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A NOTE ON COMPLEX MONGE-AMPÈRE EQUATION

IN STEIN MANIFOLDS∗

ALIREZA BAHRAINI†

Abstract. We study in this note the Dirichlet problem for complex Monge-Ampère equation
in compact Stein manifolds with boundary. As far as we know among the global results for Monge-
Ampère equations, compact manifolds with boundary have been less discussed.
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Introduction. We begin this note with a very brief review on some of the aspects
of Monge-Ampère equation which have been motivating for the present work. Com-
plex Monge-Ampère equation and its applications have been the subject of extensive
studies by several mathematicians since more than 3 decades ago. Thirty years ago
S.T.Yau solved complex Monge-Ampère equation on a compact Kähler manifold to
prove a conjecture of Calabi:

Theorem 1. ([15]) Let X be a compact connected Kähler manifold of complex
dimension n, equipped with a Kähler form ω. If µ is a smooth volume form satisfying
µ(X) =

∫

X
ωn, then there exists a unique (upto a constant) φ ∈ C∞(X) such that:

(1) (ω +
√
−1∂∂̄φ)n = µ.

Since then different variants of the equation for compact or non-compact mani-
folds have been studied (see [4] [9][13] for example). The solutions of this equation
provide us with examples of hyper-Kähler manifolds. In complex dimension n=2
the moduli of Hodge structures on K3 surfaces can be characterized locally as well
as globally using hyper-Kähler metrics [7] [14]. As a result special Lagrangian sub-
manifolds of K3 surfaces and their properties are much better known and studied.
In the category of super-manifolds, an important class of super-symmetric geometries
are constructed by the aid of Ricci-flat metrics. This leads to a re-interpretation of
special-Lagrangian sub-manifolds in complex dimension 3 and through the works of
physicists as bosonic part of super-symmetric objects ([2]).

The problem of studying special Lagrangian representatives for duals of cohomol-
ogy classes in certain Stein surfaces [2][10] led us to the study of complex Monge-
Ampère equations in compact Stein manifolds with boundary and to prove the fol-
lowing theorem which seems to be missing in the current literature :

Theorem 2. Let X be a compact Stein manifold with boundary, ω a (1,1)-Kähler
form on X , f a real smooth function in X and φ a real smooth function defined only
in ∂X. Then there is a unique smooth function u on X such that ω +

√
−1∂∂̄u > 0

and
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(ω +
√
−1∂∂̄u)n = efωn(2)

u|∂X = φ.

Proof of Theorem 2. In order to prove this theorem we follow the method of
Caffarelli, Kohn, Nirenberg and Spruck as in [3] and we find an estimate of the norm
C2+α of u for 0 < α < 1:

|u|α+2 ≤ K.

It turns out that for estimates of order 0 ,1 and 2 + α, some global difficulties arise
and the method of Caffarelli et al. needs some modifications.

Estimate of order zero. To show that |u|0 < C we need the following lemma:

Lemma 1. Let u and v be two functions in X fulfilling:

(ω +
√
−1∂∂̄u)n

ωn
≥

(ω +
√
−1∂∂̄v)n

ωn

and

u ≤ v on ∂X

then u ≤ v in X̄.

Proof. In local coordinates we can write

det(gij̄ + uij̄) − det(gij̄ + vij̄) =

∫ 1

0

d

dt
det(t(gij̄ + uij̄) + (1 − t)(gij̄ + vij̄)dt

=
∑

(

∫ 1

0

Bij̄(t)dt)(u − v)ij̄ ≥ 0.

Bij̄(t) are the co-factors of the matrix (tuij̄ +(1− t)vij̄ +gij̄) which constitute theme-
selves a positive definite matrix. So according to the maximum principle (v − u)
attains its maximum on ∂X and the desired result follows.

Now let φ0 be a pluri-subharmonic function in X such that:

(ω +
√
−1∂∂̄φ0)

n

ωn
≥ ef =

(ω +
√
−1∂∂̄u)n

ωn

φ0|∂X = φ.

To show the existence of φ0 we take two strictly pluri-subharmonic functions φ1

and φ2 such that φ1|∂X = 0 and φ2|∂X = φ and we set φ0 = λφ1 + φ2. It’s clear that
for λ ∈ R sufficiently large φ0 satisfies the above inequality. Now according to lemma
1, u ≥ φ0 and we obtain a lower bound for u. On the other hand if we calculate the
trace of (ω +

√
−1∂∂̄u) with respect to ω we find n+ ∆ωu ≥ 0 . So according to the

maximum principle we obtain an upper bound for u.
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First order estimates. We would like to show the existence of a bound for
norm 1:

(3) |u|1 < C.

Let F be the application defined by

F (u) = log
(ω +

√
−1∂∂̄u)n

ωn
− f.

We take a unit tangent vector ξ in a given point of X . Let D be a vector field
extending ξ which can be described in an open dense holomorphic coordinate subset
U of X as a vector field with constant coefficients. Such a field exists: it suffices to
imbed X properly in some C

N and then to project over a generic vector sub-space of
dimension n . Let h be a potential of the metric ω in some local coordinates near a
point x ∈ U . We have:

(4) F (u) = log det((h+ u)ij̄) − log det(hij̄) − f.

Set k = h+u and suppose that F (u) = 0. It can be easily seen that F ij̄ = ∂F
∂uıj̄

=

(kij̄) the inverse of the matrix (kij̄) and the linearisation of the operator F at u is
written as follows:

(L̃)v, L̃ = kij̄∂ij̄ .

We have DF = 0 and since D is described almost everywhere in local coordinates by
a vector field with constant coefficients, a.e. we get:

L̃(Dk) = DH

where H = f + log det(hij̄). On the other hand we know that det(kij̄) = eH , so

(5)
1

n

∑

kīi ≥ eH/n

and for some constant Bx :

|DH | ≤ Bxe
H/nnear x.

In order to establish the inequality:

(6) max
X̄

|Du| ≤ max
∂X

|Du| + C

let p be a strictly pluri-subharmonic function in X and consider locally defined func-
tions w±

0 = ±Dk + eλp near x. If η denotes the least eigenvalue of (pij̄) we obtain

L̃w±
0 = ±L̃Dk + L̃eλp = ±DH + kij̄(eλp)ij̄

= ±DH + kij̄(λpij̄ + λ2pipj̄)e
λp ≥ −BeH/n + (λη

∑

kīi)eλp.

Hence:
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L̃(±Dh) = ±kij̄Dhij̄ ≥ −γ
∑

kīi

where γ is a constant which depends only on the metric ω. Furthermore for globally
defined functions w±

1 = ±Du+ eλp in X , we have w±
1 = w±

0 ∓Dh, thus for all x in
U , in a neighborhood of x one gets:

L̃w±
1 ≥ −Bxe

H/n +
∑

kīi(ληeλp − γ).

The compactness of X allows us to find a finite number of points x in U and some
neighborhoods of these points covering U on which the metric has local potentials.
By using the inequality (5) it follows that for λ sufficiently large

L̃w1 ≥ 0

and the inequality (6) follows with the aid of the maximum principle.
To complete the demonstration of (3) we should find upper bounds for |Du| on

∂X . Let φ0 be a pluri-subharmonic function in X s.t.

(ω +
√
−1∂∂̄φ0)

n

ωn
≥ ef =

(ω +
√
−1∂∂̄u)n

ωn

φ0|∂X = φ

and let ψ denote a solution of the equation ∆ωψ = −n, ψ|∂X = φ then :

φ0 ≤ u ≤ ψ

and we obtain

|∇u(z)| ≤ max{|∇φ0(z)|, |∇ψ(z)|}, z ∈ ∂X.

Estimates of second order derivatives. Following [3] it is sufficient to show:

Lemma 2. There exists a constant C > 0 such that:

max
X̄

|∇2u| ≤ max
∂X

|∇2u| + C.

Proof: Let D be a vector field which can be described almost everywhere by
constant coefficients in appropriate coordinate systems . Using the concavity of F as
a function of kij̄ locally we get:

kij̄(D2k)ij̄ ≥ D2H

L̃D2k ≥ −CH−1/n.

Consequently as we did in the estimations for the first order derivatives, for λ suffi-
ciently large we can prove the following inequality:

L̃(D2k + eλp) ≥ 0
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and then use the maximum principle to complete the proof of the lemma.

On the other hand we have

Lemma 3. ([2]) There exists a constant C such that

max
∂X

|∇2u| ≤ C.

This gives the required bound on second order derivatives.

Estimates of order (2+α). The argument contains the following steps:

Lemma 4. ([3],[4]) For all X ′ ⊂ X̄ ′ ⊂ X̄ \ ∂X there exists K(X ′) such that:

|u|2+α ≤ K(X ′).

Lemma 5. ([2]) There exists a constant K such that for all x, y ∈ ∂X:

(7) |uij(x) − uij(y)| ≤
K

1 + | log |x− y||
for x, y ∈ ∂X.

Using this lemma we prove that:

Lemma 6. There exists a constant K such that for all x ∈ ∂X, y ∈ X̄ we have:

(8) |uij(x) − uij(y)| ≤
K

1 + | log |x− y||
.

Proof. The idea is again the maximum principle, this time by constructing
two functions: one denoted by w, and defined in (11), which contains second order
derivatives, and the other v, defined in (12) and fulfilling L̃h < L̃v. By (7) they
may be so chosen that on ∂X we have w ≤ v. In this way we obtain a control for w
leading to the inequality (8).

Let {Uα} be a covering of X such that each Uα is biholomorphic with an open set
in C

n, and let {fα} be an associated partition of unity. According to I.Motzkin and
W.Wasow [11] in each Uα there exist vector fields of length 1 with constant coefficients
ξ1α,...,ξN

α and constants c1, ..., cN such that the linear approximation L̃α of F can be
written as:

(9) L̃α =

N
∑

1

bαi (x)∂2
ξi

α

with ci ≤ bαi ≤ c−1
i .

Further one can suppose that the operators ∂ξi
α

contain all the operators ∂/∂xi as

well as 1/
√

2((∂/∂xi)±(∂/∂xj)) for i 6= j in the coordinates of Uα. Then we calculate

L̃α(∂ξα
)2kα, for a unit vector ξα = (ξα1, ..., ξαn), by applying ∂2

ξα
on both sides of the

equation (4). In this way, with the previous notations can write:

L̃(∂ξα
)2kα + F ij,pl∂ξα

kα
ij∂ξα

kα
pl + ∂ξα

H = 0.
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Hence by concavity of F and using the inequality |u|2 < C we can find some constants
cjp such that

L̃(∂ξα
)2kα ≥ −C −

∑

cjp∂ξα
kα

jp.

Let ǫ be a positive number such that :

ǫ|∇2kα| ≤
1

4

where |∇2kα| represents the norm of the hessian matrix (kα
ij). We have

(10) L̃(∂2
ξα
kα + ǫ(∂2

ξα
kα)2) ≥ −C − C

∑

ijp

|kα
ijp| + 2ǫc0

∑

i

|∂2
ξα
kα

i |
2

thus if we define

h =
∑

α

N
∑

1

fα(∂2
ξi

α

kα + ǫ(∂2
ξi

α

kα)2)

we get the inequality:

L̃h ≥ −C − C
∑

α

∑

ijp

|kα
ijp| + 2ǫc0

∑

α

n
∑

i=1

N
∑

j=1

|∂2
ξj

α

kα
i |

2

which can be deduced from the inequality (9) and from a second order estimation on
k.

Now since:
∑

i

∑

j

|∂2
ξj

α

kα
i |

2 ≥ c1
∑

|kα
ijp|

2 for c1 positive

one finds,

L̃h ≥ c0ǫ
∑

|kα
ijp|

2 −
C

ǫ
.

Thus if we define wi by

(11) wi =
∑

α

fα∂
2
ξi

α

kα + ǫh

for i = 1, ..., N we obtain

L̃wi ≥ −
C

ǫ2
.

Now set w = wi. Let y0 ∈ ∂X be fixed and suppose that X is imbedded in C
r such

that y0 coincides with 0. Let δ = |y|1/3 for fixed y and g be a smooth function in X̄
vanishing on ∂X and satisfying L̃g ≤ −1 (so g > 0 in X). Define:

(12) v(x) = w(0) +
M

| log |δ||
+M

|x|2

δ2
+
Ag

δ2
,
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where |.| is the norm of C
r. We have,

L̃v ≤
CM

δ2
−
Ag

δ2

and so for A = CM + C/ǫ2,

L̃v ≤ −
C

ǫ2
< L̃w

according to (7) for x ∈ ∂X , |x| < δ,

|w(x) − w(0)| ≤
C

| log |δ||

hence for M sufficiently large we get w ≤ v on ∂X , and the maximum principle yields:

w ≤ v in X.

In particular,

w(y) − w(0) ≤
3M

| log |y||
+M |y|4/3 + CA|y|1/3 ≤

C

| log |y||
.

Here we use the fact that g is a C∞ function vanishing on the boundary to estimate
the last term.

Thus if we choose the partition of unity in such a way that in a neighborhood of
0 ∈ ∂Uα ∩ ∂X , fα = 1 then for j = 1, ..., N we get :

∂2
ξj

α

k(y) − ∂2
ξj

α

k(0) + ǫ

N
∑

j=1

(∂2
ξj

α

k(y) − ∂2
ξj

α

k(0))(1 + ǫ∂2
ξj

α

k(y) + ǫ∂2
ξj

α

k(0))(13)

≤
C

| log |y||

After multiplying the relation (13) by 1+ ǫ∂2
ξi

α

k(y)+ ǫ∂2
ξi

α

k(0) and summing over i we

find:

h(y) − h(0) ≤
C

| log |y||

but according to our choice of the partition of unity we know that in a neighborhood
of 0 in Uα

h =

N
∑

j=1

(∂2
ξj

α

kα + ǫ(∂2
ξj

α

kα)2).

In order to obtain an inequality in the opposite direction we use the concavity of F
as a function of D2kα:

F (x,D2kα(x)) + F ij(x,D2kα(x))(kα
ij(y) − kα

ij(x)) ≥ F (x,D2kα(y))

≥ F (y,D2kα(y)) − C|x− y|.
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By using the representation (9) we can rewrite the last inequality as:

N
∑

i=1

bαi (x)(∂ξi
α
kα(y) − ∂ξi

α
kα(x)) ≥ −Cα|x− y|.

Setting x = 0, for p ≤ N and by using (13) we find :

bαp (0)(∂ξp

α
kα(y) − ∂ξp

α
kα(0)) ≥ −

∑

i6=p

bαi (0)(∂ξi
α
kα(y) − ∂ξi

α
kα(0)) − C|y|

= −
∑

i6=p

bαi (0)(wi(y) − wi(0)

+ǫ(h(y) − h(0))
∑

i6=p

bαi (0) − C|y|

≥ ǫ
∑

i6=k

bαi (0).(h(y) − h(0)) −
C

| log |y||

from which we get

h(y) − h(0) ≥ −
C

| log |y||
.

Thus we have shown:

|h(y) − h(0)| ≤
C

| log |y||

and therefore:

|∂ξp

α
kα(y) − ∂ξp

α
kα(0)| ≤

C

| log |y||
.

Since the ∂ξi
α

contain all ∂xi
and 1/

√
2(∂xi

± ∂xj
) for i 6= j the desired inequality (8)

is implied.

The proof of theorem 1 can now be completed by:

Lemma 7. ([2]) If the inequality (8) holds then for a positive number α < 1 we
have:

|uij(x) − uij(y)| ≤ K|x− y|α.

As a result we obtain:

Corrolary 1. Let X be a Stein manifold with boundary s.t. KX
∼= OX then in

each class of metric [ω] ∈ A1,1(X) ∩H2(X,R) and for every function φ ∈ C∞(∂X)
there exists a unique Ricci-flat metric ω′ in the same class as [ω] such that ω′ =
ω +

√
−1∂∂̄u with u|∂X = φ
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[8] L. Hörmander, The analysis of linear partial differential operators III pseudodifferential oper-

ators, Grundlehren der Mathematischen Wissenschaften 274 Springer-Verlag, Berlin, 1983.
[9] S. Kolodziej, The complex Monge-Ampère equation, Acta Math., 180 (1998),pp. 69–117.
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Birkhäuser Verlag, Basel (2000).
[13] G. Tian and S.-T. Yau, Complete Kähler manifolds with zero Ricci curvature, Invent. Math,

106 (1991), pp. 27–60.
[14] A. N. Todorov, The Weil-Petersson geometry of the moduli space of SU(n ≥ 3), (Calabi-Yau)

manifolds, Comm. Math. Phys, 126 (1989), pp. 325–346.
[15] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-

Ampère equation I, Com. Pure and Appl. Math., 31 (1978), pp. 339–411.



82 A. BAHRAINI


