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REMARKS ON THE CARTAN FORMULA AND ITS APPLICATIONS∗

KEFENG LIU† AND SHENG RAO‡

Abstract. In this short note, we present certain generalized versions of the commutator formulas
of some natural operators on manifolds, and give some applications.
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1. Introduction. The purpose of this note is to present several general com-
mutator formulas of certain natural operators on Riemannian manifolds, complex
manifolds and generalized complex manifolds. We would like to point out that such
commutator formulas are essentially consequences of the classical Cartan formula for
Lie derivative, but they have deep applications in geometry such as in studying the
smoothness of deformation spaces of manifolds. For example one direct consequence
of the commutator formula is the Tian-Todorov lemma which is essential for proving
the smoothness of the deformation space of Calabi-Yau manifolds in [10, 11] and also
[12]. The general commutator formulas derived in the note also have applications in
proving smoothness of more general deformation spaces such as that of the general-
ized complex manifolds in [6]. We will discuss the applications of these commutator
formulas in deformation theory in our subsequent work.

2. Cartan formula and a general commutator formula. In this section
we will present a general commutator formula on a Riemannian manifold. We first
fix notations. Given a smooth vector field X , a smooth vector bundle V on the
smooth Riemannian manifoldM , and a connection∇ on V which extends to covariant
derivative on the space of smooth V -valued differential forms Ω∗(V ), we denote by
LX the Lie derivative acting on Ω∗(V ) and by y the contraction operator. We will
also denote by ιX the contraction of a differential form by the vector field X . [·, ·] will
always denote the usual Lie bracket.

Our starting point is the following formula as Cartan observed

(2.1) LXω = Xy(∇ω) +∇(Xyω), for ω ∈ Ω∗(V ).

Then our general commutator formula can be stated as follows.

Lemma 2.1. For any two smooth vector fields X and Y on M, there holds

(2.2) [X,Y ]yω = Xy∇(Y yω) +∇(Xy(Y yω))− Y y(Xy∇ω)− Y y∇(Xyω).

Proof. On one hand, it is obvious by Cartan’s formula (2.1) that

LX(Y yω) = Xy∇(Y yω) +∇(Xy(Y yω)).
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And on the other hand,

LX(Y yω) = (LXY )yω + Y y(LXω) = [X,Y ]yω + Y y(Xy∇ω +∇(Xyω)),

where the last identity applies Cartan’s formula (2.1) again. Then (2.2) follows from
these two identities above.

Remark 2.2 ([2]). This formula can be considered as a slight generalization of
the well-known commutator formula of Lie derivatives acting on differential forms

(2.3) [LX , ιY ] = ι[X,Y ].

It is easy to see that the commutator formula (2.3) is a special case of our formula
when V is taken as a trivial bundle on the manifold M . In fact, applying both sides
of (2.2) to a differential form τ ∈ Ω∗(M), we easily get

(2.4) Y y(Xydτ) = Xyd(Y yτ) + d
(

Xy(Y yτ)
)

− Y yd(Xyτ)− [X,Y ]yτ,

which can also be written as

(2.5) [X,Y ]yτ = LX(Y yτ)− Y y(LXτ),

and is just the formula (2.3). (See Formula LIE 5 of Proposition 5.3 on pp. 140 of
[5].) Furthermore, if τ ∈ Ω1(M), then (2.4) becomes our familiar identity

dτ(X,Y ) = X
(

τ(Y )
)

− Y
(

τ(X)
)

− τ([X,Y ]),

by the vanishing of d
(

Xy(Y yτ)
)

in (2.4).

Another proof of this formula is to use formula for covariant derivative. Without
loss of generality, we just consider the special case that V is a line bundle. We denote
by θ and τ the connection 1-form (matrix) with respect to the connection∇ and a form
of degree k onM respectively. By definition, the covariant derivative of τ⊗s ∈ Ωk(V )
is given by

(2.6) ∇(τ ⊗ s) = dτ ⊗ s+ (−1)kτ ∧ ∇s,

where s is a smooth section of V . Firstly, we can easily check that

(2.7) Y y

(

Xy(τ ∧ θ)
)

=
(

Xy(Y yτ)
)

∧ θ −Xy

(

(Y yτ) ∧ θ
)

+ Y y

(

(Xyτ) ∧ θ
)

.

Actually, a direct calculation shows that

LHS = Y y

(

(Xyτ) ∧ θ + (−1)kτ ∧ (Xyθ)
)

= Y y

(

(Xyτ) ∧ θ
)

+ (−1)k
(

Xy

(

θ ∧ (Y yτ)
)

− (−1)θ ∧
(

Xy(Y yτ)
)

)

= Y y

(

(Xyτ) ∧ θ
)

+ (−1)k(−1)k−1Xy

(

(Y yτ) ∧ θ
)

+ (−1)k+k−2
(

Xy(Y yτ)
)

∧ θ

= RHS.

Without loss of generality, assume that s is a smooth local frame of the smooth line
bundle V . By adding up the tensor products (2.7)⊗(−1)ks and (2.4)⊗s, we have
reproved our formula (2.2).
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3. Commutator formula on complex manifolds. In this section, we consider
an n-dimensional complex manifoldM and a holomorphic vector bundle V over it. As
the applications of our commutator formula, we derive a general commutator identity
for any V -valued (n, ∗)-form and also any V -valued (∗, ∗)-form on M , and as an easy
consequence we derive the Tian-Todorov lemma. ∇ will always denote the Chern
connection of the Hermitian holomorphic vector bundle V throughout this section.

Following pp. 152 of [8], we first introduce some notations. As usual, we let
Ap,q(V ) := Ap,q(M,V ) be the space of smooth (p, q)-forms with coefficients in V . If
X =

∑n
i=1X

i∂i and Y =
∑n

i=1 Y
i∂i, then

[X,Y ] =
∑

i,j

(X i∂iY
j − Y i∂iX

j)∂j .

For the generalization, let

ϕi =
1

p!

∑

ϕi
j̄1,··· ,j̄p

dz̄j1 ∧ · · · ∧ dz̄jp

and

ψi =
1

q!

∑

ψi
k̄1,··· ,k̄q

dz̄k1 ∧ · · · ∧ dz̄kq .

Definition 3.1. For ϕ =
∑

i ϕ
i ⊗ ∂i and ψ =

∑

i ψ
i ⊗ ∂i, we define

[ϕ, ψ] =
n
∑

i,j=1

(

ϕi ∧ ∂iψ
j − (−1)pqψi ∧ ∂iϕ

j
)

⊗ ∂j ,

where

∂iϕ
j =

1

p!

∑

∂iϕ
j

j̄1,··· ,j̄p
dz̄j1 ∧ · · · ∧ dz̄jp

and similarly for ∂iψ
j. In particular, if ϕ, ψ ∈ A0,1(M,T

1,0
M ), then

[ϕ, ψ] =

n
∑

i,j=1

(ϕi ∧ ∂iψ
j + ψi ∧ ∂iϕ

j)⊗ ∂j .

Proposition 3.2. For any holomorphic vector bundle V , any ω ⊗ s ∈ An,∗(V )1

and any φi ∈ A0,1(M,T
1,0
M ), i = 1, 2, there holds

(3.1) [φ1, φ2]y(ω ⊗ s) =
(

φ1y∂(φ2yω)
)

⊗ s− ∂
(

φ2y(φ1yω)
)

⊗ s+
(

φ2y∂(φ1yω)
)

⊗ s,

or equivalently,

(3.2) [φ1, φ2]yω = φ1y∂(φ2yω)− ∂
(

φ2y(φ1yω)
)

+ φ2y∂(φ1yω).

Proof. We first show the following identity

[X,Y ]y(τ⊗s) =
(

Xyd(Y yτ)
)

⊗s+d
(

Xy(Y yτ)
)

⊗s−
(

Y y(Xydτ)
)

⊗s−
(

Y yd(Xyτ)
)

⊗s,

1Here ω ∈ An,∗(M) and s is a smooth section of V . In the following , we will adopt this
convention without chance for confusion.
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for τ ⊗ s ∈ An,∗(V ).

One way to approach this identity is a direct application of (2.4), while here we adopt
a lengthy but more intrinsic proof. In fact, we have

[X,Y ]y(τ ⊗ s)

=Xy∇
(

Y y(τ ⊗ s)
)

+∇

(

Xy

(

Y y(τ ⊗ s)
)

)

− Y y

(

Xy∇(τ ⊗ s)
)

− Y y∇
(

Xy(τ ⊗ s)
)

=
(

Xyd(Y yτ)
)

⊗ s+ (−1)n−1
(

Xy(Y yτ)
)

⊗∇s+ d
(

Xy(Y yτ)
)

⊗ s+ (−1)n
(

Xy(Y yτ)
)

⊗∇s

−
(

Y y(Xydτ)
)

⊗ s− (−1)n
(

Y y(Xyτ)
)

⊗∇s−
(

Y yd(Xyτ)
)

⊗ s− (−1)n−1
(

Y y(Xyτ)
)

⊗∇s

=
(

Xyd(Y yτ)
)

⊗ s+ d
(

Xy(Y yτ)
)

⊗ s−
(

Y y(Xydτ)
)

⊗ s−
(

Y yd(Xyτ)
)

⊗ s,

where the first equality applies our general commutator formula (2.2).
Then, if we take τ as ω ∧ dz̄k1 ∧ dz̄k2 and X,Y as (φ1)k̄1

, (φ2)k̄2
, respectively, we

can conclude the proof of (3.1). In fact, set

φi = (φi)k̄ ⊗ dz̄k,

where (φi)k̄ =
∑n

j=1(φi)
j

k̄
∂

∂zj is a vector field of type (1, 0). Then by definition it is
easy to check that

[φ1, φ2] = [(φ1)k̄1
, (φ2)k̄2

]⊗ (dz̄k1 ∧ dz̄k2)

and thus

[φ1, φ2]yω =
(

[(φ1)k̄1
, (φ2)k̄2

]yω
)

∧ (dz̄k1 ∧ dz̄k2) = [(φ1)k̄1
, (φ2)k̄2

]y(ω ∧ dz̄k1 ∧ dz̄k2).

Hence, by applying our formula (2.2) in the special case (i.e., the commutator formula
(2.4) as pointed out in Remark 2.2) to the complex setting, and taking τ = ω∧dz̄k1 ∧
dz̄k2 and only the components of (n− 1, 2)-type forms, one has
(3.3)

[(φ1)k̄1
, (φ2)k̄2

]y(ω ∧ dz̄k1 ∧ dz̄k2)

= (φ1)k̄1
y∂

(

(φ2)k̄2
y(ω ∧ dz̄k1 ∧ dz̄k2)

)

+ ∂
(

(φ1)k̄1
y

(

(φ2)k̄2
y(ω ∧ dz̄k1 ∧ dz̄k2)

)

)

−(φ2)k̄2
y∂

(

(φ1)k̄1
y(ω ∧ dz̄k1 ∧ dz̄k2)

)

− (φ2)k̄2
y

(

(φ1)k̄1
y∂(ω ∧ dz̄k1 ∧ dz̄k2)

)

.

A simple calculation implies that

[φ1, φ2]yω = φ1y∂(φ2yω)− ∂
(

φ2y(φ1yω)
)

+ φ2y∂(φ1yω),

by the vanishing of the last term of right-hand side of (3.3).

It is interesting to write down the following several useful identities from the proof
of (3.2) and (3.1): for any ω ⊗ s ∈ A∗,∗(V ),

φ1y∂̄(φ2yω)− ∂̄
(

φ2y(φ1yω)
)

+ φ2y∂̄(φ1yω)− φ2y(φ1y∂̄ω) = 0,

or equivalently,

(3.4)
(

φ1y∂̄(φ2yω)
)

⊗s−∂̄
(

φ2y(φ1yω)
)

⊗s+
(

φ2y∂̄(φ1yω)
)

⊗s−
(

φ2y(φ1y∂̄ω)
)

⊗s = 0,

and the (more) complete general commutator formula

(3.5) [φ1, φ2]yω = φ1y∂(φ2yω)− ∂
(

φ2y(φ1yω)
)

+ φ2y∂(φ1yω)− φ2y(φ1y∂ω),
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or equivalently,

[φ1, φ2]y(ω ⊗ s) =
(

φ1y∂(φ2yω)
)

⊗ s− ∂
(

φ2y(φ1yω)
)

⊗ s

+
(

φ2y∂(φ1yω)
)

⊗ s− φ2y(φ1y∂ω)⊗ s.(3.6)

Moreover, there holds

[φ1, φ2]yω = φ1yd(φ2yω)− d
(

φ2y(φ1yω)
)

+ φ2yd(φ1yω)− φ2y(φ1ydω).

or equivalently,

[φ1, φ2]y(ω ⊗ s) =
(

φ1yd(φ2yω)
)

⊗ s− d
(

φ2y(φ1yω)
)

⊗ s

+
(

φ2yd(φ1yω)
)

⊗ s− φ2y(φ1ydω)⊗ s.(3.7)

Based on the argument above, we obtain another general commutator identity
for Hermitian holomorphic vector bundle valued (n, ∗)-forms on complex manifolds.

Theorem 3.3. For any Hermitian holomorphic vector bundle V , any η ∈
An,∗(V ) and any φi ∈ A0,1(M,T

1,0
M ), i = 1, 2, one has

[φ1, φ2]yη = φ1y∇(φ2yη)−∇
(

φ2y(φ1yη)
)

+ φ2y∇(φ1yη)− φ2y(φ1y∇η),

where ∇ is the Chern connection of the Hermitian holomorphic vector bundle V .

Proof. Let r = rank(V ). Assume that s = {s1, · · · , sr} is a local holomorphic
frame of V and that h = (hij̄) = (h(si, sj)) is the matrix of the metric of h under s.
Without loss of generality, we can locally set

(3.8) η =
r

∑

i=1

ωi ⊗ si and ∇si =
r

∑

j=1

θij ⊗ sj ,

where ωi ∈ An,∗(M) and θij =
∑r

k=1 ∂hik̄ ·h
k̄j is the connection (1, 0)-form of ∇ with

respect to s.
Now we proceed to our proof. Firstly, for any two functions f and g on the

complex manifold M , letting fωi substitute for ω in (3.2), one has

[φ1, φ2]yfωi = −∂
(

φ2y(φ1yfωi)
)

+ φ1y∂(φ2yfωi) + φ2y∂(φ1yfωi).

So by (3.2) we have

0 = −∂f ∧
(

φ2y(φ1yωi)
)

+ φ1y
(

∂f ∧ (φ2yωi)
)

+ φ2y
(

∂f ∧ (φ1yωi)
)

and its equivalent form

0 = −g · ∂f ∧
(

φ2y(φ1yωi)
)

⊗ sj + φ1y
(

g · ∂f ∧ (φ2yωi)
)

⊗ sj

+φ2y
(

g · ∂f ∧ (φ1yωi)
)

⊗ sj .(3.9)

Next, submitting ∂hik̄ · hk̄j into (3.9) as g · ∂f and taking sums over k and then
over j, then we obtain

(3.10) 0 = −∇si ∧
(

φ2y(φ1yωi)
)

+ φ1y
(

∇si ∧ (φ2yωi)
)

+ φ2y
(

∇si ∧ (φ1yωi)
)

according to (3.8).
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Then, combining (3.10), (3.1) and (3.4) with ω and s replaced by ωi and si
respectively, and summing over i, we can complete our proof according to the formula
(2.6) for covariant derivative and the assumption (3.8).

Corollary 3.4. For any Hermitian holomorphic vector bundle V , any η ∈
A∗,∗(V ) and any φi ∈ A0,1(M,T

1,0
M ), i = 1, 2, there holds

(3.11) [φ1, φ2]yη = φ1y∇(φ2yη)−∇
(

φ2y(φ1yη)
)

+ φ2y∇(φ1yη)− φ2y(φ1y∇η),

where ∇ is the Chern connection of the Hermitian holomorphic vector bundle V .

Proof. Based on the identities (3.6) and (3.7), we can obtain (3.11) by the same
computation as we use to prove Theorem 3.3 and the details are left to the readers.

Next, following the paper of S. Barannikov and M. Kontsevich [1], we can present
some reformulation of the above results as follows. Let us fix a (k, l)-form ω ∈ Ak,l(M).
It induces a linear map2

A0,q(M,

p
∧

T
1,0
M ) −→ Ak−p,q+l(M)3 : φ 7→ φyω.

We define a map ∆ω from t to A∗,∗(M) by the formula

∆ωφ := ∂(φyω).

Similarly, let us fix a V -valued (k, l)-form η ∈ Ak,l(V ). It induces a linear map

A0,q(M,

p
∧

T
1,0
M ) −→ Ak−p,q+l(V ) : φ 7→ φyη.

Then, a map ⋄η from t to A∗,∗(V ) is defined as the formula

⋄ηφ := ∇(φyη).

Here t is the differential graded Lie algebras given by

t =
⊕

k

tk, tk =
⊕

p+q−1=k

A0,q(M,

p
∧

T
1,0
M ),

endowed with the differential ∂̄, and the bracket coming from the cup-product on
∂̄-forms and the standard Schouten-Nijenhuys bracket on polyvector fields.

Then we can generalize and restate Proposition 3.2, and restate Identity (3.5)
and Corollary 3.4 as follows.

Proposition 3.5. (1) For any ω ∈ An,∗(M) and any φi ∈ A0,q(M,
∧p

T
1,0
M ),

i = 1, 2, there holds

[φ1, φ2]yω = −∆ω(φ1 ∧ φ2) + φ2y∆ωφ1 + φ1y∆ωφ2.

(2) For any ω ∈ A∗,∗(M) and any φi ∈ A0,1(M,T
1,0
M ), i = 1, 2, we have

[φ1, φ2]yω = −
(

∆ω(φ1 ∧ φ2)− φ2y∆ωφ1 − φ1y∆ωφ2 + (φ1 ∧ φ2)y∂
)

.

2In our manuscript, this map and also the following map φ 7→ φyη were mistaken as two isomor-
phisms, which is kindly pointed out by the referee.

3For convention, here we set k ≥ p.
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(3) For any η ∈ A∗,∗(V ) and any φi ∈ A0,1(M,T
1,0
M ), i = 1, 2, one has

[φ1, φ2]yη = −
(

⋄η (φ1 ∧ φ2)− φ2y ⋄η φ1 − φ1y ⋄η φ2 + (φ1 ∧ φ2)y∇
)

.

Finally, we briefly recall how to derive the original Tian-Todorov lemma from the
above commutator formulas.

Lemma 3.6. Let M be an n-dimensional complex manifold with a non-vanishing
holomorphic n-form ω0, which is given in a local coordinate chart (U ; z1, · · · , zn) by
ω0

∣

∣

U
= dz1 ∧ · · · ∧ dzn. Then

a) (Lemma 3.1 in [10], or also Section 2 in [2]) For ωi ∈ An−1,1(M), i = 1, 2,

(3.12) [ω1, ω2] = −∂
(

ω2yı
−1(ω1)

)

+ ω1 ∧ ♯(∂ω2) + ω2 ∧ ♯(∂ω1),

where ı : A0,q(M,T
1,0
M ) → An−1,q(M) is the natural isomorphism by contraction with

ω0 and ♯ denotes the obvious map identifying the (n, q)-form η∧ω0 with the (0, q)-form
η by ω0, i.e., ♯(η ∧ ω0) = η.

b) (Lemma 1.2.4 in [11], or also Lemma 64 in [12]) For φi ∈ A0,1(M,T
1,0
M ), i = 1, 2,

with ∂(φiyω0) = 0,

(3.13) [φ1, φ2]yω0 = −∂
(

φ2y(φ1yω0)
)

.

Actually, both (3.12) and (3.13) can be achieved by (3.2). In fact, for each ωi, we
have some φi ∈ A0,1(M,T

1,0
M ) via ωi = ω0yφi. Then [ω1, ω2] = ω0y[φ1, φ2]. Here we

need a simple commutator rule, that is, for any ω ∈ Ak,l(M) and ψ ∈ A0,q(M,∧pT
1,0
M ),

one has

(3.14) ωyψ = (−1)q(k+l−p)ψyω.

So by the commutator rule (3.14), we have [ω1, ω2] = [φ1, φ2]yω0 and

ω1 ∧ ♯(∂ω2) = −∂(ω0yφ2)yφ1 = (−1)(n+1)+n−1φ1y∂(φ2yω0) = φ1y∂(φ2yω0).

Similarly, ω2 ∧ ♯(∂ω1) = φ2y∂(φ1yω0). It is easy to check that

−∂
(

ω2yι
−1(ω1)

)

= −∂
(

φ1y(φ2yω0)
)

= −∂
(

φ2y(φ1yω0)
)

.

Therefore, we obtain an equivalent form of Tian’s identity,

(3.15) [φ1, φ2]yω0 = −∂
(

φ2y(φ1yω0)
)

+ φ1y∂(φ2yω0) + φ2y∂(φ1yω0),

which is just the identity (3.2) with ω = ω0.
As for Todorov’s identity (3.13), we just need notice that the condition ∂(φiyω0) =

0 results in the vanishing of the last two terms in the right-hand side of (3.15).
By this crucial Tian-Todorov lemma, the well-known ∂∂̄-lemma and Kuran-

ishi’s construction of power series, Tian [10] and Todorov [11] proved the famous
Bogomolov-Tian-Todorov unobstrution theorem. It can be stated roughly as follows.
LetM be a Calabi-Yau manifold, where n = dimM ≥ 3. Let π : X → S, with central
fiber π−1(0) =M be the Kuranishi family ofM , then the Kuranishi space S is a non-
singular complex analytic space and dimS = dimH1

C
(M,ΘM ) = dimH1

C
(M,Ωn−1),

where Θ is the holomorphic tangent bundle of M .
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4. Twisted commutator formula on generalized complex manifolds. In
this section, we prove a twisted commutator formula on generalized complex mani-
folds, reprove Corollary 3.4 for any Hermitian holomorphic vector bundle and obtain
a more general commutator formula in Corollary 4.6 as the applications of our twisted
commutator formula.

First of all, let us introduce some notations on generalized complex geometry
and we refer the readers to [3, 6] and the references therein for a more detailed and
systematic treatment of generalized complex geometry.

Let M̌ be a smooth manifold, T := TM̌ the tangent bundle of M̌ and T ∗ := T ∗
M̌

its cotangent bundle. In the generalized complex geometry, for any X,Y ∈ C∞(T )
and ξ, η ∈ C∞(T ∗), T ⊕T ∗ is endowed with a canonical nondegenerate inner product
given by

(4.1) 〈X + ξ, Y + η〉 =
1

2

(

ιX(η) + ιY (ξ)
)

,

and there is an important canonical bracket on T ⊕ T ∗, so-called Courant bracket,
which is defined by

(4.2) [X + ξ, Y + η] = [X,Y ] + LXη − LY ξ −
1

2
d
(

ιX(η) − ιY (ξ)
)

.

Here, [·, ·] on the right-hand side is the ordinary Lie bracket of vector fields. Note
that on vector fields the Courant bracket reduces to the Lie bracket; in other words,
if pr1 : T ⊕ T ∗ → T is the natural projection, then

pr1([A,B]) = [pr1(A), pr1(B)]),

for any A,B ∈ C∞(T ⊕ T ∗).
A generalized almost complex structure on M̌ is a smooth section J of the en-

domorphism bundle End(T ⊕ T ∗), which satisfies both symplectic and complex con-
ditions, i.e. J∗ = −J (equivalently, orthogonal with respect to the canonical inner
product (4.1)) and J2 = −1. We can show that the obstruction to the existence of
a generalized almost complex structure is the same as that for an almost complex
structure. (See Proposition 4.15 in [3].) Hence it is obvious that (generalized) almost
complex structures only exist on the even-dimensional manifolds. Let E ⊂ (T⊕T ∗)⊗C

be the +i-eigenbundle of the generalized almost complex structure J . Then if E is
Courant involutive, i.e. closed under the Courant bracket (4.2), we say that J is in-
tegrable and also a generalized complex structure. Note that E is a maximal isotropic
subbundle of (T ⊕ T ∗)⊗ C.

As observed by P. Ševera and A. Weinstein [9], the Courant bracket (4.2) on
T ⊕ T ∗ can be twisted by a real, closed 3-form H on M̌ in the following way: given
H as above, define another important bracket [·, ·]H on T ⊕ T ∗ by

[X + ξ, Y + η]H = [X + ξ, Y + η] + ιY ιX(H),

which is called H-twisted Courant bracket.

Definition 4.1. A generalized complex structure J is said to be twisted gen-
eralized complex with respect to the closed 3-form H when its +i-eigenbundle E is
involutive with respect to the H-twisted Courant bracket and then the pair (M̌, J) is
called an H-twisted generalized complex manifold.
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From now on, we consider the H-twisted generalized complex manifold (M̌, J)
defined as above. We must remark that the following notations are not exactly the
same as the usual ones since we just define them for our presentation below, and
maybe miss their usual geometrical meaning. The twisted de Rham differential is
given by

dR = d+ (−1)kR ∧ ·,

where R ∈ Ωk(M̌,R). A natural action of T ⊕T ∗ on smooth differential forms is given
by

(X + ξ) · α = ιX(α) + ξ ∧ α, for any X ∈ C∞(T ), ξ ∈ C∞(T ∗) and α ∈ Ω∗(M̌,C).

Actually, this action can be considered as ’lowest level’ of a hierarchy of actions on
the bundles T

⊕

(⊕r ∧
r T ∗), r = 1, 2, · · · , defined by the similar formula

(X + ξ1 + ξ2 + · · · ) · α = ιX(α) + ξ1 ∧ α+ ξ2 ∧ α+ · · · ,

for any X ∈ C∞(T ), ξ1 + ξ2 + · · · ∈ C∞(⊕r ∧
r T ∗) and α ∈ Ω∗(M̌,C). Then in the

following discussion we adopt the action of A = A1 ∧ · · · ∧Ak ∈ C∞
(

∧k (

T
⊕

(⊕r ∧
r

T ∗)
)

)

on Ω∗(M̌,C) given by

(4.3) A · α = (A1 ∧ · · · ∧ Ak) · α ≡ A1 · A2 · · · · · Ak · α, for any α ∈ Ω∗(M̌,C).

The generalized Schouten bracket for A = A1 ∧ · · · ∧ Ap ∈ C∞(∧p(T ⊕ T ∗)) and
B = B1 ∧ · · · ∧Bq ∈ C∞(∧q(T ⊕ T ∗)) is defined as

[A,B]R =
∑

i,j

(−1)i+j [Ai, Bj ]R ∧ A1 ∧ · · · ∧ Âi ∧ · · · ∧ Ap ∧B1 ∧ · · · ∧ B̂j ∧ · · · ∧Bq,

where ˆ means ’omission’, the R-twisted Courant bracket [Ai, Bj ]R is defined as
[Ai, Bj ] + ιYj

ιXi
(R) if we take Ai = Xi + ξi and Bj = Yj + ηj , and the action of

[Ai, Bj ]R comply with the principle of (4.3). Here we note that if R is a 3-form and
X + ξ, Y + η ∈ C∞(T ⊕ T ∗), then the R-twisted Courant bracket [X + ξ, Y + η]R
still lie in C∞(T ⊕ T ∗). However, for R being general, the bracket [X + ξ, Y + η]R
doesn’t lie in C∞(T ⊕ T ∗) in general since ιY ιX(R) is not necessarily a 1-form, but
in C∞(T

⊕

(⊕ ∧∗ T ∗)); hence this bracket still makes sense under the action (4.3).

Proposition 4.2. (See also Lemma 4.24 of [3], (17) of [4] and Lemma 2 of
[6].) For any smooth differential form ρ, any smooth odd-degree form R and any
A ∈ C∞(∧pE∗), B ∈ C∞(∧qE∗), we have

dR(A ·B · ρ) = (−1)pA · dR(B · ρ) + (−1)(p−1)qB · dR(A · ρ)

+(−1)p−1[A,B]R · ρ+ (−1)p+q+1A ·B · dRρ.(4.4)

Proof. Firstly, we consider the initial case, i.e., A,B ∈ C∞(E∗). It is proved by
Gualtieri in Lemma 4.24 of [3] that

(4.5) A ·B · dρ = d(B · A · ρ) +B · d(A · ρ)−A · d(B · ρ) + [A,B] · ρ− d〈A,B〉 ∧ ρ,

where A,B ∈ C∞(T ⊕ T ∗). Actually, (4.5) is essentially due to the commutator
formula (2.3) and classical Cartan formula LX = d ◦ ιX + ιX ◦ d. In our case, we can
drop the last term involving the inner product.
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Later, Kapustin and Li proved the H-twisted version in (17) of [4] and then Li
generalized it to any A ∈ C∞(∧pE∗) and B ∈ C∞(∧qE∗) in Lemma 2 of [6], where
H is a real closed 3-form4. Here we give a slightly more general version when R is
any smooth form of odd degree. For the reader’s convenience, we will write down the
details though the essential idea of this process is due to [6].

Now let us compute (A ·B) ·(R∧ρ). Let A = X+ξ, B = Y +η and R ∈ Ωk(M̌,R)
with odd k. By a direct computation and the notations introduced above, we have
the following two equalities

(4.6)

B ·R ∧ (A · ρ)

=(ιY + η∧)(R ∧ ιX(ρ) +R ∧ ξ ∧ ρ)

=ιY
(

R ∧ ιX(ρ)
)

+ ιY (R ∧ ξ ∧ ρ) + η ∧R ∧ ιX(ρ) + η ∧R ∧ ξ ∧ ρ

= ιY (R) ∧ ιX(ρ) + (−1)kR ∧ ιY ιX(ρ) + ιY (R) ∧ ξ ∧ ρ+ (−1)kR ∧ ιY (ξ) ∧ ρ

+ (−1)k−1R ∧ ξ ∧ ιY (ρ) + η ∧R ∧ ιX(ρ) + η ∧R ∧ ξ ∧ ρ

and

(4.7) B · A · ρ = ιY ιX(ρ) + ιY (ξ) ∧ ρ− ξ ∧ ιY (ρ) + η ∧ ιX(ρ) + η ∧ ξ ∧ ρ.

Hence, we have
(4.8)

(A ·B) · (R ∧ ρ)

=(ιX + ξ∧)
(

ιY (R ∧ ρ) + η ∧R ∧ ρ
)

=ιXιY (R ∧ ρ) + ιX(η ∧R ∧ ρ) + ξ ∧ ιY (R ∧ ρ) + ξ ∧ η ∧R ∧ ρ

= ιXιY (R) ∧ ρ+ (−1)k−1ιY (R) ∧ ιX(ρ) + (−1)kιX(R) ∧ ιY (ρ) +R ∧ ιXιY (ρ)

+ ιX(η) ∧R ∧ ρ− η ∧ ιX(R) ∧ ρ+ (−1)k+1η ∧R ∧ ιX(ρ)

+ ξ ∧ ιY (R) ∧ ρ+ (−1)kξ ∧R ∧ ιY (ρ) +R ∧ ξ ∧ η ∧ ρ

=R ∧ (B ·A · ρ) +B ·R ∧ (A · ρ)−A · R ∧ (B · ρ)− ιY ιX(R) ∧ ρ,

where the last equality applies the equalities (4.6) and (4.7). So by combining (4.5)
with the last term dropped and (4.8) with minus sign, we complete the proof of the
initial case of (4.4).

Then, by induction on the degrees of A and B, we can conclude the proof. Ac-
tually, we just need to assume that (4.4) holds for all p ≤ r and q = s and then show
that it holds for p = r + 1 and q = s since (4.4) is graded symmetric in A and B.
Here we set A = A0 ∧ Ã with Ã = A1 ∧ · · · ∧ Ar and B = B1 ∧ · · · ∧ Bs, where all
Ai, Bi ∈ C∞(E∗). Assume that A0 = X + ξ, where X ∈ C∞(T ) and ξ ∈ C∞(T ∗).

4In [6], Yi Li proved an analog of the Bogomolov-Tian-Todorov theorem forH-twisted generalized
Calabi-Yau manifolds by his critical Lemma 2, that is, the unobtruction and smoothness of the moduli
space of generalized complex structures on a compact H-twisted generalized Calabi-Yau manifold.
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Then, one has

(4.9)

dR(A · B · ρ)

=(d−R∧)(ιX + ξ∧)(Ã · B · ρ)

=
(

LX + dξ ∧ · − ιX(R) ∧ ·
)

(Ã · B · ρ)−A0 · dR(Ã ·B · ρ)

=
(

LX + dξ ∧ · − ιX(R) ∧ ·
)

(Ã · B · ρ)−A0 ·
(

(−1)rÃ · dR(B · ρ)

+ (−1)(r−1)sB · dR(Ã · ρ) + (−1)r−1[Ã, B]R · ρ+ (−1)r+s+1Ã · B · dRρ
)

=(−1)(r+1)A · dR(B · ρ) + (−1)rsB · dR(A · ρ) + (−1)r+sA · B · dRρ

+ (−1)r(A0 ∧ [Ã, B]R) · ρ+
(

LX + dξ ∧ · − ιX(R) ∧ ·
)

(Ã ·B · ρ)

− (−1)rsB ·
(

LX + dξ ∧ · − ιX(R) ∧ ·
)

(Ã · ρ).

Claim 4.3. For any C ∈ C∞(E∗) and α ∈ Ω∗(M̌,C), we have

[LX + dξ ∧ · − ιX(R) ∧ ·, C·]α = [A0, C]R · α,

where the bracket [·, ·] on the left-hand side is just the usual Lie bracket.

Before the proof, we can easily see from this claim that the last two terms on the
right-hand side of (4.9) combine to give us

(−1)rs([A0, B]R ∧ Ã) · ρ

and then the last three terms on the right-hand side of (4.9) combine to give

(−1)r[A,B]R · ρ.

Hence, one has

dR(A · B · ρ) = (−1)(r+1)A · dR(B · ρ) + (−1)rsB · dR(A · ρ)

+(−1)r+sA ·B · dRρ+ (−1)r[A,B]R · ρ,

by which we complete the induction.
Finally, we prove Claim 4.3 to conclude the proof. If we write C = Y + η, then

[LX + dξ ∧ · − ιX(R) ∧ ·, C·]α

=LXιY (α) − ιY (LXα) + (LXη) ∧ α+ ιY ιX(R) ∧ α− ιY (dξ) ∧ α

=ι[X,Y ](α) + (LXη) ∧ α+ ιY ιX(R) ∧ α− ιY (dξ) ∧ α

=ι[X,Y ](α) + (LXη) ∧ α− (LY ξ) ∧ α−
1

2
d
(

ιX(η) − ιY (ξ)
)

∧ α+ ιY ιX(R) ∧ α

=[X + ξ, Y + η] · α+ ιY ιX(R) ∧ α

=[A0, C]R · α,

where the second equality uses the commutator formula (2.3): LX ◦ ιY − ιY ◦ LX =
ι[X,Y ], and the third equality uses the fact that ιX(η)+ιY (ξ) = 0 and also the classical
Cartan formula LX = d ◦ ιX + ιX ◦ d.

Corollary 4.4. For any smooth differential form ρ, any smooth 1-form R and
any A,B ∈ C∞(∧2E∗), we have

(4.10) dR(A ·B · ρ) = A · dR(B · ρ) +B · dR(A · ρ)− [A,B] · ρ−A ·B · dRρ.
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Obviously, similar to (3.1) vs (3.2), we can obtain an equivalent form of (4.10).
Then, we can reprove Corollary 3.4 for any Hermitian holomorphic vector bundle

on a complex manifold.

Corollary 4.5. Let V be an arbitrary Hermitian holomorphic vector bundle on
the complex manifold M . For any ω ∈ A∗,∗(V ) and any φi ∈ A0,1(M,T

1,0
M ), i = 1, 2,

there holds

[φ1, φ2]yω = φ1y∇(φ2yω)−∇
(

φ2y(φ1yω)
)

+ φ2y∇(φ1yω)− φ2y(φ1y∇ω),

where ∇ is the Chern connection of the Hermitian holomorphic vector bundle V .

Proof. This corollary is a direct application of Corollary 4.4 when we set A =
(φ1)

i · ∂i and B = (φ2)
j · ∂j and take R as the connection (1, 0)-form matrix θ of the

connection ∇ with respect to a holomorphic frame s of V with minus sign, by the
same principle as we choose g · ∂f in the proof of Theorem 3.3. It is obvious that E
in Corollary 4.4 is taken as T 0,1 ⊗ T ∗1,0 in our case. More precisely, since

[A,B] =[(φ1)
i · ∂i, (φ2)

j · ∂j ]

=− [(φ1)
i, ∂j ] ∧ ∂i ∧ (φ2)

j − [∂i, (φ2)
j ] ∧ (φ1)

i ∧ ∂j

=ι∂j

(

d(φ1)
i
)

∧ ∂i ∧ (φ2)
j − ι∂i

(

d(φ1)
j
)

∧ (φ1)
i ∧ ∂j

=(φ2)
j ∧ ∂j(φ1)

i ∧ ∂i + (φ1)
i ∧ ∂j(φ2)

j ∧ ∂j ,

then one has

[A,B] · ω = [φ1, φ2]yω.

Moreover, one easily knows that

A · dR(B · ω) = φ1y∇(φ2yω),

B · dR(A · ω) = φ2y∇(φ1yω),

dR(A · B · ω) = ∇(φ2y(φ1yω))

and

A · B · dRω = φ2y(φ1y∇ω).

Hence, by substituting the five equalities above into (4.10)⊗s the equivalent form
of (4.10), we complete our proof.

Almost by the same argument as the previous corollary, we can generalize it to
any polyvector fields as follows.

Corollary 4.6. Let V be an arbitrary Hermitian holomorphic vector bundle
on the complex manifold M . For any ω ∈ A∗,∗(V ) and any φi ∈ A0,qi(M,

∧pi T
1,0
M ),

i = 1, 2, there holds

[φ1, φ2]yω = φ1y∇(φ2yω)−∇
(

φ2y(φ1yω)
)

+ φ2y∇(φ1yω)− φ2y(φ1y∇ω),

where ∇ is the Chern connection of the Hermitian holomorphic vector bundle V and
[·, ·] on the LHS is the standard Schouten-Nijenhuys bracket on polyvector fields.
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