A NOTE ON COMPLEX MONGE-AMPÈRE EQUATION IN STEIN MANIFOLDS*

ALIREZA BAHRAINI ${ }^{\dagger}$

Abstract

We study in this note the Dirichlet problem for complex Monge-Ampère equation in compact Stein manifolds with boundary. As far as we know among the global results for MongeAmpère equations, compact manifolds with boundary have been less discussed.

Key words. Monge-Ampère equation, Stein manifold, Continuity method, Pluri-subharmonic functions

AMS subject classifications. 58J32, 35J25

Introduction. We begin this note with a very brief review on some of the aspects of Monge-Ampère equation which have been motivating for the present work. Complex Monge-Ampère equation and its applications have been the subject of extensive studies by several mathematicians since more than 3 decades ago. Thirty years ago S.T.Yau solved complex Monge-Ampère equation on a compact Kähler manifold to prove a conjecture of Calabi:

Theorem 1. ([15]) Let X be a compact connected Kähler manifold of complex dimension n, equipped with a Kähler form ω. If μ is a smooth volume form satisfying $\mu(X)=\int_{X} \omega^{n}$, then there exists a unique (upto a constant) $\phi \in C^{\infty}(X)$ such that:

$$
\begin{equation*}
(\omega+\sqrt{-1} \partial \bar{\partial} \phi)^{n}=\mu \tag{1}
\end{equation*}
$$

Since then different variants of the equation for compact or non-compact manifolds have been studied (see [4] [9][13] for example). The solutions of this equation provide us with examples of hyper-Kähler manifolds. In complex dimension $\mathrm{n}=2$ the moduli of Hodge structures on K3 surfaces can be characterized locally as well as globally using hyper-Kähler metrics [7] [14]. As a result special Lagrangian submanifolds of $K 3$ surfaces and their properties are much better known and studied. In the category of super-manifolds, an important class of super-symmetric geometries are constructed by the aid of Ricci-flat metrics. This leads to a re-interpretation of special-Lagrangian sub-manifolds in complex dimension 3 and through the works of physicists as bosonic part of super-symmetric objects ([2]).

The problem of studying special Lagrangian representatives for duals of cohomology classes in certain Stein surfaces [2][10] led us to the study of complex MongeAmpère equations in compact Stein manifolds with boundary and to prove the following theorem which seems to be missing in the current literature :

Theorem 2. Let X be a compact Stein manifold with boundary, ω a (1,1)-Kähler form on X, f a real smooth function in X and ϕ a real smooth function defined only in ∂X. Then there is a unique smooth function u on X such that $\omega+\sqrt{-1} \partial \bar{\partial} u>0$ and

[^0]\[

$$
\begin{align*}
(\omega+\sqrt{-1} \partial \bar{\partial} u)^{n} & =e^{f} \omega^{n} \tag{2}\\
\left.u\right|_{\partial X} & =\phi
\end{align*}
$$
\]

Proof of Theorem 2. In order to prove this theorem we follow the method of Caffarelli, Kohn, Nirenberg and Spruck as in [3] and we find an estimate of the norm $C^{2+\alpha}$ of u for $0<\alpha<1$:

$$
|u|_{\alpha+2} \leq K
$$

It turns out that for estimates of order 0,1 and $2+\alpha$, some global difficulties arise and the method of Caffarelli et al. needs some modifications.

Estimate of order zero. To show that $|u|_{0}<C$ we need the following lemma:
Lemma 1. Let u and v be two functions in X fulfilling:

$$
\frac{(\omega+\sqrt{-1} \partial \bar{\partial} u)^{n}}{\omega^{n}} \geq \frac{(\omega+\sqrt{-1} \partial \bar{\partial} v)^{n}}{\omega^{n}}
$$

and

$$
u \leq v \text { on } \partial X
$$

then $u \leq v$ in \bar{X}.
Proof. In local coordinates we can write

$$
\begin{aligned}
\operatorname{det}\left(g_{i \bar{j}}+u_{i \bar{j}}\right)-\operatorname{det}\left(g_{i \bar{j}}+v_{i \bar{j}}\right) & =\int_{0}^{1} \frac{d}{d t} \operatorname{det}\left(t\left(g_{i \bar{j}}+u_{i \bar{j}}\right)+(1-t)\left(g_{i \bar{j}}+v_{i \bar{j}}\right) d t\right. \\
& =\sum\left(\int_{0}^{1} B^{i \bar{j}}(t) d t\right)(u-v)_{i \bar{j}} \geq 0 .
\end{aligned}
$$

$B^{i \bar{j}}(t)$ are the co-factors of the matrix $\left(t u_{i \bar{j}}+(1-t) v_{i \bar{j}}+g_{i \bar{j}}\right)$ which constitute themeselves a positive definite matrix. So according to the maximum principle $(v-u)$ attains its maximum on ∂X and the desired result follows.
Now let ϕ_{0} be a pluri-subharmonic function in X such that:

$$
\begin{aligned}
\frac{\left(\omega+\sqrt{-1} \partial \bar{\partial} \phi_{0}\right)^{n}}{\omega^{n}} \geq e^{f} & =\frac{(\omega+\sqrt{-1} \partial \bar{\partial} u)^{n}}{\omega^{n}} \\
\left.\phi_{0}\right|_{\partial X} & =\phi
\end{aligned}
$$

To show the existence of ϕ_{0} we take two strictly pluri-subharmonic functions ϕ_{1} and ϕ_{2} such that $\left.\phi_{1}\right|_{\partial X}=0$ and $\left.\phi_{2}\right|_{\partial X}=\phi$ and we set $\phi_{0}=\lambda \phi_{1}+\phi_{2}$. It's clear that for $\lambda \in \mathbf{R}$ sufficiently large ϕ_{0} satisfies the above inequality. Now according to lemma $1, u \geq \phi_{0}$ and we obtain a lower bound for u. On the other hand if we calculate the trace of ($\omega+\sqrt{-1} \partial \bar{\partial} u$) with respect to ω we find $n+\Delta_{\omega} u \geq 0$. So according to the maximum principle we obtain an upper bound for u.

First order estimates. We would like to show the existence of a bound for norm 1:

$$
\begin{equation*}
|u|_{1}<C \tag{3}
\end{equation*}
$$

Let F be the application defined by

$$
F(u)=\log \frac{(\omega+\sqrt{-1} \partial \bar{\partial} u)^{n}}{\omega^{n}}-f
$$

We take a unit tangent vector ξ in a given point of X. Let D be a vector field extending ξ which can be described in an open dense holomorphic coordinate subset U of X as a vector field with constant coefficients. Such a field exists: it suffices to imbed X properly in some \mathbb{C}^{N} and then to project over a generic vector sub-space of dimension n. Let h be a potential of the metric ω in some local coordinates near a point $x \in U$. We have:

$$
\begin{equation*}
F(u)=\log \operatorname{det}\left((h+u)_{i \bar{j}}\right)-\log \operatorname{det}\left(h_{i \bar{j}}\right)-f \tag{4}
\end{equation*}
$$

Set $k=h+u$ and suppose that $F(u)=0$. It can be easily seen that $F^{i \bar{j}}=\frac{\partial F}{\partial u_{1 \bar{j}}}=$ $\left(k^{i \bar{j}}\right)$ the inverse of the matrix $\left(k_{i \bar{j}}\right)$ and the linearisation of the operator F at u is written as follows:

$$
(\tilde{L}) v, \quad \tilde{L}=k^{i \bar{j}} \partial_{i \bar{j}}
$$

We have $D F=0$ and since D is described almost everywhere in local coordinates by a vector field with constant coefficients, a.e. we get:

$$
\tilde{L}(D k)=D H
$$

where $H=f+\log \operatorname{det}\left(h_{i \bar{j}}\right)$. On the other hand we know that $\operatorname{det}\left(k^{i \bar{j}}\right)=e^{H}$, so

$$
\begin{equation*}
\frac{1}{n} \sum k^{i \bar{i}} \geq e^{H / n} \tag{5}
\end{equation*}
$$

and for some constant B_{x} :

$$
|D H| \leq B_{x} e^{H / n} \text { near } x .
$$

In order to establish the inequality:

$$
\begin{equation*}
\max _{\bar{X}}|D u| \leq \max _{\partial X}|D u|+C \tag{6}
\end{equation*}
$$

let p be a strictly pluri-subharmonic function in X and consider locally defined functions $w_{0}^{ \pm}= \pm D k+e^{\lambda p}$ near x. If η denotes the least eigenvalue of $\left(p_{i \bar{j}}\right)$ we obtain

$$
\begin{aligned}
\tilde{L} w_{0}^{ \pm} & = \pm \tilde{L} D k+\tilde{L} e^{\lambda p}= \pm D H+k^{i \bar{j}}\left(e^{\lambda p}\right)_{i \bar{j}} \\
& = \pm D H+k^{i \bar{j}}\left(\lambda p_{i \bar{j}}+\lambda^{2} p_{i} p_{\bar{j}}\right) e^{\lambda p} \geq-B e^{H / n}+\left(\lambda \eta \sum k^{i \bar{i}}\right) e^{\lambda p}
\end{aligned}
$$

Hence:

$$
\tilde{L}(\pm D h)= \pm k^{i \bar{j}} D h_{i \bar{j}} \geq-\gamma \sum k^{i \bar{i}}
$$

where γ is a constant which depends only on the metric ω. Furthermore for globally defined functions $w_{1}^{ \pm}= \pm D u+e^{\lambda p}$ in X, we have $w_{1}^{ \pm}=w_{0}^{ \pm} \mp D h$, thus for all x in U, in a neighborhood of x one gets:

$$
\tilde{L} w_{1}^{ \pm} \geq-B_{x} e^{H / n}+\sum k^{i \bar{\imath}}\left(\lambda \eta e^{\lambda p}-\gamma\right)
$$

The compactness of X allows us to find a finite number of points x in U and some neighborhoods of these points covering U on which the metric has local potentials. By using the inequality (5) it follows that for λ sufficiently large

$$
\tilde{L} w_{1} \geq 0
$$

and the inequality (6) follows with the aid of the maximum principle.
To complete the demonstration of (3) we should find upper bounds for $|D u|$ on ∂X. Let ϕ_{0} be a pluri-subharmonic function in X s.t.

$$
\begin{aligned}
\frac{\left(\omega+\sqrt{-1} \partial \bar{\partial} \phi_{0}\right)^{n}}{\omega^{n}} \geq e^{f} & =\frac{(\omega+\sqrt{-1} \partial \bar{\partial} u)^{n}}{\omega^{n}} \\
\left.\phi_{0}\right|_{\partial X} & =\phi
\end{aligned}
$$

and let ψ denote a solution of the equation $\Delta_{\omega} \psi=-n,\left.\psi\right|_{\partial X}=\phi$ then :

$$
\phi_{0} \leq u \leq \psi
$$

and we obtain

$$
|\nabla u(z)| \leq \max \left\{\left|\nabla \phi_{0}(z)\right|,|\nabla \psi(z)|\right\}, z \in \partial X
$$

Estimates of second order derivatives. Following [3] it is sufficient to show:

Lemma 2. There exists a constant $C>0$ such that:

$$
\max _{\bar{X}}\left|\nabla^{2} u\right| \leq \max _{\partial X}\left|\nabla^{2} u\right|+C .
$$

Proof: Let D be a vector field which can be described almost everywhere by constant coefficients in appropriate coordinate systems. Using the concavity of F as a function of $k_{i \bar{j}}$ locally we get:

$$
\begin{aligned}
& k^{i \bar{j}}\left(D^{2} k\right)_{i \bar{j}} \geq D^{2} H \\
& \tilde{L} D^{2} k \geq-C H^{-1 / n} .
\end{aligned}
$$

Consequently as we did in the estimations for the first order derivatives, for λ sufficiently large we can prove the following inequality:

$$
\tilde{L}\left(D^{2} k+e^{\lambda p}\right) \geq 0
$$

and then use the maximum principle to complete the proof of the lemma.
On the other hand we have
Lemma 3. ([2]) There exists a constant C such that

$$
\max _{\partial X}\left|\nabla^{2} u\right| \leq C
$$

This gives the required bound on second order derivatives.
Estimates of order $(2+\alpha)$. The argument contains the following steps:
Lemma 4. ([3],[4]) For all $X^{\prime} \subset \bar{X}^{\prime} \subset \bar{X} \backslash \partial X$ there exists $K\left(X^{\prime}\right)$ such that:

$$
|u|_{2+\alpha} \leq K\left(X^{\prime}\right)
$$

Lemma 5. ([2]) There exists a constant K such that for all $x, y \in \partial X$:

$$
\begin{equation*}
\left|u_{i j}(x)-u_{i j}(y)\right| \leq \frac{K}{1+|\log | x-y| |} \text { for } x, y \in \partial X \tag{7}
\end{equation*}
$$

Using this lemma we prove that:
Lemma 6. There exists a constant K such that for all $x \in \partial X, y \in \bar{X}$ we have:

$$
\begin{equation*}
\left|u_{i j}(x)-u_{i j}(y)\right| \leq \frac{K}{1+|\log | x-y| |} \tag{8}
\end{equation*}
$$

Proof. The idea is again the maximum principle, this time by constructing two functions: one denoted by w, and defined in (11), which contains second order derivatives, and the other v, defined in (12) and fulfilling $\tilde{L} h<\tilde{L} v$. By (7) they may be so chosen that on ∂X we have $w \leq v$. In this way we obtain a control for w leading to the inequality (8).

Let $\left\{U_{\alpha}\right\}$ be a covering of X such that each U_{α} is biholomorphic with an open set in \mathbb{C}^{n}, and let $\left\{f_{\alpha}\right\}$ be an associated partition of unity. According to I.Motzkin and W.Wasow [11] in each U_{α} there exist vector fields of length 1 with constant coefficients $\xi_{\alpha}^{1}, \ldots, \xi_{\alpha}^{N}$ and constants c_{1}, \ldots, c_{N} such that the linear approximation \tilde{L}_{α} of F can be written as:

$$
\begin{equation*}
\tilde{L}_{\alpha}=\sum_{1}^{N} b_{i}^{\alpha}(x) \partial_{\xi_{\alpha}^{i}}^{2} \text { with } c_{i} \leq b_{i}^{\alpha} \leq c_{i}^{-1} \tag{9}
\end{equation*}
$$

Further one can suppose that the operators $\partial_{\xi_{\alpha}^{i}}$ contain all the operators $\partial / \partial x_{i}$ as well as $1 / \sqrt{2}\left(\left(\partial / \partial x_{i}\right) \pm\left(\partial / \partial x_{j}\right)\right)$ for $i \neq j$ in the coordinates of U_{α}. Then we calculate $\tilde{L}_{\alpha}\left(\partial_{\xi_{\alpha}}\right)^{2} k^{\alpha}$, for a unit vector $\xi_{\alpha}=\left(\xi_{\alpha 1}, \ldots, \xi_{\alpha n}\right)$, by applying $\partial_{\xi_{\alpha}}^{2}$ on both sides of the equation (4). In this way, with the previous notations can write:

$$
\tilde{L}\left(\partial_{\xi_{\alpha}}\right)^{2} k^{\alpha}+F^{i j, p l} \partial_{\xi_{\alpha}} k_{i j}^{\alpha} \partial_{\xi_{\alpha}} k_{p l}^{\alpha}+\partial_{\xi_{\alpha}} H=0 .
$$

Hence by concavity of F and using the inequality $|u|_{2}<C$ we can find some constants $c_{j p}$ such that

$$
\tilde{L}\left(\partial_{\xi_{\alpha}}\right)^{2} k^{\alpha} \geq-C-\sum c_{j p} \partial_{\xi_{\alpha}} k_{j p}^{\alpha}
$$

Let ϵ be a positive number such that :

$$
\epsilon\left|\nabla^{2} k^{\alpha}\right| \leq \frac{1}{4}
$$

where $\left|\nabla^{2} k^{\alpha}\right|$ represents the norm of the hessian matrix $\left(k_{i j}^{\alpha}\right)$. We have

$$
\begin{equation*}
\tilde{L}\left(\partial_{\xi_{\alpha}}^{2} k^{\alpha}+\epsilon\left(\partial_{\xi_{\alpha}}^{2} k^{\alpha}\right)^{2}\right) \geq-C-C \sum_{i j p}\left|k_{i j p}^{\alpha}\right|+2 \epsilon c_{0} \sum_{i}\left|\partial_{\xi_{\alpha}}^{2} k_{i}^{\alpha}\right|^{2} \tag{10}
\end{equation*}
$$

thus if we define

$$
h=\sum_{\alpha} \sum_{1}^{N} f_{\alpha}\left(\partial_{\xi_{\alpha}^{i}}^{2} k^{\alpha}+\epsilon\left(\partial_{\xi_{\alpha}^{i}}^{2} k^{\alpha}\right)^{2}\right)
$$

we get the inequality:

$$
\tilde{L} h \geq-C-C \sum_{\alpha} \sum_{i j p}\left|k_{i j p}^{\alpha}\right|+2 \epsilon c_{0} \sum_{\alpha} \sum_{i=1}^{n} \sum_{j=1}^{N}\left|\partial_{\xi_{\alpha}^{j}}^{2} k_{i}^{\alpha}\right|^{2}
$$

which can be deduced from the inequality (9) and from a second order estimation on k.

Now since:

$$
\sum_{i} \sum_{j}\left|\partial_{\xi_{\alpha}^{j}}^{2} k_{i}^{\alpha}\right|^{2} \geq c_{1} \sum\left|k_{i j p}^{\alpha}\right|^{2} \text { for } c_{1} \text { positive }
$$

one finds,

$$
\tilde{L} h \geq c_{0} \epsilon \sum\left|k_{i j p}^{\alpha}\right|^{2}-\frac{C}{\epsilon} .
$$

Thus if we define w^{i} by

$$
\begin{equation*}
w^{i}=\sum_{\alpha} f_{\alpha} \partial_{\xi_{\alpha}^{i}}^{2} k^{\alpha}+\epsilon h \tag{11}
\end{equation*}
$$

for $i=1, \ldots, N$ we obtain

$$
\tilde{L} w^{i} \geq-\frac{C}{\epsilon^{2}}
$$

Now set $w=w^{i}$. Let $y_{0} \in \partial X$ be fixed and suppose that X is imbedded in \mathbb{C}^{r} such that y_{0} coincides with 0 . Let $\delta=|y|^{1 / 3}$ for fixed y and g be a smooth function in \bar{X} vanishing on ∂X and satisfying $\tilde{L} g \leq-1$ (so $g>0$ in X). Define:

$$
\begin{equation*}
v(x)=w(0)+\frac{M}{|\log | \delta| |}+M \frac{|x|^{2}}{\delta^{2}}+\frac{A g}{\delta^{2}} \tag{12}
\end{equation*}
$$

where $|$.$| is the norm of \mathbb{C}^{r}$. We have,

$$
\tilde{L} v \leq \frac{C M}{\delta^{2}}-\frac{A g}{\delta^{2}}
$$

and so for $A=C M+C / \epsilon^{2}$,

$$
\tilde{L} v \leq-\frac{C}{\epsilon^{2}}<\tilde{L} w
$$

according to (7) for $x \in \partial X,|x|<\delta$,

$$
|w(x)-w(0)| \leq \frac{C}{|\log | \delta| |}
$$

hence for M sufficiently large we get $w \leq v$ on ∂X, and the maximum principle yields:

$$
w \leq v \text { in } X
$$

In particular,

$$
w(y)-w(0) \leq \frac{3 M}{|\log | y| |}+M|y|^{4 / 3}+C A|y|^{1 / 3} \leq \frac{C}{|\log | y| |}
$$

Here we use the fact that g is a C^{∞} function vanishing on the boundary to estimate the last term.

Thus if we choose the partition of unity in such a way that in a neighborhood of $0 \in \partial U_{\alpha} \cap \partial X, f_{\alpha}=1$ then for $j=1, \ldots, N$ we get :

$$
\begin{align*}
& \partial_{\xi_{\alpha}^{j}}^{2} k(y)-\partial_{\xi_{\alpha}^{j}}^{2} k(0)+\epsilon \sum_{j=1}^{N}\left(\partial_{\xi_{\alpha}^{j}}^{2} k(y)-\partial_{\xi_{\alpha}^{j}}^{2} k(0)\right)\left(1+\epsilon \partial_{\xi_{\alpha}^{j}}^{2} k(y)+\epsilon \partial_{\xi_{\alpha}^{j}}^{2} k(0)\right) \tag{13}\\
\leq & \frac{C}{|\log | y|\mid}
\end{align*}
$$

After multiplying the relation (13) by $1+\epsilon \partial_{\xi_{\alpha}^{i}}^{2} k(y)+\epsilon \partial_{\xi_{\alpha}^{i}}^{2} k(0)$ and summing over i we find:

$$
h(y)-h(0) \leq \frac{C}{|\log | y| |}
$$

but according to our choice of the partition of unity we know that in a neighborhood of 0 in U_{α}

$$
h=\sum_{j=1}^{N}\left(\partial_{\xi_{\alpha}^{j}}^{2} k^{\alpha}+\epsilon\left(\partial_{\xi_{\alpha}^{j}}^{2} k^{\alpha}\right)^{2}\right)
$$

In order to obtain an inequality in the opposite direction we use the concavity of F as a function of $D^{2} k^{\alpha}$:

$$
\begin{aligned}
F\left(x, D^{2} k^{\alpha}(x)\right)+F^{i j}\left(x, D^{2} k^{\alpha}(x)\right)\left(k_{i j}^{\alpha}(y)-k_{i j}^{\alpha}(x)\right) & \geq F\left(x, D^{2} k^{\alpha}(y)\right) \\
& \geq F\left(y, D^{2} k^{\alpha}(y)\right)-C|x-y|
\end{aligned}
$$

By using the representation (9) we can rewrite the last inequality as:

$$
\sum_{i=1}^{N} b_{i}^{\alpha}(x)\left(\partial_{\xi_{\alpha}^{i}} k^{\alpha}(y)-\partial_{\xi_{\alpha}^{i}} k^{\alpha}(x)\right) \geq-C_{\alpha}|x-y|
$$

Setting $x=0$, for $p \leq N$ and by using (13) we find :

$$
\begin{aligned}
b_{p}^{\alpha}(0)\left(\partial_{\xi_{\alpha}^{p}} k^{\alpha}(y)-\partial_{\xi_{\alpha}^{p}} k^{\alpha}(0)\right) \geq & -\sum_{i \neq p} b_{i}^{\alpha}(0)\left(\partial_{\xi_{\alpha}^{i}} k^{\alpha}(y)-\partial_{\xi_{\alpha}^{i}} k^{\alpha}(0)\right)-C|y| \\
= & -\sum_{i \neq p} b_{i}^{\alpha}(0)\left(w^{i}(y)-w^{i}(0)\right. \\
& +\epsilon(h(y)-h(0)) \sum_{i \neq p} b_{i}^{\alpha}(0)-C|y| \\
\geq & \epsilon \sum_{i \neq k} b_{i}^{\alpha}(0) \cdot(h(y)-h(0))-\frac{C}{|\log | y| |}
\end{aligned}
$$

from which we get

$$
h(y)-h(0) \geq-\frac{C}{|\log | y| |}
$$

Thus we have shown:

$$
|h(y)-h(0)| \leq \frac{C}{|\log | y| |}
$$

and therefore:

$$
\left|\partial_{\xi_{\alpha}^{p}} k^{\alpha}(y)-\partial_{\xi_{\alpha}^{p}} k^{\alpha}(0)\right| \leq \frac{C}{|\log | y| |}
$$

Since the $\partial_{\xi_{\alpha}^{i}}$ contain all $\partial_{x_{i}}$ and $1 / \sqrt{2}\left(\partial_{x_{i}} \pm \partial_{x_{j}}\right)$ for $i \neq j$ the desired inequality (8) is implied.

The proof of theorem 1 can now be completed by:
LEMmA 7. ([2]) If the inequality (8) holds then for a positive number $\alpha<1$ we have:

$$
\left|u_{i j}(x)-u_{i j}(y)\right| \leq K|x-y|^{\alpha}
$$

As a result we obtain:
Corrolary 1. Let X be a Stein manifold with boundary s.t. $K_{X} \cong O_{X}$ then in each class of metric $[\omega] \in A^{1,1}(X) \cap H^{2}(X, \mathbb{R})$ and for every function $\phi \in C^{\infty}(\partial X)$ there exists a unique Ricci-flat metric ω^{\prime} in the same class as $[\omega]$ such that $\omega^{\prime}=$ $\omega+\sqrt{-1} \partial \bar{\partial} u$ with $\left.u\right|_{\partial X}=\phi$

Acknowledgement. I would like to thank Professor Daniel Bennequin for several helpful discussions. I would also thank the research council of Sharif University of Technology for support.

REFERENCES

[1] T. Aubin, Nonlinear analysis on manifolds, Monge-Ampère equations. Grundlehren der Mathematischen Wissenschaften, 252, Springer-Verlage, New York-Berlin, 1982.
[2] A. Bahraini, Super-symétrie et géométrie complexe, 2004, Ph.D Thesis in University Paris 7 Denis Diderot.
[3] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear secondorder elliptic equations II. Complex Monge-Ampère, and uniformly elliptic equations, Comm. Pure App. Math., 38 (1985), pp. 209-252.
[4] P. Eyssidieux, V. Guedj and A. Zeriahi, Singular Kähler-Einstein metrics, math.AG/0603431.
[5] L. C. Evans, Classical solutions of fully nonlinear, convex, second order elliptic eqations, Comm. Pure Appl. Math., 35 (1982), pp. 333-363.
[6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg-New York, 2d ed., 1984.
[7] D. Huybrechts, Compact Hyper-Kähler manifolds: basic results, Invent. Math., 135 (1999), pp. 63-113.
[8] L. Hörmander, The analysis of linear partial differential operators III pseudodifferential operators, Grundlehren der Mathematischen Wissenschaften 274 Springer-Verlag, Berlin, 1983.
[9] S. Kolodziej, The complex Monge-Ampère equation, Acta Math., 180 (1998),pp. 69-117.
[10] T. T. Lê, Ph.D Thesis, 2002 in University Paris 7 Denis Diderot.
[11] I. Motzkin and W. Wasow, On the approximation of linear elliptic differential equations by difference equations with positive coefficients, J. Math. and Phys., 31 (1952), pp. 253-259.
[12] G. Tian, Canonical metrics in Kähler geometry, Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel (2000).
[13] G. Tian and S.-T. Yau, Complete Kähler manifolds with zero Ricci curvature, Invent. Math, 106 (1991), pp. 27-60.
[14] A. N. Todorov, The Weil-Petersson geometry of the moduli space of $S U(n \geq 3)$, (Calabi-Yau) manifolds, Comm. Math. Phys, 126 (1989), pp. 325-346.
[15] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex MongeAmpère equation I, Com. Pure and Appl. Math., 31 (1978), pp. 339-411.

[^0]: *Received August 9, 2006; accepted for publication July 17, 2007.
 ${ }^{\dagger}$ Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11365-9415, Tehran, Iran (bahraini@sharif.edu).

