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Abstract. Let X be a simply connected CW complex of finite rational LS-category. The dimension
of rational Gottlieb group G∗(X)⊗Q is upper-bounded by the rational LS-category cat0(X) [2]. Then
we introduce a new rational homotopical invariant between them, denoted as the pairing rank v0(X)
in the rational homotopy group π∗(X)⊗Q. If π∗( f )⊗Q is injective for a map f : X → Y , then we
have v0(X) ≤ v0(Y). Also it has a good estimate for a fibration X→E→Y as v0(E) ≤ v0(X)+ v0(Y).
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1 Introduction

In this paper, all spaces are connected and simply connected based CW complexes of finite rational
LS-category [2] and maps are based unless otherwise noted. Let Gn(X) be the n-th Gottlieb group
(evaluation subgroup) of X, which consists of elements a of πn(X) with the homotopy commutative
diagram:

S n×X
µa

−−−−−→ X

∪

x ∥∥∥∥
S n∨X −−−−−→

〈a,idX〉
X

where 〈a, idX〉(x) = ∇X ◦ (a∨ idX). Here ∇X : X ∨ X → X is the folding map of X. Let G∗(X) be
the total Gottlieb group ⊕n>0Gn(X). For any (homogeneous) elements ai1 , · · · ,ain of G∗(X) with
degaik = lk, there is a map µa : S l1 × · · ·×S ln → X such that (∗):

S l1 × · · ·×S ln ×X
µa

−−−−−→ X

∪

x ∥∥∥∥
S l1 ∨ · · ·∨S ln ∨X −−−−−−−−−−→

〈ai1 ,··· ,ain ,idX〉
X
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since there is a composition of affiliated maps {1× · · ·×1×µ}:

S l1 × · · ·×S ln−1 × (S ln ×X)→ S l1 × · · ·×S ln−2 × (S ln−1 ×X)→ ·· · → X.

As a general formula of (∗),

Definition 1.1. [9] We say that maps fi : Xi→ Y (i = 1, ..,n) have an n-pairing if there is a homotopy
commutative diagram:

X1× · · ·×Xn
µ

−−−−−→ Y

∪

x ∥∥∥∥
X1∨ · · ·∨Xn −−−−−−→

〈 f1,··· , fn〉
Y

with a map µ, which is called an affiliated map. Then we write f1 ⊥ f2 ⊥ · · · ⊥ fn.

Definition 1.2. Let the pairing rank v0(X) of X in the rational homotopy group be

max
{
n | ai1 ⊥ · · · ⊥ ain f or {ai1 , ..,ain} ⊂ A with some basis A of πodd(X)Q

}
,

where A is a homogeneous basis of the graded vector space πodd(X)Q = ⊕k>0π2k+1(X)⊗Q; i.e.,
A = ∪iAi with Ai a basis of πi(X)Q (i is odd).

Let XQ and fQ be the rationalizations of a space X and a map f : X→ Y , respectively [5]. It is
known that G∗(XQ) =G∗(X)Q when X is finite [6] (in general, G∗(XQ) ⊃G∗(X)Q) and Geven(X)Q = 0
[2, 6.12]. Y. Félix and S. Halperin [2, p.35] conjecture that Gn(X)Q = 0 for all n ≥ 2q if X is a
complex of dimension q. When G∗(XQ) = Q〈ai1 , · · · ,ain〉 with degaik = lk, there is the restriction
map µ′a : S l1 × · · ·×S ln → XQ of µa in (∗) such that

S l1 × · · ·×S ln
µ′a

−−−−−→ XQ

∪

x ∥∥∥∥
S l1 ∨ · · ·∨S ln −−−−−−−−→

〈ai1 ,··· ,ain 〉
XQ

homotopically commutes. Thus we have dimG∗(XQ) ≤ v0(X) ≤ dimπ∗(X)Q.
Let cat(X) be the Lusternik-Schnirelmann (LS) category of X, which is the least integer n such

that X is the union of n+1 open subsets contractible in X [1]. Let cat0X := cat(XQ) be the rational
LS-category of X. Then cat0X ≤ catX. It is known that dimG∗(XQ) ≤ cat0X [2, 6.12]. Recall Y.
Félix and S. Halperins’

Mapping theorem [2, Theorem I]. If π∗( f )⊗Q is injective for a map f : X→ Y , then cat0X ≤ cat0Y .

We have a similar result about our pairing rank:

Proposition 1.3. If πodd( f )⊗Q is injective for a map f : X→ Y, then v0(X) ≤ v0(Y).

Proof. It is given by the homotopy commutative diagram:

S l1 × · · ·×S ln −−−−−→ XQ

∪

x ∥∥∥∥
S l1 ∨ · · ·∨S ln −−−−−−−−→

〈ai1 ,··· ,ain 〉
XQ −−−−−→

fQ
YQ
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when v0(X) = n. It means fQ ◦ai1 ⊥ · · · ⊥ fQ ◦ain for the sub-basis { fQ ◦ai1 , · · · , fQ ◦ain} of πodd(Y)Q.
�

In particular, when XQ ' YQ, we have v0(X) = v0(Y).

Theorem 1.4. v0(X) ≤ cat0(X).

Proof. When v0(X)= n, the induced map of an affiliated map π∗(µ)Q : π∗(S i1×· · ·×S in)Q = πi1(S i1)Q⊕
· · ·⊕πin(S in)Q→ π∗(X)Q is injective. Recall cat0(S i1 ×· · ·×S in) = n. From the above Mapping theo-
rem, we have n ≤ cat0(X). �

Accordingly, we have the main inequalities:

dimG∗(X)Q ≤ v0(X) ≤ cat0(X). (∗∗)

If X is the product of spheres, dimG∗(X)Q = v0(X) = cat0(X). In Theorem 2.5, we give a relaxed
condition in the terms of Sullivan models [11],[3].

Recall a (rationalized) result of Varadarajan and Hardie:

Theorem 1.5. [3, Proposition 30.6] For a fibration X→ E→ Y, cat0E is upper bounded by cat0X
and cat0Y as

cat0E+1 ≤ (cat0X+1)(cat0Y +1)

and this inequality is best possible.

For example, the projectivization of a complex n-bundle over S 2n is given by a non-trivial fi-
bration CPn−1 → CP2n−1 → S 2n, where CPn is the n-dimensional complex projective space. It
induces the equation cat0E + 1 = 2n = n · 2 = (cat0X + 1)(cat0Y + 1). Recall that K. Hess showed
that cat0(X×Y) = cat0X+ cat0Y in 1991 [1]. There is a problem: when X is elliptic (see §2 for the
definition), dim H∗(X;Q) ≤ 2cat0(X) ? [12].

Claim 1.6. (1) Gottlieb group is not functorial, that is, a map f : X→ Y does not induce G∗(X)→
G∗(Y) in general. Thus, even if π∗( f )⊗Q is injective, it does not hold that dimG∗(X)Q ≤ dimG∗(Y)Q.
For example, let M(Y) = (Λ(v1,v2,v3),d) with |vi| odd, dv1 = dv2 = 0, dv3 = v1v2 and M(X) =
(Λ(v2,v3),0). When M( f ) is the projection removing v1, π∗( f )⊗Q is injective. But dimG∗(X)Q =
2 > 1 = dimG∗(Y)Q.

(2) Although dimG∗(X×Y)Q = dimG∗(X)Q+dimG∗(Y)Q, there is no good estimate of dimG∗(E)Q
in terms of dimG∗(X)Q and dimG∗(Y)Q for a fibration X→ E→ Y. Indeed, they can be arbitrary
([14, Example 1]).

Our pairing rank has a good evaluation inequality induced by an inclusion πodd(E)Q ⊂ πodd(X)Q⊕
πodd(Y)Q as

Theorem 1.7. For a fibration ξ : X
i
→ E

p
→ Y,

(1) v0(E) ≤ v0(X)+ v0(Y).
(2) v0(X) ≤ v0(E) if it is weakly rational trivial; i.e., π∗(E)Q = π∗(X)Q⊕π∗(Y)Q.
(3) In particular, v0(X×Y) = v0(X)+ v0(Y).

In general, even if v0(E) = v0(X)+ v0(Y), the fibration ξ : X → E → Y may not be trivial (See
Example 3.5(2)(3) in §3). In the future works, it is expected to find some relations between other
numerical invariants as in [1], [4].
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2 Sullivan model

Recall the Sullivan minimal model M(X) of a simply connected space X of finite type. It is a free Q-
commutative differential graded algebra (DGA) (ΛV,d) with a Q-graded vector space V =

⊕
i>1 V i

of dimV i < ∞ and a decomposable differential d. Denote the degree of a homogeneous element
x of a graded algebra as |x|, the Q-vector space of basis {vi}i as Q〈vi〉i. A fibration p : E → Y has
a minimal model which is a DGA-map M(p) : M(Y)→ M(E). It is induced by a relative model
(KS-extension)

M(Y) = (ΛW,dY )→ (ΛW ⊗ΛV,D),

where (ΛV,D) = (ΛV,dX) is the minimal model of the homotopy fibre X of p and there is a quasi-
isomorphism ρ : M(E)

∼
→ (ΛW ⊗ΛV,D). Notice that M(X) determines the rational homotopy type

of X, especially H∗(X;Q) � H∗(M(X)) as graded algebras and πi(X)⊗Q � Hom(V i,Q). We refer to
[3] for a general introduction and the standard notations. The next lemma immediately follows:

Lemma 2.1. The inequality v0(X) ≥ n is given by an affiliated map

µ : S a1 × · · ·×S an → XQ

where |ai| are odd if and onl if there is a subspace Q〈v1, · · ·vn〉 of V with |vi| = ai for M(X) = (ΛV,d)
such that there is a DGA-map

M(µ) : (ΛV,d)→ (Λ(v1, · · · ,vn),0),

where M(µ)(vi) = vi.

Proof of Theorem 1.7. (1) Suppose µ : S n1 ×· · ·×S nb → EQ is an affiliated map. Then we can assume
that it is µ : S n1 × · · · ×S na ×S na+1 × · · · ×S nb → EQ such that αi : S ni → EQ is an element of πni(X)Q
for 1 ≤ i ≤ a and βi : S ni → EQ is an element of πni(Y)Q for a+ 1 ≤ i ≤ b. (The existence of such
elements are guaranteed by the construction of Sullivan relative model as we see below.) Then there
is a homotopy commutative diagram

S n1 × · · ·×S na −−−−−−→ S n1 × · · ·×S na ×S na+1 × · · ·×S nb −−−−−−→ S na+1 × · · ·×S nbyµα yµ yµβ
XQ −−−−−−→

i
EQ −−−−−−→

p
YQ

and it induces µ′ = µα×µβ : (S n1 × · · ·×S na)× (S na+1 × · · ·×S nb)→ XQ×YQ. From Lemma 2.1, it is
equivalent to the homotopy commutative diagram of DGAs:

(Λ(v1, ..,va),0) ←−−−−−− (Λ(v1, ..,va,wa+1, ..,wb),0) ←−−−−−− (Λ(wa+1, ..,wb),0)

M(µα)
x xM(µ)

xM(µα)

(ΛV,dX) ←−−−−−−
M(i)

(ΛU,dE) ←−−−−−−
M(p)

(ΛW,dY )∥∥∥∥ ρ
y∼ ∥∥∥∥

(ΛV,dX) ←−−−−−− (ΛV ⊗ΛW,D) ←−−−−−− (ΛW,dY )

where (ΛV,dX), (ΛU,dE) and (ΛW,dY ) are the Sullivan minimal models of X, E and Y with U ⊂
V ⊕W. It induces the DGA-map M(µα)⊗M(µβ) : (ΛV,dX)⊗ (ΛW,dY )→ (Λ(v1, ..,va,wa+1, ..,wb),0).

(2) It follows from Proposition 1.3. In this case, (ΛU,dE) is identified to (ΛV ⊗ΛW,D), it fol-
lows from the DGA-map M(µα)◦M(i) in the above diagram and (3) is obvious. �
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Let A be a DGA A = (A∗,dA) with A∗ = ⊕i≥0Ai, A0 =Q, A1 = 0 and the augmentation ε : A→Q.
Define DeriA the vector space of derivations of A decreasing the degree by i > 0, where θ(xy) =
θ(x)y+ (−1)i|x|xθ(y) for θ ∈ DeriA. We denote ⊕i>0DeriA by DerA. The boundary operator δ :
Der∗A→ Der∗−1A is defined by δ(σ) = dA ◦σ− (−1)|σ|σ◦dA.

Proposition 2.2. [2] For the minimal model M(X) = (ΛV,d) of a simply connected finite complex X
and the argumentation ε : ΛV → Q,

Gn(XQ) � Im(Hn(ε∗) : Hn(Der(ΛV,d))→ Homn(V,Q) = Hom(Vn,Q))

for all n > 0.

A space X or a model M(X) = (ΛV,d) is said to be elliptic if dim H∗(X;Q) = H∗(ΛV,d) <∞ and
dimπ∗(X)Q = dimV <∞. When X is elliptic, cat0(X) = e0(ΛV,d) :=max{n | [α] , 0 ∈ H+(ΛV,d) for
α ∈ Λ≥nV} [1]. A model (ΛV,d) is called pure when dVeven = 0 and dVodd ⊂ ΛVeven.

Lemma 2.3. For a pure minimal model M = (Λ(x1, .., xm,y1, ..,yn),d) with |xi| even and |yi| odd, we
have v0(M) = n.

Proof. The model of an affiliated map is given by the DGA-projection M(µ) : M→ (Λ(y1, ..,yn),0)
from Lemma 2.1. �

L. Lechuga and A. Murillo give

Theorem 2.4. [7, Theorem 1] For an elliptic model with M(X)= (ΛV,d) with dV ⊂Λ≥kV, cat0(X)=
(k−2)dimVeven+dimVodd.

When dV ⊂ Λ2V in (ΛV,d), we say that (ΛV,d) is quadratic.

Theorem 2.5. If M(X) is a pure elliptic quadratic model, then dimG∗(X)Q = v0(X) = cat0(X).

Proof. In this case, G∗(X)Q = Vodd from Proposition 2.2 and v0(X) = dimVodd from Lemma 2.3. It
is also equal to cat0(X) = dimVodd from Theorem 2.4. �

Remark 2.6. Suppose that the minimal model of X is given by M(X) = (Λ(x1, .., xn,y1, ..,yn),d) with
|xi| even, |yi| odd, dxi = 0 and dyi ∈ Λ(x1, .., xn) for all i. When its cohomology is finite, X is called
as an F0-space. For a fibration ξ : X → E → S 2k+1, cat0(E) = cat0(X)+ 1 [8, Theorem 4.7]. Also
dimG∗(E)Q = n+1 if and only if ξ is rationally trivial [14, Corollary A]. There is an open problem
that ξ is rationally trivial if cup0(E) = cup0(X)+1 [8]. We know v0(E) = n+1 since Dxi ∈ (x1, .., xn)
for all i in the KS-extension

M(S 2k+1) = (Λz,0)→ (Λ(z, x1, .., xn,y1, ..,yn),D)→ M(X).

Here (x1, .., xn) is the ideal generated by x1, .., xn. Indeed, then there is the DGA-projection map
M(X)→ (Λ(z,y1, ..,yn),0) and then we have it from Lemma 2.1.

3 Examples

Example 3.1. Let cup0(X) be the rational cup length of X, the largest integer n such that the n-
product of H+(X;Q) is not zero. The following examples are useful for Theorem 3.3 below.

(1) v0(X) = 0 if and only if X 'Q ∗.
(2) dimG∗(S n)Q = v0(S n) = dimG∗(CPn)Q = v0(CPn) = 1 but cup0(CPn) = cat0(CPn) = n.
(3) dimG∗(S m∨S n)Q = 0 [10] but v0(S m∨S n) = cat0(S m∨S n) = 1.
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Example 3.2. Recall Theorem 2.5. Even if M(X) is a quadratic model, v0(X) may not be equal to
cat0(X). For example, let M(X) = (Λ(x,y,z,a,b,c),d) with |x| = 2, |y| = |z| = 3, |a| = 4, |b| = 5, |c| = 7,
dx = dy = 0, dz = x2, da = xy, db = xa+ yz and dc = a2+2yb, which is an elliptic model [3, p.439].
Then v0(X) = 3 by the affiliated map µ : S 3 × S 5 × S 7 → XQ. It is given from Lemma 2.1 by the
DGA-restriction map

(Λ(x,y,z,a,b,c),d)→ (Λ(z,b,c),0)

and since we can directly check v0(X) , 4. On the other hand, dimG∗(X)Q = 1 from Proposition 2.2
and cat0(X) = 4 from Theorem 2.4.

A space X is said to be formal if there is a DGA-map from its minimal model to its rational
cohomology with zero differential: M(X)

∼
→ (H∗(X;Q),0). For example, homogeneous spaces G/H

with rank(G) = rank(H) are formal.

Theorem 3.3. Any triple (a,b,c) of 0 < a ≤ b ≤ c is realized as [X] := (dimG∗(X)Q,v0(X),cat0X) for
a formal space X.

Proof Notice that [X×Y] = [X]+ [Y]. For any triple (a,b,c) of 0 < a ≤ b ≤ c, we have

(a,b,c)− [S 3
1 ×S 3

2 × · · ·×S 3
a−1] = (1,b−a+1,c−a+1),

(1,b−a+1,c−a+1)− [Πb−a
i=1 (S 3∨S 3)i] = (1,1,c−b+1) and

(1,1,c−b+1) = [CPc−b+1]

from the above example. Thus we have [X] = (a,b,c) when

X = S 3
1 ×S 3

2 × · · ·×S 3
a−1× Π

b−a
i=1 (S 3∨S 3)i × CPc−b+1,

for example. �

Example 3.4. Recall cup0(X) ≤ cat0(X) in general and the integer cat0(X)− cup0(X) can be arbi-
trarily large for elliptic spaces [13]. If X is formal, it is known that cup0(X) = cat0(X) [3]. Then we
have v0(X) ≤ cup0(X) from Theorem 1.4. Consider non-formal cases:

(1) When X is the non-formal homogeneous space S U(6)/S U(3)×S U(3), M(X)= (Λ(x,y,v1,v2,

v3),d) = (ΛV,d) with |x| = 4 and |y| = 6, dx = dy = 0, dv1 = x2, dv2 = xy and dv3 = y2. It satisfies the
condition of Theorem 2.5. Then [x] · [yv2− xv3] represents the fundamental class of H∗(X;Q) and it
is in Λ3V . Thus we have the inequality:

cup0(X) = 2 < 3 = dimG∗(X)Q = v0(X) = cat0(X).

(2) When M(X) = (Λ(v1,v2, ..,vn),d) with n > 4 odd, |vi| odd and dv1 = dv2 = 0, dv3 = v1v2, dv4 =

v1v3, · · · , dvn = v1vn−1, then v0(X)= n−1 since there is the restriction map M(X)→ (Λ(v2,v3, ..,vn),0).
We see cup0(X)= (n+1)/2 since there are cocycles v1 and v2vn−v3vn−1+ · · ·+(−1)(n+1)/2v(n+1)/2v(n+3)/2
where

[v1] · [v2vn− v3vn−1+ · · ·+ (−1)(n+1)/2v(n+1)/2v(n+3)/2]
n−1

2 = c[v1v2 · · ·vn].

for a certain non-zero integer c. From Proposition 2.2, dimG∗(X)Q = dimQ〈vn〉 = 1. Also cat0(X) =
e0(X) = n. It gives the inequalities:

dimG∗(X)Q < cup0(X) < v0(X) < cat0(X).
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(3) Let X be the space of the above (2). From Example 3.1(2), we have the inequalities:

dimG∗(X×CPn)Q < v0(X×CPn) < cup0(X×CPn) < cat0(X×CPn)

for a sufficiently large n.

Example 3.5. (1) The space of Example 3.2 is the total space of a fibration S 4 × S 5 → X → S 2 ×

S 3. Then dimG(X)Q = 1 < 2+ 2 = dimG(S 4 × S 5)Q + dimG(S 2 × S 3)Q, cat0X + 1 = 4+ 1 < 3 · 3 =
(cat0(S 4×S 5)+1)(cat0(S 2×S 3)+1) in the fomula of Theorem 1.5 and v0(X) = 3 < 2+2 = v0(S 4×

S 5)+ v0(S 2×S 3) in the fomula of Theorem 1.7(1).
(2) The space of Example 3.4(1) is the total space of the fibration S 9→ X→ S 4 × S 6. It gives

an example with dimG(X)Q = dimG(S 9)Q+dimG(S 4×S 6)Q and

v0(X) = 3 = 1+2 = v0(S 9)+ v0(S 4×S 6)

but cat0X+1 = 3+1 < 6 = 2 ·3 = (cat0S 9+1)(cat0(S 4×S 6)+1) in the fomula of Theorem 1.5.
(3) Put S 4n−1 → T → S 4n the sphere bundle associated to the tangent bundle of S 4n where n

is odd. Put the pull back fibration S 4n−1 → Y
f
→ S n

1 × S n
2 × S n

3 × S n
4 along the map S n

1 × S n
2 × S n

3 ×

S n
4 → S 4n collapsing the (4n− 1)-skelton. Then Y is an 8n− 1-dimensional manifold with M(Y) =

(Λ(w1,w2,w3,w4,w),dY ) with |wi| = n, |w| = 4n−1, dYwi = 0, dYw = w1w2w3w4. Then for the basis
A= {w∗1,w

∗
2,w

∗
3,w

∗
4,w

∗} of π∗(Y)⊗Q, we see v0(Y)= 4 by S n
i1
×S n

i2
×S n

i3
×S 4n−1→ YQ for 1≤ i1 < i2 <

i3 ≤ 4. Consider the spherical fibration S 2n−1 → E → Y where M(E) = (Λ(w1,w2,w3,w4,w,v),D)
with |v| = 2n− 1 and Dw1 = Dw2 = Dw3 = Dw4 = 0, Dw = dYw and Dv = w1w2. Then there is a
DGA-projection M(E)→ (Λ(wi1 ,wi2 ,wi3 ,w,v),0). Thus we have the equalities:

v0(E) = 5 = 1+4 = v0(S 2n−1)+ v0(Y).

On the other hand, we have G∗(E)Q = Q〈w3,w4,w,v〉 and G∗(Y)Q = Q〈w〉 from Proposition 2.2.
Thus dimG∗(E)Q = 4 > 1+ 1 = dimG∗(S 2n−1)Q + dimG∗(Y)Q and cat0E + 1 = 6+ 1 < 12 = 2 · 6 =
(cat0S 2n−1+1)(cat0Y +1) in the fomula of Theorem 1.5.

Acknowledgement. The author would like to thank Nobuyuki Oda for his valuable comments,
especially on “n-pairing”.
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