$C R$-Submanifolds of a Nearly Trans-Hyperbolic Sasakian Manifold with a Semi-Symmetric Non-Metric Connection

MOHD DANISH SIDDIQI*
Jazan University, Department of Mathematics, College of Science, Jazan
Kingdom of Saudi Arabia
MOBIN AHMAD ${ }^{\dagger}$
Jazan University, Department of Mathematics, College of Science, Jazan
Kingdom of Saudi Arabia
Janardan Prasad Ojha ${ }^{\text {* }}$
Integral University, Department of Mathematics, Faculty of Applied sciences, Kursi Road, Lucknow, U.P. India

Abstract

In this paper, $C R$-submanifolds of a nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection are studied. The parallel distributions relating to ξ-vertical and ξ-horizontal $C R$-submanifolds of nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection are obtained. Moreover, Nijenhuis tensor is calculated and integrability conditions of the distributions on $C R$-submanifolds of nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection are discussed.

AMS Subject Classification: 53C40, 53C05.
Keywords: $C R$-submanifolds, nearly trans-hyperbolic Sasakian manifolds, semi-symmetric nonmetric connection.

Received: November 5, 2013 || Accepted: June 12, 2014

1 Introduction

In 1978, Aurel Bejancu initiated the study of $C R$-submanifolds of Kaehler manifold [5]. Later on, many geometers (see [13], [21], [14]) studied $C R$-submanifolds of different ambient spaces.

[^0]In 1985, Oubina [15] introduced a new class of almost contact metric manifold known as transSasakian manifold. M. H. Shahid [18] and Al-Solamy [4] studied the geometry of CR-submanifolds of trans-Sasakian and nearly trans-Sasakian manifold [12] respectively. In 1976, Upadhyay and Dube [20] introduced the notion of almost contact hyperbolic (f, g, η, ξ)-structure. Some properties of $C R$-submanifolds of trans-hyperbolic Sasakian manifold were studied in [7] and [11]. $C R$ submanifolds of nearly trans-hyperbolic Sasakian manifold is a more general concept. In 2010, Cihan Özgür [16] studied the submanifolds of Riemannian manifold with semi-symmetric nonmetric connection. Moreover, Özgür et al. also studied the different structures with semi-symmetric non-metric connection in [17] and [2]. Some properties of semi-invariant submanifolds, hypersurfaces and submanifolds with semi-symmetric non-metric connection were studied in [1], [2] and [9]. Thus motivated sufficiently from the studies referred above in the present paper, we plan to study the $C R$-submanifolds of nearly trans-hyperbolic Sasakian manifolds with a semi-symmetric non-metric connection.

We know that a linear connection ∇ on a manifold M is called metric connection if $\nabla g=0$, otherwise, it is non-metric. Further it is said to be a semi-symmetric linear connection [10] if its torsion tensor $T(X, Y)$, is

$$
T(X, Y)=\eta(Y) X-\eta(X) Y
$$

where η is a 1 -form. Further, the study of semi-symmetric connection on Riemannian manifold was enriched by K. Yano [22], Agashe and Chaffle [3]. It is well known that a linear connection is symmetric and metric if and only if it is the Levi-Civita connection.

Semi-symmetric metric connection plays an important role in the study of Riemannaian manifolds. There are various physical problems involving the semi-symmetric metric connection. For example, if a man is moving on the surface of the Earth always facing one definite point, say Mekka or Jaruselam or the North pole, then this displacement is semi-symmetric and metric [19].

This paper is organized as follows. In section 2, we give a brief introduction of nearly transhyperbolic Sasakian manifold. In section 3, we have prove some basic lemmas on nearly transhyperbolic Sasakian manifold with a semi-symmetric non-metric connection. In section 4, we discuss parallel distributions and in section 5 , we obtain the integrability conditions of distributions on $C R$-submanifolds.

2 Preliminaries

Let \bar{M} be an almost hyperbolic contact metric manifold [8] with an almost hyperbolic contact metric structure (ϕ, ξ, η, g), where ϕ is a $(1,1)$ tensor field, ξ is a vector field, η is a 1 -form and g is a compatible Riemannian metric such that

$$
\begin{gather*}
\phi^{2}=I-\eta \otimes \xi, \phi \xi=0, \eta \circ \phi=0, \eta(\xi)=-1 \tag{2.1}\\
g(\phi X, \phi Y)=-g(X, Y)-\eta(X) \eta(Y), \tag{2.2}\\
g(X, \phi Y)=-g(\phi X, Y), g(X, \xi)=\eta(X) . \tag{2.3}
\end{gather*}
$$

An almost hyperbolic contact metric structure (ϕ, ξ, η, g) on \bar{M} is called trans-hyperbolic Sasakian [7] if and only if

$$
\begin{equation*}
\left(\overline{\bar{\nabla}}_{X} \phi\right)(Y)=\alpha(g(X, Y) \xi-\eta(Y) \phi X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{2.4}
\end{equation*}
$$

for all X, Y tangent to \bar{M}, α and β are smooth functions on \bar{M}. On a trans-hyperbolic Sasakian manifold \bar{M}, we have

$$
\begin{equation*}
\overline{\bar{\nabla}}_{X} \xi=-\alpha(\phi X)+\beta(X-\eta(X) \xi) \tag{2.5}
\end{equation*}
$$

where g is the Riemannian metric and $\overline{\bar{\nabla}}$ is the Riemannian connection. Further, an almost hyperbolic contact metric manifold \bar{M} on structure (ϕ, ξ, η, g), is called nearly trans-hyperbolic Sasakian if [14]

$$
\begin{equation*}
\left(\overline{\bar{\nabla}}_{X} \phi\right)(Y)+\left(\overline{\bar{\nabla}}_{Y} \phi\right)(X)=\alpha(2 g(X, Y) \xi-\eta(Y) \phi X-\eta(X) \phi Y)-\beta(\eta(Y) \phi X+\eta(X) \phi Y) \tag{2.6}
\end{equation*}
$$

Let M be an m-dimensional isometrically immersed submanifold of nearly-hyperbolic Sasakian manifold \bar{M}. We denote by g the Riemannian metric tensor field on M as well as on \bar{M}.

Definition 2.1. [7] An m-dimensional Riemannian submanifold M of an almost trans-hyperbolic Sasakian manifold \bar{M} is called a $C R$-submanifold if ξ is tangent to M and there exists differentiable distribution $D: x \in M \rightarrow D_{x} \subset T_{x}(M)$ such that
(i) the distribution D_{x} in invariant under ϕ, that is $\phi D_{x} \subset D_{x}$, for each $x \in M$,
(ii) the complementary orthogonal distribution $D^{\perp}: x \rightarrow D_{x}^{\perp} \subset T_{x}(M)$ of the distribution D on M is anti-invariant under ϕ, that is $\phi D_{x}^{\perp}(M) \subset T_{x}^{\perp}(M)$ for all $x \in M$, where $T_{x}(M)$ and $T_{x}^{\perp}(M)$ are tangent space and normal space of M at $x \in M$ respectively.

If $\operatorname{dim} D^{\perp}=0\left(\right.$ resp. $\left.\operatorname{dim} D_{x}=0\right)$, then $C R$-submanifold is called an invariant (resp. antiinvariant). The distribution D (resp. D^{\perp}) is called horizontal (resp. vertical) distribution. The pair $\left(D, D^{\perp}\right)$ is called ξ-horizontal (resp. ξ-vertical) if $\xi_{x} \in D_{x}\left(\right.$ resp. $\left.\xi_{x} \in D^{\perp}\right)$ for $x \in M$.

For any vector field X tangent to M, we write

$$
\begin{equation*}
X=P X+Q X \tag{2.7}
\end{equation*}
$$

where $P X$ and $Q X$ belong to the distributions D and D^{\perp} respectively.

For any vector field N normal to M, we put

$$
\begin{equation*}
\phi N=B N+C N, \tag{2.8}
\end{equation*}
$$

where $B N$ (resp. $C N$) denotes the tangential (resp. normal) component of ϕN. Now, we remark that owing to the existence of the 1 -form η, we can define a semi-symmetric non-metric connection $\bar{\nabla}$ in almost hyperbolic contact metric manifold by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\overline{\bar{\nabla}}_{X} Y+\eta(Y) X \tag{2.9}
\end{equation*}
$$

where $\overline{\bar{\nabla}}$ is the Riemannian connection with respect to g on n-dimensional Riemannian manifold and η is a 1 -form associated with the vector field ξ on M defined by

$$
\begin{equation*}
\eta(X)=g(X, \xi) \tag{2.10}
\end{equation*}
$$

The torsion tensor T of the connection $\bar{\nabla}$ is given by [3]

$$
\begin{equation*}
T(X, Y)=\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X-[X, Y] \tag{2.11}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
T(X, Y)=\eta(Y) X-\eta(X) Y . \tag{2.12}
\end{equation*}
$$

A linear connection $\bar{\nabla}$, satisfying (2.12) is called a semi-symmetric connection. $\bar{\nabla}$ is called a metric connection if $\bar{\nabla} g=0$, otherwise, it is said to be non-metric connection. Furthermore, from (2.9), it is easy to see that

$$
\begin{gathered}
\bar{\nabla}_{X} g(Y, Z)=\left(\bar{\nabla}_{X} g\right)(Y, Z)+g\left(\bar{\nabla}_{X} Y, Z\right)+g\left(Y, \bar{\nabla}_{X} Z\right) \\
=\left(\bar{\nabla}_{X} g\right)(Y, Z)+\bar{\nabla}_{X} g(Y, Z)+\eta(Y) g(X, Z)+\eta(Z) g(X, Y)
\end{gathered}
$$

which implies

$$
\begin{equation*}
\left(\bar{\nabla}_{X} g\right)(Y, Z)=\eta(Y) g(X, Z)-\eta(Z) g(X, Y) \tag{2.13}
\end{equation*}
$$

for all vector fields X, Y, Z, on M. Therefore, in view of (2.12) and (2.13), $\bar{\nabla}$ is a semi-symmetric non-metric connection. Using (2.4) and (2.9), we get

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right)(Y)=\alpha(g(X, Y) \xi-\eta(Y) \phi X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X)-\eta(Y) \phi X \tag{2.14}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{Y} \phi\right)(X)=\alpha(g(Y, X) \xi-\eta(X) \phi Y)+\beta(g(\phi Y, X) \xi-\eta(X) \phi Y)-\eta(X) \phi Y \tag{2.15}
\end{equation*}
$$

On adding the two equations above, we obtain

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right)(Y)+\left(\bar{\nabla}_{Y} \phi\right)(X)=\alpha(2 g(X, Y) \xi-(\alpha+\beta+1)(\eta(Y) \phi X+\eta(X) \phi Y) \tag{2.16}
\end{equation*}
$$

This is the condition for an almost hyperbolic contact structure (ϕ, ξ, η, g) with a semi-symmetric non-metric connection to be nearly trans-hyperbolic Sasakian manifold. From (2.9) and (2.5), we get

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=-\alpha(\phi X)-\beta(\eta(X) \xi)+(\beta-1) X . \tag{2.17}
\end{equation*}
$$

Let $\bar{\nabla}$ be the semi-symmetric non-metric connection on \bar{M} and ∇ be the induced connection on M with respect to the unit normal N. Now we have the following theorem:

Theorem 2.2. The connection induced on CR-submanifolds of a nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection is also a semi-symmetric non-metric connection.

Proof. Let $\bar{\nabla}$ be the induced connection with respect to the unit normal N on a $C R$-submanifolds of a nearly trans-hyperbolic Sasakian manifold with semi-symmetric non-metric connection $\bar{\nabla}$. Then

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+m(X, Y) \tag{2.18}
\end{equation*}
$$

where m is a tensor field of type $(0,2)$ on the $C R$-submanifold M. Let ∇^{*} be the induced connection on $C R$-submanifolds from Riemannian connection $\overline{\bar{\nabla}}$, then

$$
\begin{equation*}
\overline{\bar{\nabla}}_{X} Y=\nabla_{X}^{*} Y+h(X, Y) \tag{2.19}
\end{equation*}
$$

where h is a second fundamental tensor. By the definition of the semi-symmetric non-metric connection, we have

$$
\bar{\nabla}_{X} Y=\overline{\bar{\nabla}}_{X} Y+\eta(Y) X
$$

Using (2.18) and (2.19), we get

$$
\nabla_{X} Y+m(X, Y)=\nabla_{X}^{*} Y+h(X, Y)+\eta(Y) X
$$

Equating the tangential and normal components from both sides of the above equation, we obtain

$$
m(X, Y)=h(X, Y)
$$

and consequently, we have

$$
\nabla_{X} Y=\nabla_{X}^{*} Y+\eta(Y) X
$$

Thus ∇ is also a semi-symmetric non-metric connection.
Now, the Gauss formula for a $C R$-submanifold of a nearly trans-hyperbolic Sasakian manifold with semi-symmetric non-metric connection is

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.20}
\end{equation*}
$$

and the Weingarten formula for M is given by

$$
\begin{equation*}
\bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N \tag{2.21}
\end{equation*}
$$

for any $X, Y \in T M, N \in T^{\perp} M$ and h (resp. A_{N}) is the second fundamental form (resp. tensor) of M in \bar{M} and ∇^{\perp} denotes the normal connection. Moreover, we have [6]

$$
\begin{equation*}
g(h(X, Y), N)=g\left(A_{N} X, Y\right) \tag{2.22}
\end{equation*}
$$

3 Some Basic Lemmas

First we prove the following lemmas.
Lemma 3.1. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then

$$
\begin{gather*}
P\left(\nabla_{X} \phi P Y\right)+P\left(\nabla_{Y} \phi P X\right)-P\left(A_{\phi Q X} Y\right)-P\left(A_{\phi Q Y} X\right)=\phi P \nabla_{X} Y+\phi P \nabla_{Y} \tag{3.1}\\
+2 \alpha g(X, Y) P \xi-(\alpha+\beta+1) \eta(X) \phi Y-(\alpha+\beta+1) \eta(Y) \phi P X, \\
Q\left(\nabla_{X} \phi P Y\right)+Q\left(\nabla_{Y} \phi P X\right)-Q\left(A_{\phi Q X} Y\right)-Q\left(A_{\phi Q Y} X\right)=2 B h(X, Y)+2 \alpha g(X, Y) Q \xi, \tag{3.2}\\
h(X, \phi P Y)+h(Y, \phi P X)+\nabla_{X}^{\perp} \phi Q Y+\nabla_{\phi}^{\perp} Q X=\phi Q \nabla_{Y} X+\phi Q \nabla_{X} Y \tag{3.3}\\
+2 C h(X, Y)-(\alpha+\beta+1) \eta(X) \phi Q Y-(\alpha+\beta+1) \eta(Y) \phi Q X
\end{gather*}
$$

for any $X, Y \in T M$.

Proof. By direct covariant differentiation, we have

$$
\bar{\nabla}_{X} \phi Y=\left(\bar{\nabla}_{X} \phi\right) Y+\phi\left(\bar{\nabla}_{X} Y\right) .
$$

By the virtue of (2.7), (2.10),(2.20) and (2.21), we get

$$
\begin{gathered}
\nabla_{X} \phi P Y+h(X, \phi P Y)-A_{\phi Q Y} X+\nabla_{X}^{\perp} \phi Q Y-\phi\left(\nabla_{X} Y+h(X, Y)\right) \\
+\nabla_{Y} \phi P X+h(Y, \phi P X)-A_{\phi Q X} Y-\nabla_{Y}^{\perp} \phi Q X-\phi\left(\nabla_{Y} X+h(X, Y)\right)
\end{gathered}
$$

$$
=\alpha(2 g(X, Y) \xi-(\alpha+\beta+1)(\eta(X) \phi Y+\eta(Y) \phi X)
$$

Again using (2.7), we get

$$
\begin{gather*}
P\left(\nabla_{X} \phi P Y\right)+P\left(\nabla_{Y} \phi P X\right)-P\left(A_{\phi} Q X Y\right)-P\left(A_{\phi} Q Y X\right) \tag{3.4}\\
\phi P \nabla_{X} Y-\phi P \nabla_{Y} X+Q\left(\nabla_{X} \phi P Y\right)+Q\left(\nabla_{Y} \phi P X\right)-Q\left(A_{\phi} Q X Y\right) \\
-Q\left(A_{\phi} Q Y X\right)-2 B h(X, Y)+h(X, \phi P Y)+h(Y, \phi P X)+\nabla_{X}^{\perp} \phi Q Y+\nabla_{\phi}^{\perp} Q X \\
-\phi Q \nabla_{Y} X-\phi \nabla_{X} Y-2 C h(X, Y)=2 \alpha((g(X, Y)) P \xi+2 \alpha((g(X, Y)) Q \xi \\
(\alpha+\beta+1) \eta(X) \phi Q Y-(\alpha+\beta+1) \eta(Y) \phi Q X-(\alpha+\beta+1) \eta(X) \phi P Y-(\alpha+\beta+1) \eta(Y) \phi P X
\end{gather*}
$$

for $X, Y \in T M$.
Now equating horizontal, vertical and normal components in (3.4), we get the desired results.
Lemma 3.2. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then

$$
\begin{gather*}
2\left(\bar{\nabla}_{X} \phi\right) Y=\nabla_{X} \phi Y-\nabla_{Y} \phi X+h(X, \phi Y)-h(Y, \phi X)-\phi[X, Y] \tag{3.5}\\
+2 \alpha(g(X, Y) \xi)-(\alpha+\beta+1)(\eta(Y) \phi X+\eta(X) \phi Y)
\end{gather*}
$$

for $X, Y \in D$.

Proof. From Gauss formula (2.20), we have

$$
\begin{equation*}
\bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X=\nabla_{X} \phi Y+h(X, \phi Y)-\nabla_{Y} \phi X-h(Y, \phi X) . \tag{3.6}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
\bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X=\left(\bar{\nabla}_{X} \phi\right) Y-\left(\bar{\nabla}_{Y} \phi\right) X+\phi[X, Y] . \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7), we get

$$
\begin{gather*}
\left(\bar{\nabla}_{X} \phi\right) Y-\left(\bar{\nabla}_{Y} \phi\right) X=\nabla_{X} \phi Y+h(X, \phi Y)-\nabla_{Y} \phi X \tag{3.8}\\
-h(Y, \phi X)-\phi[X, Y] .
\end{gather*}
$$

Also for nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection, we have

$$
\begin{align*}
& \left(\bar{\nabla}_{X} \phi\right) Y+\left(\bar{\nabla}_{Y} \phi X\right)=2 \alpha(g(X, Y) \xi) \tag{3.9}\\
& -(\alpha+\beta+1)(\eta(X) \phi Y+\eta(Y) \phi X)
\end{align*}
$$

Adding (3.8) and (3.9), we get

$$
\begin{gathered}
2\left(\bar{\nabla}_{X} \phi\right) Y=\nabla_{X} \phi Y-\nabla_{Y} \phi X+h(X, \phi Y)-h(Y, \phi X)-\phi[X, Y] \\
+2 \alpha(g(X, Y) \xi)-(\alpha+\beta+1)(\eta(Y) \phi X+\eta(X) \phi Y) .
\end{gathered}
$$

Subtracting (3.8) from (3.9), we get

$$
\begin{gather*}
2\left(\bar{\nabla}_{Y} \phi\right) X=2 \alpha(g(X, Y) \xi)-(\alpha+\beta+1)(\eta(Y) \phi X+\eta(X) \phi Y) \tag{3.10}\\
-\nabla_{X} \phi Y+\nabla_{Y} \phi X-h(X, \phi Y)+h(Y, \phi X)+\phi[X, Y] .
\end{gather*}
$$

Hence lemma is proved.

Lemma 3.3. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then

$$
\begin{gather*}
2\left(\bar{\nabla}_{Y} \phi\right) Z=A_{\phi Y} Z-A_{\phi} Z Y+\nabla_{Y}^{\perp} \phi Z-\nabla_{Y}^{\perp} \phi Y-\phi[X, Y] \tag{3.11}\\
+2 \alpha(g(Y, Z) \xi)-(\alpha+\beta+1)(\eta(Y) \phi Z+\eta(Z) \phi Y)
\end{gather*}
$$

for any $X, Y \in D^{\perp}$.

Proof. From Weingarten fromula (2.21), we have

$$
\begin{equation*}
\bar{\nabla}_{Z} \phi Y-\bar{\nabla}_{Y} \phi Z=A_{\phi} Y Z-A_{\phi} Z Y+\nabla_{Y}^{\perp} \phi Z-\nabla_{Z}^{\perp} \phi Y \tag{3.12}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
\bar{\nabla}_{Z} \phi Y-\bar{\nabla}_{Y} \phi Z=\left(\bar{\nabla}_{Y} \phi\right) Z-\left(\bar{\nabla}_{Z} \phi\right) Y+\phi[Y, Z] . \tag{3.13}
\end{equation*}
$$

From (3.11) and (3.12), we get

$$
\begin{equation*}
\left(\bar{\nabla}_{Y} \phi\right) Z-\left(\bar{\nabla}_{Z} \phi\right) Y=A_{\phi} Y Z-A_{\phi} Z Y+\nabla_{Y}^{\perp} \phi Z-\nabla_{Z}^{\perp} \phi Y-\phi[Y, Z] . \tag{3.14}
\end{equation*}
$$

Also for nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{Y} \phi\right) Z+\left(\bar{\nabla}_{Z} \phi\right) Y=2 \alpha(g(Y, Z) \xi)-(\alpha+\beta+1)(\eta(Y) \phi Z+\eta(Z) \phi Y) \tag{3.15}
\end{equation*}
$$

Adding (3.13) and (3.14), we get

$$
\begin{aligned}
& 2\left(\bar{\nabla}_{Y} \phi\right) Z=A_{\phi} Y Z-A_{\phi} Z Y+\nabla_{Y}^{\perp} \phi Z-\nabla_{Z}^{\perp} \phi Y-\phi[Y, Z] \\
& \quad+2 \alpha(g(Y, Z) \xi)-(\alpha+\beta+1)(\eta(Y) \phi Z+\eta(Z) \phi Y) .
\end{aligned}
$$

Subtracting (3.13) and (3.14), we obtain

$$
\begin{aligned}
& 2\left(\bar{\nabla}_{Z} \phi\right) Y=-A_{\phi} Y Z-A_{\phi} Z Y-\nabla_{Y}^{\perp} \phi Z+\nabla_{Z}^{\perp} \phi Y+\phi[Y, Z] \\
& +2 \alpha(g(Y, Z) \xi)-(\alpha+\beta+1)(\eta(Y) \phi Z+\eta(Z) \phi Y)
\end{aligned}
$$

This proves our assertion.
Lemma 3.4. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then

$$
\begin{gathered}
2\left(\bar{\nabla}_{X} \phi\right) Y=-A_{\phi} Y X+\nabla_{X}^{\perp} \phi Y+\nabla_{Y} \phi X-h(Y, \phi X)-\phi[X, Y] \\
+2 \alpha(g(X, Y) \xi)-(\alpha+\beta+1)(\eta(X) \phi Y+\eta(Y) \phi X), \\
2\left(\bar{\nabla}_{Y} \phi\right) X=A_{\phi} Y X-\nabla_{X}^{\perp} \phi Y+\nabla_{Y} \phi X+h(Y, \phi X)+\phi[X, Y] \\
+2 \alpha(g(X, Y) \xi)-(\alpha+\beta+1)(\eta(X) \phi Y+\eta(Y) \phi X)
\end{gathered}
$$

for any $X \in D$ and $Y \in D^{\perp}$.

Proof. Using Gauss and Weingarten eqautions for $X \in D$ and $Y \in D^{\perp}$ respectively, we get

$$
\begin{equation*}
\nabla_{X} \phi Y-\bar{\nabla}_{Y} \phi X=-A_{\phi Y} X+\nabla_{X}^{\perp} \phi Y-\nabla_{Y} \phi X-h(Y, \phi X) . \tag{3.16}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
\bar{\nabla}_{X} \phi Y-\bar{\nabla}_{Y} \phi X=\left(\bar{\nabla}_{X} \phi\right) Y-\left(\bar{\nabla}_{Y} \phi\right) X+\phi[X, Y] . \tag{3.17}
\end{equation*}
$$

From (3.15) and (3.16), we get

$$
\begin{gather*}
\left(\bar{\nabla}_{X} \phi\right) Y-\left(\bar{\nabla}_{Y} \phi\right) X=-A_{\phi Y} X+\nabla_{X}^{\perp} \phi Y-\nabla_{Y} \phi X \tag{3.18}\\
-h(Y, \phi X)-\phi[X, Y]
\end{gather*}
$$

Moreover, for nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y+\left(\bar{\nabla}_{Y} \phi\right) X=2 \alpha(g(X, Y) \xi)-(\alpha+\beta+1)(\eta(Y) \phi X+\eta(X) \phi Y) \tag{3.19}
\end{equation*}
$$

Adding (3.17) and (3.18), we obtain

$$
\begin{gather*}
2\left(\bar{\nabla}_{X} \phi\right) Y=2 \alpha(g(X, Y) \xi)-(\alpha+\beta+1)(\eta(X) \phi Y+\eta(Y) \phi X) \tag{3.20}\\
-A_{\phi} Y X+\nabla_{X}^{\perp} \phi Y-\nabla_{Y} \phi X-h(Y, \phi X)-\phi[X, Y] .
\end{gather*}
$$

Subtracting (3.16) and (3.18), we get

$$
\begin{gather*}
2\left(\bar{\nabla}_{Y} \phi\right) X=2 \alpha(g(X, Y) \xi)-(\alpha+\beta+1)(\eta(X) \phi Y+\eta(Y) \phi X) \tag{3.21}\\
+A_{\phi} Y X-\nabla_{X}^{\perp} \phi Y+\nabla_{Y} \phi X+h(Y, \phi X)+\phi[X, Y] .
\end{gather*}
$$

Hence Lemma is proved.

4 Parallel Distributions

Definition 4.1. [7] The horizontal (resp. vertical) distribution D (resp. D^{\perp}) is said to be parallel with respect to the semi-symmetric non-metric connection on M, if $\nabla_{X} Y \in D\left(\nabla_{Z} W \in D^{\perp}\right)$ for any vector field $X, Y \in D$ (resp. $W, Z \in D^{\perp}$).

Proposition 4.2. [14] Let M be a ξ-vertical CR-submanifold of neraly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. If the horizontal distribution D is parallel, then

$$
\begin{equation*}
h(X, \phi Y)=h(Y, \phi X) \tag{4.1}
\end{equation*}
$$

for all $X, Y \in D$.
Proof. From equation (2.9) and using the parallelism of horizontal distribution D, as

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\overline{\bar{\nabla}}_{X} Y+\eta(Y) X \tag{4.2}
\end{equation*}
$$

$\bar{\nabla}_{X} Y \in D$ if and only if $\overline{\bar{\nabla}}_{X} Y \in D$, and from [14] Proposition 1, this happens if and only if $h(X, \phi Y)=$ $h(Y, \phi X)$ for any $X, Y \in D$.

Proposition 4.3. [14] Let M be a ξ-vertical CR-submanifold of nearly trans-hyperbolic Sasakian manifold \bar{M} with semi-symmetric non-metric connection. If the distribution D^{\perp} is parallel with respect to the connection ∇ on M, then

$$
\begin{equation*}
A_{\phi} Y Z+A_{\phi} Z Y \in D^{\perp} \tag{4.3}
\end{equation*}
$$

for any $Y, Z \in D^{\perp}$.

Proof. From equation (2.9) and using the parallelism of horizontal distribution D^{\perp}, as

$$
\bar{\nabla}_{X} Y=\overline{\bar{\nabla}}_{X} Y+\eta(Y) X
$$

$\bar{\nabla}_{X} Y \in D^{\perp}$, if and only if $\overline{\bar{\nabla}}_{X} Y \in D^{\perp}$, that is D^{\perp} is parallel for $\bar{\nabla}$ and $\overline{\bar{\nabla}}$, is also hold from [14] Proposition 1, then $A_{\phi} Y Z+A_{\phi} Z Y \in D^{\perp}$, for any $Y, Z \in D^{\perp}$.

Definition 4.4. [7] A $C R$-submanifold of a manifold with a semi-symmetric non-metric connection is said to be mixed totally geodesic if $h(X, Z)=0$ for all $X \in D$ and $Z \in D^{\perp}$.

The following lemma is an easy consequence of (2.21).
Lemma 4.5. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with semi-symmetric non-metric connection. Then M is mixed totally geodesic if and only if $A_{N} X \in D$ for all $X \in D$.

Definition 4.6. A normal vector field $N \neq 0$ with semi-symmetric non-metric connection is called D-parallel if normal section $\nabla_{X}^{\perp} N=0$ for all $X \in D$.

Now, we have the following proposition.
Proposition 4.7. Let M be a mixed totally geodesic ξ-vertical CR-submanifold of nearly transhyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then the normal section $N \in \phi D^{\perp}$ is D-parallel if and only if $\nabla_{X} \phi N \in D$ for all $X \in D$.

Proof. The proof of this proposition can be directly deduced from [14] Proposition 3.

5 Integrability Conditions of Distributions

In this part of the paper, we calculate the Nijenhuis tensor $N(X, Y)$ on nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. For this, first we need the following lemmas.

Lemma 5.1. In an almost contact metric manifold, we have

$$
\begin{equation*}
\left(\bar{\nabla}_{Y} \phi\right) \phi X=-\phi\left(\bar{\nabla}_{Y} \phi\right) X+\left(\left(\bar{\nabla}_{Y} \eta\right) X\right) \xi+\eta(X) \bar{\nabla}_{Y} \xi \tag{5.1}
\end{equation*}
$$

Proof. For $X, Y \in T \bar{M}$, we have

$$
\begin{aligned}
\left(\bar{\nabla}_{Y} \phi\right) \phi X= & \bar{\nabla}_{Y}\left(\phi^{2} X\right)-\phi\left(\bar{\nabla}_{Y} \phi X\right)+\phi\left(\phi \bar{\nabla}_{Y} X\right)-\phi^{2} \bar{\nabla}_{Y} X \\
& =\bar{\nabla}_{Y}(-X+\eta(X) \xi)-\phi\left(\bar{\nabla}_{Y} \phi X\right) \\
& +\phi\left(\phi \bar{\nabla}_{Y} X\right)\left(-\bar{\nabla}_{Y} X+\eta\left(\bar{\nabla}_{Y} X\right) \xi\right)
\end{aligned}
$$

which gives the equation (5.1).

Lemma 5.2. Let \bar{M} be a nearly trans-hyperbolic Sasakian manifold with a semi-symmetric nonmetric connection, then

$$
\begin{gather*}
\left(\bar{\nabla}_{\phi X} \phi\right) Y=2 \alpha(g(\phi X, Y) \xi)-(\alpha+\beta+1) \eta(Y) X \tag{5.2}\\
+(\alpha+\beta+1) \eta(X) \eta(Y) \xi-\eta(Y) \bar{\nabla}_{Y} \xi+\phi\left(\bar{\nabla}_{Y} \phi\right) X+\eta\left(\bar{\nabla}_{Y} X\right) \xi
\end{gather*}
$$

for any $X, Y \in T \bar{M}$.

Proof. From the definition of nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection, we have

$$
\left(\bar{\nabla}_{X} \phi\right) Y=2 \alpha(g(X, Y) \xi)-(\alpha+\beta+1)(\eta(Y) \phi X+\eta X \phi Y) .
$$

Replacing X by ϕX, in above equation, we get

$$
\begin{gather*}
\left(\bar{\nabla}_{\phi} X \phi\right) Y=2 \alpha(g(\phi X, Y) \xi)+(\alpha+\beta+1) \eta(Y) X \tag{5.3}\\
+(\alpha+\beta+1) \eta(Y) \eta(X) \xi-\left(\bar{\nabla}_{Y} \phi\right) \phi X
\end{gather*}
$$

Using Lemma (5.1) and (5.3), we obtain

$$
\begin{gathered}
\left(\bar{\nabla}_{\phi} X \phi\right) Y=2 \alpha(g(\phi X, Y) \xi)+(\alpha+\beta+1) \eta(Y) X+(\alpha+\beta+1) \eta(Y) \eta(X) \xi \\
+\phi\left(\bar{\nabla}_{Y} \phi\right) X+\left(\left(\bar{\nabla}_{Y} \eta\right) X\right) \xi-\eta(X) \bar{\nabla}_{Y} \xi
\end{gathered}
$$

for all $X, Y \in T \bar{M}$.
On a nearly trans-hyperbolic Sasakian manifold \bar{M} the Nijenhuis tensor is

$$
\begin{equation*}
N(X, Y)=\left(\bar{\nabla}_{\phi} X \phi\right) Y-\left(\bar{\nabla}_{\phi} Y \phi\right) X-\phi\left(\bar{\nabla}_{X} \phi\right) Y+\phi\left(\bar{\nabla}_{Y} \phi\right) X \tag{5.4}
\end{equation*}
$$

for all $X, Y \in T \bar{M}$. From (5.2) and (5.4), we get

$$
\begin{align*}
N(X, Y) & =4 \alpha(g(\phi X, Y) \xi)+(\alpha+\beta+1)(\eta(X) Y-\eta(Y) X)-\eta(X) \bar{\nabla}_{Y} \xi \tag{5.5}\\
& +2(\alpha+\beta+1) \eta(X) \eta(Y) \xi+\eta\left(\phi\left(\bar{\nabla}_{Y} \phi\right) X+\eta\left(\bar{\nabla}_{Y} X\right) \xi\right.
\end{align*}
$$

Thus using (2.15) in (5.5), we find that the Nijenhuis tensor of nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection which is given by

$$
\begin{align*}
& N(X, Y)=4 \alpha(g(\phi X, Y) \xi)-\eta(X) \bar{\nabla}_{Y} \xi+\eta(Y) \bar{\nabla}_{X} \xi-\eta[X, Y] \xi \tag{5.6}\\
& +(\alpha+\beta+1)[3 \eta(X) Y+\eta(Y) X-2 \eta(X) \eta(Y) \xi]+4 \phi\left(\bar{\nabla}_{Y} \phi\right) X
\end{align*}
$$

for all $X, Y \in T \bar{M}$. Now, we prove the following theorem.

Theorem 5.3. Let M be a ξ-vertical CR-submanifold of nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then the distribution D is integrable if the following conditions are satisfied:

$$
\begin{equation*}
S(X, Z) \in D, \quad h(X, \phi Z)=h(\phi X, Z) \tag{5.7}
\end{equation*}
$$

for any $X, Z \in D$.

Proof. The torsion tensor $S(X, Y)$ of the almost contact metric structure (ϕ, ξ, η, g) is given by

$$
\begin{equation*}
S(X, Y)=N(X, Y)+2 d \eta(X, Y) \xi=N(X, Y)+2 g(\phi X, Y) \xi \tag{5.8}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
S(X, Y)=[\phi X, \phi Y]-\phi[\phi X, Y]-\phi[X, \phi Y]+2 g(\phi X, Y) \xi \tag{5.9}
\end{equation*}
$$

for $X, Y \in T M$.
The distribution D is integrable if and only if for all $X, Y \in D$ and $\eta([X, Y])=0$ as $\xi \in D^{\perp}$. If $S(X, Y) \in D$, then from (5.6) and (5.8) we have

$$
\begin{gather*}
2(\alpha+1) g(\phi X, Y)+\eta([X, Y]) \xi \tag{5.10}\\
+4\left(\phi Q \nabla_{Y} \phi X+\phi h(Y, \phi X)+Q \nabla_{Y} X+h(X, Y)\right) \in D .
\end{gather*}
$$

or

$$
\begin{gather*}
2(\alpha+1) g(\phi X, Y)+\eta([X, Y]) \xi \tag{5.11}\\
+4\left(\phi Q \nabla_{Y} \phi X+\phi h(Y, p h i X)+Q \nabla_{Y} X+h(X, Y)\right)=0
\end{gather*}
$$

for $X, Y \in D$ and $\xi \in D^{\perp}$.
Replacing Y by ϕZ for $Z \in D$ in the above equation, we get

$$
\begin{gather*}
2(\alpha+1) g(\phi X, \phi Z) Q \xi \tag{5.12}\\
+4\left(\phi Q \nabla_{\phi} Y \phi X+\phi h(\phi Z, \phi X)+Q \nabla_{\phi} Z X+h(X, \phi Z)=0 .\right.
\end{gather*}
$$

Interchanging X and Z in (5.12) and subtracting these relations, we obtain

$$
\begin{equation*}
\phi Q[\phi X, \phi Z]+Q[X, \phi Z]+h(X, \phi Z)-h(Z, \phi X)=0 \tag{5.13}
\end{equation*}
$$

Consequently, from (5.13), we get

$$
h(X, \phi Z)=h(Z, \phi X)
$$

for any $X, Y \in D$.
Theorem 5.4. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then

$$
A_{\phi} Y Z-A_{\phi} Z Y=\frac{1}{3} \phi P[Y, Z]+2 \alpha(\eta(Y) Z-\eta(Z) Y)+(\alpha+\beta+1)(\eta(Y) \phi Z-\eta(Z) \phi Y)
$$

for any $Y, Z \in D^{\perp}$.

Proof. For $Y, Z \in D^{\perp}$ and $X \in T(M)$, we get

$$
\begin{gathered}
2 g\left(A_{\phi} Z Y, X\right)=2 g(h(X, Y), \phi Z)=g(h(X, Y), \phi Z)+g(h(X, Y), \phi Z) \\
=g\left(\bar{\nabla}_{X} Y+\bar{\nabla}_{Y} X, \phi Z\right)=-g\left(\phi\left(\bar{\nabla}_{X} Y+\bar{\nabla}_{Y} X\right), Z\right) \\
=-g\left[\left(\bar{\nabla}_{Y} \phi X+\bar{\nabla}_{Y} \phi X, Z\right)-2(\alpha g(X, Y) \xi-(\alpha+\beta+1)(\eta(X) \phi Y)-\eta(Y) \phi X), Z\right] \\
=-g\left(\bar{\nabla}_{Y} \phi X, Z\right)-g\left(\bar{\nabla}_{X} \phi Y, Z\right)+2 \alpha \eta(Z) g(X, Y) \\
-(\alpha+\beta+1)[g(\phi X, Z) \eta(Y)+g(\phi Y, Z) \eta(X)] .
\end{gathered}
$$

$$
\begin{gathered}
2 g\left(A_{\phi Z} Y, X\right)=g\left(\bar{\nabla}_{Y} Z, \phi X\right)+g\left(A_{\phi} Y Z, X\right)+2 \alpha \eta(Z) g(X, Y) \\
-(\alpha+\beta+1) g(\phi X, Z) \eta(Y)-(\alpha+\beta+1) g(\phi Y, Z) \eta(X) .
\end{gathered}
$$

The above equation is true for all $X \in T(M)$, therefore, transvecting the vector field X both sides, we obtain

$$
2 A_{\phi} Z Y=A_{\phi} Y Z-\phi \bar{\nabla}_{Y} Z+2 \alpha \eta(Z) Y+(\alpha+\beta+1) \eta(Y) \phi Z-(\alpha+\beta+1) g(\phi Y, Z) \xi
$$

or

$$
\begin{equation*}
2 A_{\phi} Z Y=A_{\phi} Y Z-\phi \bar{\nabla}_{Y} Z+2 \alpha \eta(Z) Y+(\alpha+\beta+1) \eta(Y) \phi Z \tag{5.14}
\end{equation*}
$$

for any $Y, Z \in D^{\perp}$. Interchanging the vector fields Y and Z, we get

$$
\begin{equation*}
2 A_{\phi} Y Z=A_{\phi} Z Y-\phi \bar{\nabla}_{Z} Y+2 \alpha \eta(Y) Z+(\alpha+\beta+1) \eta(Z) \phi Y \tag{5.15}
\end{equation*}
$$

Subtracting (5.14) and (5.15), we find

$$
\begin{gather*}
A_{\phi} Y Z-A_{\phi} Z Y=\frac{1}{3} \phi P[Y, Z]+2 \alpha(\eta(Y) Z-\eta(Z) Y) \tag{5.16}\\
+(\alpha+\beta+1)(\eta(Z) \phi Y-\eta(Y) \phi Z)
\end{gather*}
$$

for any $Y, Z \in D^{\perp}$.
Theorem 5.5. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with semi-symmetric non-metric connection. Then the distribution D^{\perp} is integrable if and only if

$$
\begin{equation*}
A_{\phi} Y Z-A_{\phi} Z Y=2 \alpha(\eta(Y) Z-\eta(Z) Y)+(\alpha+\beta+1)(\eta(Z) \phi Y-\eta(Y) \phi Z) \tag{5.17}
\end{equation*}
$$

for any $Y, Z \in D^{\perp}$.
Proof. From (5.16), the proof of the theorem is obvious.
Corollary 5.6. Let M be a horizontal CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then the distribution D^{\perp} is integrable if and only if

$$
\begin{equation*}
A_{\phi} Y Z-A_{\phi Z} Y=0 \tag{5.18}
\end{equation*}
$$

for any $Y, Z \in D^{\perp}$.

References

[1] M. Ahmad and J. B. Jun, On semi-invariant submanifolds of nearly Kenmotsu manifold with a semi-symmetric non-metric connection, J. Chungcheong Math. Soc. 23 (2010), no.2, 257-266.
[2] M. Ahmad and C. Oz̈gür, Hypersurfaces of almost r-paracontact Riemannian manifold endowed with semi- symmetric non- metric connection, Result. Math. 55(2009), 1-10.
[3] N. S. Agashe and M. R. Chaffle, A semi-symmetric non-metric connection of a Riemannain manifold, Indian. J. Pure and Appl. Math. 23(1992), 399-409.
[4] F. R. Al-Solamy, CR-submanifolds of a nearly trans-Sasakian manifold, IJMMS, 31(3) (2002), 167-175.
[5] A. Bejancu, CR-submanifold of Kaehler manifold, I. Proc. Amer. Math. Soc. 69(1986), 135142.
[6] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, Holland, 1986.
[7] L. Bhatt and K. K. Dube, On CR-submanifolds of trans-hyperbolic Sasakian manifold, Acta Cinecia 31(2003), 91-96.
[8] D. E. Blair, Contact manifold in Riemannian geometry, Lecture Notes in Math. 509, Springer Verlag 1976.
[9] L. S. Das, M. Ahmad and A. Haseeb, On Semi-invariant submanifolds of a nearly Sasakian manifolds with semi-symmetric non-metric connection. J. Appl. Analysis, 17(1)(2010), 119130.
[10] A. Friedmann and J. A. Schouten, Uber die geometrie der halbsymmetrischen ubertragung Math. Zeitschr. 21(1924), 211-223.
[11] H. S. Gill and K. K. Dube, Generalized $C R$-submanifolds of trans-hyperbolic Sasakian manifold, Demonstratio Math. 38(2005), 953-960.
[12] C. Gherghe, Harmonicity on nearly trans-Sasaki manifolds, Demostratio Math. 33(2000), 151157.
[13] M. Kobayashi, CR-subamnifolds of Sasakian manifold, Tensor (N.S.) 35(1981),no.3, 297-307.
[14] S. Kumar, S. and K. K. Dube, $C R$-submanifolds of a nearly trans-hyperbolic Sasakian manifold, Demonstratio Math. Vol. XLI, 4(2008), 922-929.
[15] J. A. Oubina, New class of almost contact metric structures, Publ. Math. Debrecen, 32(1985), 187-193.
[16] C. Oz̈gür, On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection, Kuwait J. Sci. engg. 37 (2)(2010),17-30.
[17] S. Sular and C. Oz̈gür, Generalized Sasakian space forms with semi-symmetric non-metric connection, Proced. Estonian Acd. Sci. 60(2011)4, 251-257.
[18] M. H. Shahid, CR-submanifolds of trans-Sasakian manifold, Indian J. Pure Appl. Math. 22(1991), 1007-1012.
[19] J. A. Schouten, Ricci-Calculus, An Introduction to Tensor Analysis and Geometrical Applications, Springer-Verlag, Berlin, Göttingen-Heidelberg, 1954.
[20] M. D. Upadhyay and K. K. Dube, Almost contact hyperbolic (f, g, η, ξ)-structure, Acta. Math. Acad, Scient. Hung., Tomus, 28(1976), 1-4.
[21] K. Yano and M. Kon, Contact CR-submanifolds, Kodai Math. J. 5(1982), no. 2, 238-252.
[22] K. Yano, On semi-symmetric metric connection, Rev. Roumanine de Math. Pures et Appl, 15(1970) 1579-1586.

[^0]: *e-mail anallintegral@gmail.com
 \dagger e-mail mobinahmad68@gmail.com
 〒e-mail address: janardanojha @gmail.com

