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A NOTE ON COMPLEX MONGE-AMPERE EQUATION
IN STEIN MANIFOLDS*

ALIREZA BAHRAINTIY

Abstract. We study in this note the Dirichlet problem for complex Monge-Ampére equation
in compact Stein manifolds with boundary. As far as we know among the global results for Monge-
Ampere equations, compact manifolds with boundary have been less discussed.
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Introduction. We begin this note with a very brief review on some of the aspects
of Monge-Ampere equation which have been motivating for the present work. Com-
plex Monge-Ampere equation and its applications have been the subject of extensive
studies by several mathematicians since more than 3 decades ago. Thirty years ago
S.T.Yau solved complex Monge-Ampere equation on a compact Kéhler manifold to
prove a conjecture of Calabi:

THEOREM 1. ([15]) Let X be a compact connected Kdihler manifold of complex
dimension n, equipped with a Kdhler form w. If u is a smooth volume form satisfying
(X)) = [y w", then there exists a unique (upto a constant) ¢ € C*(X) such that:

(1) (w+V=109¢)" = p.

Since then different variants of the equation for compact or non-compact mani-
folds have been studied (see [4] [9][13] for example). The solutions of this equation
provide us with examples of hyper-Ké&hler manifolds. In complex dimension n=2
the moduli of Hodge structures on K3 surfaces can be characterized locally as well
as globally using hyper-Kéhler metrics [7] [14]. As a result special Lagrangian sub-
manifolds of K3 surfaces and their properties are much better known and studied.
In the category of super-manifolds, an important class of super-symmetric geometries
are constructed by the aid of Ricci-flat metrics. This leads to a re-interpretation of
special-Lagrangian sub-manifolds in complex dimension 3 and through the works of
physicists as bosonic part of super-symmetric objects ([2]).

The problem of studying special Lagrangian representatives for duals of cohomol-
ogy classes in certain Stein surfaces [2][10] led us to the study of complex Monge-
Ampere equations in compact Stein manifolds with boundary and to prove the fol-
lowing theorem which seems to be missing in the current literature :

THEOREM 2. Let X be a compact Stein manifold with boundary, w a (1,1)-Kdhler
form on X, f a real smooth function in X and ¢ a real smooth function defined only
in 0X. Then there is a unique smooth function u on X such that w + /—100u > 0
and
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(2) (w4 V—100u)" = efw™

ulox = ¢.

Proof of Theorem 2. In order to prove this theorem we follow the method of
Caffarelli, Kohn, Nirenberg and Spruck as in [3] and we find an estimate of the norm
C?re of u for 0 < a < 1:

|u|a+2 < K.

It turns out that for estimates of order 0 ,1 and 2 + «, some global difficulties arise
and the method of Caffarelli et al. needs some modifications.

Estimate of order zero. To show that |ulp < C we need the following lemma:

LEMMA 1. Let u and v be two functions in X fulfilling:

w wm

(w + /—=100u)” - (w + /—100v)"

and
u<wv ondX

then u < wv in X.

Proof. In local coordinates we can write

1
d
det(g;5 + ugj) — det(gs; + viz) = /0 %det(t(gﬁ +ugg) + (1= 1)(g55 + viz)dt

=52 B @) > 0.

B (t) are the co-factors of the matrix (tu;; 4 (1 —t)v;; + g;;) which constitute theme-
selves a positive definite matrix. So according to the maximum principle (v — )
attains its maximum on 0X and the desired result follows. O
Now let ¢g be a pluri-subharmonic function in X such that:

(w + v/—=100¢0 )™ ool (w + v/ —100u)"
w™ - w™

dolox = ¢.

To show the existence of ¢y we take two strictly pluri-subharmonic functions ¢;
and ¢2 such that ¢1|sx = 0 and ¢olox = ¢ and we set ¢y = A\p1 + ¢2. It’s clear that
for A € R sufficiently large ¢ satisfies the above inequality. Now according to lemma
1, u > ¢p and we obtain a lower bound for u. On the other hand if we calculate the
trace of (w -+ /—100u) with respect to w we find n + A,u > 0 . So according to the
maximum principle we obtain an upper bound for u. O
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First order estimates. We would like to show the existence of a bound for
norm 1:

(3) |u|1 <C.

Let F be the application defined by

We take a unit tangent vector ¢ in a given point of X. Let D be a vector field
extending ¢ which can be described in an open dense holomorphic coordinate subset
U of X as a vector field with constant coefficients. Such a field exists: it suffices to
imbed X properly in some C and then to project over a generic vector sub-space of
dimension n . Let h be a potential of the metric w in some local coordinates near a
point z € U. We have:

(4) F(u) = logdet((h +u);;) — logdet(h;;) — f.

Set k = h+u and suppose that F(u) = 0. It can be easily seen that Fii = 28

du;
(k'7) the inverse of the matrix (k;;) and the linearisation of the operator F at u is
written as follows:

Ly, L—kios.

We have DF = 0 and since D is described almost everywhere in local coordinates by
a vector field with constant coefficients, a.e. we get:

L(Dk) = DH

where H = f + logdet(h,;). On the other hand we know that det(ki) = e so

1 -~
(5) - D k=i
and for some constant B, :
|DH| < Byef'/™near z.
In order to establish the inequality:

(6) max |Du| < max |Du| + C
X X

let p be a strictly pluri-subharmonic function in X and consider locally defined func-
tions wg[ = +Dk + e’ near z. If 1 denotes the least eigenvalue of (pi7) we obtain

Lwf = £LDk + Le* = +DH + k(™) 5
=+DH + kij()\pij + )\zpipj)e’\p > —Befl/™ 1 (\ Z k) er,

Hence:
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L(£Dh) = £k Dh;j > —y Y k"

where 7 is a constant which depends only on the metric w. Furthermore for globally
defined functions wi = +Du 4 € in X , we have wi = wi F Dh, thus for all x in

U, in a neighborhood of x one gets:
Lwf > —B,ef/" 4+ Z kﬁ()\nekp — 7).

The compactness of X allows us to find a finite number of points z in U and some
neighborhoods of these points covering U on which the metric has local potentials.
By using the inequality (5) it follows that for A sufficiently large

Ewle

and the inequality (6) follows with the aid of the maximum principle.
To complete the demonstration of (3) we should find upper bounds for |Du| on
0X. Let ¢g be a pluri-subharmonic function in X s.t.

(w +v/—100¢0)" oo (w+ /—100u)"
wn - N wn

dolox = ¢

and let ¢ denote a solution of the equation A, = —n, ¥|sx = ¢ then :

po<Lu<ly
and we obtain
[Vu(z)| < max{|Vo(z)[, [V (2)[}, 2z € 0X.

Estimates of second order derivatives. Following [3] it is sufficient to show:

LEMMA 2. There exists a constant C' > 0 such that:

max |VZu| < max |V2u| 4 C.
X X

Proof: Let D be a vector field which can be described almost everywhere by
constant coefficients in appropriate coordinate systems . Using the concavity of F' as
a function of k;; locally we get:

k9 (D%k);; > D*H
LD%*k > —CH™ Y™,

Consequently as we did in the estimations for the first order derivatives, for A suffi-
ciently large we can prove the following inequality:

L(D*k + ) >0
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and then use the maximum principle to complete the proof of the lemma. O
On the other hand we have
LEMMA 3. ([2]) There exists a constant C' such that

max |VZu| < C.
X

This gives the required bound on second order derivatives.
Estimates of order (24a). The argument contains the following steps:

LEMMA 4. ([8],[4]) For all X' C X' C X \ 0X there exists K(X') such that:

|ul240 < K(X).

LEMMA 5. ([2]) There exists a constant K such that for all z,y € 0X :

K

| < —— forz,y € 0X.
1+ [log|z — yl|

(7) luij () — uij(y)

Using this lemma we prove that:

LEMMA 6. There exists a constant K such that for all x € 0X,y € X we have:

K

Proof. The idea is again the maximum principle, this time by constructing

two functions: one denoted by w, and defined in (11), which contains second order

derivatives, and the other v, defined in (12) and fulfilling Lh < Lv. By (7) they

may be so chosen that on 0X we have w < v. In this way we obtain a control for w
leading to the inequality (8).

Let {U,} be a covering of X such that each U, is biholomorphic with an open set
in C", and let {f,} be an associated partition of unity. According to I.Motzkin and
W.Wasow [11] in each U, there exist vector fields of length 1 with constant coefficients

L&Y and constants cy, ..., cy such that the linear approximation Lo of F can be
written as:

N
(9) Lo = be‘(x)@?l with ¢; < b < ¢; '

1
Further one can suppose that the operators g contain all the operators 9/0z; as
well as 1/v/2((0/0x;) £ (0/0x;)) for i # j in the coordinates of U,. Then we calculate
La(9¢, )k, for a unit vector &, = (€at, -+, Ean), by applying 92 on both sides of the
equation (4). In this way, with the previous notations can write:

L(0e, )?k® + F9P0¢, kS 0c, kS + e, H = 0.
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Hence by concavity of F' and using the inequality |u|s < C we can find some constants
cjp such that

L(0¢,)*k™ > =C' = > cjp0e, k-
Let € be a positive number such that :
1
27.a
k< =
€|VoEY| < 1

where [V?k®| represents the norm of the hessian matrix (k). We have

(10) L(0F k* + €(02 k*)*) = —=C = C > |k, |+ 2eco Y _ |07 k|

ijp

thus if we define

N
h=>"" fal0% k™ + €(0Z: k*)?)
« 1

we get the inequality:

n N
B> 0= XYl 2w 3 kP

a ijp a =1 j=1

which can be deduced from the inequality (9) and from a second order estimation on
k.
Now since:

E E |8§j kS > e E |k:,|? for ¢1 positive
i
one finds,
- c
Z 2
LhZCOE |k’L0j‘p| —z

Thus if we define w® by

(11) w' =Y fad kY + eh
for i =1,..., N we obtain

Lw' > —

= C
Now set w = w'. Let yo € X be fixed and suppose that X is imbedded in C" such
that yo coincides with 0. Let § = ly|*/3 for fixed y and g be a smooth function in X
vanishing on dX and satisfying Lg < —1 (so g > 0 in X). Define:

_ M [z[*  Ag
(12) v(x) = w(0) + oz 91| + M 52 + 52
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where |.| is the norm of C". We have,

~ CM Ag
s =%
and so for A =CM + C/é?,
f)vg—%<iw
€
according to (7) for € X, |z| < 4,
C
w(z) —w(0)| < ——
jule) = wO)| < oo

hence for M sufficiently large we get w < v on 0.X, and the maximum principle yields:
w<vin X.

In particular,

c
[log [yll

+ My|*% + CAy|'? <

3
wy) = w(0) < Tiog ]

Here we use the fact that g is a €' function vanishing on the boundary to estimate
the last term.

Thus if we choose the partition of unity in such a way that in a neighborhood of
0€0U,NOX, fo =1 then for j =1,..., N we get :

N
(13) 0 k(y) — 02, k(0) + e p (97 k(y) — 02, k(0)(1 + €0, k(y) + €0¢, k(0))
: ) 2% ) ) ]
C
Si
|log |y||

After multiplying the relation (13) by 1+ €92 k(y) + eagi k(0) and summing over i we
find: : ’

C
hY) =10 < Tiog Tyl

but according to our choice of the partition of unity we know that in a neighborhood
of 0 in U,

N
h = Z(a{?é ka + 6(6§2é ka)2).

Jj=1

In order to obtain an inequality in the opposite direction we use the concavity of F’
as a function of D?k®:

F(z, D*k%(x)) + F (2, D*k*(2)) (k55 (y) — k¢ ()
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By using the representation (9) we can rewrite the last inequality as:

N
Z b (2)(0gi, K (y) — 91,k (2)) = —Calz —yl.

Setting 2 = 0, for p < N and by using (13) we find :

b (0)(Deg K () — ey k(0 ;ba (Di K (y) = O; k(0) = Cly
- ; B 0) ' ()~ 0)
+e(h ’ 0)) > b¢(0) = Cly|
i#p
> SO0 ~hO) - e

from which we get

C
hiy) —
W) = O 2 gy
Thus we have shown:
C
h(y) — <
|h(y) — h(0)| Tog 0]

and therefore:

9 K (y) — D k°(0)] <

Since the Jg: contain all 9,, and 1/ V2(0y, £ 0,,) for i # j the desired inequality (8)
is implied.
The proof of theorem 1 can now be completed by:

LEMMA 7. ([2]) If the inequality (8) holds then for a positive number oo < 1 we
have:

|uij(2) —uij(y)] < Klz —y[*

As a result we obtain:

CORROLARY 1. Let X be a Stein manifold with boundary s.t. Kx = Ox then in
each class of metric [w] € AV1(X) N H?(X,R) and for every function ¢ € C=(dX)
there exists a unique Ricci-flat metric w' in the same class as [w] such that w' =

w + /=100u with ulpx = ¢
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