CR-Submanifolds of a Nearly Trans-Hyperbolic Sasakian Manifold with a Semi-Symmetric Non-Metric Connection

MOHD DANISH SIDDIQI*

Jazan University, Department of Mathematics, College of Science, Jazan Kingdom of Saudi Arabia

MOBIN AHMAD†

Jazan University, Department of Mathematics, College of Science, Jazan Kingdom of Saudi Arabia

JANARDAN PRASAD OJHA‡

Integral University, Department of Mathematics, Faculty of Applied sciences, Kursi Road, Lucknow, U.P. India

Abstract. In this paper, CR-submanifolds of a nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection are studied. The parallel distributions relating to ξ -vertical and ξ -horizontal CR-submanifolds of nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection are obtained. Moreover, Nijenhuis tensor is calculated and integrability conditions of the distributions on CR-submanifolds of nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection are discussed.

AMS Subject Classification: 53C40, 53C05.

Keywords: *CR*-submanifolds, nearly trans-hyperbolic Sasakian manifolds, semi-symmetric non-metric connection.

Received: November 5, 2013 || Accepted: June 12, 2014

1 Introduction

In 1978, Aurel Bejancu initiated the study of *CR*-submanifolds of Kaehler manifold [5]. Later on, many geometers (see [13], [21], [14]) studied *CR*-submanifolds of different ambient spaces.

^{*}e-mail anallintegral@gmail.com

[†]e-mail mobinahmad68@gmail.com

[‡]e-mail address: janardanojha@gmail.com

In 1985, Oubina [15] introduced a new class of almost contact metric manifold known as trans-Sasakian manifold. M. H. Shahid [18] and Al-Solamy [4] studied the geometry of CR-submanifolds of trans-Sasakian and nearly trans-Sasakian manifold [12] respectively. In 1976, Upadhyay and Dube [20] introduced the notion of almost contact hyperbolic (f, g, η, ξ) -structure. Some properties of CR-submanifolds of trans-hyperbolic Sasakian manifold were studied in [7] and [11]. CR-submanifolds of nearly trans-hyperbolic Sasakian manifold is a more general concept. In 2010, Cihan Özgür [16] studied the submanifolds of Riemannian manifold with semi-symmetric non-metric connection. Moreover, Özgür et al. also studied the different structures with semi-symmetric non-metric connection in [17] and [2]. Some properties of semi-invariant submanifolds, hypersurfaces and submanifolds with semi-symmetric non-metric connection were studied in [1], [2] and [9]. Thus motivated sufficiently from the studies referred above in the present paper, we plan to study the CR-submanifolds of nearly trans-hyperbolic Sasakian manifolds with a semi-symmetric non-metric connection.

We know that a linear connection ∇ on a manifold M is called metric connection if $\nabla g = 0$, otherwise, it is non-metric. Further it is said to be a semi-symmetric linear connection [10] if its torsion tensor T(X, Y), is

$$T(X, Y) = \eta(Y)X - \eta(X)Y,$$

where η is a 1-form. Further, the study of semi-symmetric connection on Riemannian manifold was enriched by K. Yano [22], Agashe and Chaffle [3]. It is well known that a linear connection is symmetric and metric if and only if it is the Levi-Civita connection.

Semi-symmetric metric connection plays an important role in the study of Riemannaian manifolds. There are various physical problems involving the semi-symmetric metric connection. For example, if a man is moving on the surface of the Earth always facing one definite point, say Mekka or Jaruselam or the North pole, then this displacement is semi-symmetric and metric [19].

This paper is organized as follows. In section 2, we give a brief introduction of nearly transhyperbolic Sasakian manifold. In section 3, we have prove some basic lemmas on nearly transhyperbolic Sasakian manifold with a semi-symmetric non-metric connection. In section 4, we discuss parallel distributions and in section 5, we obtain the integrability conditions of distributions on *CR*-submanifolds.

2 Preliminaries

Let \bar{M} be an almost hyperbolic contact metric manifold [8] with an almost hyperbolic contact metric structure (ϕ, ξ, η, g) , where ϕ is a (1,1) tensor field, ξ is a vector field, η is a 1-form and g is a compatible Riemannian metric such that

$$\phi^2 = I - \eta \otimes \xi, \ \phi \xi = 0, \ \eta \circ \phi = 0, \ \eta(\xi) = -1 \tag{2.1}$$

$$g(\phi X, \phi Y) = -g(X, Y) - \eta(X)\eta(Y), \tag{2.2}$$

$$g(X, \phi Y) = -g(\phi X, Y), g(X, \xi) = \eta(X).$$
 (2.3)

An almost hyperbolic contact metric structure (ϕ, ξ, η, g) on \bar{M} is called trans-hyperbolic Sasakian [7] if and only if

$$(\bar{\nabla}_X \phi)(Y) = \alpha(g(X, Y)\xi - \eta(Y)\phi X) + \beta(g(\phi X, Y)\xi - \eta(Y)\phi X) \tag{2.4}$$

for all X, Y tangent to \bar{M} , α and β are smooth functions on \bar{M} . On a trans-hyperbolic Sasakian manifold \bar{M} , we have

$$\bar{\bar{\nabla}}_X \xi = -\alpha(\phi X) + \beta(X - \eta(X)\xi), \tag{2.5}$$

where g is the Riemannian metric and $\bar{\nabla}$ is the Riemannian connection. Further, an almost hyperbolic contact metric manifold \bar{M} on structure (ϕ, ξ, η, g) , is called nearly trans-hyperbolic Sasakian if [14]

$$(\bar{\nabla}_X \phi)(Y) + (\bar{\nabla}_Y \phi)(X) = \alpha(2g(X, Y)\xi - \eta(Y)\phi X - \eta(X)\phi Y) - \beta(\eta(Y)\phi X + \eta(X)\phi Y). \tag{2.6}$$

Let M be an m-dimensional isometrically immersed submanifold of nearly-hyperbolic Sasakian manifold \bar{M} . We denote by g the Riemannian metric tensor field on M as well as on \bar{M} .

Definition 2.1. [7] An *m*-dimensional Riemannian submanifold M of an almost trans-hyperbolic Sasakian manifold \bar{M} is called a CR-submanifold if ξ is tangent to M and there exists differentiable distribution $D: x \in M \to D_x \subset T_x(M)$ such that

- (i) the distribution D_x in invariant under ϕ , that is $\phi D_x \subset D_x$, for each $x \in M$,
- (ii) the complementary orthogonal distribution $D^{\perp}: x \to D_x^{\perp} \subset T_x(M)$ of the distribution D on M is anti-invariant under ϕ , that is $\phi D_x^{\perp}(M) \subset T_x^{\perp}(M)$ for all $x \in M$, where $T_x(M)$ and $T_x^{\perp}(M)$ are tangent space and normal space of M at $x \in M$ respectively.

If $dimD^{\perp}=0$ (resp. $dimD_x=0$), then CR-submanifold is called an invariant (resp. anti-invariant). The distribution D (resp. D^{\perp}) is called horizontal (resp. vertical) distribution. The pair (D,D^{\perp}) is called ξ -horizontal (resp. ξ -vertical) if $\xi_x \in D_x$ (resp. $\xi_x \in D^{\perp}$) for $x \in M$.

For any vector field X tangent to M, we write

$$X = PX + QX, (2.7)$$

where PX and QX belong to the distributions D and D^{\perp} respectively.

For any vector field N normal to M, we put

$$\phi N = BN + CN, \tag{2.8}$$

where BN (resp. CN) denotes the tangential (resp. normal) component of ϕN . Now, we remark that owing to the existence of the 1-form η , we can define a semi-symmetric non-metric connection $\bar{\nabla}$ in almost hyperbolic contact metric manifold by

$$\bar{\nabla}_X Y = \bar{\bar{\nabla}}_X Y + \eta(Y) X,\tag{2.9}$$

where $\bar{\nabla}$ is the Riemannian connection with respect to g on n-dimensional Riemannian manifold and η is a 1-form associated with the vector field ξ on M defined by

$$\eta(X) = g(X, \xi). \tag{2.10}$$

The torsion tensor T of the connection $\bar{\nabla}$ is given by [3]

$$T(X,Y) = \bar{\nabla}_X Y - \bar{\nabla}_Y X - [X,Y]. \tag{2.11}$$

Also, we have

$$T(X,Y) = \eta(Y)X - \eta(X)Y. \tag{2.12}$$

A linear connection $\bar{\nabla}$, satisfying (2.12) is called a semi-symmetric connection. $\bar{\nabla}$ is called a metric connection if $\bar{\nabla}g = 0$, otherwise, it is said to be non-metric connection. Furthermore, from (2.9), it is easy to see that

$$\bar{\nabla}_X g(Y,Z) = (\bar{\nabla}_X g)(Y,Z) + g(\bar{\nabla}_X Y,Z) + g(Y,\bar{\nabla}_X Z)$$
$$= (\bar{\nabla}_X g)(Y,Z) + \bar{\nabla}_X g(Y,Z) + \eta(Y)g(X,Z) + \eta(Z)g(X,Y)$$

which implies

$$(\bar{\nabla}_X g)(Y, Z) = \eta(Y)g(X, Z) - \eta(Z)g(X, Y) \tag{2.13}$$

for all vector fields X, Y, Z, on M. Therefore, in view of (2.12) and (2.13), ∇ is a semi-symmetric non-metric connection. Using (2.4) and (2.9), we get

$$(\bar{\nabla}_X \phi)(Y) = \alpha(g(X, Y)\xi - \eta(Y)\phi X) + \beta(g(\phi X, Y)\xi - \eta(Y)\phi X) - \eta(Y)\phi X. \tag{2.14}$$

Similarly, we have

$$(\bar{\nabla}_Y \phi)(X) = \alpha(g(Y, X)\xi - \eta(X)\phi Y) + \beta(g(\phi Y, X)\xi - \eta(X)\phi Y) - \eta(X)\phi Y. \tag{2.15}$$

On adding the two equations above, we obtain

$$(\bar{\nabla}_X \phi)(Y) + (\bar{\nabla}_Y \phi)(X) = \alpha(2g(X, Y)\xi - (\alpha + \beta + 1)(\eta(Y)\phi X + \eta(X)\phi Y)$$
(2.16)

This is the condition for an almost hyperbolic contact structure (ϕ, ξ, η, g) with a semi-symmetric non-metric connection to be nearly trans-hyperbolic Sasakian manifold. From (2.9) and (2.5), we get

$$\bar{\nabla}_X \xi = -\alpha(\phi X) - \beta(\eta(X)\xi) + (\beta - 1)X. \tag{2.17}$$

Let $\bar{\nabla}$ be the semi-symmetric non-metric connection on \bar{M} and $\bar{\nabla}$ be the induced connection on M with respect to the unit normal N. Now we have the following theorem:

Theorem 2.2. The connection induced on CR-submanifolds of a nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection is also a semi-symmetric non-metric connection.

Proof. Let $\bar{\nabla}$ be the induced connection with respect to the unit normal N on a CR-submanifolds of a nearly trans-hyperbolic Sasakian manifold with semi-symmetric non-metric connection $\bar{\nabla}$. Then

$$\bar{\nabla}_X Y = \nabla_X Y + m(X, Y), \tag{2.18}$$

where m is a tensor field of type (0, 2) on the CR-submanifold M. Let ∇^* be the induced connection on CR-submanifolds from Riemannian connection $\bar{\nabla}$, then

$$\bar{\nabla}_X Y = \nabla_X^* Y + h(X, Y), \tag{2.19}$$

where h is a second fundamental tensor. By the definition of the semi-symmetric non-metric connection, we have

$$\bar{\nabla}_X Y = \bar{\bar{\nabla}}_X Y + \eta(Y) X.$$

П

Using (2.18) and (2.19), we get

$$\nabla_X Y + m(X, Y) = \nabla_X^* Y + h(X, Y) + \eta(Y)X.$$

Equating the tangential and normal components from both sides of the above equation, we obtain

$$m(X, Y) = h(X, Y)$$

and consequently, we have

$$\nabla_X Y = \nabla_Y^* Y + \eta(Y) X.$$

Thus ∇ is also a semi-symmetric non-metric connection.

Now, the Gauss formula for a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold with semi-symmetric non-metric connection is

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{2.20}$$

and the Weingarten formula for M is given by

$$\bar{\nabla}_X N = -A_N X + \nabla_X^{\perp} N \tag{2.21}$$

for any $X, Y \in TM$, $N \in T^{\perp}M$ and h (resp. A_N) is the second fundamental form (resp. tensor) of M in \bar{M} and ∇^{\perp} denotes the normal connection. Moreover, we have [6]

$$g(h(X,Y),N) = g(A_N X,Y).$$
 (2.22)

3 Some Basic Lemmas

First we prove the following lemmas.

Lemma 3.1. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then

$$P(\nabla_X \phi P Y) + P(\nabla_Y \phi P X) - P(A_{\phi O X} Y) - P(A_{\phi O Y} X) = \phi P \nabla_X Y + \phi P \nabla_Y \tag{3.1}$$

$$+2\alpha g(X,Y)P\xi - (\alpha + \beta + 1)\eta(X)\phi Y - (\alpha + \beta + 1)\eta(Y)\phi PX$$

$$Q(\nabla_X \phi P Y) + Q(\nabla_Y \phi P X) - Q(A_{\phi O X} Y) - Q(A_{\phi O Y} X) = 2Bh(X, Y) + 2\alpha g(X, Y)Q\xi, \tag{3.2}$$

$$h(X, \phi PY) + h(Y, \phi PX) + \nabla_X^{\perp} \phi QY + \nabla_{\phi}^{\perp} QX = \phi Q \nabla_Y X + \phi Q \nabla_X Y$$

$$+2Ch(X, Y) - (\alpha + \beta + 1)\eta(X)\phi QY - (\alpha + \beta + 1)\eta(Y)\phi QX$$
(3.3)

for any $X, Y \in TM$.

Proof. By direct covariant differentiation, we have

$$\bar{\nabla}_X \phi Y = (\bar{\nabla}_X \phi) Y + \phi(\bar{\nabla}_X Y).$$

By the virtue of (2.7), (2.10), (2.20) and (2.21), we get

$$\nabla_X \phi PY + h(X, \phi PY) - A_{\phi OY}X + \nabla^{\perp}_Y \phi QY - \phi(\nabla_X Y + h(X, Y))$$

$$+\nabla_{Y}\phi PX + h(Y,\phi PX) - A_{\phi OX}Y - \nabla_{Y}^{\perp}\phi QX - \phi(\nabla_{Y}X + h(X,Y))$$

$$= \alpha(2g(X, Y)\xi - (\alpha + \beta + 1)(\eta(X)\phi Y + \eta(Y)\phi X).$$

Again using (2.7), we get

$$P(\nabla_{X}\phi PY) + P(\nabla_{Y}\phi PX) - P(A_{\phi}QXY) - P(A_{\phi}QYX)$$

$$\phi P\nabla_{X}Y - \phi P\nabla_{Y}X + Q(\nabla_{X}\phi PY) + Q(\nabla_{Y}\phi PX) - Q(A_{\phi}QXY)$$

$$-Q(A_{\phi}QYX) - 2Bh(X,Y) + h(X,\phi PY) + h(Y,\phi PX) + \nabla_{X}^{\perp}\phi QY + \nabla_{\phi}^{\perp}QX$$

$$-\phi Q\nabla_{Y}X - \phi\nabla_{X}Y - 2Ch(X,Y) = 2\alpha((g(X,Y))P\xi + 2\alpha((g(X,Y))Q\xi$$

$$(\alpha + \beta + 1)\eta(X)\phi QY - (\alpha + \beta + 1)\eta(Y)\phi QX - (\alpha + \beta + 1)\eta(X)\phi PY - (\alpha + \beta + 1)\eta(Y)\phi PX$$

$$(3.4)$$

for $X, Y \in TM$.

Now equating horizontal, vertical and normal components in (3.4), we get the desired results. \Box

Lemma 3.2. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then

$$2(\bar{\nabla}_X \phi)Y = \nabla_X \phi Y - \nabla_Y \phi X + h(X, \phi Y) - h(Y, \phi X) - \phi[X, Y]$$

$$+2\alpha(g(X, Y)\xi) - (\alpha + \beta + 1)(\eta(Y)\phi X + \eta(X)\phi Y)$$
(3.5)

for $X, Y \in D$.

Proof. From Gauss formula (2.20), we have

$$\bar{\nabla}_X \phi Y - \bar{\nabla}_Y \phi X = \nabla_X \phi Y + h(X, \phi Y) - \nabla_Y \phi X - h(Y, \phi X). \tag{3.6}$$

Also, we have

$$\bar{\nabla}_X \phi Y - \bar{\nabla}_Y \phi X = (\bar{\nabla}_X \phi) Y - (\bar{\nabla}_Y \phi) X + \phi [X, Y]. \tag{3.7}$$

From (3.6) and (3.7), we get

$$(\bar{\nabla}_X \phi) Y - (\bar{\nabla}_Y \phi) X = \nabla_X \phi Y + h(X, \phi Y) - \nabla_Y \phi X$$

$$-h(Y, \phi X) - \phi[X, Y]. \tag{3.8}$$

Also for nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection, we have

$$(\bar{\nabla}_X \phi) Y + (\bar{\nabla}_Y \phi X) = 2\alpha(g(X, Y)\xi)$$

$$-(\alpha + \beta + 1)(\eta(X)\phi Y + \eta(Y)\phi X).$$
(3.9)

Adding (3.8) and (3.9), we get

$$2(\bar{\nabla}_X\phi)Y = \nabla_X\phi Y - \nabla_Y\phi X + h(X,\phi Y) - h(Y,\phi X) - \phi[X,Y]$$
$$+2\alpha(g(X,Y)\xi) - (\alpha + \beta + 1)(\eta(Y)\phi X + \eta(X)\phi Y).$$

Subtracting (3.8) from (3.9), we get

$$2(\bar{\nabla}_Y\phi)X = 2\alpha(g(X,Y)\xi) - (\alpha + \beta + 1)(\eta(Y)\phi X + \eta(X)\phi Y)$$

$$-\nabla_X\phi Y + \nabla_Y\phi X - h(X,\phi Y) + h(Y,\phi X) + \phi[X,Y].$$
(3.10)

Hence lemma is proved.

Lemma 3.3. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then

$$2(\bar{\nabla}_Y\phi)Z = A_{\phi Y}Z - A_{\phi}ZY + \nabla_Y^{\perp}\phi Z - \nabla_Y^{\perp}\phi Y - \phi[X,Y]$$

$$+2\alpha(g(Y,Z)\xi) - (\alpha + \beta + 1)(\eta(Y)\phi Z + \eta(Z)\phi Y)$$
(3.11)

for any $X, Y \in D^{\perp}$.

Proof. From Weingarten fromula (2.21), we have

$$\bar{\nabla}_Z \phi Y - \bar{\nabla}_Y \phi Z = A_\phi Y Z - A_\phi Z Y + \nabla_Y^\perp \phi Z - \nabla_Z^\perp \phi Y. \tag{3.12}$$

Also we have

$$\bar{\nabla}_Z \phi Y - \bar{\nabla}_Y \phi Z = (\bar{\nabla}_Y \phi) Z - (\bar{\nabla}_Z \phi) Y + \phi [Y, Z]. \tag{3.13}$$

From (3.11) and (3.12), we get

$$(\bar{\nabla}_Y \phi) Z - (\bar{\nabla}_Z \phi) Y = A_\phi Y Z - A_\phi Z Y + \nabla_Y^\perp \phi Z - \nabla_Z^\perp \phi Y - \phi [Y, Z]. \tag{3.14}$$

Also for nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection, we have

$$(\bar{\nabla}_Y \phi) Z + (\bar{\nabla}_Z \phi) Y = 2\alpha (g(Y, Z)\xi) - (\alpha + \beta + 1)(\eta(Y)\phi Z + \eta(Z)\phi Y). \tag{3.15}$$

Adding (3.13) and (3.14), we get

$$\begin{split} 2(\bar{\nabla}_Y\phi)Z &= A_\phi YZ - A_\phi ZY + \nabla_Y^\perp \phi Z - \nabla_Z^\perp \phi Y - \phi[Y,Z] \\ &+ 2\alpha(g(Y,Z)\xi) - (\alpha + \beta + 1)(\eta(Y)\phi Z + \eta(Z)\phi Y). \end{split}$$

Subtracting (3.13) and (3.14), we obtain

$$2(\bar{\nabla}_Z\phi)Y = -A_\phi YZ - A_\phi ZY - \nabla_Y^\perp \phi Z + \nabla_Z^\perp \phi Y + \phi[Y, Z]$$
$$+2\alpha(g(Y, Z)\xi) - (\alpha + \beta + 1)(\eta(Y)\phi Z + \eta(Z)\phi Y).$$

This proves our assertion.

Lemma 3.4. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then

$$\begin{split} 2(\bar{\nabla}_X\phi)Y &= -A_\phi YX + \nabla_X^\perp \phi Y + \nabla_Y \phi X - h(Y,\phi X) - \phi[X,Y] \\ &+ 2\alpha(g(X,Y)\xi) - (\alpha + \beta + 1)(\eta(X)\phi Y + \eta(Y)\phi X), \\ 2(\bar{\nabla}_Y\phi)X &= A_\phi YX - \nabla_X^\perp \phi Y + \nabla_Y \phi X + h(Y,\phi X) + \phi[X,Y] \\ &+ 2\alpha(g(X,Y)\xi) - (\alpha + \beta + 1)(\eta(X)\phi Y + \eta(Y)\phi X) \end{split}$$

for any $X \in D$ and $Y \in D^{\perp}$.

Proof. Using Gauss and Weingarten equations for $X \in D$ and $Y \in D^{\perp}$ respectively, we get

$$\nabla_X \phi Y - \bar{\nabla}_Y \phi X = -A_{\phi Y} X + \nabla_X^{\perp} \phi Y - \nabla_Y \phi X - h(Y, \phi X). \tag{3.16}$$

Also, we have

$$\bar{\nabla}_X \phi Y - \bar{\nabla}_Y \phi X = (\bar{\nabla}_X \phi) Y - (\bar{\nabla}_Y \phi) X + \phi [X, Y]. \tag{3.17}$$

From (3.15) and (3.16), we get

$$(\bar{\nabla}_X \phi) Y - (\bar{\nabla}_Y \phi) X = -A_{\phi Y} X + \nabla_X^{\perp} \phi Y - \nabla_Y \phi X$$

$$-h(Y, \phi X) - \phi [X, Y].$$
(3.18)

Moreover, for nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection, we have

$$(\bar{\nabla}_X \phi) Y + (\bar{\nabla}_Y \phi) X = 2\alpha (g(X, Y)\xi) - (\alpha + \beta + 1)(\eta(Y)\phi X + \eta(X)\phi Y). \tag{3.19}$$

Adding (3.17) and (3.18), we obtain

$$2(\bar{\nabla}_X\phi)Y = 2\alpha(g(X,Y)\xi) - (\alpha + \beta + 1)(\eta(X)\phi Y + \eta(Y)\phi X)$$

$$-A_{\phi}YX + \nabla^{\perp}_{Y}\phi Y - \nabla_Y\phi X - h(Y,\phi X) - \phi[X,Y].$$
(3.20)

Subtracting (3.16) and (3.18), we get

$$2(\bar{\nabla}_Y\phi)X = 2\alpha(g(X,Y)\xi) - (\alpha + \beta + 1)(\eta(X)\phi Y + \eta(Y)\phi X)$$

$$+A_{\phi}YX - \nabla_X^{\perp}\phi Y + \nabla_Y\phi X + h(Y,\phi X) + \phi[X,Y].$$
(3.21)

Hence Lemma is proved.

4 Parallel Distributions

Definition 4.1. [7] The horizontal (resp. vertical) distribution D (resp. D^{\perp}) is said to be parallel with respect to the semi-symmetric non-metric connection on M, if $\nabla_X Y \in D$ ($\nabla_Z W \in D^{\perp}$) for any vector field $X, Y \in D$ (resp. $W, Z \in D^{\perp}$).

Proposition 4.2. [14] Let M be a ξ -vertical CR-submanifold of nerally trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. If the horizontal distribution D is parallel, then

$$h(X, \phi Y) = h(Y, \phi X) \tag{4.1}$$

for all $X, Y \in D$.

Proof. From equation (2.9) and using the parallelism of horizontal distribution D, as

$$\bar{\nabla}_X Y = \bar{\bar{\nabla}}_X Y + \eta(Y) X,\tag{4.2}$$

 $\bar{\nabla}_X Y \in D$ if and only if $\bar{\nabla}_X Y \in D$, and from [14] Proposition 1, this happens if and only if $h(X, \phi Y) = h(Y, \phi X)$ for any $X, Y \in D$.

Proposition 4.3. [14] Let M be a ξ -vertical CR-submanifold of nearly trans-hyperbolic Sasakian manifold \bar{M} with semi-symmetric non-metric connection. If the distribution D^{\perp} is parallel with respect to the connection ∇ on M, then

$$A_{\phi}YZ + A_{\phi}ZY \in D^{\perp},\tag{4.3}$$

for any $Y, Z \in D^{\perp}$.

Proof. From equation (2.9) and using the parallelism of horizontal distribution D^{\perp} , as

$$\bar{\nabla}_X Y = \bar{\bar{\nabla}}_X Y + \eta(Y) X,$$

 $\bar{\nabla}_X Y \in D^{\perp}$, if and only if $\bar{\nabla}_X Y \in D^{\perp}$, that is D^{\perp} is parallel for $\bar{\nabla}$ and $\bar{\nabla}$, is also hold from [14] Proposition 1, then $A_{\phi}YZ + A_{\phi}ZY \in D^{\perp}$, for any $Y, Z \in D^{\perp}$.

Definition 4.4. [7] A CR-submanifold of a manifold with a semi-symmetric non-metric connection is said to be mixed totally geodesic if h(X, Z) = 0 for all $X \in D$ and $Z \in D^{\perp}$.

The following lemma is an easy consequence of (2.21).

Lemma 4.5. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \overline{M} with semi-symmetric non-metric connection. Then M is mixed totally geodesic if and only if $A_NX \in D$ for all $X \in D$.

Definition 4.6. A normal vector field $N \neq 0$ with semi-symmetric non-metric connection is called D-parallel if normal section $\nabla_X^{\perp} N = 0$ for all $X \in D$.

Now, we have the following proposition.

Proposition 4.7. Let M be a mixed totally geodesic ξ -vertical CR-submanifold of nearly transhyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then the normal section $N \in \phi D^{\perp}$ is D-parallel if and only if $\nabla_X \phi N \in D$ for all $X \in D$.

Proof. The proof of this proposition can be directly deduced from [14] Proposition 3.

5 Integrability Conditions of Distributions

In this part of the paper, we calculate the Nijenhuis tensor N(X,Y) on nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. For this, first we need the following lemmas.

Lemma 5.1. In an almost contact metric manifold, we have

$$(\bar{\nabla}_Y \phi) \phi X = -\phi(\bar{\nabla}_Y \phi) X + ((\bar{\nabla}_Y \eta) X) \xi + \eta(X) \bar{\nabla}_Y \xi. \tag{5.1}$$

Proof. For $X, Y \in T\overline{M}$, we have

$$\begin{split} (\bar{\nabla}_Y \phi) \phi X &= \bar{\nabla}_Y (\phi^2 X) - \phi (\bar{\nabla}_Y \phi X) + \phi (\phi \bar{\nabla}_Y X) - \phi^2 \bar{\nabla}_Y X \\ &= \bar{\nabla}_Y (-X + \eta(X) \xi) - \phi (\bar{\nabla}_Y \phi X) \\ &+ \phi (\phi \bar{\nabla}_Y X) (-\bar{\nabla}_Y X + \eta (\bar{\nabla}_Y X) \xi), \end{split}$$

which gives the equation (5.1).

П

Lemma 5.2. Let \bar{M} be a nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection, then

$$(\bar{\nabla}_{\phi X}\phi)Y = 2\alpha(g(\phi X, Y)\xi) - (\alpha + \beta + 1)\eta(Y)X \tag{5.2}$$

$$+(\alpha+\beta+1)\eta(X)\eta(Y)\xi-\eta(Y)\bar{\nabla}_Y\xi+\phi(\bar{\nabla}_Y\phi)X+\eta(\bar{\nabla}_YX)\xi$$

for any $X, Y \in T\overline{M}$.

Proof. From the definition of nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection, we have

$$(\bar{\nabla}_X \phi) Y = 2\alpha (g(X, Y)\xi) - (\alpha + \beta + 1)(\eta(Y)\phi X + \eta X\phi Y).$$

Replacing X by ϕX , in above equation, we get

$$(\bar{\nabla}_{\phi}X\phi)Y = 2\alpha(g(\phi X, Y)\xi) + (\alpha + \beta + 1)\eta(Y)X$$

$$+(\alpha + \beta + 1)\eta(Y)\eta(X)\xi - (\bar{\nabla}_{Y}\phi)\phi X.$$
(5.3)

Using Lemma (5.1) and (5.3), we obtain

$$\begin{split} (\bar{\nabla}_{\phi}X\phi)Y &= 2\alpha(g(\phi X,Y)\xi) + (\alpha+\beta+1)\eta(Y)X + (\alpha+\beta+1)\eta(Y)\eta(X)\xi \\ &+ \phi(\bar{\nabla}_{Y}\phi)X + ((\bar{\nabla}_{Y}\eta)X)\xi - \eta(X)\bar{\nabla}_{Y}\xi \end{split}$$

for all $X, Y \in T\bar{M}$.

On a nearly trans-hyperbolic Sasakian manifold \bar{M} the Nijenhuis tensor is

$$N(X,Y) = (\bar{\nabla}_{\phi}X\phi)Y - (\bar{\nabla}_{\phi}Y\phi)X - \phi(\bar{\nabla}_{X}\phi)Y + \phi(\bar{\nabla}_{Y}\phi)X \tag{5.4}$$

for all $X, Y \in T\overline{M}$. From (5.2) and (5.4), we get

$$N(X,Y) = 4\alpha(g(\phi X,Y)\xi) + (\alpha + \beta + 1)(\eta(X)Y - \eta(Y)X) - \eta(X)\bar{\nabla}_Y\xi$$

$$+2(\alpha + \beta + 1)\eta(X)\eta(Y)\xi + \eta(\phi(\bar{\nabla}_Y\phi)X + \eta(\bar{\nabla}_YX)\xi.$$
(5.5)

Thus using (2.15) in (5.5), we find that the Nijenhuis tensor of nearly trans-hyperbolic Sasakian manifold with a semi-symmetric non-metric connection which is given by

$$N(X,Y) = 4\alpha(g(\phi X,Y)\xi) - \eta(X)\bar{\nabla}_Y\xi + \eta(Y)\bar{\nabla}_X\xi - \eta[X,Y]\xi$$

$$+(\alpha + \beta + 1)\left[3\eta(X)Y + \eta(Y)X - 2\eta(X)\eta(Y)\xi\right] + 4\phi(\bar{\nabla}_Y\phi)X$$
(5.6)

for all $X, Y \in T\overline{M}$. Now, we prove the following theorem.

Theorem 5.3. Let M be a ξ -vertical CR-submanifold of nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then the distribution D is integrable if the following conditions are satisfied:

$$S(X,Z) \in D, \quad h(X,\phi Z) = h(\phi X,Z) \tag{5.7}$$

for any $X, Z \in D$.

Proof. The torsion tensor S(X,Y) of the almost contact metric structure (ϕ,ξ,η,g) is given by

$$S(X,Y) = N(X,Y) + 2d\eta(X,Y)\xi = N(X,Y) + 2g(\phi X,Y)\xi.$$
 (5.8)

Thus, we have

$$S(X,Y) = [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y] + 2g(\phi X, Y)\xi \tag{5.9}$$

for $X, Y \in TM$.

The distribution D is integrable if and only if for all X, $Y \in D$ and $\eta([X, Y]) = 0$ as $\xi \in D^{\perp}$. If $S(X, Y) \in D$, then from (5.6) and (5.8) we have

$$2(\alpha + 1)g(\phi X, Y) + \eta([X, Y])\xi$$
 (5.10)

$$+4(\phi Q\nabla_Y\phi X+\phi h(Y,\phi X)+Q\nabla_YX+h(X,Y))\in D.$$

or

$$2(\alpha + 1)g(\phi X, Y) + \eta([X, Y])\xi$$

$$+4(\phi O\nabla_{Y}\phi X + \phi h(Y, phiX) + O\nabla_{Y}X + h(X, Y)) = 0$$
(5.11)

for $X, Y \in D$ and $\xi \in D^{\perp}$.

Replacing Y by ϕZ for $Z \in D$ in the above equation, we get

$$2(\alpha + 1)g(\phi X, \phi Z)Q\xi \tag{5.12}$$

$$+4(\phi Q\nabla_{\phi}Y\phi X + \phi h(\phi Z, \phi X) + Q\nabla_{\phi}ZX + h(X, \phi Z) = 0.$$

Interchanging X and Z in (5.12) and subtracting these relations, we obtain

$$\phi Q[\phi X, \phi Z] + Q[X, \phi Z] + h(X, \phi Z) - h(Z, \phi X) = 0. \tag{5.13}$$

Consequently, from (5.13), we get

$$h(X, \phi Z) = h(Z, \phi X)$$

for any
$$X, Y \in D$$
.

Theorem 5.4. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then

$$A_{\phi}YZ - A_{\phi}ZY = \frac{1}{3}\phi P[Y,Z] + 2\alpha(\eta(Y)Z - \eta(Z)Y) + (\alpha + \beta + 1)(\eta(Y)\phi Z - \eta(Z)\phi Y)$$

for any $Y, Z \in D^{\perp}$.

Proof. For $Y, Z \in D^{\perp}$ and $X \in T(M)$, we get

$$\begin{split} 2g(A_{\phi}ZY,X) &= 2g(h(X,Y),\phi Z) = g(h(X,Y),\phi Z) + g(h(X,Y),\phi Z) \\ &= g(\bar{\nabla}_XY + \bar{\nabla}_YX,\phi Z) = -g(\phi(\bar{\nabla}_XY + \bar{\nabla}_YX),Z) \\ &= -g\left[(\bar{\nabla}_Y\phi X + \bar{\nabla}_Y\phi X,Z) - 2(\alpha g(X,Y)\xi - (\alpha + \beta + 1)(\eta(X)\phi Y) - \eta(Y)\phi X),Z\right] \\ &= -g(\bar{\nabla}_Y\phi X,Z) - g(\bar{\nabla}_X\phi Y,Z) + 2\alpha \eta(Z)g(X,Y) \\ &-(\alpha + \beta + 1)\left[g(\phi X,Z)\eta(Y) + g(\phi Y,Z)\eta(X)\right]. \end{split}$$

$$2g(A_{\phi Z}Y,X) = g(\bar{\nabla}_Y Z, \phi X) + g(A_{\phi}YZ,X) + 2\alpha\eta(Z)g(X,Y)$$
$$-(\alpha + \beta + 1)g(\phi X, Z)\eta(Y) - (\alpha + \beta + 1)g(\phi Y, Z)\eta(X).$$

The above equation is true for all $X \in T(M)$, therefore, transvecting the vector field X both sides, we obtain

$$2A_{\phi}ZY = A_{\phi}YZ - \phi\bar{\nabla}_{Y}Z + 2\alpha\eta(Z)Y + (\alpha + \beta + 1)\eta(Y)\phi Z - (\alpha + \beta + 1)g(\phi Y, Z)\xi$$

or

$$2A_{\phi}ZY = A_{\phi}YZ - \phi\bar{\nabla}_{Y}Z + 2\alpha\eta(Z)Y + (\alpha + \beta + 1)\eta(Y)\phi Z \tag{5.14}$$

for any $Y, Z \in D^{\perp}$. Interchanging the vector fields Y and Z, we get

$$2A_{\phi}YZ = A_{\phi}ZY - \phi\bar{\nabla}_{Z}Y + 2\alpha\eta(Y)Z + (\alpha + \beta + 1)\eta(Z)\phi Y. \tag{5.15}$$

Subtracting (5.14) and (5.15), we find

$$A_{\phi}YZ - A_{\phi}ZY = \frac{1}{3}\phi P[Y, Z] + 2\alpha(\eta(Y)Z - \eta(Z)Y)$$

$$+(\alpha + \beta + 1)(\eta(Z)\phi Y - \eta(Y)\phi Z)$$
(5.16)

for any $Y, Z \in D^{\perp}$.

Theorem 5.5. Let M be a CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with semi-symmetric non-metric connection. Then the distribution D^{\perp} is integrable if and only if

$$A_{\phi}YZ - A_{\phi}ZY = 2\alpha(\eta(Y)Z - \eta(Z)Y) + (\alpha + \beta + 1)(\eta(Z)\phi Y - \eta(Y)\phi Z). \tag{5.17}$$

for any $Y, Z \in D^{\perp}$.

Proof. From (5.16), the proof of the theorem is obvious.

Corollary 5.6. Let M be a horizontal CR-submanifold of a nearly trans-hyperbolic Sasakian manifold \bar{M} with a semi-symmetric non-metric connection. Then the distribution D^{\perp} is integrable if and only if

$$A_{\phi}YZ - A_{\phi Z}Y = 0 \tag{5.18}$$

for any $Y, Z \in D^{\perp}$.

References

- [1] M. Ahmad and J. B. Jun, On semi-invariant submanifolds of nearly Kenmotsu manifold with a semi-symmetric non-metric connection, *J. Chungcheong Math. Soc.* 23 (2010), no.2, 257-266.
- [2] M. Ahmad and C. Ożgür, Hypersurfaces of almost *r*-paracontact Riemannian manifold endowed with semi-symmetric non-metric connection, *Result. Math.* 55(2009), 1-10.
- [3] N. S. Agashe and M. R. Chaffle, A semi-symmetric non-metric connection of a Riemannain manifold, *Indian. J. Pure and Appl. Math.* 23(1992), 399-409.
- [4] F. R. Al-Solamy, *CR*-submanifolds of a nearly trans-Sasakian manifold, *IJMMS*, 31(3) (2002), 167-175.

- [5] A. Bejancu, CR-submanifold of Kaehler manifold, I. Proc. Amer. Math. Soc. 69(1986), 135-142.
- [6] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, Holland, 1986.
- [7] L. Bhatt and K. K. Dube, On *CR*-submanifolds of trans-hyperbolic Sasakian manifold, *Acta Cinecia* 31(2003), 91-96.
- [8] D. E. Blair, Contact manifold in Riemannian geometry, *Lecture Notes in Math.* 509, Springer Verlag 1976.
- [9] L. S. Das, M. Ahmad and A. Haseeb, On Semi-invariant submanifolds of a nearly Sasakian manifolds with semi-symmetric non-metric connection. *J. Appl. Analysis*, 17(1)(2010), 119-130.
- [10] A. Friedmann and J. A. Schouten, Uber die geometrie der halbsymmetrischen *ubertragung Math. Zeitschr.* 21(1924), 211-223.
- [11] H. S. Gill and K. K. Dube, Generalized *CR*-submanifolds of trans-hyperbolic Sasakian manifold, *Demonstratio Math.* 38(2005), 953-960.
- [12] C. Gherghe, Harmonicity on nearly trans-Sasaki manifolds, *Demostratio Math.* 33(2000), 151-157.
- [13] M. Kobayashi, CR-subamnifolds of Sasakian manifold, Tensor (N.S.) 35(1981),no.3, 297-307.
- [14] S. Kumar, S. and K. K. Dube, *CR*-submanifolds of a nearly trans-hyperbolic Sasakian manifold, *Demonstratio Math.* Vol. XLI, 4(2008), 922-929.
- [15] J. A. Oubina, New class of almost contact metric structures, *Publ. Math. Debrecen*, 32(1985), 187-193.
- [16] C. Ożgür, On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection, *Kuwait J. Sci. engg.* 37 (2)(2010),17-30.
- [17] S. Sular and C. Ozgür, Generalized Sasakian space forms with semi-symmetric non-metric connection, *Proced. Estonian Acd. Sci.* 60(2011)4, 251-257.
- [18] M. H. Shahid, *CR*-submanifolds of trans-Sasakian manifold, *Indian J. Pure Appl. Math.* 22(1991), 1007-1012.
- [19] J. A. Schouten, Ricci-Calculus, An Introduction to Tensor Analysis and Geometrical Applications, *Springer-Verlag, Berlin, Göttingen-Heidelberg*, 1954.
- [20] M. D. Upadhyay and K. K. Dube, Almost contact hyperbolic (f, g, η, ξ) -structure, *Acta. Math. Acad, Scient. Hung.*, *Tomus*, 28(1976), 1-4.
- [21] K. Yano and M. Kon, Contact CR-submanifolds, Kodai Math. J. 5(1982), no. 2, 238-252.
- [22] K. Yano, On semi-symmetric metric connection, *Rev. Roumanine de Math. Pures et Appl*, 15(1970) 1579-1586.