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A PROOF OF SHELAH’S STRONG COVERING THEOREM FOR Pκλ∗

MASAHIRO SHIOYA†

Abstract. Suppose that κ is a regular uncountable cardinal and λ is a cardinal > κ. We give a
direct proof of Shelah’s theorem that a cofinal subset of Pκλ can be covered by some stationary set
of the same size.
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1. Introduction. Suppose that κ is a regular uncountable cardinal and λ is a
cardinal ≥ κ. Pκλ denotes the set of all subsets of λ of size < κ. We write cf(κ, λ)
for the cofinality of Pκλ, i.e. the smallest size of a subset of Pκλ that is cofinal
with respect to inclusion. It has been known that the formula λ<κ = 2<κ · cf(κ, λ)
is useful in cardinal arithmetic. Indeed Solovay [9] established that the Singular
Cardinal Hypothesis holds above a compact cardinal by showing that cf(κ, λ) = λ if
κ is λ-compact and λ is regular.

In [6] Shelah created the Theory of Possible Cofinalities (henceforth PCF Theory).
Among many applications of the theory best known should be the following:

Theorem 1. cf(ω1, ωω) < ωω4
.

Theorem 1 attracted much attention to the cofinality of Pκλ, which is quite robust
through forcing extensions. In contrast it is quite easy to manipulate the size of Pκλ
(= λ<κ) by blowing up 2<κ.

In the context of Pκλ combinatorics one is more concerned with stationary subsets
than with merely cofinal subsets. Let us denote by scf(κ, λ) the smallest size of a
stationary subset of Pκλ. Clearly scf(κ, λ) ≥ cf(κ, λ). Hence by the formula in the
first paragraph we have scf(κ, λ) = cf(κ, λ) = λ<κ if λ ≥ 2<κ. In [2] Baumgartner
and Taylor proved in effect that scf(κ, λ) = cf(κ, λ) = λ if λ < κ+ω.

It is natural to ask whether scf(κ, λ) = cf(κ, λ) holds in general. The answer by
Shelah [5] is striking:

Theorem 2. Suppose that κ is regular uncountable and λ is a cardinal > κ.
Then scf(κ, λ) = cf(κ, λ).

The proof of Theorem 2 makes essential use of PCF Theory. To motivate this
fact, let us attempt to prove Theorem 2 by induction on λ. Suppose that for each
γ ∈ [κ, λ) there is a stationary subset of Pκγ of size cf(κ, |γ|). Then one can show
that the union of these sets is stationary in Pκλ and has size cf(κ, λ) if λ is regular.
Unfortunately the induction hypothesis does not seem to help if λ is singular. However
this is exactly the situation in which PCF Theory is expected to work.

Unexpectedly the proof of Theorem 2 works equally well whenever λ is a cardinal
> κ+. In [5] Shelah went on to introduce a filter on Pκλ that contains a stationary set
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of the smallest possible size. The definition of the filter is canonical, i.e. independent
of stationary sets to be contained. It is quite complicated though.

Unfortunately the details of Shelah’s proof are often missing. In §4 of this paper
we give a direct and detailed proof of Theorem 2 in the case λ > κ+. Our proof is
purely combinatorial and is derived from the proof of the following theorem (again
due to Shelah):

Theorem 3. Suppose that κ is regular uncountable and λ is a cardinal > κ.
Then a cofinal subset of Pκλ can be covered by some stationary set of the same size.

As one might notice, Theorem 3 is no finer than Theorem 2. The point of The-
orem 3 is that the way we get a covering set is canonical. This can be described as
follows:

Fix a large enough regular cardinal χ. Recall that H(χ) is the set of all sets
hereditarily of size < χ. We identify H(χ) with the structure having the membership
relation and a well-ordering of H(χ) as binary relations, and λ as a constant. Then
there is a map ϕ : λ<ω → λ such that if z ⊂ λ is closed under ϕ, then z = N ∩ λ for
some N ≺ H(χ). Suppose that X is cofinal in Pκλ. Take an elementary substructure
M∗ of H(χ) such that X ∪ {ϕ, X} ⊂ M∗ and |M∗| = |X |. Then it is shown that
M∗ ∩ Pκλ is stationary in Pκλ.

The last assertion is truly remarkable. To see this, let us derive one counterintu-
itive consequence. Since M∗ ∈ H(χ), the set {N ∈ PκH(χ) : M∗ ∈ N ≺ H(χ)} is
club. Hence its projection {N ∩ λ : N ∈ PκH(χ) ∧ M∗ ∈ N ≺ H(χ)} has a subset
that is club in Pκλ. Since M∗ ∩ Pκλ is stationary in Pκλ, there is N ≺ H(χ) such
that M∗ ∈ N and N ∩λ ∈ M∗. This looks contradictory. Indeed it is easy to see that
if M and N are both countable elementary substructures of H(χ), then one cannot
have both M ∈ N and N ∩ λ ∈ M .

In §§2, 3 we prove Theorem 3 as outlined above. The proof of the case λ > κ+ is
deeply embedded in that of Theorem 2.6 of [5]. It turns out that the latter contains an
unjustifiable statement. Answering the author’s question, Shelah suggested a remedy,
which was to be revised by the author. We inform the reader of the important changes
in the course of the proof.

In [4] Shelah initiated the study of Strong Covering Theorems. Suppose that
W is an inner model of ZFC and that W ∩ Pκλ is cofinal in Pκλ. Strong Covering
Theorems assert under additional conditions that W ∩ Pκλ is in fact stationary. See
[7] for specific examples. As indicated in [5], Theorem 3 can be regarded as the Strong
Covering Theorem in the context of Pκλ combinatorics.

2. Preliminaries. Throughout the paper κ denotes a regular uncountable car-
dinal. We denote the class of all regular cardinals by Reg. Intervals of ordinals have
the expected definitions. In this paper “size” is a synonym of “cardinality”.

We refer the reader to [3] for the basics of Pκλ combinatorics. Here λ is a cardinal
> κ. It is easy to see that

⋃

X = λ if X is cofinal in Pκλ. Hence cf(κ, λ) ≥ λ. For
a map g : λ<ω → λ we denote the set {z ⊂ λ : g“z<ω ⊂ z} by C(g) and the
closure of z ⊂ λ under g by clg z. It is well-known that S is stationary in Pκλ iff
S ∩ {x ∈ C(g) : x ∩ κ ∈ κ} 6= ∅ for every g : λ<ω → λ.

As indicated in §1, the case λ = κ+ of Theorem 2 requires a separate treatment
and is proved in [2]. Let us reprove it as the case λ = κ+ of Theorem 3:

Proposition 1. Suppose that κ is regular uncountable. Then a cofinal subset of
Pκκ+ can be covered by some stationary set of the same size.
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Proof. Fix a large enough regular cardinal χ. (It would suffice to take χ = (22κ

)+.)
We identify H(χ) with the structure having the membership relation ∈ and a well-
ordering ⊳ of H(χ) as binary relations.

Suppose that X is cofinal in Pκκ+. Take M ≺ H(χ) so that X ∪ {X} ⊂ M
and |M | = |X |. We claim that M ∩ Pκκ+ is stationary in Pκκ+. Let e = 〈eγ : γ <
κ+〉 be the ⊳-least sequence such that each eγ is a surjection from κ to γ. Then
{eγ“α : α < κ} is club in Pκγ for every γ ∈ [κ, κ+). Hence it is easy to see that
{eγ“α : 〈α, γ〉 ∈ κ × κ+} is stationary in Pκκ+. Thus it suffices to show that

{eγ“α : 〈α, γ〉 ∈ κ × κ+} ⊂ M.

Since X ∪ {X} ⊂ M ≺ H(χ), we have |X | + 1 ⊂ M . Note that |X | ≥ κ+ because X
is cofinal in Pκκ+. Hence κ+ +1 ⊂ M . Since κ+ ∈ M ≺ H(χ), we have e ∈ M . Thus
we get the desired inclusion.

Toward the proof of the remaining case, we begin by quickly reviewing the basics
of PCF Theory. The full theory is developed in [6], from which the following results
in this section (possibly except Lemma 3) are taken. We refer the reader to [1] for an
excellent introduction to the theory.

For the rest of this section we assume further λ > κ+. Suppose that A is a
nonempty subset of [κ++, λ] ∩ Reg of size < κ. We call such a set small. Note that a
nonempty subset of a small set is small. Recall that

∏

A = {p : A → λ : ∀θ ∈ A(p(θ) < θ)}.

For p, q ∈
∏

A define

d(p, q) = {θ ∈ A : p(θ) < q(θ)}.

For U an ultrafilter on A define a linear ordering <U on
∏

A by:

p <U q iff d(p, q) ∈ U.

We denote the cofinality of (
∏

A, <U ) by cf(
∏

A, <U ). Define

pcf A = {cf(
∏

A, <U ) : U is an ultrafilter on A}.

We allow an ultrafilter to be principal. Hence A ⊂ pcf A. It follows from Conclusion
I 1.9 that pcf A has a maximum. Note that maxpcf A is a regular cardinal > κ+. We
stipulate pcf ∅ = ∅. Finally define an ideal JA on A by:

B ∈ JA iff max pcf B < max pcf A.

Note that the definitions and results in this section are valid even if A is finite, in
which case ultrafilters on A are all principal and hence pcf A = A.

Lemma 1 follows from Subfact II 3.4A (see also Lemmas I 1.5 and II 3.1).

Lemma 1. Suppose that A is a small set and µ = maxpcf A. Then there is a
scale on A, i.e. a sequence 〈fξ : ξ < µ〉 of functions in

∏

A that is
• increasing, i.e. if ζ < ξ < µ, then d(fζ , fξ) is in the dual filter of JA,
• cofinal, i.e. for every p ∈

∏

A there is ξ < µ such that d(p, fξ) = A, and
• continuous, i.e. for every ζ < µ of cofinality κ+ there is a club D ⊂ ζ such

that if C ⊂ D is club in ζ, then fζ(θ) = sup{fξ(θ) : ξ ∈ C} for every θ ∈ A.
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Lemma 2 is included in Theorem II 5.4 (see also Theorem II 3.6).

Lemma 2. Suppose that A is a small set. Then max pcf A ≤ cf(κ, λ).

Proof. Let µ = maxpcf A. Fix an ultrafilter U on A and a sequence f = 〈fξ :
ξ < µ〉 that is <U -increasing and <U -cofinal in

∏

A.
Assume to the contrary |X | < µ for some cofinal X ⊂ Pκλ. Then for each ξ < µ

there is x ∈ X that covers ran fξ ∈ Pκλ. Thus we get a contradiction if we find ξ < µ
such that for every x ∈ X

〈sup(x ∩ θ) : θ ∈ A〉 <U fξ.

Let x ∈ X . Then 〈sup(x ∩ θ) : θ ∈ A〉 ∈
∏

A because |x| < κ < θ ∈ Reg for every
θ ∈ A. Since f is <U -cofinal, there is ξx < µ such that 〈sup(x ∩ θ) : θ ∈ A〉 <U fξx

.
Set ξ = sup{ξx : x ∈ X}. Then ξ < µ by |X | < µ ∈ Reg. Since f is <U -increasing,
we get the desired inequality.

We denote the set {δ < κ+ : cf δ = ω} by Sω
κ+ . Shelah proved the following:

Lemma 3. Suppose that κ is regular uncountable. Then there is a club guessing
sequence on Sω

κ+ , i.e. a sequence 〈cδ : δ ∈ Sω
κ+〉 such that

• cδ is an unbounded subset of δ of ordertype ω and
• if E is club in κ+, then {δ ∈ Sω

κ+ : cδ ⊂ E} is stationary in κ+.

For a proof see e.g. [8]. In what follows we also invoke the proofs of Lemma II 3.4
and Observation IX 3.3A without further mention.

3. Strong Covering Theorem for Pκλ. This section is devoted to the proof
of Theorem 3 in the case λ > κ+.

Theorem 4. Suppose that κ is regular uncountable and λ is a cardinal > κ+.
Then a cofinal subset of Pκλ can be covered by some stationary set of the same size.

Proof. Fix a large enough regular cardinal χ. (It would suffice to take χ = (22λ

)+.)
We identify H(χ) with the structure having the membership relation ∈ and a well-
ordering ⊳ of H(χ) as binary relations, and λ as a constant. Then there is a map
ϕ : (λ + 1)<ω → λ + 1 such that

C(ϕ) ⊂ {N ∩ (λ + 1) : N ≺ H(χ)}.1

Suppose that X is cofinal in Pκλ. Note that Pκλ and κ can be defined from X in
H(χ) as

⋃

{P(x) : x ∈ X} and
⋃

{P(x) : x ∈ X} ∩ λ respectively. Take M∗ ≺ H(χ)
so that X ∪ {ϕ, X} ⊂ M∗ and |M∗| = |X |. It suffices to show the following:

Main Claim. M∗ ∩ Pκλ is stationary in Pκλ.

Proof. Fix g : λ<ω → λ. It suffices to find N∗ ≺ H(χ) such that |N∗| < κ,
N∗ ∩ κ ∈ κ, g ∈ N∗ and N∗ ∩ λ ∈ M∗.

By simultaneous recursion we construct
• Nγ ≺ H(χ) for γ < κ+, and
• N∗

a ≺ H(χ) for a ∈ [κ+]<ω

so that the following hold:
(1) |Nγ | = κ, Nγ ∩ κ+ ∈ κ+, {ϕ, X} ⊂ Nγ , Nγ ∪ {Nγ} ⊂ Nγ+1,

2

Nγ =
⋃

{Nα : α < γ} if γ is limit,

1As stated in §1 we can make use of a map ϕ : λ<ω → λ (at the cost of simplicity).
2The fourth condition of (1) is redundant but is included for convenience.
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(2) |N∗
a | < κ, N∗

a ∩ κ ∈ κ, a ∪ {ϕ, g} ⊂ N∗
a , N∗

a ∪ {Nγ} ⊂ N∗
a∪{γ} and

(3) 〈N∗
a : a ∈ [γ + 1]<ω〉 ∈ Nγ+1.

Set

N =
⋃

{Nγ : γ < κ+}.

Then N ≺ H(χ) and |N | = κ+ by (1). For each θ ∈ N ∩ [κ++, λ] ∩ Reg, define

h(θ) = sup(N ∩ θ).

Note that h(θ) < θ by |N | = κ+ < θ ∈ Reg. Take α < κ+ so that θ ∈ Nα. By (1)
the map 〈sup(Nγ ∩ θ) : γ ∈ [α, κ+)〉 is increasing, continuous and cofinal in h(θ). In
particular cf h(θ) = κ+. Similarly 〈Nγ ∩ κ+ : γ < κ+〉 is increasing, continuous and
cofinal in κ+.

Let e = 〈eη : η ≤ λ〉 be the ⊳-least sequence such that each eη is an increasing,
continuous and cofinal map from cf η to η. By the previous paragraph we have
eh(θ) : κ+ → h(θ) for every θ ∈ domh = N ∩ [κ++, λ] ∩ Reg. Define

E = {γ < κ+ : γ is limit ∧ Nγ ∩ κ+ = γ∧

∀α < γ∀θ ∈ Nα ∩ [κ++, λ] ∩ Reg(sup(Nγ ∩ θ) = eh(θ)(γ))}.

It is easy to see that E is club in κ+.
Let c = 〈cδ : δ ∈ Sω

κ+〉 be the ⊳-least club guessing sequence on Sω
κ+ in the sense

of Lemma 3. Take δ ∈ Sω
κ+ ∩ E so that cδ ⊂ E. Define

N∗ =
⋃

{N∗
a : a ∈ [cδ]

<ω}.

We claim that N∗ is as required above. By (2) we have N∗
a ⊂ N∗

b if a ⊂ b. Hence
{N∗

a : a ∈ [cδ]
<ω} is a directed set of elementary substructures of H(χ). Thus

N∗ ≺ H(χ). Since |[cδ]
<ω| = ω < κ, we have |N∗| < κ and N∗ ∩ κ ∈ κ by (2). Also

g ∈ N∗ by (2). It remains to show that N∗ ∩ λ ∈ M∗.
Define

M =
⋃

{Ma,n : a ∈ [cδ]
<ω ∧ n < ω},

where Ma,n ∈ Pκ(λ + 1) ∩ C(ϕ) is defined by recursion on n < ω:
• Ma,0 = clϕ((N∗ ∩ κ) ∪ a) and
• Ma,n+1 =

clϕ(Ma,n ∪ {eh(θ)(γ) : γ ∈ a ∧ θ ∈ domh ∩ Ma∩γ,n ∩ [κ++, λ] ∩ Reg}). 3

By definition Ma,n ⊂ Ma,n+1. By induction on n < ω we have Ma,n ⊂ Mb,n if a ⊂ b.
Hence {Ma,n : a ∈ [cδ]

<ω ∧ n < ω} is a directed subset of Pκ(λ + 1) ∩ C(ϕ). Thus
M ∈ Pκ(λ + 1) ∩ C(ϕ).

Claim 1. M = N∗ ∩ (λ + 1).

Proof. First we prove M ⊂ N∗. It suffices to show by induction on n < ω that
for every a ∈ [cδ]

<ω

Ma,n ⊂ N∗ ∩ Nmax a+1.
4

3The corresponding definition of My,δ,n+1 in [5] is problematic.
4The corresponding induction formula (A)(a) in [5] would not work.
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For n = 0, first note that ϕ ∈ N∗ ≺ H(χ) by (2), and that ϕ ∈ Nmax a+1 ≺ H(χ) by
(1). Hence N∗ and Nmax a+1 are closed under ϕ. By the definition of Ma,0 it suffices
to show that

N∗ ∩ κ ⊂ N∗ ∩ Nmaxa+1 and a ⊂ N∗ ∩ Nmax a+1.

For the former, note that for every γ < κ+

κ ⊂ Nγ

by κ ∈ Nγ ∩ κ+ ∈ κ+. For the latter, note that a ⊂ N∗
a ⊂ N∗ by (2) and a ∈ [cδ]

<ω,
and that max a+1 ∈ Nmaxa+1∩κ+ ∈ κ+ by (3). Hence a ⊂ max a+1 ⊂ Nmax a+1, as
desired. For the induction step, first recall that N∗ and Nmax a+1 are closed under ϕ.
By the definition of Ma,n+1 it suffices to show that if γ ∈ a and θ ∈ dom h∩Ma∩γ,n ∩
[κ++, λ] ∩ Reg, then

eh(θ)(γ) = sup(Nγ ∩ θ) ∈ N∗ ∩ Nmaxa+1.
5

For the equality, first note that Ma∩γ,n ⊂ Nmax(a∩γ)+1 by the induction hypothesis,
and that Nmax(a∩γ)+1 ⊂ Nγ by max(a ∩ γ) < γ. Hence θ ∈ Nγ . Note that γ is limit
by γ ∈ a ⊂ cδ ⊂ E. Hence θ ∈ Nα ∩ [κ++, λ] ∩ Reg for some α < γ by (1). Thus we
get the equality by γ ∈ E. For the membership, it suffices to show that

Nγ ∈ N∗ ∩ Nmaxa+1 and θ ∈ N∗ ∩ Nmax a+1.

For the former, note that Nγ ∈ N∗
{γ} ⊂ N∗ by (2) and γ ∈ cδ, and that Nγ ∈

Nγ+1 ⊂ Nmax a+1 by (1) and γ ≤ max a. For the latter, recall that θ ∈ Ma∩γ,n

and note that Ma∩γ,n ⊂ N∗ ∩ Nmax(a∩γ)+1 by the induction hypothesis, and that
Nmax(a∩γ)+1 ⊂ Nmax a+1 by max(a ∩ γ) < max a.

Next we claim that for every θ ∈ M ∩ Reg

sup(M ∩ θ) = sup(N∗ ∩ θ).

For θ ≤ κ, it suffices to show that

M ∩ κ ⊂ N∗ ∩ κ ⊂ M ∩ κ.

These follow from M ⊂ N∗ and N∗ ∩ κ ⊂ M∅,0 ⊂ M respectively. Next suppose
θ = κ+. Since sup cδ = δ, it suffices to show that

cδ ⊂ M ∩ κ+ ⊂ N∗ ∩ κ+ ⊂ Nδ ∩ κ+ = δ.

For the first inclusion, note that γ ∈ M{γ},0 ⊂ M for every γ ∈ cδ. The next two
follow from M ⊂ N∗ and

N∗ ⊂ Nδ

respectively. For the latter, it suffices to show that N∗
a ⊂ Nδ for every a ∈ [cδ]

<ω.
Recall from the previous paragraph that a ⊂ Nmaxa+1. Since a is finite, we have
a ∈ Nmax a+1. Hence N∗

a ∈ Nmaxa+1 ⊂ Nδ by (3) and maxa < δ. Recall that κ ⊂ Nδ.

5Here we make an appeal to the definition of Ma,n+1 and the new induction hypothesis.
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Since Nδ � |N∗
a | < κ, we have N∗

a ⊂ Nδ, as desired. The equality holds by δ ∈ E.
Finally suppose θ > κ+. It suffices to show that

sup(M ∩ θ) ≤ sup(N∗ ∩ θ) ≤ sup(Nδ ∩ θ) ≤ sup(M ∩ θ).

The first two inequalities follow from M ⊂ N∗ and N∗ ⊂ Nδ respectively. For the
last inequality, recall that θ ∈ M ∩Reg and M ⊂ λ+1. Hence θ ∈ M ∩ [κ++, λ]∩Reg.
Take a ∈ [cδ]

<ω and n < ω so that θ ∈ Ma,n. Since sup cδ = δ, we have sup(Nδ ∩
θ) = sup{sup(Nγ ∩ θ) : maxa < γ ∈ cδ} by (1). Hence it suffices to show that if
max a < γ ∈ cδ, then

sup(Nγ ∩ θ) = eh(θ)(γ) ∈ M.

For the equality, recall from the previous paragraph that Ma,n ⊂ Nmaxa+1 and note
that Nmaxa+1 ⊂ Nγ by maxa < γ. Hence θ ∈ Nγ . Note that γ is limit by γ ∈ cδ ⊂ E.
Hence θ ∈ Nα ∩ [κ++, λ] ∩ Reg for some α < γ. Thus we get the equality by γ ∈ E.
For the membership, since a ∪ {γ} ∈ [cδ]

<ω, it suffices to show that

eh(θ)(γ) ∈ Ma∪{γ},n+1.

Recall that θ ∈ Ma,n ∩ [κ++, λ] ∩ Reg and that Ma,n ⊂ M ⊂ N∗ ⊂ Nδ ⊂ N . Hence
θ ∈ N ∩ [κ++, λ] ∩ Reg = domh. Note that (a ∪ {γ}) ∩ γ = a by maxa < γ. Hence
θ ∈ M(a∪{γ})∩γ,n ∩ [κ++, λ] ∩ Reg. Thus we get the membership by the definition of
Ma∪{γ},n+1.

Finally we prove N∗ ∩ (λ + 1) ⊂ M . Assume to the contrary that there is
η ∈ N∗∩(λ+1)−M . Since M ∈ C(ϕ), there is M̄ ≺ H(χ) such that M = M̄∩(λ+1).
Then λ ∈ M̄ by M̄ ≺ H(χ). Since η ∈ (λ + 1) − M = (λ + 1) − M̄ , we have η < λ.
Hence we can define

η̄ = min(M̄ ∩ [η, λ]).

Then η̄ ∈ M̄ ∩ (λ + 1) = M ⊂ N∗. Since N∗ ≺ H(χ), we have λ ∈ N∗ and
hence e ∈ N∗. Thus eη̄ ∈ N∗. Note that η < η̄ by η 6∈ M̄ and η̄ ∈ M̄ . Since
N∗

� eη̄ : cf η̄ → η̄ is cofinal and η < η̄, there is ι ∈ N∗ ∩ cf η̄ such that η ≤ eη̄(ι).
Hence we get a contradiction to the minimality of η̄ if we find ῑ < cf η̄ such that

eη̄(ι) ≤ eη̄(ῑ) ∈ M̄.

Since η̄ ∈ M̄ ∩ (λ + 1), we have cf η̄ ∈ M̄ ∩ (λ + 1) ∩ Reg = M ∩ Reg. Hence
sup(M̄ ∩ cf η̄) = sup(M ∩ cf η̄) = sup(N∗ ∩ cf η̄) by the previous paragraph. Then
there is ῑ ∈ M̄ ∩ cf η̄ such that ι ≤ ῑ. Since eη̄ is increasing, we have eη̄(ι) ≤ eη̄(ῑ).
Since M̄ ≺ H(χ), we have e ∈ M̄ and hence eη̄(ῑ) ∈ M̄ by η̄, ῑ ∈ M̄ , as desired.
(Claim 1)

Claim 2. M ∈ M∗.

Proof. It suffices to show that all the parameters needed to define the sequence
〈Ma,n : a ∈ [cδ]

<ω∧n < ω〉 are in M∗. By definition ϕ ∈ M∗. Since X∪{X} ⊂ M∗ ≺
H(χ), we have |X | ⊂ M∗. Note that λ ≤ |X | because X is cofinal in Pκλ. Hence
λ ⊂ M∗. Thus N∗ ∩ κ and δ are in M∗. Since κ, λ ∈ M∗ ≺ H(χ), c and e are in M∗.
It remains to find A ⊂ domh = N ∩ [κ++, λ]∩Reg such that M ∩ [κ++, λ]∩Reg ⊂ A
and h|A ∈ M∗.
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Recall that κ+ ⊂ N . Since κ ∈ N ≺ H(χ), we have c ∈ N and hence cδ ∈ N by
δ ∈ N . Hence 〈N∗

a : a ∈ [cδ]
<ω〉 ∈ N by (3). Thus N∗ ∈ N . Note that X ∈ N by

(1). Since N � X is cofinal in Pκλ and N∗ ∩ λ ∈ Pκλ, there is x ∈ N ∩ X such that
N∗ ∩ λ ⊂ x. Define

A = (x ∪ {λ}) ∩ [κ++, λ] ∩ Reg .

We claim that A is as required above. Since N � x ∈ X ⊂ Pκλ and κ ⊂ N ,
we have x ⊂ N . Hence A ⊂ N ∩ [κ++, λ] ∩ Reg. Since N∗ ∩ λ ⊂ x, we have
M = N∗ ∩ (λ + 1) ⊂ x ∪ {λ} by Claim 1. Hence M ∩ [κ++, λ] ∩ Reg ⊂ A. It remains
to show that h|A ∈ M∗.

Note that A is small in the sense of §2 by x ∈ Pκλ and κ++ ∈ A. Since x ∈ X ⊂
M∗ and x ∈ N , we have A ∈ M∗ ∩ N .

By simultaneous recursion that terminates after finite steps, we construct
• Ai ∈ M∗ ∩ N and
• fi ∈ M∗ ∩

∏

Ai

so that the following hold for some l < ω:
• A0 = A,
• Ai+1 ⊂ Ai for every i ≤ l,
• h and fi agree on Ai − Ai+1 for every i ≤ l, and
• Al+1 = ∅.

Suppose that the recursion terminates as above. Then fi|(Ai −Ai+1) ∈ M∗ for every
i ≤ l. Hence we have h|A =

⋃

{fi|(Ai − Ai+1) : i ≤ l} ∈ M∗, as desired.
Now we describe the recursion. Suppose that Ai ⊂ A is defined and Ai ∈ M∗∩N .

If Ai = ∅, then the recursion terminates. Suppose next Ai 6= ∅. Then Ai is small.
We define fi ∈ M∗ ∩

∏

Ai and Ai+1 ∈ M∗ ∩ N so that Ai+1 ⊂ Ai and that h and fi

agree on Ai − Ai+1.
First set

µi = maxpcf Ai.

Let f i = 〈f i
ξ : ξ < µi〉 be the ⊳-least scale on Ai in the sense of Lemma 1. Then µi and

f i are in M∗∩N by Ai ∈ M∗∩N . Note that sup(N∩µi) < µi by |N | = κ+ < µi ∈ Reg.
Define

fi = f i
sup(N∩µi)

.

Then fi ∈
∏

Ai. Since Ai is small and X is cofinal in Pκλ, we have µi ≤ |X | by
Lemma 2. Recall that |X | ⊂ M∗. Hence sup(N ∩ µi) ∈ M∗ by sup(N ∩ µi) < µi.
Since f i ∈ M∗, we have fi ∈ M∗.

Next we give a club C∗ ⊂ κ+ such that for every θ ∈ Ai

fi(θ) = sup{f i
sup(Nγ∩µi)

(θ) : γ ∈ C∗} ≤ h(θ).

Since Ai ∈ N , there is αi < κ+ such that Ai ∈ Nαi
. Then µi ∈ Nαi

. Hence by
(1) the map 〈sup(Nγ ∩ µi) : γ ∈ [αi, κ

+)〉 is increasing, continuous and cofinal in
sup(N ∩µi). In particular cf sup(N ∩µi) = κ+. Since f i is continuous in

∏

Ai, there
is a club D ⊂ sup(N ∩ µi) such that if C ⊂ D is club in sup(N ∩ µi), then fi(θ) =
f i
sup(N∩µi)

(θ) = sup{f i
ξ(θ) : ξ ∈ C} for every θ ∈ Ai. Take a club C∗ ⊂ [αi, κ

+) so

that {sup(Nγ ∩ µi) : γ ∈ C∗} ⊂ D. We claim that C∗ is as required above. For the
equality, note that {sup(Nγ ∩µi) : γ ∈ C∗} is club in sup(N ∩µi). For the inequality,
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recall that h(θ) = sup(N ∩ θ). Hence it suffices to show that if θ ∈ Ai and γ < κ+,
then

f i
sup(Nγ∩µi)

(θ) ∈ N.

Recall that Ai ∈ N and κ ⊂ N . Since N � |Ai| < κ, we have θ ∈ Ai ⊂ N . Recall
that f i and µi are in N , and note that Nγ ∈ Nγ+1 ⊂ N by (1). Thus we get the
membership.

Toward the definition of Ai+1, set

di = d(fi, h|Ai)

= {θ ∈ Ai : fi(θ) < h(θ)}.

Recall from the previous paragraph that fi(θ) ≤ h(θ) for every θ ∈ Ai. Hence h and
fi agree on Ai − di. If di = ∅, then we set Ai+1 = ∅. Clearly h and fi agree on
Ai − Ai+1. Suppose next di 6= ∅. We give βi ∈ [αi, κ

+) and ξi ∈ Nβi+1 ∩ µi so that
for every θ ∈ di

fi(θ) < sup(Nβi
∩ θ) < f i

ξi
(θ).

Recall that Ai ∈ Nαi
and κ ⊂ Nαi

. Since Nαi
� |Ai| < κ, we have Ai ⊂ Nαi

. Hence by
(1) the map 〈sup(Nγ ∩θ) : γ ∈ [αi, κ

+)〉 is increasing and cofinal in sup(N ∩θ) = h(θ)
for every θ ∈ Ai. Note that |di| < κ by di ⊂ Ai ⊂ A. Hence by the definition
of di there is βi ∈ [αi, κ

+) such that the first inequality holds for every θ ∈ di.
For the second inequality, note that Ai ∈ Nαi

⊂ Nβi+1. Hence f i ∈ Nβi+1 and
〈sup(Nβi

∩ θ) : θ ∈ Ai〉 ∈ Nβi+1 by (1). Since Nβi+1 � f i is cofinal in
∏

Ai and
〈sup(Nβi

∩ θ) : θ ∈ Ai〉 ∈
∏

Ai, there is ξi ∈ Nβi+1 ∩ µi such that the second
inequality holds for every θ ∈ Ai.

Since C∗ is club in κ+, there is γi ∈ C∗ such that βi < γi. Define

Ai+1 = d(f i
sup(Nγi

∩µi)
, f i

ξi
)

= {θ ∈ Ai : f i
sup(Nγi

∩µi)
(θ) < f i

ξi
(θ)}.

We claim that Ai+1 is as required above. By definition Ai+1 ⊂ Ai. Next we prove
that Ai+1 ∈ M∗ ∩ N . Since f i ∈ M∗ ∩ N , it suffices to show that

{ξi, sup(Nγi
∩ µi)} ⊂ M∗ and {ξi, sup(Nγi

∩ µi)} ⊂ N.

For the former, recall that ξi and sup(Nγi
∩µi) are less than µi, and that µi ≤ |X | and

|X | ⊂ M∗. For the latter, recall that ξi ∈ Nβi+1 ⊂ N and note that Nγi
∈ Nγi+1 ⊂ N

by (1), and that µi ∈ N . It remains to show that h and fi agree on Ai −Ai+1. Since
they agree on Ai − di, it suffices to show that di ⊂ Ai+1. We claim that for every
θ ∈ di

f i
sup(Nγi

∩µi)
(θ) ≤ fi(θ) < f i

ξi
(θ).

The first inequality follows from γi ∈ C∗ and fi(θ) = sup{f i
sup(Nγ∩µi)

(θ) : γ ∈ C∗}.

The second inequality holds by the choice of ξi. This completes the description of the
recursion.

It remains to prove that Al+1 = ∅ for some l < ω. Assume to the contrary that
Ai 6= ∅ for every i < ω. Recall that ξi ∈ Nβi+1 ∩ µi and βi < γi. Hence ξi <
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sup(Nβi+1 ∩µi) ≤ sup(Nγi
∩µi). Since f i is increasing in

∏

Ai, d(f i
ξi

, f i
sup(Nγi

∩µi)
) is

in the dual filter of JAi . Hence Ai+1 = d(f i
sup(Nγi

∩µi)
, f i

ξi
) ∈ JAi , i.e. maxpcf Ai+1 <

maxpcf Ai. This is the desired contradiction. (Claim 2)

By Claims 1 and 2 we have N∗ ∩ λ = M ∩ λ ∈ M∗, as desired. (Main Claim)

This completes the proof.

4. A direct proof of Theorem 2. This section presents a direct proof of
Theorem 2 in the case λ > κ+.

Theorem 5. Suppose that κ is regular uncountable and λ is a cardinal > κ+.
Then scf(κ, λ) = cf(κ, λ).

Proof. For each η ≤ λ fix an increasing, continuous and cofinal map eη : cf η → η.
Take ϕ : λ<ω → λ so that if z ∈ C(ϕ), then eη“(z ∩ cf η) is an unbounded subset of
z ∩ η for every η ∈ z ∪ {λ}. For z ⊂ λ set

A(z) = {cf η : η ∈ z ∪ {λ}} ∩ [κ++, λ].

Note that if x ∈ Pκλ and A(x) 6= ∅, then A(x) is small in the sense of §2.
Suppose that X is cofinal in Pκλ. We can assume that A(x) 6= ∅ for every x ∈ X .

For each small set A fix a scale fA = 〈fA
ξ : ξ < max pcf A〉 on A in the sense of

Lemma 1. For each x ∈ X let T (x) be the set of all finite sequences of small sets
〈Ai : i ≤ l〉 such that

• l < ω,
• A0 = A(x) and
• for every i < l there are ζ < ξ < maxpcf Ai such that Ai+1 = d(fAi

ξ , fAi

ζ ).
By Lemma 2 we have max pcf Ai ≤ |X | for every i ≤ l. Hence |T (x)| ≤ |X |.

For each x ∈ X let F (x) be the set of all functions of the form

⋃

{fAi

ξi
|(Ai − Ai+1) : i ≤ l},

where
• 〈Ai : i ≤ l〉 ∈ T (x),
• Al+1 = ∅ and
• ξi < maxpcf Ai for every i ≤ l.

Note that F (x) ⊂
∏

A(x). By the previous paragraph |F (x)| ≤ |X |.
Fix a club guessing sequence 〈cδ : δ ∈ Sω

κ+〉 on Sω
κ+ in the sense of Lemma 3.

Suppose that δ ∈ Sω
κ+ , ε < κ and h ∈ F (x) for some x ∈ X . Define

w(δ, ε, h) =
⋃

{wa,n : a ∈ [cδ]
<ω ∧ n < ω},

where wa,n ∈ Pκλ ∩ C(ϕ) is defined by recursion on n < ω:
• wa,0 = clϕ(ε ∪ a) and
• wa,n+1 = clϕ(wa,n∪{eh(θ)(γ) : γ ∈ a∧θ ∈ A(x)∩A(wa∩γ,n)∧cf h(θ) = κ+}).

By definition wa,n ⊂ wa,n+1. By induction on n < ω we have wa,n ⊂ wb,n if a ⊂ b.
Hence {wa,n : a ∈ [cδ]

<ω∧n < ω} is a directed subset of Pκλ∩C(ϕ). Thus w(δ, ε, h) ∈
Pκλ ∩ C(ϕ). Define

S = {w(δ, ε, h) : δ ∈ Sω
κ+ ∧ ε < κ ∧ h ∈

⋃

{F (x) : x ∈ X}}.
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By the previous paragraph |S| ≤ |X |. It suffices to show the following:

Main Claim. S is stationary in Pκλ.

Proof. Fix g : λ<ω → λ. It suffices to find z∗ ∈ S ∩ C(g) such that z∗ ∩ κ ∈ κ.
We can assume that if z ∈ C(g), then z ∈ C(ϕ) and z is closed under successors.

By simultaneous recursion we construct
• zγ ∈ C(g) for γ < κ+,
• z∗a ∈ C(g) for a ∈ [κ+]<ω,
• xδ ∈ X for δ ∈ Sω

κ+ , and
• ξ(A, γ) < max pcf A for A a small set and γ < κ+

so that the following hold:
(1) |zγ | = κ, κ ∈ zγ ∩ κ+ ∈ zγ+1 ∩ κ+, zγ ∪ {sup(zγ ∩ θ) : θ ∈ A(zγ)} ⊂ zγ+1,

zγ =
⋃

{zα : α < γ} if γ is limit,
(2) |z∗a| < κ, z∗a ∩ κ ∈ κ, a ⊂ z∗a, z∗a ∪ {sup(zγ ∩ θ) : θ ∈ A(z∗a)} ⊂ z∗a∪{γ},

(3) z∗a ⊂ zmax a+1,
(4)

⋃

{z∗a : a ∈ [cδ]
<ω} ⊂ xδ ⊂ zδ+1 if δ ∈ Sω

κ+ ,
(5) ξ(A, γ) < ξ(A, γ + 1), ξ(A, γ) = sup{ξ(A, α) : α < γ} if γ is limit, and

sup(zγ ∩ θ) < fA
ξ(A,γ+1)(θ) for every θ ∈ A.

(We can require (4) because X is cofinal in Pκλ and
⋃

{z∗a : a ∈ [cδ]
<ω} ∈ Pκλ, and

(5) because fA is cofinal in
∏

A and 〈sup(zγ ∩ θ) : θ ∈ A〉 ∈
∏

A.) We need one
further requirement. For δ ∈ Sω

κ+ and γ < κ+ let T δ
γ be the set of all finite sequences

of small sets 〈Ai : i ≤ l〉 such that
• l < ω,
• A0 = A(xδ) and
• for every i < l there are α < β < γ such that Ai+1 = d(fAi

ξ(Ai,β), f
Ai

ξ(Ai,α)).

Note that T δ
γ is a subset of T (xδ) of size ≤ κ. By definition T δ

β ⊂ T δ
γ if β < γ. Finally

we require that

(6) if j < ω, δ ∈ Sω
κ+ ∩ γ and 〈Ai : i ≤ j〉 ∈ T δ

γ , then ran f
Aj

ξ(Aj ,γ) ⊂ zγ+1.

For each θ ∈
⋃

{A(zγ) : γ < κ+}, define

h(θ) = sup{sup(zγ ∩ θ) : γ < κ+}.

Note that h(θ) < θ by |zγ | < κ+ < θ ∈ Reg. Take α < κ+ so that θ ∈ A(zα). Note
that zγ is closed under successors by zγ ∈ C(g). Hence 〈sup(zγ ∩ θ) : γ ∈ [α, κ+)〉
is increasing, continuous and cofinal in h(θ) by (1). In particular cf h(θ) = κ+ and
eh(θ) : κ+ → h(θ). Similarly 〈zγ ∩ κ+ : γ < κ+〉 is increasing, continuous and cofinal
in κ+. Define

E = {γ < κ+ : γ is limit ∧ zγ ∩ κ+ = γ ∧ ∀α < γ∀θ ∈ A(zα)(sup(zγ ∩ θ) = eh(θ)(γ))}.

It is easy to see that E is club in κ+.
Take δ ∈ Sω

κ+ ∩ E so that cδ ⊂ E. Define

z∗ =
⋃

{z∗a : a ∈ [cδ]
<ω}.

We claim that z∗ is as required above. By (2) we have z∗a ⊂ z∗b if a ⊂ b. Hence
{z∗a : a ∈ [cδ]

<ω} is a directed subset of C(g). Thus z∗ ∈ C(g). Set

ε = z∗ ∩ κ.
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Since |[cδ]
<ω| = ω < κ, we have ε < κ by (2). It remains to show that z∗ ∈ S. Set

w = w(δ, ε, h|A(xδ)).

Note that z∗ ⊂ xδ ⊂ zδ+1 by (4). Hence A(xδ) ⊂
⋃

{A(zγ) : γ < κ+} = domh. Thus
dom(h|A(xδ)) = A(xδ) and cf h(θ) = κ+ for every θ ∈ A(xδ).

Claim 1. w = z∗.

Proof. First we prove w ⊂ z∗. It suffices to show by induction on n < ω that for
every a ∈ [cδ]

<ω

wa,n ⊂ z∗ ∩ zmax a+1.

For n = 0, first note that z∗ ∩ zmax a+1 ∈ C(g) ⊂ C(ϕ). By the definition of wa,0 it
suffices to show that

ε ⊂ z∗ ∩ zmax a+1 and a ⊂ z∗ ∩ zmax a+1.

For the former, recall that ε = z∗ ∩ κ and note that κ ⊂ zmaxa+1 by (1). For the
latter, note that a ⊂ z∗a by (2), and that z∗a ⊂ z∗∩zmaxa+1 by a ∈ [cδ]

<ω and (3). For
the induction step, first recall that z∗ ∩ zmaxa+1 ∈ C(ϕ). By the definition of wa,n+1

it suffices to show that if γ ∈ a and θ ∈ A(xδ) ∩ A(wa∩γ,n), then

eh(θ)(γ) = sup(zγ ∩ θ) ∈ z∗ ∩ zmaxa+1.

For the equality, first note that wa∩γ,n ⊂ zmax(a∩γ)+1 by the induction hypothesis
and that zmax(a∩γ)+1 ⊂ zγ by max(a ∩ γ) < γ. Hence θ ∈ A(zγ) by θ ∈ A(wa∩γ,n).
Note that γ is limit by γ ∈ a ⊂ cδ ⊂ E. Hence θ ∈ A(zα) for some α < γ by (1).
Thus we get the equality by γ ∈ E. For the membership, first note that wa∩γ,n ⊂ z∗

by the induction hypothesis. Hence θ ∈ A(z∗) by θ ∈ A(wa∩γ,n). Take b ∈ [cδ]
<ω so

that θ ∈ A(z∗b ). Since b ∪ {γ} ∈ [cδ]
<ω and γ ≤ max a, it suffices to show that

sup(zγ ∩ θ) ∈ z∗b∪{γ} and sup(zγ ∩ θ) ∈ zγ+1.

The former follows from θ ∈ A(z∗b ) and (2), and the latter from θ ∈ A(zγ) and (1).
Next we claim that for every θ ∈ {cf η : η ∈ w ∪ {λ}}

sup(w ∩ θ) = sup(z∗ ∩ θ).

For θ ≤ κ, it suffices to show that

w ∩ κ ⊂ z∗ ∩ κ ⊂ w ∩ κ.

These follow from w ⊂ z∗ and z∗ ∩ κ = ε ⊂ w∅,0 ⊂ w respectively. Next suppose
θ = κ+. Since sup cδ = δ, it suffices to show that

cδ ⊂ w ∩ κ+ ⊂ z∗ ∩ κ+ ⊂ zδ ∩ κ+ = δ.

For the first inclusion, note that γ ∈ w{γ},0 ⊂ w for every γ ∈ cδ. The next two follow
from w ⊂ z∗ and

z∗ ⊂ zδ
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respectively. For the latter, note that z∗a ⊂ zmaxa+1 ⊂ zδ for every a ∈ [cδ]
<ω by (3).

The equality holds by δ ∈ E. Finally suppose θ > κ+. It suffices to show that

sup(w ∩ θ) ≤ sup(z∗ ∩ θ) ≤ sup(zδ ∩ θ) ≤ sup(w ∩ θ).

The first two inequalities follow from w ⊂ z∗ and z∗ ⊂ zδ respectively. For the last
inequality, first note that θ ∈ {cf η : η ∈ w ∪ {λ}} ∩ [κ++, λ] = A(w). Take a ∈ [cδ]

<ω

and n < ω so that θ ∈ A(wa,n). Since sup cδ = δ, we have sup(zδ ∩ θ) = sup{sup(zγ ∩
θ) : maxa < γ ∈ cδ} by (1). Hence it suffices to show that if maxa < γ ∈ cδ, then

sup(zγ ∩ θ) = eh(θ)(γ) ∈ w.

For the equality, recall from the previous paragraph that wa,n ⊂ zmaxa+1 and note
that zmax a+1 ⊂ zγ by maxa < γ. Hence θ ∈ A(zγ) by θ ∈ A(wa,n). Note that γ
is limit by γ ∈ cδ ⊂ E. Hence θ ∈ A(zα) for some α < γ by (1). Thus we get the
equality by γ ∈ E. For the membership, since a ∪ {γ} ∈ [cδ]

<ω, it suffices to show
that

eh(θ)(γ) ∈ wa∪{γ},n+1.

Recall that θ ∈ A(wa,n) and that wa,n ⊂ w ⊂ z∗ ⊂ xδ. Hence θ ∈ A(xδ) and
cf h(θ) = κ+. Note that a = (a ∪ {γ}) ∩ γ by maxa < γ. Hence θ ∈ A(w(a∪{γ})∩γ,n).
Thus we get the membership by the definition of wa∪{γ},n+1.

Finally we prove z∗ ⊂ w. Assume to the contrary that there is η ∈ z∗ −w. Then
η < λ by z∗ ⊂ λ. Hence we can define

η̄ = min((w ∪ {λ}) − η).

Note that η ∈ λ − w and η̄ ∈ w ∪ {λ}. Hence η < η̄ by η ≤ η̄, and η̄ ∈ z∗ ∪ {λ} by
w ⊂ z∗. Since z∗ ∈ C(g) ⊂ C(ϕ), eη̄“(z∗ ∩ cf η̄) is unbounded in z∗ ∩ η̄ by the choice
of ϕ. Hence there is ι ∈ z∗ ∩ cf η̄ such that η ≤ eη̄(ι). Thus we get a contradiction to
the minimality of η̄ if we find ῑ < cf η̄ such that

eη̄(ι) ≤ eη̄(ῑ) ∈ w.

Since η̄ ∈ w ∪ {λ}, we have sup(w ∩ cf η̄) = sup(z∗ ∩ cf η̄) by the previous paragraph.
Hence there is ῑ ∈ w∩cf η̄ such that ι ≤ ῑ. Since eη̄ is increasing, we have eη̄(ι) ≤ eη̄(ῑ).
Recall that w ∈ C(ϕ) and that η̄ ∈ w ∪ {λ} and ῑ ∈ w ∩ cf η̄. Hence eη̄(ῑ) ∈ w, as
desired. (Claim 1)

Claim 2. w ∈ S.

Proof. Recall that w = w(δ, ε, h|A(xδ)). It suffices to show that h|A(xδ) ∈ F (xδ).
By simultaneous recursion that terminates after finite steps, we construct
• Aj ⊂ A(xδ) and
• ξj < maxpcf Aj

so that the following hold for some l < ω:

• A0 = A(xδ),
• for every j ≤ l there is γ < κ+ such that 〈Ai : i ≤ j〉 ∈ T δ

γ ,

• h and f
Aj

ξj
agree on Aj − Aj+1 for every j ≤ l, and

• Al+1 = ∅.
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Suppose that the recursion terminates as above. Recall that T δ
γ ⊂ T (xδ) for every

γ < κ+. Hence 〈Ai : i ≤ l〉 ∈ T (xδ). Thus h|A(xδ) =
⋃

{fAi

ξi
|(Ai − Ai+1) : i ≤ l} ∈

F (xδ), as desired.
Now we describe the recursion. Suppose that 〈Ai : i ≤ j〉 is defined. If Aj = ∅,

then the recursion terminates. Suppose next Aj 6= ∅. By the induction hypothesis
there is αj ∈ (δ, κ+) such that 〈Ai : i ≤ j〉 ∈ T δ

αj
. Define

ξj = sup{ξ(Aj , γ) : γ < κ+}.

Then ξj < maxpcf Aj by κ+ < maxpcf Aj ∈ Reg. We define Aj+1 ⊂ Aj so that h

and f
Aj

ξj
agree on Aj −Aj+1 and that if Aj+1 6= ∅, then 〈Ai : i ≤ j +1〉 ∈ T δ

γ for some

γ < κ+.
First we give a club C∗ ⊂ κ+ such that for every θ ∈ Aj

f
Aj

ξj
(θ) = sup{f

Aj

ξ(Aj,γ)(θ) : γ ∈ C∗} ≤ h(θ).

By (5) the map 〈ξ(Aj , γ) : γ < κ+〉 is increasing, continuous and cofinal in
sup{ξ(Aj , γ) : γ < κ+} = ξj . In particular cf ξj = κ+. Since fAj is contin-
uous in

∏

Aj , there is a club D ⊂ ξj such that if C ⊂ D is club in ξj , then

f
Aj

ξj
(θ) = sup{f

Aj

ξ (θ) : ξ ∈ C} for every θ ∈ Aj . Take a club C∗ ⊂ [αj , κ
+) so

that {ξ(Aj , γ) : γ ∈ C∗} ⊂ D. We claim that C∗ is as required above. For the
equality, note that {ξ(Aj , γ) : γ ∈ C∗} is club in ξj . For the inequality, recall that
h(θ) = sup{sup(zγ∩θ) : γ < κ+}. Hence it suffices to show that if θ ∈ Aj and γ ∈ C∗,
then

f
Aj

ξ(Aj,γ)(θ) ∈ zγ+1.

Recall that 〈Ai : i ≤ j〉 ∈ T δ
αj

and note that αj ≤ γ by C∗ ⊂ [αj , κ
+). Hence

〈Ai : i ≤ j〉 ∈ T δ
γ . Note that δ < γ by δ < αj . Thus we get the membership by (6).

Toward the definition of Aj+1, set

dj = d(f
Aj

ξj
, h|Aj)

= {θ ∈ Aj : f
Aj

ξj
(θ) < h(θ)}.

Recall from the previous paragraph that f
Aj

ξj
(θ) ≤ h(θ) for every θ ∈ Aj . Hence h

and f
Aj

ξj
agree on Aj − dj . If dj = ∅, then we set Aj+1 = ∅. Clearly h and f

Aj

ξj
agree

on Aj − Aj+1. Suppose next dj 6= ∅. We give βj ∈ [αj , κ
+) so that for every θ ∈ dj

f
Aj

ξj
(θ) < sup(zβj

∩ θ) < f
Aj

ξ(Aj ,βj+1)(θ).

Recall that dj ⊂ Aj ⊂ A0 = A(xδ) ⊂ A(zδ+1) and that δ < αj . Hence dj ⊂ A(zαj
).

Thus by (1) the map 〈sup(zγ ∩ θ) : γ ∈ [αj , κ
+)〉 is increasing and cofinal in h(θ)

for every θ ∈ dj . Note that |dj | < κ by dj ⊂ A(xδ). Hence by the definition of dj

there is βj ∈ [αj , κ
+) such that the first inequality holds for every θ ∈ dj . The second

inequality holds by (5).
Since C∗ is club in κ+, there is γj ∈ C∗ such that βj + 1 < γj . Define

Aj+1 = d(f
Aj

ξ(Aj ,γj)
, f

Aj

ξ(Aj,βj+1))

= {θ ∈ Aj : f
Aj

ξ(Aj,γj)
(θ) < f

Aj

ξ(Aj ,βj+1)(θ)}.
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We claim that Aj+1 is as required above. By definition Aj+1 ⊂ Aj . Next we show

that f
Aj

ξj
and h agree on Aj − Aj+1. Since they agree on Aj − dj , it suffices to show

that dj ⊂ Aj+1. We claim that for every θ ∈ dj

f
Aj

ξ(Aj ,γj)
(θ) ≤ f

Aj

ξj
(θ) < f

Aj

ξ(Aj,βj+1)(θ).

The first inequality follows from γj ∈ C∗ and f
Aj

ξj
(θ) = sup{f

Aj

ξ(Aj,γ)(θ) : γ ∈ C∗}.

The second inequality holds by the choice of βj . Since ∅ 6= dj ⊂ Aj+1, it remains to
give γ < κ+ such that

〈Ai : i ≤ j + 1〉 ∈ T δ
γ .

Recall that 〈Ai : i ≤ j〉 ∈ T δ
αj

and that αj < βj + 1 < γj . Hence 〈Ai : i ≤ j〉 ∈ T δ
γj

.

Thus we have 〈Ai : i ≤ j + 1〉 = 〈Ai : i ≤ j〉 ∗ 〈d(f
Aj

ξ(Aj ,γj)
, f

Aj

ξ(Aj ,βj+1))〉 ∈ T δ
γj

, as

desired. This completes the description of the recursion.
It remains to prove that Al+1 = ∅ for some l < ω. Assume to the contrary that

Aj 6= ∅ for every j < ω. Note that ξ(Aj , βj + 1) < ξ(Aj , γj) by βj + 1 < γj . Since

fAj is increasing in
∏

Aj , d(f
Aj

ξ(Aj ,βj+1), f
Aj

ξ(Aj,γj)
) is in the dual filter of JAj . Hence

Aj+1 = d(f
Aj

ξ(Aj ,γj)
, f

Aj

ξ(Aj,βj+1)) ∈ JAj , i.e. maxpcf Aj+1 < maxpcf Aj . This is the

desired contradiction. (Claim 2)

By Claims 1 and 2 we have z∗ = w ∈ S, as desired. (Main Claim)

This completes the proof.
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