{0}\left(A_{e}(r)\right)$ is finite and flat of degree p over $A^{0}\left(A_{e^{p}}\left(s^{p}\right)\right)$ and the corresponding trace map $\operatorname{Tr}_{e}(s)$ is 0 modulo p / s^{p+1}. We know by [Ka] that $A(Z(r))$ is finite and flat over $A\left(Z\left(r^{p}\right)\right)$ and there is a trace map $\operatorname{Tr}(r)$. As the diagram
\[

$$
\begin{array}{ccc}
A(Z(r)) & \xrightarrow{\operatorname{Tr}(r)} & A\left(Z\left(r^{p}\right)\right) \\
\downarrow & \downarrow & \downarrow \\
A\left(A_{e}\left(r^{i_{e}}\right)\right) & \xrightarrow{T r_{e}\left(r^{i_{e}}\right)} & A\left(A_{e^{p}}\left(r^{p i_{e}}\right)\right)
\end{array}
$$
\]

commutes for all supersingular points e, it follows that if $f \in A^{0}(Z(r))$,

$$
\left.(\operatorname{Tr}(r) f)\right|_{A_{e}\left(r^{p}\right)} \in\left(p / r^{p+1}\right) A^{0}\left(A_{e^{p}}\left(r^{p}\right)\right)
$$

for all e and thus by the maximum principle $\operatorname{Tr}(r) f \in\left(p / r^{p+1}\right) A^{0}\left(Z\left(r^{p}\right)\right)$.
Corollary 2. $\operatorname{Tr}_{\phi}(S(N, r)) \subset p r^{-(p+1)} S\left(N, r^{p}\right)$.
Proof. This follows from part (i) of the proposition and the fact that maps of residue disks on $X_{1}(N)$ to residue disks on the $X(1)$ are finite, ramified at 0 or 1728 where they have ramification indices 3 or 2. (See de Shalit's [dS] for finer results.)

We can generalize the above to arbitrary weight and level. Let $S(N, k, r)$ the R_{K}-module of weight k modular forms bounded by one on $Z(N, r)$.

Lemma 3. Suppose $k \geq 0, N>4,(N, p)=1$ and $v(r)<1 / p$. Then,

$$
U(S(N, k, r)) \subset \frac{1}{r^{p+1}} S\left(N, k, r^{p}\right)
$$

Proof.

$$
\begin{array}{ccc}
X_{1}(N, r) & \xrightarrow{\phi} & X_{1}\left(N, r^{p}\right) \\
\downarrow & & \downarrow \\
X(1, r) & \xrightarrow{\phi} & X\left(1, r^{p}\right)
\end{array}
$$

is Cartesian. (Suppose $\alpha: \mu_{N} \rightarrow \phi(E)$ is an embedding. Let $\alpha^{\prime}: \mu_{N} \rightarrow E$ be defined by $\alpha^{\prime}(\zeta)=\check{\pi}\left(\alpha(\zeta)^{1 / p}\right) A_{1}(N, r)=A(1, r) \otimes_{\phi} A\left(N, r^{p}\right)$

Suppose $N>4$. We now follow $\S 2$ of [CO]. Let $f: E_{1}(N) \rightarrow X_{1}(N)$ be the universal elliptic curve and $E(N, r)=E_{1}(N)_{Z(N, r)}$. Then, since $v(r)<1 /(p+1)$, we have a commutative diagram

$$
\begin{array}{ccc}
E(N, r) & \xrightarrow{\Phi} & E\left(N, r^{p}\right) \\
\downarrow & & \downarrow \\
Z(N, r) & \xrightarrow{\longrightarrow} & Z\left(N, r^{p}\right)
\end{array}
$$

where ϕ is the Tate-Deligne map and if $f^{\prime}: E^{\prime}\left(r^{p}\right) \rightarrow Z(N, r)$ is the pullback of $E\left(N, r^{p}\right)$ to $Z(N, r)$, there is an isogeny over $Z(N, r), \pi$, from $E(N, r)$ to $E^{\prime}\left(r^{p}\right)$
(moding out by the canonical subgroup) such that Φ is the composition of π and the natural map from $E^{\prime}\left(r^{p}\right)$ to $E\left(N, r^{p}\right)$. Now using the fact that

$$
f_{*}^{\prime} \Omega_{E^{\prime}\left(r^{p}\right) / Z(N, r)}^{1}=\phi^{*} f_{*} \Omega_{E\left(N, r^{p}\right) / Z\left(N, r^{p}\right)}^{1}
$$

and that $U: S\left(K, N, k, r^{p}\right) \rightarrow S\left(K, N, k, r^{p}\right)$ can be described as $\frac{1}{p} V \circ \operatorname{Res}_{r}^{r^{p}}$ where V is the composition

$$
\begin{aligned}
& \omega^{\otimes k}(Z(N, r)) \xrightarrow{\left(\check{\pi}^{*}\right) \otimes k} A(Z(N, r)) \otimes_{A\left(Z\left(N, r^{p}\right)\right)} \omega^{\otimes k}\left(Z\left(N, r^{p}\right)\right) \\
& \downarrow T r_{\phi} \otimes 1 \\
& A\left(Z\left(N, r^{p}\right)\right) \otimes_{A\left(Z\left(N, r^{p}\right)\right)} \omega^{\otimes k}\left(Z\left(N, r^{p}\right)\right)=\omega^{\otimes k}\left(Z\left(N, r^{p}\right)\right)
\end{aligned}
$$

and where $\omega=f_{*} \Omega_{E_{1}^{s m}(N) / X_{1}(N)}^{1}\left(\log f^{-1} C\right)$ (see $\left.[\mathrm{CO}] \S 2\right)$. This can be checked easily on q-expansions. The lemma now follows from the previous corollary.

Using this we can conclude: Suppose now $N>4, k \geq 0$ and if $k=1, N \leq 11$.
Theorem 1. If p is at least 5 and $0<v(r)<1 /(p+1)$, the submodule.

$$
S\left(N, k, r^{p}\right)+r^{-2} S\left(N, k, r^{p}\right) \cap r^{2 p-4} S(N, k, r)
$$

of $S\left(N, k, r^{p}\right) \otimes K$ is stable under U.
Proof. Set $T(r)=S\left(N, k, r^{p}\right)+r^{-2} S\left(N, k, r^{p}\right) \cap r^{2 p-4} S(N, k, r)$. First,

$$
U\left(r^{2(p-2)} S(N, k, r)\right) \subset r^{p-5} S\left(N, k, r^{p}\right)
$$

by the previous corollary. So since $p \geq 5$, we only have to show $U\left(S\left(N, k, r^{p}\right)\right)$ is contained in $T(r)$. Suppose $f \in S\left(N, k, r^{p}\right)$. Then we may write

$$
\begin{aligned}
f & =\sum_{a=0}^{\infty} \frac{r^{p a} b_{a}}{E_{p-1}^{a}} \\
& =b_{0}+\frac{r^{p} b_{1}}{E_{p-1}}+r^{2(p-1)} s
\end{aligned}
$$

where $b_{a} \in B(N, k, a) \subset \omega^{\otimes k+a(p-1)}(X(N))$ ($($ notation as in $\S 2.6$ of [Ka]) so has weight $k+a(p-1))$ and $s \in S(N, k, r)$. Then

$$
U(f) \equiv U\left(\frac{r^{p} b_{1}}{E_{p-1}}\right) \bmod S\left(N, k, r^{p}\right)
$$

using the previous corollary, because $2(p-1) \geq p+1$. And since $r b_{1} / E_{p-1} \in S(N, k, r)$

$$
U\left(\frac{r b_{1}}{E_{p-1}}\right)=\frac{1}{r^{p+1}} \sum_{a=0}^{\infty} \frac{r^{p a} b_{a}^{\prime}}{E_{p-1}^{a}}
$$

where $b_{a}^{\prime} \in B(N, k, a)$ using the previous lemma, again, and so

$$
U\left(\frac{r^{p} b_{1}}{E_{p-1}}\right) \in\left(r^{-2}\left(b_{0}^{\prime}+\frac{r^{p} b_{1}^{\prime}}{E_{p-1}}\right)\right)+r^{2 p-4} S(N, k, r) \cap r^{-2} S\left(N, k, r^{p}\right)
$$

Now both $U\left(r^{p} b_{1} / E_{p-1}\right)$ and elements of $r^{2 p-4} S(N, k, r)$ have q-expansions divisible by r^{p} since $2 p-4>p$. By the q-expansion principle [Ka] [Cor. 1.6.2, 1.9.1] there exists a weight $k+p-1$ integral form $b_{1}^{\prime \prime}$ bounded by one such that

$$
r^{-2}\left(b_{0}^{\prime} E_{p-1}+r^{p} b_{1}^{\prime}\right)=r^{p} b_{1}^{\prime \prime} .
$$

Thus $U\left(r^{p} b_{1} / E_{p-1}\right) \equiv r^{p} b_{1}^{\prime \prime} / E_{p-1} \bmod r^{2 p-4} S(N, k, r) \cap r^{-2} S\left(N, k, r^{p}\right)$ and so $U(f) \in$ $T(r)$.

In particular, $\left\|U^{n}\right\|_{S\left(K, N, k, r^{p}\right)} \leq|r|^{-2}$, for $n \geq 0$. This improves Lemma 3.11.7 of [Ka] and Proposition II.3.9 of [Go]. Although this result is valid for $p=5$, it is not enough to extend Dwork's bound on the dimension of the unit root subspace Lemma 3.12.4 of [Ka].

Corollary 4. Suppose K is a finitely ramified extension of \mathbf{Q}_{p}. If $s \in K$, $v(s)<\min \left\{p /(p+1), p / 2 e\left(K / \mathbf{Q}_{p}\right)\right\}$ (e.g., if $p>2$ and $e\left(K / \mathbf{Q}_{p}\right)=[p / 2]+1$ take $\left.v(s)=\frac{[p / 2]}{[p / 2]+1}\right), U\left(S\left(R_{K}, N, k, s\right)\right) \subseteq S\left(R_{K}, N, k, s\right)$.

Proof. If $r \in \bar{K}$ and $r^{p}=s$, the previous theorem and the fact that U is defined over \mathbf{Q}_{p} implies $U\left(S\left(R_{K}, N, k, s\right)\right) \subset S(K, N, k, s) \cap r^{-2} S\left(R_{K[r]}, N, k, s\right)$. However, this equals $S\left(R_{K}, N, k, s\right)$ since $\left.v\left(r^{2}\right)<1 / e\left(K / \mathbf{Q}_{p}\right)\right)$.

Corollary 5. Suppose K and L are finitely ramified extensions of \mathbf{Q}_{p} and $K \subseteq$ $L, s \in K$ and $t \in L$. Then $U\left(S\left(R_{K}, N, k, s\right)\right) \subseteq S\left(R_{L}, N, k, t\right)$ if $v(t) \leq v(s) / p<\frac{1}{p+1}$.

Proof.

$$
\begin{aligned}
U\left(S\left(R_{K}, N, k, s\right)\right) & \subseteq U\left(S\left(R_{L}, N, k, t^{p}\right)\right) \\
& \subseteq S\left(R_{L}, N, k, t^{p}\right)+t^{-2} S\left(R_{L}, N, k, t^{p}\right) \cap t^{2 p-4} S\left(R_{L}, N, k, t\right) \\
& \subseteq S\left(R_{L}, N, k, t\right)
\end{aligned}
$$

REFERENCES

[CO] R. Coleman, Classical and overconvergent modular forms, Invent. Math., 124 (1996), pp. 215241.
[dS] U. De Shalit, Kroneckers polynomial, supersingular elliptic curves, and p-adic periods of modular forms, Contemporary Math., 165 (1994), pp. 135-148.
[Go] F. Gouvêa, Arithmetic of p-adic modular forms, SLN 1304, (1988).
[Ka] N. Katz, p-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pp. 69-190. Lecture Notes in Mathematics, Vol. 350, Springer, Berlin, 1973.

[^0]: *Received February 25, 2012; accepted for publication June 26, 2012.
 \dagger Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA (coleman@ math.berkeley.edu).

