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TRANSFORMATIONS OF FLAT LAGRANGIAN IMMERSIONS

AND EGOROFF NETS∗

CHUU-LIAN TERNG† AND ERXIAO WANG‡

Abstract. We associate a natural λ-family (λ ∈ R \ {0}) of flat Lagrangian immersions in C
n

with non-degenerate normal bundle to any given one. We prove that the structure equations for such
immersions admit the same Lax pair as the first order integrable system associated to the symmetric

space
U(n)⋉C

n

O(n)⋉Rn . An interesting observation is that the family degenerates to an Egoroff net on R
n

when λ → 0. We construct an action of a rational loop group on such immersions by identifying its
generators and computing their dressing actions. The action of the generator with one simple pole
gives the geometric Ribaucour transformation and we provide the permutability formula for such
transformations. The action of the generator with two poles and the action of a rational loop in the
translation subgroup produce new transformations. The corresponding results for flat Lagrangian
submanifolds in CP n−1 and ∂-invariant Egoroff nets follow nicely via a spherical restriction and Hopf
fibration.

Key words. Flat Lagrangian immersion, Egoroff net, Ribaucour transformation, dressing ac-
tion, permutability formula, Hopf fibration
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1. Introduction. In recent years techniques of integrable systems have been
applied extensively to study submanifolds and geometric nets. In particular, many
curved flat systems associated to symmetric space U

K or the gauge equivalent U
K -

systems have shown to be the Gauss-Codazzi-Ricci equations for submanifolds with
special geometric properties. To move on, let us briefly go over some definitions about
geometric nets.

A vector function x(u), where x = (x1, . . . , xn) are the standard coordinates
of R

n and u = (u1, . . . , un) are parameters, is called a net function when it is a
local diffeomorphism. The ui parameter lines for all i form a ‘net’ on R

n. When
the parameter lines are mutually orthogonal everywhere, x(u) is said to define an
orthogonal net on R

n and its inverse function u(x) is called an orthogonal (curvilinear)
coordinate system on R

n. In particular, the Euclidean metric written in u is diagonal,
i.e., ds2 =

∑

‖ ∂x
∂ui

‖2 du2
i . This diagonal metric is said to be Egoroff when there

exists a potential function φ(u) so that ∂φ
∂ui

= ‖ ∂x
∂ui

‖2; then the net x(u) and the
coordinate system u(x) are also called Egoroff . For example, the polar coordinate
system u1 =

√

x2
1 + x2

2 and u2 = arctan(x2/x1) is orthogonal while x1 = u1 cosu2

and x2 = u1 sin u2 define an orthogonal net on R
2, but they are not Egoroff.

Ribaucour used sphere congruence to construct transformations for orthogonal
coordinate systems in 1872 [11]. The iteration or vectorial extension of Ribaucour
transformations was studied and applied to Egoroff nets on R

n by Liu-Mañas in [8].
Mañas, Alonso, and Medina used dressing methods for multicomponent KP hier-
archies in [9, 10] to construct dressing actions for Egoroff orthogonal nets. Dajczer-
Tojeiro generalized sphere congruence and Ribaucour transformations to submanifolds
in space-forms in a series of papers [4, 5], and they found Ribaucour transformations
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for flat Lagrangian submanifolds in C
n and CPn.

In this paper we introduce an associated family for any such submanifold which
unifies these two geometries, then we generalize both papers [8] and [4] on Ribaucour
transformations not only by discovering new types of transformations in closed alge-
braic formulas, but also by describing the group structure of these transformations.
The results of this paper include:

(1) We prove that the equation for flat Lagrangian immersions in C
n with non-

degenerate normal bundle is the U(n)⋉C
n

O(n)⋉Rn -system, where U(n) ⋉ C
n is the group of

unitary rigid motions of C
n and O(n)⋉R

n is the group of orthogonal rigid motions of

R
n. This equation has a Lax pair, whose frame F (u, λ) is of the form F =

(

E X
0 1

)

.

We show that for λ ∈ R \ {0}, X(·, λ) is a flat Lagrangian immersion in C
n with non-

degenerate normal bundle, while X(·, 0) degenerates to an Egoroff orthogonal net on
R

n. This λ-family of immersions share the same induced metric.

(2) Let Λτ,σ
−,m(n) denote the group of rational maps g : S2 = C∪{∞} → GL(n, C)

such that g(λ̄)∗g(λ) = I , g(−λ)tg(λ) = I , and g(∞) = I . We find all elements in
Λτ,σ
−,m(n) with one or two simple poles (i.e. g i s,πr

and fz,π respectively in Theorem
3.6), and prove that they generate Λτ,σ

−,m(n).

(3) We use dressing action to construct an action of Λτ,σ
−,m(n) on flat Lagrangian

immersions in CPn−1 and ∂-invariant flat Egoroff metrics.

(4) We extend the generators of Λτ,σ
−,m(n) to Λ− GL(n+1, C) and use their dressing

actions on the extended frame F to construct transformations of flat Lagrangian
immersions in C

n with non-degenerate normal bundle and on the space of flat Egoroff
metrics on R

n. We then construct dressing actions of rational elements valued in the
translation subgroup on such immersions and metrics. Both produce new type of
transformations besides the classical Ribaucour transformations.

(5) Given a flat Lagrangian immersion X that lies in a hypersphere, it has ∂-
invariant Egoroff metric

∑n
i=1 h2

i du2
i and Hopf projection produces flat Lagrangian

immersions in CPn−1. We prove that the action in (4) of the extension of g i s,πr
on X

preserves spherical constraint if and only if πr(h(0)) = 0. However as transformations
for such immersions, the method in (3) above produces simpler algorithm.

(6) As a comparison with the above algebraic dressing actions, we also give the
analytic dressing actions, i.e., a first order PDE system that generate a new family of
flat Lagrangian immersions from a given one. When the rank of πr is 1, the action of
g i s,πr

gives the geometric Ribaucour transformation constructed in [4]. The vectorial
(or iteration of) Ribaucour transformations in [8] for Egoroff nets are given by the
action of products of g i sj ,πj

’s.

(7) As a bi-product we identify the group structure of Ribaucour transformations
and complex Ribaucour transformations for both flat Lagrangian immersions in C

n

with non-degenerate normal bundle and for Egoroff orthogonal nets on R
n in a unified

way.

(8) We solve the Cauchy problems for U(n)
O(n) -system, flat Egoroff metrics, and flat

Lagrangian immersions.

The paper is organized as follows. In Section 2 we review the geometry of flat
Lagrangian submanifolds in C

n and CPn−1 and introduce the Lax pair, extended
frames, and associated family. In section 3, we construct generators for Λτ,σ

−,m(n),
and give explicit formulas for the dressing actions of the generators. In section 4, we
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construct an action of Λτ,σ
−,m(n) on the space of flat Lagrangian immersions in C

n that
lie in hyperspheres and the space of ∂-invariant flat Egoroff metrics. In section 5, we
compute dressing actions of g i s,πr

and of rational elements valued in the translation
subgroup on flat Lagrangian immersions in C

n with non-degenerate normal bundle.
In the last section we present the permutability theorem and give explicit formulas for
the dressing action of the generator fz,π. The product of n plane curves in C

n is the
simplest type of flat Lagrangian immersion. We give an algorithm to construct explicit
flat Lagrangian immersions and flat Egoroff metrics by dressing on these products of
plane curves.

2. Geometry of flat Lagrangian submanifolds in C
n and CPn−1. We

present the geometry of flat Lagrangian submanifolds (cf. [4, 13]) in a way to introduce
the Lax pair, the extended frame, and the associated family of them.

Let 〈 , 〉 and ω be the standard inner product and symplectic form on C
n = R

2n

respectively, i.e.,

〈Z1, Z2〉 := Re(Z̄t
1Z2), ω(Z1, Z2) := Im(Z̄t

1Z2), ∀ Z1, Z2 ∈ C
n.

Identifying Z = X + i Y in C
n as

(

X
Y

)

in R
2n, the complex structure J on R

2n

satisfying ω(·, ·) = g(J ·, ·) is:

J

(

X
Y

)

=

(

−Y
X

)

, ∀ X, Y ∈ R
n.

Then both U(n) and its Lie algebra u(n) can be identified as the elements of O(2n)
and o(2n) respectively that commute with J . So

u(n) =

{(

P −Q
Q P

)

∈ o(2n)

∣

∣

∣

∣

P ∈ o(n), Q = Qt

}

.

A real n dimensional submanifold M in C
n is Lagrangian if ω|M = 0, or equiv-

alently J maps TM onto the normal bundle T⊥M . The normal bundle T⊥M is
non-degenerate if the dimension of the space of shape operators at p is equal to
codim(M) for all p ∈ M . We call U(n) ⋉ R

2n unitary rigid motion group, which
preservs the metric and the Lagrangian condition. The following theorem is known
(cf. [4, 13]). Though the proof is elementary, we give it here to set up notations and
to be self-contained.

Theorem 2.1. [4, 13] If f : M →֒ R
2n ∼= C

n is a simply connected flat La-
grangian immersed submanifold with non-degenerate normal bundle, then there exist
global line of curvature coordinate u = (u1, · · · , un) on M and a potential function
φ(u) such that the fundamental forms of M are:

{

I =
∑ ∂φ

∂ui

du2
i ,

II =
∑

du2
i ⊗ J( ∂f

∂ui

).
(2.1)

Conversely, given φ(u) such that ∂φ
∂ui

> 0 and
∑ ∂φ

∂ui

du2
i is flat, the above fundamen-

tal forms determine such a flat Lagrangian submanifold uniquely up to unitary rigid
motion.

Proof. If e1, . . . , en is any local orthonormal tangent frame on M , then W =
(e1, . . . , en, Je1, . . . , Jen) is a U(n)-valued moving frame and the flat connection one-
form w := W−1 dW is u(n)-valued, i.e.,

wij = wn+i,n+j , (2.2)

wi,n+j = wj,n+i, (2.3)
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and wAB = −wBA. The flatness of w, dw +w∧w = 0, gives the Gauss-Codazzi-Ricci
equations for the immersion f , i.e.,











dwij = −
∑2n

A=1 wiA ∧ wAj ,

dwi,n+j = −
∑2n

A=1 wiA ∧ wA,n+j ,

dwn+i,n+j = −
∑2n

A=1 wn+i,A ∧ wA,n+j ,

respectively. Since the induced metric is flat, by (2.2) the normal bundle is also flat
and the Ricci equations become redundant. Recall that a shape operator Sν on TM
is defined by 〈Sν(·), ·〉 = 〈II (·, ·), ν〉 for any normal field ν. The flatness of the normal
bundle implies that all shape operators {Sν} commute and thus share eigenspaces.
The non-degeneracy condition of the normal bundle guarantees n independent eigen-
vectors as the tangent frame. Let {ei} be the normalized eigenvectors and {θi} the
dual 1-forms. Then wi,n+j = 0 for i 6= j, and wi,n+i = ciθi for some smooth functions
ci. The non-degeneracy of the normal bundle implies nonzero principal curvatures ci

along principal directions ei. It follows from the Codazzi equations that d(ciθi) = 0.
Thus a local line of curvature coordinate u is obtained by ciθi = dui. Introduce
hi := 1/ci, and write θi = hi dui and their dual ei = 1

hi

∂f
∂ui

. Then the fundamental
forms of M are:

{

I =
∑

h2
i du2

i ,

II =
∑

du2
i ⊗ J( ∂f

∂ui

).

Moreover, the Levi-Civita connection 1-form wij = βij dui − βji duj with βij =
(hi)uj

/hj for i 6= j and βii = 0. In fact the Codazzi equations imply that βij = βji.
This symmetry is clearly equivalent to the existence of a potential function φ mak-
ing h2

i = ∂φ
∂ui

. So the fundamental forms are given as in (2.1). When M is simply
connected, such a line of curvature coordinate u is globally defined. The converse
is a direct application of the Fundamental Theorem for submanifolds in Euclidean
spaces.

In the classical literature, βij are called rotation coefficients, and a metric taking
the special form

∑

φui
du2

i is called an Egoroff metric. We call β = (βij) the rotation
coefficient matrix of the metric

∑

h2
i du2

i . Then using the eigenframe, we can write
simply

w = W−1 dW =

(

[δ, β] −δ
δ [δ, β]

)

, where δ = diag( du1, . . . , dun).

The flatness of w, i.e., dw = −w ∧ w, written in terms of symmetric β is:
{

(βij)uk
= βikβkj , if i, j, k are distinct,

(βij)ui
+ (βij)uj

+
∑

k βikβjk = 0, if i 6= j,
(2.4)

or equivalently, the Levi-Civita connection 1-form [δ, β] is flat. These are the Darboux-

Egoroff equations in the classical literature. It is also the U(n)
O(n) -system, i.e., the first

n flows for the reduced n-wave equation in soliton theory ([15]).

Lax pair for the
U(n)
O(n) -system

It is known (cf. [13]) and easy to check that β is a solution of (2.4) if and only if

wλ = i λδ + [δ, β]
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is flat for all λ ∈ C, i.e., equation (2.4) has a Lax pair .
The flatness of wλ implies that there exists a unique E(u, λ) satisfying

E−1 dE = i λδ + [δ, β], E(0, λ) = I, (2.5)

Note that wλ satisfies the following reality condition:

−w∗
λ̄ = wλ, −wt

λ = w−λ, (2.6)

thus its frame E satisfies the U(n)
O(n) -reality condition,

E(u, λ̄)∗E(u, λ) = I, E(u, λ)tE(u,−λ) = I. (2.7)

In particular, E(u, λ) ∈ U(n) for real λ.

Extended frame, the associated family and
U(n)⋉C

n

O(n)⋉Rn -system

Identify the immersion f and the eigenframe ei ∈ R
2n as a complex column vector

in C
n as before, and set g = (e1, . . . , en). Then g is a unitary n × n matrix and

{

g−1 dg = i δ + [δ, β],

df = gδh,
(2.8)

where h = (h1, . . . , hn)t. Note that (2.8) is solvable for g, f if and only if the symmetric
β and h satisfy

{

[δ, β] is flat,

(hi)uj
= βijhj , i 6= j.

(2.9)

The system (2.8) can be also written as

k−1 dk =

(

i δ + [δ, β] δh
0 0

)

, where k =

(

g f
0 1

)

.

The following theorem then follows naturally:

Theorem 2.2. Let
∑n

i=1
∂φ
∂ui

du2
i =

∑n
i=1 h2

i du2
i be a flat Egoroff metric, β =

(βij) its rotation coefficient matrix, and set

θλ =

(

i λδ + [δ, β] δh
0 0

)

. (2.10)

Then:

1. θλ is flat for all λ ∈ C;

2. There is a unique F (u, λ) =

(

E(u, λ) X(u, λ)
0 1

)

solving

F−1dF = θλ, F (0, λ) = I ,

and F is holomorphic for all λ ∈ C;
3. E is the frame for wλ = i λδ + [δ, β];
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4. Xλ = X(·, λ) is a flat Lagrangian immersion in C
n for λ ∈ R with

{

I =
∑n

i=1
∂φ
∂ui

du2
i ,

II λ = λ
∑n

i=1 du2
i ⊗ J( ∂

∂ui

),

and X(·, 0) ∈ R
n ⊂ C

n is an Egoroff net on R
n.

Since the family Xλ shares and only depends on the flat Egoroff metric, we call
it the associated family for the metric or φ. The frame F in the above theorem
is called the extended frame, which motivates us to formulate system (2.9) as the
U(n)⋉C

n

O(n)⋉Rn -system as follows.

Let G be the complexification of u(n) ⋉ R
2n, i.e.,

G :=











b −c x
c b y
0 0 0





∣

∣

∣

∣

∣

b = −bt, c = ct, b, c ∈ gl(n, C), x, y ∈ C
n







.

We give two commuting involutions on G that gives the symmetric space U(n)⋉C
n

O(n)⋉Rn :

τ(A) = Ā, and σ(A) = TAT with

T :=





In 0 0
0 −In 0
0 0 1



 .

It is easy to see that στ = τσ, the fixed point set of τ is u(n) ⋉ R
2n, and the fixed

point set of σ on u(n) ⋉ R
2n is o(n) ⋉ R

n. So the corresponding symmetric space is
U(n)⋉R

2n

O(n)×Rn . The Cartan decomposition U = K + P is

K =











b 0 x
0 b 0
0 0 0





∣

∣

∣

∣

b ∈ o(n), x ∈ R
n







,

P =











0 −c 0
c 0 y
0 0 0





∣

∣

∣

∣

ct = c, c̄ = c, y ∈ R
n







.

Then {aj = en+j,j − ej,n+j | 1 ≤ j ≤ n} generates a maximal abelian subalgebra in
P . The U

K -system (cf. [12]) is the following PDE

−[ai, quj
] + [aj , qui

] + [[ai, q], [aj , q]] = 0, i 6= j,

where

q =





0 β 0
−β 0 −h
0 0 0



 ∈ P , with βjj = 0.

Or equivalently,

θλ =
∑

(ajλ + [aj, q]) duj =





[δ, β] λδ δh
−λδ [δ, β] 0

0 0 0
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is flat for all λ ∈ C. This is exactly the Lax pair (2.10) for the equations of the
associated family. So we have proved:

Theorem 2.3. The equation for flat Lagrangian immersions in C
n with non-

degenerate normal bundle is the U(n)⋉C
n

O(n)⋉Rn -system with the Lax pair given by (2.10).

Flat Lagrangian immersions in C
n that lie in S2n−1

Élie Cartan proved that an n-dimensional flat submanifold can be locally isomet-
rically immersed into S2n−1, but not in any lower dimensional spheres. Moreover, the
normal bundle of a flat n-dimensional submanifold of S2n−1 is automatically flat and
non-degenerate. Thus when a flat Lagrangian immersion f in C

n lies in a hypersphere
with center c0 and radius r, there always exists the eigenframe ei. Since f − c0 is
perpendicular to the tangent plane of f , we can write f = c0 +

∑n
i=1 fiJei for some

smooth functions fi. Differentiate it and compare with df =
∑n

i=1 hi dui ⊗ ei, we get
fi = hi and dhi +

∑n
j=1 wjihj = 0, i.e.,

dh + [δ, β]h = 0. (2.11)

This implies that ∂h = 0, where ∂ =
∑n

i=1
∂

∂ui

. Note also that
∑

h2
i ≡ r2. In

summary, we have

Proposition 2.4. Let
∑n

i=1 h2
i du2

i be a flat Egoroff metric, and β = (βij) its
rotation coefficient matrix. Then the following statements are equivalent:

1. ∂hi = 0, for all i, where ∂ =
∑n

i=1
∂

∂ui

.
2. dh + [δ, β]h = 0.
3.

{

(hi)uj
= βijhj , i 6= j,

(hi)ui
= −

∑

βijhj .
(2.12)

4. ||h||2 =
∑n

i=1 h2
i is constant.

Such flat Egoroff metric will be called ∂-invariant or spherical.

In the following Theorem, we give an explicit formula of the associated family for
a ∂-invariant flat Egoroff metric:

Theorem 2.5. Suppose
∑

h2
i (u) du2

i is a ∂-invariant flat Egoroff metric, β its
rotation coefficient matrix, and E the frame for i λδ + [δ, β]. Then:

1. The associated family in C
n for the metric is (λ ∈ R \ {0}):

X(u, λ) = − iλ−1 (E(u, λ)h(u) − h(0)) . (2.13)

2. X(u, λ) lies in a hyper-sphere centered at − iλ−1h(0) with radius ‖h(0)‖/|λ|
for λ ∈ R \ {0}.

3. E(u, 0)h(u) = h(0), or equivalently, h(u) = E(u, 0)−1h(0).
4. limλ→0 X(u, λ) ∈ R

n exists and is equal to − i ∂E
∂λ (u, 0)h(u), which gives a

∂-invariant Egoroff net on R
n.

Proof. We can check (1) directly that X satisfies

dX = Eδh, X(0, λ) = 0. (2.14)
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Since E is unitary for λ ∈ R \ {0} and ||h||2 =
∑

h2
i is constant, (2) follows easily.

Now (3) is true because if we let A(u) = E(u, 0), then

d(Ah) = ( dA)h + Adh = A[δ, β]h + A(−[δ, β]h) = 0.

So E(u, 0)h(u) = h(0) is a constant vector. Thus h(u) = E(u, 0)−1h(0). Lastly (4)

follows from L’Hospital’s Rule and the U(n)
O(n) reality condition.

Remark 2.6 (Cauchy problems for flat Lagrangian immersions). Suppose
d1, . . . , dn are nonzero real constants so that d2

i 6= d2
j for all i 6= j. Let Vn de-

note the space of all real symmetric n×n matrices with zero diagonal entries. It was
proved in [12] that there is an open dense subset S0(R, Vn) of the space of rapidly
decaying smooth maps from R to Vn such that given β0 ∈ S0(R, Vn) there exists a

unique smooth solution β of the U(n)
O(n) -system with initial data β(d1t, . . . , dnt) = β0(t).

Specially, smooth maps with compact support or with L1 norm less than 1 lie in
S0(R, Vn).

Given a solution β of the U(n)
O(n) -system (2.4), the following linear system is solvable,

(hi)uj
= βijhj, i 6= j, (2.15)

and the solutions depend on n nonzero smooth functions of one variable bi(t) spec-
ifying the initial conditions: hi(0, . . . , ui, . . . , 0) = bi(ui) (cf. [13]). So the set of
Egoroff metrics with [δ, β] as its Levi-Civita connections is parametrized by n positive
functions of one variable. In fact, the larger system (2.12) is still solvable and the
solutions depend only on h(0). Hence the set of ∂-invariant Egoroff metrics with [δ, β]
as its Levi-Civita connection is of finite dimension n. They are given by part (3) of
Theorem 2.5.

Finally Theorem 2.2 provides the algorithm to produce the associated family
X(·, λ) from β and h.

Flat Lagrangian submanifolds in CPn−1

If f is a flat Lagrangian immersion in C
n that lies in a S2n−1 with center 0, then f

is invariant under the S1-action, where S1 acts on S2n−1 ⊂ C
n by e i t∗z = e i tz. To see

this, we change coordinates linearly from u to (t1, . . . , tn) such that ∂
∂t1

= ∂ =
∑

∂
∂ui

.
Then

E−1 dE

dt1
= ( i δ + [δ, β])(

∂

∂t1
) = i I

and f(t1, t2, . . . , tn) = e i t1f(0, t2, . . . , tn), where E is the frame for i δ + [δ, β].

Let p : S2n−1 → CPn−1 denote the Hopf fibration, whose fibers are orbits of the
S1-action on S2n−1. Then N is a flat Lagrangian submanifold of CPn−1 if and only
if p−1(N) is a flat Lagrangian submanifold in C

n that lies in S2n−1 ([4, 13]). Hence
any flat Lagrangian submanifold of CPn−1 comes from a flat Lagrangian submanifold
in C

n that lies in S2n−1.

The explicit assoicated family (2.13) of flat Lagrangian submanifolds that lie in
hyperspheres produces an associated family of (n − 1)-dimensional flat Lagrangian
submanifolds in CPn−1 for λ ∈ R \ {0}.
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3. Dressing actions and generators of rational loop groups. We construct
generators for the group of rational maps g : CP 1 → GL(n, C) that satisfies the reality
conditions g(λ̄)∗g(λ) = g(−λ)tg(λ) = I with g(∞) = I, and review the dressing
actions of these generators.

Let O∞ be an open disk near ∞ in CP 1 = C ∪ {∞}, Λ+(n), Λ−(n), and Λ(n)
the groups of holomorphic maps from C, O∞ and O∞ ∩ C to GL(n, C) respectively,
and we require g(∞) = I for any g in Λ−(n). The Birkhoff Factorization Theorem
implies that there exists an open dense subset of Λ(n) such that any g in it can be
factored uniquely as g = g−g+ = f+f− with g±, f± ∈ Λ±(n). This open dense subset
is called the big cell of Λ(n).

The dressing action of Λ−(n) on Λ+(n) is defined as follows: Given g± ∈ Λ±(n),
g− ∗ g+ = f+, where f+ is the Λ+(n) factor of the factorization g−g+ = f−f+ with
f± ∈ Λ±(n). Note that this action is local, i.e., it is defined only when g−g+ lies
in the big cell of Λ(n). However, when g− ∈ Λ−(n) is rational, the factorization
g−g+ = f+f− can be computed explicitly as follows:

1. f− must have the same poles as g−,
2. the residues of g−g+f−1

− must be zero at poles of g−, and this leads to a
formula for f−, hence we get a formula for f+.

The simplest kind of rational element in Λ−(n) is as follows: Let αi ∈ C, and π a
projection matrix, i.e., π2 = π. Set

gα1,α2,π(λ) := π +
λ − α2

λ − α1
(I − π). (3.1)

Then gα1,α2,π ∈ Λ−(n).
First we recall a Theorem in [15] that give an explicit formula for the dressing

action of gα1,α2,π on Λ+(n):
Theorem 3.1 ( [15] ). Let gα1,α2,π be as in (3.1), and V1 and V2 denote the

image of π and I − π respectively. Assume f ∈ Λ+(n), and

f(α1)
−1(V1) ∩ f(α2)

−1(V2) = {0}. (3.2)

Set π̃ is the projection onto f(α1)
−1(V1) with respect to

C
n = f(α1)

−1(V1) ⊕ f(α2)
−1(V2).

Then
1. f̃ = gα1,α2,πfg−1

α1,α2,π̃ is in Λ+(n), i.e., gα1,α2,πf = f̃gα1,α2,π̃,

2. f̃ = gα1,α2,π ∗ f .

Since the proof is rather simple and is typical, we give a sketch here. First note
that

g−1
α1,α2,π(λ) = π +

λ − α1

λ − α2
(I − π).

So f̃(λ) is holomorphic in C \ {α1, α2} and has simple poles at α1, α2. The residues
of f̃ at λ = α1, α2 are

Res(f̃ , α1) = (α1 − α2)(I − π)f(α1)π̃,

Res(f̃ , α2) = (α2 − α1)πf(α2)(I − π̃).
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It follows from the definition of π̃ that both residues are zero. Hence f̃ is holomorphic
in C, i.e., f̃ lies in Λ+(n). This finishes the proof.

Recall that the frame E(u, ·) of the U(n)
O(n) -system (2.4) is in Λ+(n) satisfying the

U(n)
O(n) -reality condition (2.7). Moreover, the set of f ∈ Λ(n) that satisfy the U(n)

O(n) -

reality condition is a subgroup of Λ(n). So we need to consider several subgroups of
Λ±(n). Let

τ : A → (Āt)−1, σ : A → (At)−1

denote the two commuting involutions on GL(n, C) determining the symmetric space
U(n)
O(n) . Consider the following ‘twisted’ loop groups:

Λτ (n) = {f ∈ Λ(n) | τ(f(λ̄)) = f(λ)},

Λτ
±(n) = Λ±(n) ∩ Λτ (n),

Λτ,σ(n) = {f ∈ Λ(n) | σ(f(λ)) = f(−λ), τ(f(λ)) = f(λ̄)},

Λτ,σ
± (n) = Λτ,σ(n) ∩ Λ±(n),

We will add the subscript ‘m’, such as Λ−,m(n), to denote the subgroup of rational
elements or meromorphic maps from CP 1 to GL(n, C) in Λ−(n). The Birkhoff fac-
torization respects the reality conditions (cf. [15]), i.e., If g = g+g− with g± ∈ Λ±(n),
then

1. g ∈ Λτ (n) implies that g± ∈ Λτ
±(n),

2. g ∈ Λτ,σ(n) implies that g± ∈ Λτ,σ
± (n).

As a consequence, the dressing action of Λ−(n) on Λ+(n) restricts to the dressing
actions of Λτ

−(n) on Λτ
+(n) and Λτ,σ

− (n) on Λτ,σ
+ (n).

Theorem 3.2. [16] Given z ∈ C \ R and a Hermitian projection π of C
n, then

gz,π(λ) := gz,z̄,π = π +
λ − z̄

λ − z
π⊥ ∈ Λτ

−,m(n),

where π⊥ = I − π. Moreover, such elements generate Λτ
−,m(n).

It was proved in [15] that the reality condition f(λ̄)∗f(λ) = I implies that (3.2)
holds. So gz,π ∗ f is defined for all f ∈ Λτ

+(n) and we have

Theorem 3.3. [15] Let f ∈ Λτ
+(n), z ∈ C \ {0}, π a Hermitian projection of C

n,

and f̃ = gz,π ∗ f the dressing action of gz,π at f . Then f̃ = gz,πfg−1
z,π̃ lies in Λτ

+(n),

where π̃ is the Hermitian projection of C
n onto f(z)−1(Im π).

It is easy to see that ([15]) gz,π ∈ Λτ,σ
− (n) if and only if z is pure imaginary and

π̄ = π. Note that if g ∈ Λτ,σ
−,m(n) has two simple poles in C \ (R∪ i R), then it follows

from the reality condition that the poles of g must be z,−z̄. So g = g−z̄,ρgz,π for some
projections ρ, π. To find all such g’s that lie in Λτ,σ

−,m(n), we need the permutability
formula for Λτ

−(n):
Theorem 3.4 ([15] Permutability Theorem). Given gzi,πi

in Λτ
−,m(n) with

zi ∈ C \ R (i = 1, 2) and z1 6= z2, z̄2, let ρ1 denote the Hermitian projection of
C

n onto gz2,π2
(z1)(Im π1), and ρ2 the Hermitian projection onto gz1,π1

(z2)(Im π2).
Then gz2,ρ2

gz1,π1
= gz1,ρ1

gz2,π2
. Moreover, such factorization is unique.

We are ready to prove the analogue of Theorem 3.2 for Λτ,σ
−,m(n).
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Theorem 3.5. Let z ∈ C \ (R ∪ i R), π a Hermitian projection of C
n, and ρ the

Hermitian projection onto gz,π(−z̄)(Im π̄). Set

fz,π := g−z̄,ρgz,π. (3.3)

Then fz,π ∈ Λτ,σ
−,m(n).

Proof. Let z2 = −z̄1 = −z̄ and π2 = π̄1 = π̄. By the Permutability Theorem, we
have g−z̄,ρ2

gz,π = gz,ρ1
g−z̄,π̄, where

Im(ρ1) = g−z̄,π̄(z)(Im π), Im(ρ2) = gz,π(−z̄)(Im π̄).

But gz,π(−z̄) = g−z̄,π̄(z), so ρ2 = ρ̄1 = ρ. In other words, we have

fz,π := g−z̄,ρgz,π = gz,ρ̄g−z̄,π̄, (3.4)

which implies easily that fz,π satisfies σ-reality condition in addition.

Theorem 3.6. The set of g i s,πr
’s and fz,π’s generates Λτ,σ

−,m(n), where s ∈
R \ {0}, z ∈ C \ (R ∪ i R), πr, π are Hermitian projections, and π̄r = πr.

Proof. This theorem can be proved by induction on the total degree of a rational
element similar to the proof of Theorem 3.2 in [16] by Uhlenbeck. The details is as
follows:

Given g ∈ Λτ,σ
−,m(n), for any complex number α ∈ C \ R with g(α) 6= 0, there is a

unique k ≥ 0 such that all entries of the matrix

g′ :=

(

λ − α

λ − ᾱ

)k

g

have no pole at λ = α and g′(α) 6= 0. If g(α) = 0, define k = 0. Then α is said to be
a zero of g if g′(α) has nonzero kernel. Define the order K of the zero of det g′ at α
to be the total order of the zeros at the pair (α, ᾱ). Following [16], the total degree of
g is the sum of the total order of the zeros at all pairs.

We call both g i s,πr
and fz,π simple elements. We will prove that g can be factored

as the product of simple elements by induction on the total degree of g. If the total
degree of g is zero, then g is the constant I . Suppose the total degree of g is m > 0
and the statement is valid when the total degree is less than m. Then pick any zero
α of g, we have the following three cases:

Case (i). Ker(g′(α)) = C
n or g′(α) = g(α) = 0.

(1) If α = − i s, then g(λ) = (λ + i s)h(λ) for some meromorphic function h on
S2. It follows from the U(n)-reality condition that

g(λ) =
λ + i s

λ − i s
f(λ)

for some rational f : S2 → GL(n, C). Since both g and λ+ i s
λ− i s satisfy the U(n)

O(n) -reality

condition, so is f . But the total degree of f is m− n. By the inductive hypothesis, f
can be written as products of simple elements.

(2) If α = z̄ 6∈ R ∪ i R, then since g(−λ̄) = g(λ), Ker(g(−z)) = Ker(g(z̄)) = C
n.

So g(λ) = (λ + z)(λ − z̄)g̃(λ) for some rational g̃. But g(λ̄)∗g(λ) = I implies that

g(λ) = (λ+z)(λ−z̄)
(λ−z)(λ+z̄) ĝ(λ) fo some rational ĝ(λ). Because both g and (λ+z)(λ−z̄)

(λ−z)(λ+z̄) satisfy
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the U(n)
O(n) -reality condition, so is ĝ. But the total degree of ĝ is m − 2n. By induction

hypothesis ĝ is the product of simple elements.

Case (ii). α = i s and Ker(g′( i s)) is a proper linear subspace of C
n of dimension

k < n. Since g(−λ̄) = g(λ), Ker(g( i s)) = Ker(g( i s)). So the Hermitian projection π
onto the orthogonal complement of Ker(g′( i s)) is real, i.e., π̄ = π. Set

ĝ(λ) = g(λ)

(

π +
λ + i s

λ − i s
π⊥

)

.

The total degree of ĝ is m − k. By induction hypothesis, ĝ ∈ Λτ,σ(n) factors as a
product of simple elements. So is g.

Case (iii). Suppose α 6∈ R ∪ i R, and Ker(g′(α)) is a proper linear subspace of C
n of

dimension k < n. Let ρ denote the Hermitian projection onto Ker(g′(α)). Then ρ
determines the Hermitian projection π in Theorem 3.5 to define fᾱ,π = gᾱ,ρ̄g−α,π̄ in
Λτ,σ(n). Then ĝ = gfᾱ,π is in Λτ,σ(n) and has total degree m + 2k. Now

ĝ′(α) = g′(α)fᾱ,π(α) = g′(α)ρ̄g−α,π̄(α) = 0,

by definition of ρ. So ĝ falls into the case (i), subcase (2), which implies that there

exists f ∈ Λτ,σ
−,m(n) such that ĝ = (λ−α)(λ+ᾱ)

(λ−ᾱ)(λ+α)f . Note the total degree of f is now

m + 2k− 2n < m. By induction hypothesis, f (and g) can be written as a product of
simple elements.

4. Dressing actions on ∂-invariant flat Egoroff metrics. We give explicit
algorithm to compute the action of Λτ,σ

−,m(n) on the space of ∂-invariant flat Egoroff
metrics on R

n, and on the space of flat Lagrangian immersions in C
n that lie in a

hypersphere. As a consequence, we also get an action of Λτ,σ
−,m(n) on the space of flat

Lagrangian immersions of CPn−1.

The dressing action of Λτ,σ
−,m(n) on Λτ,σ

+ (n) induces an action on solutions and their

frames of the U(n)
O(n) -system. The Theorem stated below is a consequence of Theorems

3.3, 3.6, and Corollary 6.2:

Theorem 4.1. Let β be a solution of the U(n)
O(n) -system, and E(u, λ) its frame,

i.e., E−1 dE = iλδ + [δ, β]. Then:

1. For the first type generator g i α,π of Λτ,σ
−,m(n) in Theorem 3.6,

g i α,π ∗ E = g i α,πEg−1
i α,π̃,

g i α,π ∗ β = β − 2απ̃∗,

where ξ∗ := ξ −
∑

i ξiieii and π̃(u) is the Hermitian projection onto
E(u, i α)−1(Im π).

2. For the second type generator fz,π = g−z̄,ρgz,π of Λτ,σ
−,m(n),

fz,π ∗ E = fz,πEg−1
z,π̂g−1

−z̄,ρ̂,

fz,π ∗ β = β + (z − z̄)(π̂ + ρ̂)∗,

where π̂ is the Hermitian projection onto E(u, z)−1(Im π), ρ̂(u) is the projec-
tion onto E1(u,−z̄)−1(Im ρ), and E1 = gz,πEg−1

z,π̂.
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Now Theorem 2.5 helps us compute dressing actions on ∂-invariant flat Egoroff
metrics and on flat Lagrangian submanifolds in S2n−1 ⊂ C

n without using the ex-
tended frame.

Theorem 4.2. Let ds2 =
∑

hi(u)2 du2
i be a ∂-invariant flat Egoroff metric, β its

rotation coefficient matrix, E(u, λ) the frame for iλδ+[δ, β], c = h(0), and X(u, λ) =
−λ−1(E(u, λ)E(u, 0)−1c−c) the associated family of flat Lagrangian immersions given
in Theorem 2.5. Let Ẽ = g i α,π ∗ E and Ê = fz,π ∗ E be as in Theorem 4.1. Then
constant vectors c̃ and ĉ give the following new ∂-invariant flat Egoroff metrics and
associated family of flat Lagrangian submanifolds in S2n−1 ⊂ C

n:

h̃(u) = Ẽ(u, 0)c̃, X̃ = − i λ−1(Ẽ(u, λ)Ẽ(u, 0)−1c̃ − c̃),

ĥ(u) = Ê(u, 0)ĉ, X̂ = − i λ−1(Ê(u, λ)Ê(u, 0)−1ĉ − ĉ).

5. Dressing actions on flat Lagrangian immersions in C
n. We give ex-

plicit formulas for dressing actions of rational elements with one simple pole on flat
Lagrangian immersions in C

n and on the potential functions of the flat Egoroff met-
rics, using the extended frame.

Let π be a Hermitian projection of C
n, and π′ denote the Hermitian projection

of C
n+1 = C

n ⊕ C onto ( Im π
0 ). Then

gz,z̄,π′ =

(

gz,π 0
0 λ−z̄

λ−z

)

∈ Λ−(n + 1). (5.1)

We will first compute formally the dressing action of gz,z̄,π′ on the extended frame F
of a flat Egoroff metric, forgetting the σ-reality condition g(−λ)gt = I .

Theorem 5.1. Let ds2 =
∑

h2
i (u) du2

i be a flat Egoroff metric, β = (βij) its

rotation coefficient matrix, and F =

(

E X
0 1

)

its extended frame. Given gz,z̄,π′ as in

(5.1), then

gz,z̄,π′F =

(

Ẽ X̃
0 1

)(

gz,π̃ ξ
0 λ−z̄

λ−z

)

∈ Λ+(n + 1) × Λ−(n + 1),

where π̃(u) is the Hermitian projection of C
n onto E(u, z)−1(Im π),

η = E(u, z̄)−1X(u, z̄), ξ =
z̄ − z

λ − z
π̃η, Ẽ = gz,πEg−1

z,π̃,

X̃ = gz̄,π⊥

(

X −
z̄ − z

λ − z
Eπ̃η

)

.

Moreover, let F̃ =

(

Ẽ X̃
0 1

)

, then F̃−1 dF̃ =

(

i λδ + [δ, β̃] δh̃
0 0

)

, where

β̃ = β + i (z − z̄)π̃∗, h̃ = h + i (z − z̄)π̃η.

Proof. We first observe that F (u, z)−1(Im π′) =
(

E(u,z)−1(Im π)
0

)

. Since Im(I −

π′) =
(

Im π⊥

0

)

⊕ C ( 0
1 ), we have

F (u, z̄)−1(Im(I − π′)) =
(

E(u,z̄)−1(Im π⊥)
0

)

⊕ C

(

−E(u,z̄)−1X(u,z̄)
1

)

.
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By (2.7), E(u, z)−1 = E(u, z̄)∗, which implies that E(u, z)−1(Im π) is Hermitian or-
thogonal to E(u, z̄)−1(Im π⊥). Therefore

F (u, z)−1(Im π′) ∩ F (u, z̄)−1(Im(I − π′)) = {0}.

By Lemma 3.1, we can factor

gz,z̄,π′F = F̃ gz,z̄,π̂ ∈ Λ+(n + 1) × Λ−(n + 1),

where π̂ is the projection onto F (u, z)−1(Im π′) with respect to

C
n+1 = F (u, z)−1(Im π′) ⊕ F (u, z̄)−1(Im(I − π′)).

Notice that π̃ is no longer a Hermitian projection. Use Theorem 3.1 to get π̂ =
(

π̃ π̃η
0 0

)

and gz,z̄,π̂ =

(

gz,π̃ ξ
0 λ−z̄

λ−z

)

, where η = E(u, z̄)−1X(u, z) and ξ = z̄−z
λ−z π̃η.

Formulas for Ẽ and X̃ can be computed easily from F̃ = gz,z̄,π′Fg−1
z,z̄,π̂.

Use F̃ = gz,z̄,π′Fg−1
z,z̄,π̂ to compute

F̃−1 dF̃ =

(

gz,π̃ ξ
0 λ−z̄

λ−z

)(

i λδ + [δ, β] δh
0 0

)(

gz,π̃ ξ
0 λ−z̄

λ−z

)−1

− d

(

gz,π̃ ξ
0 λ−z̄

λ−z

)

·

(

gz,π̃ ξ
0 λ−z̄

λ−z

)−1

. (5.2)

Since F̃ (u, ·) ∈ Λ+(n + 1), the LHS is holomorphic in λ ∈ C. But the RHS has
a simple pole at λ = ∞. So F̃−1dF̃ must be a degree 1 polynomial in λ. Use
(λ − z)−1 = λ−1 + zλ−2 + z2λ−3 + · · · to compute the holomorphic part of the RHS
to conclude

F̃−1 dF̃ =

(

i λδ + [δ, β̃] δh̃
0 0

)

,

with β̃ = β + i (z − z̄)π̃∗ and h̃ = h + i (z − z̄)π̃η.
We will use gz,z̄,π′ ∗ F to denote F̃ , and use gz,z̄,π′ ∗X to denote X̃, ... etc. Now

imposing σ-reality condition, we have:

Theorem 5.2. Use the same notation as in Theorem 5.1, and assume π̄ = π
and z = i α. Then

X̃ = g i α,− i α,π′ ∗ X = g− i α,π⊥

(

X +
2 iα

λ − iα
E π̃η

)

(5.3)

is a new associated family of flat Lagrangian immersions for Ĩ =
∑

i h̃2
i du2

i , where π̃
is the Hermitian projection of C

n onto E(u, i α)−1(Im π), η = E(u, i α)tX(u,− iα),
and

h̃ = g i α,− i α,π′ ∗ h = h − 2απ̃η.

Moreover, Ĩ is a new flat Egoroff metric with potential

φ̃ = g i α,− i α,π′ ∗ φ = φ − 2αηt π̃ η.
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Its rotation coefficient matrix is β̃ = g i α,− i α,π′ ∗ β = β − 2απ̃∗.

Proof. Note that the reality conditions (2.7) imply E(u,− iα)−1 = E(u, iα)t and
E(u, i α) are real. Using z = i α in Theorem 5.1, the uniqueness of solution to (2.14)
implies that X(u, i α) and η are real. Thus the new h̃ and β̃ are also real. Hence
formulas for X̃, h̃ and η follow from Theorem 5.1.

To prove the formula for φ̃, we need to show that dφ̃ =
∑

i h̃2
i dui, i.e., dφ̃ = h̃tδh.

Use the formula for h̃ to get h̃tδh̃ = dφ−4αhtδπ̃η+4α2ηtπ̃tδπ̃η. Next we compute dφ̃.
Let V be an n×k matrix whose columns form a basis for Imπ and U := E(u,− iα)∗V .
Then π̃ = U(U∗U)−1U∗ and

φ̃ = φ − 2αX(u,− iα)∗V (U∗U)−1V ∗X(u,− iα).

Since dX(u,− iα)∗ = htδE(u,− iα)∗ and dU = (αδ − [δ, β])U ,

dφ̃ = dφ − 2α
[

2htδπ̃η + X(u,− iα)∗V d(U∗U)−1V ∗X(u,− iα)
]

= dφ − 2α
{

2htδπ̃η − 2η∗π̃∗(αδ − [δ, β])π̃η
}

= dφ − 2α(2htδπ̃η − 2αη∗π̃∗δπ̃η)

= dφ − 4αhtδπ̃η + 4α2ηtπ̃tδπ̃η = h̃tδh̃.

We have used d(U∗U)−1 = −(U∗U)−1 d(U∗U) (U∗U)−1 in the second equality above,
and in the third η∗π̃∗[δ, β]π̃η = 0 since β∗ = β.

Remark 5.3. Our theorem guarantees X̃(u, λ) in F̃ is holomorphic for λ ∈ C,
though the formula for X̃ given by (5.3) seems to have poles at λ = ± i α. However,
the residue of (5.3) at λ = − iα is

−2 iαπ(X− i α − E− i απ̃η) = −2 iαπ(X− i α − E− i απ̃Et
i αX− i α). (5.4)

Substitute π̃ = U(U∗U)−1U into (5.4), and we see that the residue of Xλ at λ = − i α
is zero, hence Xλ is holomorphic at λ = − i α. Similar computation shows that Xλ is
holomorphic at λ = i α.

By Theorems 2.4 and 2.5, a flat Lagrangian immersion in C
n with induced metric

∑

h2
i du2

i lies in a hypersphere if and only if
∑

h2
j is constant. In the next Theorem

we give a necessary and sufficient condition on π so that g i α,− i α,π′ ∗ X again lies in
a hypersphere.

Theorem 5.4. Let ds2 =
∑

hi(u)2 du2
i be a ∂-invariant flat Egoroff metric,

β its rotation coefficient matrix, and F =

(

E X
0 1

)

its extended frame. Let X̃ =

g i α,− i α,π′ ∗ X, h̃, φ̃, π̃, and η be as in Theorem 5.2. Then X̃ lie in hyperspheres if
and only if Im π ⊥ h(0) (or π(h(0)) = 0).

Moreover, if Im π ⊥ h(0), then X̃(·, λ) is contained in the same hypersphere as
X(·, λ), απ̃η = π̃h, and

X̃ = g− i α,π⊥

(

X +
2 i

λ − i α
E π̃h

)

, (5.5)

h̃ = h − 2π̃h, φ̃ = φ −
2

α
ht π̃ h, β̃ = β − 2απ̃∗. (5.6)

Proof. Let V and U be the same as in the proof of Theorem 5.2. Then

π = V (V ∗V )−1V ∗, π̃ = U(U∗U)−1U∗, U = E(u,− iα)∗V.
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The formula (2.13) implies that

η = E(u,− i α)−1X(u,− iα) =
1

α

(

h − E(u,− iα)−1h(0)
)

.

If Im π ⊥ h(0), i.e., h(0)tV = 0, then by the formula above we have απ̃η = π̃h.
So the formulas for X̃ and h̃ are simplified as given. Moreover, since I − 2π̃ = π̃⊥ − π̃
is orthogonal and h̃ = (I −2π̃)h, we have ‖h̃‖2 = ‖h‖2 = constant, which implies that
X̃ lies in a hypersphere. It follows from h(0) ⊥ Im π and π̃(0) = π that h̃(0) = h(0).
So the new submanifold X̃(u, λ) is contained in the same hypersphere as X(u, λ) for
each fixed λ ∈ R \ {0}.

Conversely, if ||h̃||2 is constant, then h̃t dh̃ = 0. We want to prove that h(0)tV = 0.
Use formula h̃ = h − 2απ̃η to compute

h̃t dh̃ = −2α(ht − 2αηtπ̃) d(π̃η) − 2αht[δ, β]π̃η.

Here we have used dh + [δ, β]h = 0 for spherical case. Now

d(π̃η) = d
(

U(U∗U)−1V X(u,− iα)
)

= (αδ − [δ, β]) π̃η + U d(U∗U)−1 V X− i α + π̃δh

= (αδ − [δ, β]) π̃η + π̃δh̃,

using dU = (αδ − [δ, β])U . After some simplification, we have

h̃t dh̃ = −2α(ht − αηt)π̃δh̃ = −2αh(0)tV (U∗U)−1U∗δh̃

At u = 0, this differential is 0 only when h(0)tV = 0, since each entry in U∗δh̃|u=0 =
V ∗δh is not 0.

As a by-product at λ = 0, Theorem 5.2 and Theorem 5.4 give formulas for the
dressing action of g i α,π on Egoroff and ∂-invariant Egoroff orthogonal nets respec-
tively. Specially, they give a group point of view of the vectorial Ribaucour transfor-
mations for Egoroff orthogonal nets constructed in [8].

Dressing actions of general rational elements

Theorem 5.1 suggests that we should be able to use the Birkhoff factorization to

construct the action of rational loops of the form

(

g i α,π
b

λ− i α

0 λ+ i α
λ− i α

)

. This leads us to

consider the following element in Λ−(n + 1): Given α ∈ R \ {0} and b ∈ R
n, let

k i α,b(λ) =

(

I i b
λ− i α

0 1

)

. (5.7)

Next we compute the dressing action of k i α,b on flat Lagrangian immersions. Let

F =

(

E X
0 1

)

be an extended frame for a flat Lagrangian immersion X in C
n with

non-degenerate normal bundle. We can factor k i α,bF = F̃ k̃ ∈ Λ+(n + 1)Λ−(n + 1) as
follows:

k i α,bF = F̃ k̃ =

(

E Y
0 1

)

(

I
i E−1

i α
b

λ− i α

0 1

)

,
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where

Y = X +
i (b − EλE−1

i αb)

λ − i α
.

Note that Y is holomorphic at λ = − iα, so F̃ ∈ Λ+(n + 1). A direct computation
gives

F̃−1 dF̃ =

(

E−1 dE E−1 dY
0 0

)

=

(

i λδ + [δ, β] E−1 dE + δE−1
i αb

0 0

)

=

(

i λδ + [δ, β] δh + δE−1
i αb

0 0

)

.

Since b is real and E satisfies the U(n)
O(n) -reality condition, we have

E−1
i αb = Et

− i αb = E−1
i αb.

So E−1
i αb is real and we have proved

Theorem 5.5. Let X(·, λ) be the associated family of flat Lagrangian immersions
in C

n with non-degenerate normal bundle for the flat Egoroff metric
∑n

i=1 hi(u)2 du2
i ,

and F =

(

E X
0 1

)

its extended frame. Let k i α,b be as in (5.7). Then

k i α,b ∗ X := X +
i (b − EλE−1

i αb)

λ − i α

is a family of flat Lagrangian immersions associated to the flat Egoroff metric

k i α,b ∗ h = h + E−1
i αb.

Set

r i α,π,b(λ) := k− i α,−2αbg i α,− i α,π′ =

(

g i α,π
−2 i αb
λ− i α

0 λ+ i α
λ− i α

)

. (5.8)

Since both k i α,b ∗ F and g i α,− i α,π′ ∗ F come from the dressing action of Λ−(n + 1)
on Λ+(n + 1), Theorems 5.2 and 5.5 give the formula for the action of r i α,π,b on flat
Lagrangian immersions and on flat Egoroff metrics.

Analytic version of dressing actions

We can also write down a first order compatible PDE system for π̃ and b that
give rise to the action of r i α,π,b on flat Lagrangian immersions. Let

∑n
i=1 h2

i du2
i be

a flat Egoroff metric, β its rotation coefficient matrix, and F its extended frame, i.e.,

θλ = F−1dF =

(

i δλ + [δ, β] δh
0 0

)

.

We want to find F̃ = gF g̃−1 with g = r i α,π,b and

g̃ =

(

g i α,π̃(u)
−2 i α
λ− i α y(u)

0 λ+ i α
λ− i α

)
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such that

θ̃λ = F̃−1 dF̃ =

(

i λδ + [δ, β̃] δh̃
0 0

)

for some β̃ and h̃. Instead of factoring it directly, we can use the fact that θ̃λ =
g̃θλg̃−1 − dg̃g̃−1. So

θ̃λg̃ = g̃θλ − dg̃

should hold for all λ. This will give a first order PDE system for π̃ and y as follow:
If we multiply (λ − i α) to both sides of the above equation, then we get

( i λδ + [δ, β̃](λ − i α + 2 iαπ̃⊥)

= (λ − i α + 2 iαπ̃⊥)( i δλ + [δ, β]) − 2 i α dπ̃, and

− 2 i α( i λδ + [δ, β̃])y + (λ + i α)δh̃

= (λ − i α + 2 iαπ̃⊥)δh + 2 iαdy.

Equate coefficients of λ and the constant term to get

Theorem 5.6. Suppose
∑n

i=1 hi(u) du2
i is a flat Egoroff metric, β its rotation

coefficient matrix, and X the associated family of flat Lagrangian immersions in C
n

with non-degenerate normal bundle. Then the following system is solvable for π̃ and
y:

{

dπ̃ = [[δ, β], π̃] + α[δ, π̃](I − 2π̃), π̃(0) = π,

dy = −[δ, β − 2απ̃]y + π̃δh − αδy, y(0) = b,
(5.9)

where π̃2 = π̃, π̃∗ = π̃ = π̃, and y(u) ∈ R
n. Moreover, set h̃ = h − 2αy, then

ds̃2 =
∑n

j=1 h̃2
j du2

j is again a flat Egoroff metric and β̃ = β − 2απ̃∗ is the rotation

coefficient matrix for ds̃2.

At the first sight, it is not clear that we can write down all solutions of system
(5.9). But our algebraic formulas for the actions of g i α,π and k i α,b in fact gives all
the solutions (5.9). The geometric Ribaucour transformation constructed in [4] is just
a special case of the above theorem for rank 1 real projections.

6. Permutability theorem, complex Ribaucour transformation and ex-

amples. Let us first compute the permutability formulas for dressing actions of two
simple elements as in Theorem 5.1, ignoring the σ-reality condition. For simplicity,
we will use gz,π ∗ F instead of gz,z̄,π′ ∗ F in this section and so is for X .

Theorem 6.1. We use the same notations as in Theorem 3.4 and Theorem 5.1.
For j = 1, 2, let Fj := gzj ,πj

∗F , where ∗ is the dressing action computed in Theorem
5.1. Then we have

F12 := (gz2,ρ2
gz1,π1

) ∗ F = gz2,ρ2
∗ F1 (6.1)

= F21 := (gz1,ρ1
gz2,π2

) ∗ F = gz1,ρ1
∗ F2. (6.2)
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Moreover,

X12 = gz̄2,ρ⊥

2
gz̄1,π⊥

1

(

X −
z̄1 − z1

λ − z1
Eπ̃1η1 −

z̄2 − z2

λ − z2
E gz1,π̃⊥

1
ρ̃2 η12

)

= gz̄1,ρ⊥

1
gz̄2,π⊥

2

(

X −
z̄2 − z2

λ − z2
Eπ̃2η2 −

z̄1 − z1

λ − z1
E gz2,π̃⊥

2
ρ̃1 η21

)

,

F−1
12 dF12 =

(

iλδ + [δ, β12] δh12

0 0

)

,

where

h12 = h + i (z1 − z̄1)π̃1η1 + i (z2 − z̄2)ρ̃2 η12

= h + i (z2 − z̄2)π̃2η2 + i (z1 − z̄1)ρ̃1 η21,

β12 = β + i (z1 − z̄1)π̃1∗ + i (z2 − z̄2)ρ̃2∗

= β + i (z2 − z̄2)π̃2∗ + i (z1 − z̄1)ρ̃1∗.

Here π̃j(u) is the Hermitian projection onto E(u, zj)
−1(Im πj), ηj(u) =

E(u, z̄j)
−1X(u, z̄j), ρ̃j the Hermitian projection onto gzk,π̃k

(zj)(Im π̃j), and ηkj(u) =
gz̄k,π̃⊥

k

(z̄j) ηj + z̄k−zk

z̄k−z̄j

π̃k ηk for j = 1, 2 and k = 3 − j.

Proof. Because the dressing action is a group action, (6.1) certainly holds by
Theorem 3.4. So we have

gz2,ρ2
E1 = E12 gz2,ρ̃2

,

for ρ̃2 being the Hermitian projection onto E1(u, z2)
−1(Im ρ2). But

E1(u, z2)
−1(Im ρ2) = E1(u, z2)

−1gz1,π1
(z2)(Im π2)

= gz1,π̃1
(z2)E(u, z2)

−1(Im π2)

= gz1,π̃1
(z2)(Im π̃2).

We get ρ̃1 similarly. Now by Theorem 5.1,

X12 = gz̄2,ρ⊥

2

(

X1 −
z̄2 − z2

λ − z2
E1 ρ̃2 η12

)

,

where

η12 = E1(u, z̄2)
−1X1(u, z̄2)

= gz1,π̃1
E−1g−1

z1,π1
gz̄1,π⊥

1

(

X −
z̄1 − z1

λ − z1
Eπ̃1η1

) ∣

∣

∣

∣

λ=z̄2

= gz̄1,π̃⊥

1
(z̄2) η2 +

z̄1 − z1

z̄1 − z̄2
π̃1 η1.

The rest follows directly from Theorem 5.1.
When zj are pure imaginary and πj are real, the above theorem gives per-

mutability formulas for the transformations in Theorem 5.2. When z2 = −z̄1 = −z̄,
π2 = π̄1 = π̄, and ρ2 = ρ̄1 = ρ, the above theorem gives the formula for the dressing
action of the other type generator fz,π = g−z̄,ρgz,π of Λτ,σ

−,m(n) on flat Lagrangian im-
mersions in C

n with non-degenerate normal bundle and on Egoroff orthogonal nets.
We call X 7→ fz,π ∗ X a complex Ribaucour transformation.
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Corollary 6.2. Let ds2 =
∑n

i=1 h2
i du2

i be a flat Egoroff metric, β the rotation

coefficient matrix for ds2, and F =

(

E X
0 1

)

the extended frame for ds2. Let π be

a Hermitian projection of C
n, z ∈ C \ (R ∪ i R), and fz,π given by Proposition 3.5.

Then

fz,π ∗ F := g−z̄,ρ ∗ (gz,π ∗ F ) =

(

Ê X̂
0 1

)

is an extended frame of a new flat Egoroff metric d̂s2 =
∑n

i=1 ĥ2
i du2

i . Here

X̂ = g−z,ρ⊥gz̄,π⊥

(

X −
z̄ − z

λ − z
Eπ̃η1 −

z̄ − z

λ + z̄
E gz,π̃⊥ ρ̃ η12

)

,

ĥ = fz,π ∗ h = h + i (z − z̄)(π̃η1 + ρ̃ η12),

β̂ = fz,π ∗ β = β + i (z − z̄)(π̃ + ρ̃)∗,

where π̃(u) is the Hermitian projection of C
n onto E(u, z)−1(Im π), ρ̃(u) the Her-

mitian projection of C
n onto gz,π̃(−z̄)E(u,−z̄)−1(Im π̄), η1(u) = E(u, z̄)−1X(u, z̄),

and η12 = gz̄,π̃⊥E−1X |λ=−z + z̄−z
z̄+z π̃ η1.

Flat Lagrangian immersions corresponding to soliton solutions

The simplest examples of flat Lagrangian submanifolds in C
n with non-degenerate

normal bundle come from the “vacuum” solution of U(n)
O(n) -system, i.e., β ≡ 0 or βij ≡ 0.

The Lax pair for β = 0 is i λδ with frame E = exp(
∑

j i λujejj). Let hj be any
smooth positive function defined on some interval Ij around 0 for 1 ≤ j ≤ n. Then
ds2 =

∑n
j=1 hj(uj)

2 du2
j is a flat Egoroff metric with rotation coefficient matrix β = 0,

and the associated family of ds2 is a product of plane curves:

Xλ = (z1, · · · , zn)t, where zj(uj) =

∫ uj

0

hj(t)e
i λt dt,

ds2 =
∑

j

φuj
du2

j , with φ =
∑

j

∫ uj

0

hj(t)
2 dt.

If ds2 is ∂-invariant, then
∑

hj(uj)
2 = c, which implies that each hj must be a

constant rj . So the corresponding flat Lagrangian submanifolds of C
n contained in

S2n−1 (or CPn−1) are really flat tori, and the associated family is Xλ = (r1(e
i λu1 −

1), . . . , rn(e i λun − 1))t/( iλ). The potential for the ∂-invariant Egoroff metric is φ =
∑

r2
j uj . It is interesting to see when λ → 0 how X gives the standard orthogonal net

of R
n.
The orbit of the action of Λτ,σ

−,m(n) at the vacuum β = 0 is the space of soliton

solutions for the U(n)
O(n) -system. We give algorithm to compute flat Lagrangian im-

mersions corresponding to these soliton solutions. Since g i α,πr
’s and fz,π’s generate

Λτ,σ
−,m(n), we can use Theorems 5.2 and 5.4 repeatedly to give a recursive algorithm to

construct explicitly flat Lagrangian immersions and flat Egoroff metrics given by the
action of any g ∈ Λτ,σ

−,m(n) on these vacuum flat Lagrangian immersions. We can also
apply Theorem 5.5 to g ∗ X and g ∗ h to get another n + 1 parameter families of flat
Lagrangian immersions and flat Egoroff metrics. Similarly, we can apply Theorem 4.2
to flat tori repeatedly to get explicit formulas for ∂-invariant flat Egoroff metrics and
on flat Lagrangian immersions in C

n that lie in hyperspheres.
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