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ADDENDUM TO “SOME CASES OF VOJTA’S CONJECTURE ON

INTEGRAL POINTS OVER FUNCTION FIELDS”, JOURNAL ALG.

GEOMETRY, VOL. 17, 295–333, 2008*

PIETRO CORVAJA†
AND UMBERTO ZANNIER‡

This note is an Addendum to our paper published in Journal Alg. Geometry, 17
(2008), 295-333, indicated throughout as [CZ]. It has two main purposes:

(i) Adding a few details to clarify a certain step in the proof of Theorem 1.2 in [CZ];
our treatment of Lemma 3.14 was not comprehensive of the most general case.

(ii) Adding a further counterexample to the ones in §4, completing the analysis of
the integral points for the complement of a cubic in the plane.

We take this opportunity to include as well a short

(iii) Errata - corrige.

We have also decided to append in the arxiv (http://arxiv.org/abs/math/0512074
v3) a completely rewritten version of the paper [CZ], which the reader may find con-
venient to consult.

§(i). In Lemma 3.14 the assumptions on α, β should be that A(α, β) = B(α, β) =
0. (We observe that, with this assumption, the proof works as it stands if (α, β) is non
singular on the curve A(X,Y ) = 0; on the other hand, any singular point would be
defined over κ, like the polynomial A, and Lemma 3.14 would be anyway automatic.)

On the contrary, in [CZ] we only imposed that F (α) = G(β) = 0 for the resultants
F (X), G(Y ) of A(X,Y ), B(X,Y ) with respect to Y,X .

In general, this last assumption does not imply the previous one. However
such implication holds in our situation, due to the actual shape of the polynomi-
als A,B (given by (3.6) of page 312). In fact, the formulas of page 313, lines -13/-11,
yield F (X) = c1A(X,Y ) − B(X,Y ), G(Y ) = c2A(X,Y ) + c3B(X,Y ) for certain
c1, c2, c3 ∈ κ(C̃). Now, we have c1c3 + c2 6= 0, for otherwise F (X), G(Y ) would be
linearly dependent over κ(C̃), and thus would neither depend on X nor on Y , which
is impossible (looking at their coefficients we would find that u1, u2 are both con-
stant). Then the vanishing of F (α) and G(β) implies indeed A(α, β) = B(α, β) = 0,
as required.

In conclusion, Lemma 3.14 is alright as it stands concerning the proof of Theorem
1.1. However, we have to modify it as indicated above for the application to the proof
of Theorem 1.2, through Proposition 3.16; in fact the argument just given does not
apply in the general case, especially at page 326, line 5. We now indicate how to
perform the same application, starting from the new version of the lemma.

So, in the proof of Proposition 3.16, we need to restrict the pairs (α, β) to the

set Z := {(α, β) ∈ κ(D̃)
2
|α 6= 0, β 6= 0, A(α, β) = B(α, β) = 0} in place of Z ′ :=

{(α, β) |F (α) = G(β) = 0}.
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Inspection of the proof shows that we need just an inequality of the following
shape: for a fixed v ∈ D̃ \ U ,

(1) min(v(A(u1, u2)), v(B(u1, u2))) ≤ mn · max
(α,β)∈Z

min(v(u1 − α), v(u2 − β)).

We now prove this inequality. We can plainly disregard the points (α, β) with
αβ = 0, because in that case min(v(u1 − α), v(u2 − β)) = 0. Then, to prove the
inequality (1), let us first enlarge the finite set U so to contain the zeros of the fixed
differential form ω and so that the (nonzero) values A(α, β), B(α, β) for (α, β) ∈ Z ′\Z
are U -units.

Note that this enlargement is harmless for our purposes. In fact, by the height
estimates already carried out in the proof (see for instance Step 2 and Step 3, pages
324-325) the heights and degrees of F (X), G(Y ) are bounded by a constant time
max{1, χ(C̃ \S)}; therefore the heights of α, β, A(α, β), B(α, β) are likewise bounded.
In turn, this implies that the nonzero elements A(α, β) in this set have zeros and poles
in a new set, still denoted by U , obtained by adding at most γmax(1, χ(C̃ \ S)) new
points, for a suitable constant γ depending only on m,n.

Now, F (X), G(Y ) are linear combinations of A,B with U -integral coefficients, so
for v out of U ,

min{v(A(u1, u2), v(B(u1, u2))} ≤ min{v(F (u1)), v(G(u2))}.

By the inequality min(
∑

ai,
∑

bj) ≤
∑

i,j min(ai, bj) holding for arbitrary ai, bj ≥ 0
(which expresses that gcd(x, y) is sub-multiplicative in both variables), we infer

(2) min{v(A(u1, u2), v(B(u1, u2))} ≤
∑

i,j

min{v(u1 − αi), v(u2 − βj)}.

This is inequality (1) to be proved, but with Z ′ in place of Z. To deduce (1) from
this, let v ∈ D̃ \U and suppose that the minimum on the left in (1) is positive. Then,
we assert that the maximum max(α,β)∈Z′ min(v(u1−α), v(u2−β)) cannot be attained
at a point (α, β) ∈ Z ′ \ Z. In fact, if this were the case, by (2) we get

0 < min(v(A(u1, u2)), v(B(u1, u2))) ≤ mn ·min(v(u1 − α), v(u2 − β))

Now, since (α, β) ∈ Z ′ \ Z, by definition at least one between A(α, β), B(α, β) is
non-zero, say A(α, β) 6= 0; by the present choice of U , we deduce that A(α, β) is a
U -unit, so in particular v(A(α, β)) = 0. On the other hand, v(u1 − α) and v(u2 − β)
are > 0, (because of the above inequality) hence v(A(u1, u2)) = 0 as well (since
A(α, β) ≡ A(u1, u2) (mod v)).

This is a contradiction, and therefore the maximum is attained in Z, so (1) is
proved.

We finally remark that, anyway, the role of Lemma 3.14 is essentially of brevity
and simplicity of formulation of some theorems; in fact, even forgetting Lemma 3.14,
the rest of the proof produces a non-trivial multiplicative relation ur

1u
s
2 = µ, with

bounded exponents r, s and µ ∈ κ(C̃)∗ of bounded height. After an automorphism of
G2

m we may thus suppose that u1 itself has bounded height, and thus belongs to a
finite set up to constants. This reduces to a problem where only u2 varies, which can
be easily dealt by the abc-theorem.
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§(ii). We complete the discussion of §4 in [CZ] about the complement of a cubic
on the plane. In [CZ] we already proved that if D is a reducible cubic, then the surface
X := P2 \D is not algebraically hyperbolic, meaning that no bound of the form (1.1)
holds for curves on X . We now treat the case of an irreducible cubic D, by proving
the following

Theorem. Let D ⊂ P2 be an irreducible cubic. For every integer d ≥ 1 there

exists a curve Y ⊂ X := P2 \D such that deg Y ≥ d and χ(Y ) ≤ 12.

We start with the easiest cases of singular cubics.
Consider first the case whenD has a cusp. Then in suitable coordinatesD is given

by the equation D : zy2 − x3 = 0. Given a polynomial p(t) ∈ κ[t], with p(0) 6= 0, and
a positive integer n, the map Gm → P2 sending Gm ∋ t 7→ (t2np(t) : t3n : p(t)3 + 1)
avoids the divisor D and its image is a curve of degree ≥ 2n+deg p(t). We then obtain
curves of arbitrarily large degree and vanishing Euler characteristic, as in Theorems
4.1, 4.2 of [CZ].

Let now D be a nodal irreducible cubic; in some coordinates it takes the equation
zy2 = x3 + x2z. For every integer n > 0, let us define the morphism Gm → P2 by
sending

Gm ∋ t 7→ (4t(t− 1) : 4t(t+ 1) : (t− 1)3 + tn)

Again, its image avoids the curve D, obtaining the same conclusion as in the cuspidal
case.

We now come to the most interesting case where D is smooth. We shall produce
curves of Euler characteristic ≤ 12 and of arbitrarily high degree. We let P1, . . . , P9

be the flexi of D, and P10, P11, P12 the three points (P1 apart) whose tangent passes
through P1. In other words, if P1 is taken as the origin of the elliptic curve corre-
sponding to D, then P1, . . . , P9 are the points of three-torsion and P10, P11, P12 are
the points of exact order two.

Put S = {P1, . . . , P12} and C := D \S; since D has genus one, C is an affine curve
with χ(C) = 12.

Finally, let u ∈ O∗
S be a non constant S-unit; note that u exists and actually

O∗
S/κ

∗ has rank eleven: in fact any point Pi, 1 < i ≤ 12, is torsion with respect to P1

of order 2 or 3, so there are functions fi with divisors (fi) = 6(P1 − Pi).
For every point p ∈ D \S, the tangent Tp at D in p will intersect the cubic D at a

second point p′, which is distinct from p, since p is not a flexus. Also, Tp will intersect
the tangent line TP1

at P1 at a point p′′ distinct from P1, since p 6∈ {P10, P11, P12}.
The point p′′ does not lie on D, since TP1

∩D = {P1}.
We can canonically identify the line Tp with P1 in such a way that p corresponds

to the point at infinity, p′ to 0 and p′′ to 1.
We define a morphism C → P2 by sending p to the point ϕ(p) ∈ Tp, where ϕ(p)

is the point of coordinate u(p), in the above coordinate system.
By construction, ϕ(p) never lies on D (otherwise u(p) = 0 or ∞, which does not

happen on C).
The image ϕ(C) is a curve of degree ≥ deg(u): in fact, ϕ(C) intersects TP1

whenever u(p) = 1 hence the intersection ϕ(C) ∩ TP1
has at least deg u points, so

degϕ(C) ≥ deg u. Since deg u may be taken arbitrarily large (for instance replacing u
with un) one obtains curves parametrized by C of arbitrarily high degree.

The result just proved is in accordance with its arithmetic analogue, proved by
Beukers in the reference [Be] of [CZ], stating that the integral points on the comple-
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ment of a smooth cubic curve on P2 are Zariski dense over a suitable ring of S-integers.
Its complex-analytic analogue also holds, actually in stronger form: a recent theorem
of Buzzard and Lu [Algebraic surfaces holomorphically dominable by C2, Inv. Math.

139 (2000), 617-659] provides the existence of a map C2 → P2 \D whose differential
has generically rank two; in particular, one obtains Zariski dense entire curves in the
plane omitting the cubic D.

§(iii). Errata - corrige.

(1) At page 303 and in the subsequent part of §2, the symbol K denotes the function
field κ(C̃). This notation has been abandoned in the subsequent §3, since we
needed to work with different function fields (κ(C̃), κ(D̃),...).

(2) Page 312, Lemma 3.7. In the displayed formula, the last factor should be
∂A
∂Y

(X,Y ) in place of ∂B
∂Y

(X,Y ).
(3) Page 313, formula (3.7). In the definition of G(Y ), on the right side of the

inequality, the monomials X2, X should be Y 2, Y .
(4) Page 315, line 8: χS(C̃) should be χS∪T (C̃).
(5) Page 323, line -9: there should be then.
(6) Page 326, line 2: min{v(u1 − αi), v(u2 − βj)}, not min{v(u1 − α1), v(u2 − β2)}.
(7) Page 232, lines –5, -3. The omission of a parenthesis makes the sentence obscure.

Read: “considering two different monomials (if A(X,Y ) were a monomial, the
function A(u1, u2) would have no zero outside S and (3.23) would be trivial) we
obtain...”.
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