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1. Introduction. In this paper we study the deformation of canonical metrics
associated to a family of complex manifolds. We describe a general method to establish
the expansion of the Ké&hler forms of these metrics. Given a complex manifold X
such that ¢;(X) < 0, by Yau’s work [13] we know that there exists a unique Ké&hler-
Einstein metric on X. Similarly, if (X, L) is a polarized Calabi-Yau manifold, there
exists a unique Ricci flat metric on X in the class ¢1(L). In this paper we study
the deformation of these Kéahler-Einstein metrics on a holomorphic family of such
manifolds.

By the works of Donaldson [2], [3], in the case that ¢1(X) < 0 there exists
a unique balance metric and a V-balanced metric in ¢;(X) where V' is the Kéahler-
Einstein volume form on X. The variation of these canonical metrics is also important
in understanding geometry of the family of complex manifolds. In a sequel of this
paper [10] we will study the deformation of these balanced metrics.

To compare the Kéhler-Einstein metrics on different manifolds we need to identify
these manifolds in C*° sense and thus we need to fix a gauge. In [6] Kuranishi intro-
duced the Kuranishi gauge which is the most commonly used gauge later. However,
in computing the deformation of Kéahler-Einstein metrics and pluricanonical forms,
by using the Kuranishi gauge we will have extra terms which do not vanish a priori.
In Section 2 we define the divergence gauge. This gauge is equivalent to the Kuranishi
gauge when we consider a holomorphic family of Kéhler-Einstein manifolds of general
type or a family of polarized Calabi-Yau manifolds.

Let m : X — B be a family of Kéhler-Einstein manifolds of general type or
a family of polarized Calabi-Yau manifolds. Let X; = 7~ '(t) be the fiber. Let

o(t) c A% (Xo, T)l(’oo) be a family of Beltrami differentials on the central fiber such

that the complex structure on X; is obtained by deforming the complex structure on
Xo via ¢(t). Let wg be the Kéhler form of the Kéhler-Einstein metric on X,. We
have

THEOREM 1.1. 9 (t) = 0 if and only if div(p(t)) = 0. Namely,
Kuranishi gauge <= divergence gauge.

Furthermore, we have p(t)awy = 0 when either one of these gauges is imposed.

In Section 3 we describe a general method to find the Taylor expansion of the
Kaéhler forms of the Kéhler-Einstein metrics with respect to the Kuranishi-divergence
gauge. We also give the explicit expansion up to order two.

THEOREM 1.2. Let 7 : X — B be a family of Kdahler-Einstein manifolds of general
type. Let Xy = w=1(t) and let w; be the Kdhler form of the Kdhler-Einstein metric
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on Xi. We assume that the complex structure on X; is obtained by deforming the
complex structure on Xo by p(t) € A% (XO,T;(’OO) such that 9 o(t) = 0 where the

operator 3 is the operator on Xy with respect to the Kahler-FEinstein metric. Then

e

= + 12 (Y5200 (1= ) ) ) + O ().

Let Kx,p be the relative canonical bundle and let F,, = R'K ;”/ g be the vector
bundle over B. In Section 4 we use the Kuranishi-divergence gauge and the expan-
sion of the Kéahler forms of the Kahler-Einstein metrics to give a short proof of the
curvature formula of the L? metric on E,, which was established in [7] and [1]. Also
we showed

THEOREM 1.3. The Ricci curvatures of the L?> metrics on E,, converge to the
Weil-Petersson metric on B after normalization.

See Section 4 for details. Further discussions and applications of the methods in
this paper can be found in [10].

The author would like to thank H.D. Cao, J. Li, K. Liu, R. Schoen, A. Todorov
and S.T.Yau for their help and encouragement. The author would also like to thank
the referee for many useful comments.

2. Complex structures of Kéahler-Einstein manifolds. In this section we
study the deformation of complex structures of Kéhler-Einstein manifolds with respect
to the Kuranishi gauge. We discuss a new gauge called the divergence gauge. We will
show that the Kuranishi gauge is equivalent to the divergence gauge. As a consequence
we show that the contraction of the Beltrami differentials with the Kéhler form of the
Kahler-Einstein metric on the central fiber vanish.

To setup the problem we consider a holomorphic family

(2.1) m:X— B

of complex manifolds. Here B = B. C C is the open disk of radius €. Let ¢ be the
holomorphic coordinate on B. For each point t € B we let X; = 7~ !(¢) be the fiber.
We assume that each fiber is connected and dim¢ X; = n.

By the Kodaira-Spencer theory [4], [5] and the work of Kuranishi [6], if we
fix a Kéhler metric on Xy we can assume that the complex structure on X; is
obtained by deforming the complex structure on Xy via a Beltrami differential

o(t) € A% (XO,T)I(’OO> such that
(2.2)

where & and 9" are the operators on Xy and 9" is defined with respect to the chosen
Kaéahler metric on Xy. This means that we can take X = Xy x B as a smooth manifold.
For each point p € X; we require

QL0 (X)) = (I + ¢(t)(p)) (210 (Xo))

where we view

o(t)(p) : 2,°(Xo) — Q0" (Xo)
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as a linear map. Here we recall that the condition 5*90(1?) = 0 is called the Kuranishi
gauge.

Since ¢(t) depends on t holomorphicly, we have the convergent power series ex-
pansion ¢(t) = > ;= t*¢r. Then equation (2.2) can be rewritten as

Op; = %Z;;ll [pj,pi—;] for any ¢ > 2
(2.3) 9 ;=0 for any i > 2

1 is harmonic.

When each fiber X; is a Kéhler-Einstein manifold of general type or a Calabi-
Yau manifold, there is an equivalent formulation of the Kuranishi gauge which we
will describe now. This new condition is convenient in studying the deformation of
pluricanonical forms.

We first recall the divergence operator. Let (L, h) be a Hermitian line bundle over
Xo. The divergence is the map

div =TroV : A% (Xo, T ® L) 5 A% (X, L).

Let z1,- -+, 2z, be local holomorphic coordinates on X¢ and let wy = @gﬁdzi N dz;
be the Kéahler form of the chosen Kéhler metric on Xy. Let e be a local holomorphic

frame of L and let h = h(e,e). If n = n%dfj ® 2 ®ec A% (XO,T;(’(? ®L> is a
smooth section then divn is given by

divn = (amg, + 77%&‘ log (gh)) dz; ®e

where g = det[g,5].
Now we look at the case that each fiber X; is a Kahler-Einstein manifold of general
type. We have

THEOREM 2.1. Let (X,wy) be a Kdhler-Finstein manifold where Ric (wgy) = —wy.
Let

p(t) =Y tipc A (X, T}go)
i=1
be a holomorphic family of Beltrami differentials such that
?fz =3 ile pis] for anyi > 2
dp; =0 for any i >2
1 s harmonic.
Then divpy, =0 and prawg =0 for all k> 1.

To prove this theorem we need the following technical results. These results follow
from direct computations.

LEMMA 2.1. Let (X,wgy) be a Kéhler manifold where wgy = @gﬁdzi NdZ; is the

Kdéhler form. Let o, € A%! (X, T)l(’o) be Beltrami differentials and let p € AMY(X)
be a smooth form.
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3 (dive) = div (5* go).

0 (pop) = Dpop + @ u0p.

If =0 thend (powg) = Fdzvga

1f Op = 0 then [p, ] op = @20 (wm) + 10 (pop).
If 0 (pow) =0 and O ¢ =0 then

Guds o v~

v—1 — 1
O (powg) = Tdiv (9¢) + EcpJRic (wg)

where O is the Hodge Laplacian and Ric (wy) = —@81-83 log det[g7]dziNdzZ;.
Now we prove Theorem 2.1.

Proof. We will prove this theorem by induction. For k =1, we let ¢ = ¢; and
we know that 9y = 0 and ¢ = 0. By using Lemma 2.1 we know 0 (Yawg) =
0wy + 1Pa0wg = 0. Also

-1 .. = 1 1
div (&b) — §¢Jwg = —§¢Jwg

O (¢awy) =

-1 — 1

div (0Y) + S ¥oRic (wg) =
which implies

1 2
0 < (O (Wawg) , hawy) = _§||¢JW9HL2 < 0.
Thus ¢_wy = 0, namely wégﬂ = 1/}%91'} Since 8 1 = 0 we have
0=k (ig5) 9 = 0 (vlgq) " = 00 — Viga0kg" = Ot + oy logg

where g = det[gﬁ]. This means divy) = 0.

Now we assume divy; = 0 and ¢;awg = 0 for all i < k — 1. For i = k by using
the equation of ¢ and Lemma 2.1 we have

_ _ 1 —
a(@k—‘wg) = a@k—‘wg = 5 Z Piy Pk—i JWg = Z (cpkfi—‘a (@iJwg)) =0
i=1 i=1
since @;uwg = 0 for ¢ <k — 1. Now we know that 5*gak =0, by Lemma 2.1 we have

k—1
V-1 1
div (Z[gpi,gpkio — 5Pk

i=1

v—-1, = 1 .
O (prawg) :wa (Oer) + Eckach (wg) =

_v-1 1 1
Zlcpk 120 (dive;) — JPhWg = =5 QW

since divy; = 0 for ¢ < k — 1. Similar to the above proof we know that ¢ w, = 0
and thus divpr = 0. We finished the proof. O

We call the condition div(p(t)) = 0 the divergence gauge. The above theorem
states that the Kuranishi gauge implies the divergence gauge. In fact the converse is
also true. We have
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THEOREM 2.2. If (X,wy) is a Kdihler-Einstein manifold of general type and
o e A% (X, T)l(’o) is a Beltrami differential such that 9o = L[, ¢] and dive = 0,
then 5*30 =0 and powy = 0.

Proof. Direct computations shows that
— _ 1
0 =0 (divp) = div (9¢) — 2v/—1poRic (wy) = §div[<p, o] + 2V —1pw,

=0 (divey) + 2V —1lpwg = 2V —1p_w,.
This implies that gaj—,gﬂ = tg,;. Since divp = 0 we have

0= 9i¢% + ¢50;log g = 0; (cp?gk;gﬂ) +¢50;logg = 0; (soé“ gk;) g"
which implies 5*90 =0.0
REMARK 1. Theorem 2.1 and Theorem 2.2 imply that, if the fibers of the family
(2.1) are Kdhler-Finstein manifolds of general type, then
Kuranishi gauge <= divergence gauge.

Furthermore, we have p(t)iw, , = 0 when either one of these gauges is imposed.

REMARK 2. G. Schumacher showed that ¢1.w,, = 0 by using the method of
harmonic lift. See [8] for details.

Now we look at the case when fibers are Calabi-Yau (CY) manifolds. We recall
that a CY manifold of dimension n is a simply connected complex manifold X such
that ¢;(X) =0and h*%(X)=0for 1<k <n-—1.

Results similar to Theorem 2.1 hold in this case which is based on Todorov’s
construction of flat coordinate system on the moduli space of polarized CY manifolds.

We fix a polarized CY manifold (Xo, L) and let wy be the CY metric in the class
c1(L). Fix a holomorphic n-form Qo € H™° (X)) such that ¢,Qp A Qo = fl—‘} Here
Cn = (@) (— )@ We call such Qy a normalized holomorphic n-form. It was

proved in [12] that
LEMMA 2.2. The contraction map ¢ : A%! (XO,T)I(’OO) — A" Y (X)) given by
t(p) = Qo is a linear isometry. Furthermore, 1 preserves the Hodge decomposition.
Now we let N = h"»~11(X,) and let o1, -+ ,on € HO! (XO,T;(’(?) be a basis of
harmonic Beltrami differentials. It was proved in [12] that

THEOREM 2.3. There exists a unique convergent power series o(t) = vazl tipi+
Z|1|>2 tlor of Beltrami differentials such that

Bplt) = ¢ (1) #(0)

0 ¢(t)=0

wra€do is 0 — exact for each |I| > 2.
Similar to Theorem 2.1 we have

THEOREM 2.4. Let o(t) be the family of Beltrami differentials constructed in
Theorem 2.3. Then dive(t) =0 and (t)we = 0.

The proof of this theorem is similar to the proof of Theorem 2.1.
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3. Deformation of Kéahler-Einstein metrics. In this section we study the
deformation of Kéhler-Einstein metrics and their volume forms with respect to the
Kuraniahi-divergence gauge.

As before we let m : X — B be a family of Kahler-Einstein manifolds of general
type. Assume that the complex structure on X; = 7~ 1(¢) is obtained by deforming

the complex structure on X via p(t) € A%! (XO, T)l((?) with respect to the Kuranishi

gauge. Namely we have a power series () = >, t*y, such that equations (2.3)
hold. Let w; be the Kéahler-Einstein metric on X; whose Ricci curvature is —1. We
let V; be the volume form of the Kéhler-Einstein metric wy.

Since we identified all fibers {X;}:ep with X, as smooth manifolds by using the
Kuranishi gauge, we can view {V;}:cp as a family of volume forms on Xy. We first
consider the Taylor expansion of this family.

THEOREM 3.1. Let A = gﬁ&-@; be the Laplace operator on C*°(Xy). Then the
volume forms Vi have the expansion

(3.1) Vi= (L+tPAQ = 2)" (lpa?) + O ([t)) Vo

Proof. Let wy = @gﬁdzi A dz; be the Kahler form of the Kéahler-Einstein
metric on Xo, let g = det[g;7] and let Vo = c,gdz1 A--- Adzn AdZ1 A -+ - AdZ, be the

n n(n—
Kahler-Einstein volume form on Xy where ¢, = @ (71)%.

We first construct an approximation of the volume form V; using the Beltrami
differential ¢; and the Kahler-Einstein metric wg on the central fiber Xy. For each
t € B we let e;(t) = dz; + ¢©(t)(dz;). By the Kodaira-Spencer theory we know that
QL0 (X,) is spanned by {e1(t), -+ ,e,(t)} locally. We let

(3.2) Vi=cager(t) A Aen(t) Aer(t) A Aen(t).

It is easy to check that ‘7,5 is a globally defined volume form on X;. It follows from
the definition (3.2) of V; that

(3.3) V= det (1 - <p(t)<p(t)) Vo.
Now we know that there exists a unique function
p=np(z,Z,t,t) € C°(Xy x A)

such that V; = e”V; with p(z,%Z,0) = 0. Since V; is the Kahler-Einstein volume form
on X, it satisfies the Monge-Ampere equation

(42

where 9; and 9, are the operators on X;.
For each ¢t We define the operator
T=T":C"(Xq) — A" (Xp)
by T(f) = 0f — ¢(t)10f. Locally T is given by T(f) = S_i, T;(f)dz where

Ti(f) = 0if — ¢2(t)sf.
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Now we define the local matrix B(t) = [B;;(t)] where

_ _ \ Dt ____\Pk
(85) Bg(t)=g5+T; ((I Z0E0) T,,(p>) — 0k () (1= o(0e®) " Ty(p)
_ \ Dt N
where (I - <p(t)<p(t)) is the (p,i)-entry of the matrix (I - <p(t)<p(t)>
By using these notations and Theorem 2.1 we know that the Monge-Ampere
equation (3.4) can be written as

(3.6) log det B = p + log g + log det (I - <p(t)<p(t)) .
By using formula (3.5) and the fact that p [;=o= 0 we know that B;(0) = 0 and

6;5 (0) = 0,0 <%(0)> .

Now we differentiate formula (3.6) and evaluate at ¢ = 0 we get
op ap
Al =(0))==(0
(815 ( )) ot ©)

which implies %%(0) = 0. Similarly we have 22(0) = 0. Thus we know p = O (%)

ot
OB, 9B,
and —;4(0) = —£(0) = 0.

By repeating the above argument we get

00 ) _ o

(0 = —50) =0
and
B3 0y = L)~
o o’
A direct computation shows that
(3.7) 8—2_ log det (I - @(t)m) =-Tr(p191).-
otot 0

By using Theorem 2.1, since ¢1.wo = 0 we know that —Tr (p157) = —|p1|?. Similar

to the above argument we have

0°B; %p
(%] _ 9
otot (0) = 9:95 <ataf(0)> '

By differentiating formula (3.6) we get

&> p _ P >
A (55 0) = 550 - Il

This implies that

(3-8) p=1tPA=2)"" (Jeal?) +O(It).
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Formula (3.1) follows direct from formulas (3.3) and (3.8). O

REMARK 3. We note that the first order term in the expansion (3.1) vanishes.
This was proved by Schumacher before.

By Yau’s work we know that the deformation of the K&hler-Einstein metrics are
governed by the deformation of corresponding volume forms. By using the above
theorem and formula (3.4) we have

THEOREM 3.2. With the above assumption, if we let wy be the Kdhler form of the
Kdhler-FEinstein metric on X; then

V=1
wi = wo + [t (T

55 (1 - A>1|m2>) £ O (tP)

where & and O are operators on X .

Now we look at the case that the fibers are polarized CY manifolds. Fix a po-
larized CY manifold (Xo, L) and let N = h"~11(Xy) = dimc M(Xo, Lo) be the

dimension of the moduli space. Let ¢1, -+ ,¢on € H! (XO7 T;(’OO) be a basis of har-

monic Beltrami differentials and let ¢(t) be the power series as described in Theorem
2.3 where t1,--- ,tx are the flat coordinates. In [12] Todorov proved that

THEOREM 3.3. Let Qqy be a holomorphic n-form on Xy. Then Q; = e?® Q) is
a holomorphic n-form on X;.

The deformation of the volume forms of the polarized CY metrics follows directly
from the Monge-Ampére equation and the above theorem.

COROLLARY 3.1. Let V; be the volume form of the polarized C'Y metric on X;.
Let Qg be a normalized holomorphic n-form on Xg and € be the holomorphic n-forms
constructed in the above theorem. Let

hij :/ <‘Pia90j>VO
Xo
be the Weil-Petersson metric at 0 with respect to the flat coordinates t. Then

Qo N Qo
‘/t :[[,‘Sziﬁcngt/\ﬂt 1+Ztt ( 901,@j>> +0(|t|3) VO
Xo t

where Wo = 1" [ c1(Lo)™ is the volume.

Now we look at the deformation of the Kahler forms of the polarized CY metrics.
By using the Calabi-Yau theorem and Corollary 3.1 we have

THEOREM 3.4. Let w; be the Kdhler form of the polarized CY metric on X;.
Then

wtw0+—288< (52~ b)) o+ O ().

Here we note that, since the kernel of A consists of constant functions, the term

99 (AI (;Z - <90ia90j>))
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is well defined.

REMARK 4. In fact we can establish the complete Taylor expansion of the function
p in terms of t,t recursively from formula (3.6). The recursive formula involve the
operator (1 — A)~L, contraction with ¢; and ©; and the operator T'.

4. Curvature of the L? metrics. In this section we establish the curvature
formula of the L? metrics of the direct images of pluricanonical bundles. We also
show that, in the case that the fibers are Kahler-Einstein manifolds of general type,
the Ricci curvatures of the L? metrics converge to the Weil-Petersson Kahler form on
the base.

Similar to the setup in the above sections, we let # : X — B be a family of

Kihler-Einstein manifolds of general type. Let ¢(t) = Y 7o, thop ¢ AL (Xo, T;gf)
be a family of Beltrami differentials on the central fiber X such that

We require that the complex structure J; on X; is obtained by deforming the complex
structure Jy on Xg via ¢(t). Here we use the Kéhler-Einstein metric on Xj.

Let Kx,p — X be the relative canonical bundle over X. In this section we study
the local holomorphic sections of the bundle E,, = RK xm/ g over B for each m > 1.

We first note that for any two points ¢, € B we have
rank (En,(t)) = rank (E,,(t")) .

This follows from Siu’s work [9] directly. Alternatively, for m = 1 the above identity
follows from the fact that

rank (Ep(t)) = h™°(X;) = ™% Xy) = rank (B, (') .

For m > 2 this identity follows from Kodaira vanishing theorem and the Riemann-
Roch theorem.

To compute the curvature of the L? metrics we first construct local holo-
morphic sections of E,,. For any m > 1 we define the map ¢ = oy :
A% (X0, K% ) — A% (X, K% ). For any smooth section s € A% (Xo, K% ) we let

m
oi(s) = (e‘P(t)J (sﬁ)) . We note that, although s is a multi-valued section, o (s)
is well-defined. It is easy to see that the map oy is a linear isomorphism.

It follows from Lemma 4.1, Corollary 4.1 and Theorem 4.3 of [11] that for any

given holomorphic pluricanonical form s € H° (X 0, K }’go) there is a unique convergent
power series

s(t) =Y thsp € A° (X0, KR
k=0
such that sg = s, s; is 9 -exact for each i > 1 and oy (s(t)) € H (Xt,K?t). In fact

by the construction in Theorem 4.3 of [11] we have s; = @ G (p12Vso) where G is
the Green operator on the space A%! (XO, K?O) with respect to the metric induced
by the Kahler-Einstein metric.
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For any ¢ € B and smooth pluricanonical forms s, s’ € A° (X;, K¢ ), the L? inner
product is defined as

(4.1) (5.0 = [ (5.8 V

where V; is the Kéhler-Einstein volume form on X; and (s, s’ >‘/t—‘m, is the pointwise
inner product of s and s’ induced by the Kéhler-Einstein metric on X;. Let wy,--- ,w,
be any local holomorphic coordinates on X; and assume s = f(w) (dwy A -+ A dw,)™
and s’ = h(w) (dwy A -+ A dwy,)™ locally. If Vi = cpg(t)dwi A- - -Adw, Adwi A- - -Adw,,
then

(4.2) (5,8)y,-m = FCw)R{@)g(t)™.

Now we assume m > 2. Let N = N, (XO,K;(”O) and let s1,---,sy €

= Ao
HO (XO,K;(”O) be a basis. For each 1 < a < N we let s,(t) be the power series
described above. Let

(4.3) hap(t) = (0t(sa(t)), 04 (s5(1))) (2)-
We now compute the curvature of the metric h,5(t). We first note that
(4.4) {oe(salt), 0e(s5(1)))y,-m = €™ (sa(t), 55(1))y-m-

Now we let ¢ = ¢1 be the harmonic Beltrami differential. By formulas (3.8) and
(3.1) we have the following expansion

(4.5)
(01 (500,055 () Vi = e 5 (0 55(8)) et (1 = (000D)) o
= ((sas sy + 117 ({500, 850D = (S0 85hym (m = D)1= 2) 7 (W) ) Vo
+ (t<sa,1,sﬂ)vo,m +¥(sa,88,1)ym +t2<sa,2,slg>vofm +z2<sa,sza,2>vofm +0 (ItIB)) Vo.
Since s, is holomorphic and sq ; is 9" -exact for any ¢ > 1 we know that
(Sa,iv 55) (0) =0= (Sav Sﬁyi) (0)
for each ¢ > 1. It follows that

(4.6)
h3(0) = [ @u(su(®),0u(s5(0) Vi

3 0) = |t [ ((sar s}y (m = A)(1 = A)7 (102) = {501, 55.0) ) Vo + O (1)

Xo
Thus
Oh =(t Oh _—=(t
212 P ot o
and
9%h5(t) PR
48 5| = _/X0 ((5ars8)yom (m = )1 = A) 7 (19) = {501, 85.1) - ) Voo
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In order to control the term on (Sa,1s sﬂ,l)VOﬂHVO, we need the following identities. To
simplify computation we only state special cases which are adapted to our situation.
First of all, by the construction we have

(4.9) Sa1 =0 G(1haVsa).

LEMMA 4.1. Let ¢ € HO! (Xo, T;(’(?) be a harmonic Beltrami differential and let
ne A° (XO7 K;(”O) be a smooth pluricanonical form. Then
YaVn = div(y) @ n).
Furthermore, if n € H° (Xo, K%}) is holomorphic then 0 (div(y) ® n)) = 0.

Proof. Let z be any local holomorphic coordinates on Xy and let x =
(dz1 A -+ Adz,)™ be the corresponding local holomorphic frame of K% . Let ¢ =

d)gd?j ® 6% and let n = f(z)x. Let wg = %gijdzi AdZ; and let g = det[gﬁ]. Since

divip = 0 we have 0; % = 71/);,81- log g. Then we have

div(y @n) = (&- (fi/);) + fi/%&- loggl_m) dz; ® x
= (u501f + fouws — (m — 1) fv30,log g) dZ; @ X
- (wjé@if — fy50;log g — (m — 1) fy50; 10g9> dzj @ X
:qp%i (0if + fOilogg™™) dz; @ x = ¥aVn.
This proved the first claim. To prove the second claim we have
A (div(y @n)) = 8 (paVn) = 8V — ¢ (V(n) + 2mv/—Two @ 1) .

The second claim follows from the facts that 9y =0, On = 0 and _wo = 0. O
LEMMA 4.2. Letn € A%! (Xo, K%}) be a smooth section such that On = 0. Then
Az (div*n) — div* (Agzm) = —(m — 1)div*y
where div* is the adjoint operator of div.
Proof. Let n = n;dz; ® x. Then On = 0 implies that 8575 = (‘}ﬂg. By using this

we have

- - . d . o
div'n = — (&mg’” +7rc(}lg’”) dz @ — @ x = —0; (mg’”) dzi ® 7— ® Xx.
J J é)zk J é)zk
This implies that 0 (div*n) = 0. Thus Ag (div*n)—div* (Agn) = 99" div*n—div*dd n.
Now the Kahler-Einstein condition implies that aiajlogg = ¢;- The lemma
follows from the above formulas, the Kéahler-Einstein condition and direct computa-
tions. O

LEMMA 4.3. Let ¢ € H%! (XO7 T)l(’oo) be a harmonic Beltrami differential and let
n € HO (Xo, K?O) be a holomorphic pluricanonical form. Then

Ay (Y ®@n) = div* odiv (Y @1).
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Proof. Let p = u%dzj ® % ®x =1 ®n. We have pwy = (¢awp) ® n = 0. This
implies that ,uj—,gﬂ = p%gij. Now we let z be normal coordinates of the Kéhler-Einstein
metric around some point p € Xy. Then at p we have

Ag (@ n) = — (Opdpuf — (m —1)ug) dz

5(; =div* odiv(p ®n).

We note that on the spaces AP-? (Xo, K%}) and AP-9 (Xo, T)l(’(? ® K?O) there are

natural metrics induced by the Ké&hler-Einstein metric on Xy. We will use these
metrics in the following discussion and all operators and Green functions will be
respect to these natural metrics. Now we look at the second term in the right side of
formula (4.8).

LEMMA 4.4. Let ¢,vp € HO! (Xo, ) be harmonic Beltrami differentials and
let n,u € H° (XO, KXO) be holomorphic pluricanonical forms. Then

/X @G (p2Vn), 0" G (YaV)Vo

:/ s ) (7, 1) Vi — (m — 1)/ (Atm—1)" (@ n),¥®mh
Xo Xo

Proof. By Lemma 4.1 we know ¢iVn = div (p ®n) and ¢pVu = div (Y @ u).
Thus

[ T T T = (7670 76 0.Tm)
- (Godw(<p®n),%*Godivw@u)) - (GOdiv(<p®77), (A—E*é) GOdiv(w®u)) .
By Lemma 4.1 we know that
AG o div (v @ p) = G (3 (div (v @ p))) = 0.

Similarly we know 0G o div (¢ ®n) = 0. Since H%! (XO,K;(”O) = 0 we know that
AG = id. It follows from the above formula, Lemma 4.2 and Lemma 4.3 that

/X (0°G (paVn), 8 G (YaVp))\Vo = (G o div (o @ 1), div (¢ @ )
=(div* o Godiv(p®n), v @p) = ((A+m—1)""div* o Ao Godiv(p®n),¢ @ p)
(A+m—1)"div* odiv(p®n), P @pu) = (A+m—1)""A(p@n),¢ @ p)

((
=(p@n—(m-1)(A+m-1)"(¢&n),9¥® p)
(eonyouw—(m—-1)((A+m—-1)""(pen),v@pu).

The lemma follows from that fact that

(@®n7w®u)=/<w®n7w®u>Vo=/X (o, ), 1)V,
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To describe the Ricci curvature formula of the L? metric on E,, we need to
use the Bergman kernel function of the Kéhler-Einstein metric wg on Xy. By our
normalization the Ricci curvature of the Kahler-Einstein metric on Xy is given by

R;; = —0i05logg = —g,;.

This means [wg] = —mwe1(Xp). The Bergman kernel function 7, = 7, (wo) of the
Kéhler-Einstein metric wg on Xj is defined in the following way. Let s1,---,sn,, be
an orthonormal basis of H° (Xo, K?O) with respect to the L? metric. Then

N

(4.10) T = Y (SasSa)ym-

a=1

By using the above normalization we have the following Tian-Yau-Zelditch ex-
pansion of the Bergman kernel

mn n—1

nm
4.11 ~— =
( ) Tm ™ 27rn

+0 (m"_2) :
THEOREM 4.1. Let R be the Ricci curvature of the L? metric on the bundle
E,,. Then
RO = = 1) ([ 5107 (0 Vo4 15 0) [ (@t m =) @ @500 b0 590%0)
Xo Xo

Proof. We fix m and let s1,---,sy be an orthonormal basis of H° (XO7 K;(”O)
Let h = det[h,5]. By using formula (4.7) and the fact that h 5(0) = das we have

N

e 2 _ 0?haa(t)
R3(0) = 5= . logh = az::l i |,
By using formulas (4.8), (4.9) and (4.10) we know
RI(0) = /X Fnlm = A)(1 = A)7 ([]?) Vo
(4.12) ‘N
_ ;/X @G (W Vsa), T G (b Vsa)Vo.
By Lemma 4.4 we know
N — —
;1 /XO (8" G (1aVs4),0 G (PaVsa))Vo
N
@13) =37 [ ()bl = (m = DA +m = 1) (0 950),5© 50) Vo
a=1 0

N
/Xovm|w|%(m1>;_1/xo<m+m1> (¥ ®5a),% @ sa)Vo.

We also have

(4.14) (m = A)(1 = A) 7" ([P) = [0 = (m = 1)(1 = A) 7" ([v]?) -
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The theorem follows from formulas (4.12), (4.13) and (4.14). O

In fact the method we used in proving Theorem 4.1 directly gives the full curvature
of the L? metric on the direct image sheaves of the relative pluricanonical bundles
which was established by Schumacher [7] and Berndtsson [1].

Let X be a Kéhler-Einstein manifold of general type and let M be its (course)
moduli space. Assume its dimension is k. Let p € M be a smooth point and let
t1,--- ,t; be any local holomorphic coordinates around p. Let X, be the Kéhler-
Einstein manifold corresponding to p.

COROLLARY 4.1. Let ¢y, , ¢ € H%! (Xp,T)l(’:) be harmonic Beltrami dif-
ferentials such that [p;] = KS (%) where KS is the Kodaira-Spencer map. Let
51, -+ ,8y € HY (XP,K%)) be any basis. Let h,5 = pr (Sa,58)Vp. Then the curva-

ture of the L? metric on E,, is given by

R57(p) = (m 1) ( /.

and the Ricci curvature is given by

((sa,38)(1 = D)7 (i, 03)) + (A +m =17 (9 @ 5a) , 05 ® 55)) Vp>

p

Ri:(p) =(m — 1) /X (1= A7 (010 Vi

p

T (m— 1)h“E/X (A +m—1)" (1 @ 5a) s 0 @ 55) V.

Now we look at the Weil-Petersson metric on the base space B. Let u be the WP
metric on B. We have

THEOREM 4.2. The normalized Ricci curvatures of E,, converge to the Weil-
Petersson Kahler form. Precisely we have

Proof. The theorem follows from Theorem 4.1. At 0 € A for any fixed m we let
$1,,8n,, be an orthonormal basis of H° (XO, K;’go) with respect to the L? metric.
By Theorem 4.1 we know that

N,
R7(0) = (m —1) </x (L= 8) " (W) Vo+ ) /x (A+m=-1)"'®®sa) ¥ @ Sa)V0> :
0 a=1 0

Since the first eigenvalue of the operator A +m — 1 is at least m — 1 we have

OS/X <(A+m—1)_1(¢®8a)7¢®8a>‘/0 < /X <w®5a;w®3a>VO

m—1
1 2
=—— [ (3a:8)[¥|"Vo

Xo

m—1
which implies that

Nop

OSO(Z_I/XO«A‘FTH1)1(w®5a)aw®5a>‘/0 § ml_l/XOTmWJFVO.
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By combining the above formulas we have

<m—nAqha—m40w%w

(4.15) 2
< RO < m-1) [ (087 (o) + 225 ) v
Xo m—1
By the definition of the WP metric we know that
(4.16) i) = [ 0P = [ =87 (u) v
Xo Xo

The theorem follows from the above definition, inequality (4.15) and the Bergman
kernel expansion (4.11). O

REMARK 5. We note that, although we stated some results for one-parameter
family of Kahler-Einstein manifolds, these formulas work in general with simple mod-
ifications. Furthermore, the methods we used in Section 3 on the deformation of
Kahler-FEinstein metrics can be generalized to study the deformation of other canoni-
cal metrics such as cscK metrics, v-balanced metrics and balanced metrics. The study
of these metrics will be in [10].
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