PAIRING RANK IN RATIONAL HOMOTOPY GROUP

Toshihiro Yamaguchi* Faculty of Education, Kochi University, 2-5-1,Kochi,780-8520, JAPAN

Abstract. Let *X* be a simply connected CW complex of finite rational LS-category. The dimension of rational Gottlieb group $G_*(X) \otimes \mathbb{Q}$ is upper-bounded by the rational LS-category $cat_0(X)$ [2]. Then we introduce a new rational homotopical invariant between them, denoted as the pairing rank $v_0(X)$ in the rational homotopy group $\pi_*(X) \otimes \mathbb{Q}$. If $\pi_*(f) \otimes \mathbb{Q}$ is injective for a map $f : X \to Y$, then we have $v_0(X) \leq v_0(Y)$. Also it has a good estimate for a fibration $X \to E \to Y$ as $v_0(E) \leq v_0(X) + v_0(Y)$.

AMS Subject Classification: 55P62, 55M30, 55R05, 55Q70

Keywords: Gottlieb group, LS-category, *n*-pairing, pairing rank, Sullivan minimal model, rational homotopy

Received: Jan 20, 2014 || Accepted: Sept 5, 2014

1 Introduction

In this paper, all spaces are connected and simply connected based CW complexes of finite rational LS-category [2] and maps are based unless otherwise noted. Let $G_n(X)$ be the *n*-th Gottlieb group (evaluation subgroup) of *X*, which consists of elements *a* of $\pi_n(X)$ with the homotopy commutative diagram:

where $\langle a, id_X \rangle(x) = \nabla_X \circ (a \lor id_X)$. Here $\nabla_X : X \lor X \to X$ is the folding map of *X*. Let $G_*(X)$ be the total Gottlieb group $\bigoplus_{n>0} G_n(X)$. For any (homogeneous) elements a_{i_1}, \dots, a_{i_n} of $G_*(X)$ with deg $a_{i_k} = l_k$, there is a map $\mu_a : S^{l_1} \times \dots \times S^{l_n} \to X$ such that (*):

^{*}e-mail address: tyamag@kochi-u.ac.jp

since there is a composition of affiliated maps $\{1 \times \cdots \times 1 \times \mu\}$:

$$S^{l_1} \times \cdots \times S^{l_{n-1}} \times (S^{l_n} \times X) \to S^{l_1} \times \cdots \times S^{l_{n-2}} \times (S^{l_{n-1}} \times X) \to \cdots \to X.$$

As a general formula of (*),

Definition 1.1. [9] We say that maps $f_i : X_i \to Y$ (i = 1, ..., n) have an *n*-pairing if there is a homotopy commutative diagram:

$$\begin{array}{cccc} X_1 \times \dots \times X_n & \xrightarrow{\mu} & Y \\ & & & \downarrow \uparrow & & \parallel \\ X_1 \vee \dots \vee X_n & \xrightarrow{\langle f_1, \dots, f_n \rangle} & Y \end{array}$$

with a map μ , which is called an affiliated map. Then we write $f_1 \perp f_2 \perp \cdots \perp f_n$.

Definition 1.2. Let the pairing rank $v_0(X)$ of X in the rational homotopy group be

$$\max \Big\{ n \mid a_{i_1} \perp \cdots \perp a_{i_n} \text{ for } \{a_{i_1}, .., a_{i_n}\} \subset A \text{ with some basis } A \text{ of } \pi_{odd}(X)_{\mathbb{Q}} \Big\},\$$

where A is a homogeneous basis of the graded vector space $\pi_{odd}(X)_{\mathbb{Q}} = \bigoplus_{k>0} \pi_{2k+1}(X) \otimes \mathbb{Q}$; i.e., $A = \bigcup_i A_i$ with A_i a basis of $\pi_i(X)_{\mathbb{Q}}$ (*i* is odd).

Let $X_{\mathbb{Q}}$ and $f_{\mathbb{Q}}$ be the rationalizations of a space X and a map $f: X \to Y$, respectively [5]. It is known that $G_*(X_{\mathbb{Q}}) = G_*(X)_{\mathbb{Q}}$ when X is finite [6] (in general, $G_*(X_{\mathbb{Q}}) \supset G_*(X)_{\mathbb{Q}}$) and $G_{even}(X)_{\mathbb{Q}} = 0$ [2, 6.12]. Y. Félix and S. Halperin [2, p.35] conjecture that $G_n(X)_{\mathbb{Q}} = 0$ for all $n \ge 2q$ if X is a complex of dimension q. When $G_*(X_{\mathbb{Q}}) = \mathbb{Q}\langle a_{i_1}, \cdots, a_{i_n} \rangle$ with deg $a_{i_k} = l_k$, there is the restriction map $\mu'_a: S^{l_1} \times \cdots \times S^{l_n} \to X_{\mathbb{Q}}$ of μ_a in (*) such that

$$\begin{array}{cccc} S^{l_1} \times \cdots \times S^{l_n} & \xrightarrow{\mu'_a} & X_{\mathbb{Q}} \\ & & & & & \\ & & & & \\ S^{l_1} \vee \cdots \vee S^{l_n} & \xrightarrow{\langle a_{i_1}, \cdots, a_{i_n} \rangle} & X_{\mathbb{Q}} \end{array}$$

homotopically commutes. Thus we have dim $G_*(X_{\mathbb{Q}}) \le v_0(X) \le \dim \pi_*(X)_{\mathbb{Q}}$.

Let cat(X) be the Lusternik-Schnirelmann (LS) category of X, which is the least integer n such that X is the union of n + 1 open subsets contractible in X [1]. Let $cat_0X := cat(X_Q)$ be the rational LS-category of X. Then $cat_0X \le catX$. It is known that dim $G_*(X_Q) \le cat_0X$ [2, 6.12]. Recall Y. Félix and S. Halperins'

Mapping theorem [2, Theorem I]. If $\pi_*(f) \otimes \mathbb{Q}$ is injective for a map $f: X \to Y$, then $cat_0 X \leq cat_0 Y$.

We have a similar result about our pairing rank:

Proposition 1.3. If $\pi_{odd}(f) \otimes \mathbb{Q}$ is injective for a map $f : X \to Y$, then $v_0(X) \leq v_0(Y)$.

Proof. It is given by the homotopy commutative diagram:

when $v_0(X) = n$. It means $f_{\mathbb{Q}} \circ a_{i_1} \perp \cdots \perp f_{\mathbb{Q}} \circ a_{i_n}$ for the sub-basis $\{f_{\mathbb{Q}} \circ a_{i_1}, \cdots, f_{\mathbb{Q}} \circ a_{i_n}\}$ of $\pi_{odd}(Y)_{\mathbb{Q}}$.

In particular, when $X_{\mathbb{Q}} \simeq Y_{\mathbb{Q}}$, we have $v_0(X) = v_0(Y)$.

Theorem 1.4. $v_0(X) \le cat_0(X)$.

Proof. When $v_0(X) = n$, the induced map of an affiliated map $\pi_*(\mu)_{\mathbb{Q}} : \pi_*(S^{i_1} \times \cdots \times S^{i_n})_{\mathbb{Q}} = \pi_{i_1}(S^{i_1})_{\mathbb{Q}} \oplus \cdots \oplus \pi_{i_n}(S^{i_n})_{\mathbb{Q}} \to \pi_*(X)_{\mathbb{Q}}$ is injective. Recall $cat_0(S^{i_1} \times \cdots \times S^{i_n}) = n$. From the above Mapping theorem, we have $n \le cat_0(X)$.

Accordingly, we have the main inequalities:

$$\dim G_*(X)_{\mathbb{O}} \le v_0(X) \le cat_0(X). \quad (**)$$

If *X* is the product of spheres, dim $G_*(X)_{\mathbb{Q}} = v_0(X) = cat_0(X)$. In Theorem 2.5, we give a relaxed condition in the terms of Sullivan models [11],[3].

Recall a (rationalized) result of Varadarajan and Hardie:

Theorem 1.5. [3, Proposition 30.6] For a fibration $X \to E \to Y$, cat_0E is upper bounded by cat_0X and cat_0Y as

$$cat_0E + 1 \le (cat_0X + 1)(cat_0Y + 1)$$

and this inequality is best possible.

For example, the projectivization of a complex *n*-bundle over S^{2n} is given by a non-trivial fibration $\mathbb{C}P^{n-1} \to \mathbb{C}P^{2n-1} \to S^{2n}$, where $\mathbb{C}P^n$ is the n-dimensional complex projective space. It induces the equation $cat_0E + 1 = 2n = n \cdot 2 = (cat_0X + 1)(cat_0Y + 1)$. Recall that K. Hess showed that $cat_0(X \times Y) = cat_0X + cat_0Y$ in 1991 [1]. There is a problem: when X is elliptic (see §2 for the definition), dim $H^*(X; \mathbb{Q}) \leq 2^{cat_0(X)}$? [12].

Claim 1.6. (1) Gottlieb group is not functorial, that is, a map $f : X \to Y$ does not induce $G_*(X) \to G_*(Y)$ in general. Thus, even if $\pi_*(f) \otimes \mathbb{Q}$ is injective, it does not hold that $\dim G_*(X)_{\mathbb{Q}} \leq \dim G_*(Y)_{\mathbb{Q}}$. For example, let $M(Y) = (\Lambda(v_1, v_2, v_3), d)$ with $|v_i|$ odd, $dv_1 = dv_2 = 0$, $dv_3 = v_1v_2$ and $M(X) = (\Lambda(v_2, v_3), 0)$. When M(f) is the projection removing v_1 , $\pi_*(f) \otimes \mathbb{Q}$ is injective. But $\dim G_*(X)_{\mathbb{Q}} = 2 > 1 = \dim G_*(Y)_{\mathbb{Q}}$.

(2) Although dim $G_*(X \times Y)_{\mathbb{Q}} = \dim G_*(X)_{\mathbb{Q}} + \dim G_*(Y)_{\mathbb{Q}}$, there is no good estimate of dim $G_*(E)_{\mathbb{Q}}$ in terms of dim $G_*(X)_{\mathbb{Q}}$ and dim $G_*(Y)_{\mathbb{Q}}$ for a fibration $X \to E \to Y$. Indeed, they can be arbitrary ([14, Example 1]).

Our pairing rank has a good evaluation inequality induced by an inclusion $\pi_{odd}(E)_{\mathbb{Q}} \subset \pi_{odd}(X)_{\mathbb{Q}} \oplus \pi_{odd}(Y)_{\mathbb{Q}}$ as

Theorem 1.7. For a fibration $\xi : X \xrightarrow{i} E \xrightarrow{p} Y$, (1) $v_0(E) \le v_0(X) + v_0(Y)$. (2) $v_0(X) \le v_0(E)$ if it is weakly rational trivial; i.e., $\pi_*(E)_{\mathbb{Q}} = \pi_*(X)_{\mathbb{Q}} \oplus \pi_*(Y)_{\mathbb{Q}}$. (3) In particular, $v_0(X \times Y) = v_0(X) + v_0(Y)$.

In general, even if $v_0(E) = v_0(X) + v_0(Y)$, the fibration $\xi : X \to E \to Y$ may not be trivial (See Example 3.5(2)(3) in §3). In the future works, it is expected to find some relations between other numerical invariants as in [1], [4].

2 Sullivan model

Recall the *Sullivan minimal model* M(X) of a simply connected space X of finite type. It is a free \mathbb{Q} commutative differential graded algebra (DGA) ($\Lambda V, d$) with a \mathbb{Q} -graded vector space $V = \bigoplus_{i>1} V^i$ of dim $V^i < \infty$ and a decomposable differential d. Denote the degree of a homogeneous element x of a graded algebra as |x|, the \mathbb{Q} -vector space of basis $\{v_i\}_i$ as $\mathbb{Q}\langle v_i\rangle_i$. A fibration $p : E \to Y$ has
a minimal model which is a DGA-map $M(p) : M(Y) \to M(E)$. It is induced by a relative model
(KS-extension)

$$M(Y) = (\Lambda W, d_Y) \rightarrow (\Lambda W \otimes \Lambda V, D),$$

where $(\Lambda V, \overline{D}) = (\Lambda V, d_X)$ is the minimal model of the homotopy fibre *X* of *p* and there is a quasiisomorphism $\rho : M(E) \xrightarrow{\sim} (\Lambda W \otimes \Lambda V, D)$. Notice that M(X) determines the rational homotopy type of *X*, especially $H^*(X; \mathbb{Q}) \cong H^*(M(X))$ as graded algebras and $\pi_i(X) \otimes \mathbb{Q} \cong Hom(V^i, \mathbb{Q})$. We refer to [3] for a general introduction and the standard notations. The next lemma immediately follows:

Lemma 2.1. The inequality $v_0(X) \ge n$ is given by an affiliated map

$$\mu: S^{a_1} \times \cdots \times S^{a_n} \to X_{\mathbb{Q}}$$

where $|a_i|$ are odd if and onl if there is a subspace $\mathbb{Q}\langle v_1, \dots, v_n \rangle$ of V with $|v_i| = a_i$ for $M(X) = (\Lambda V, d)$ such that there is a DGA-map

$$M(\mu): (\Lambda V, d) \to (\Lambda(v_1, \cdots, v_n), 0),$$

where $M(\mu)(v_i) = v_i$.

Proof of Theorem 1.7. (1) Suppose $\mu : S^{n_1} \times \cdots \times S^{n_b} \to E_{\mathbb{Q}}$ is an affiliated map. Then we can assume that it is $\mu : S^{n_1} \times \cdots \times S^{n_a} \times S^{n_{a+1}} \times \cdots \times S^{n_b} \to E_{\mathbb{Q}}$ such that $\alpha_i : S^{n_i} \to E_{\mathbb{Q}}$ is an element of $\pi_{n_i}(X)_{\mathbb{Q}}$ for $1 \le i \le a$ and $\beta_i : S^{n_i} \to E_{\mathbb{Q}}$ is an element of $\pi_{n_i}(Y)_{\mathbb{Q}}$ for $a + 1 \le i \le b$. (The existence of such elements are guaranteed by the construction of Sullivan relative model as we see below.) Then there is a homotopy commutative diagram

$$S^{n_1} \times \dots \times S^{n_a} \longrightarrow S^{n_1} \times \dots \times S^{n_a} \times S^{n_{a+1}} \times \dots \times S^{n_b} \longrightarrow S^{n_{a+1}} \times \dots \times S^{n_b}$$

$$\downarrow^{\mu_{\alpha}} \qquad \qquad \downarrow^{\mu} \qquad \qquad \downarrow^{\mu_{\beta}}$$

$$X_{\mathbb{Q}} \longrightarrow E_{\mathbb{Q}} \longrightarrow Y_{\mathbb{Q}}$$

and it induces $\mu' = \mu_{\alpha} \times \mu_{\beta} : (S^{n_1} \times \cdots \times S^{n_a}) \times (S^{n_{a+1}} \times \cdots \times S^{n_b}) \to X_{\mathbb{Q}} \times Y_{\mathbb{Q}}$. From Lemma 2.1, it is equivalent to the homotopy commutative diagram of DGAs:

$$(\Lambda(v_1, ..., v_a), 0) \longleftarrow (\Lambda(v_1, ..., v_a, w_{a+1}, ..., w_b), 0) \longleftarrow (\Lambda(w_{a+1}, ..., w_b), 0)$$

$$\stackrel{M(\mu_{\alpha})}{(\Lambda V, d_X)} \xleftarrow{} (\Lambda V, d_E) \xleftarrow{} (\Lambda W, d_F)$$

$$\stackrel{(\Lambda V, d_X)}{(\Lambda V, d_X)} \xleftarrow{} (\Lambda V \otimes \Lambda W, D) \xleftarrow{} (\Lambda W, d_Y)$$

where $(\Lambda V, d_X)$, $(\Lambda U, d_E)$ and $(\Lambda W, d_Y)$ are the Sullivan minimal models of X, E and Y with $U \subset V \oplus W$. It induces the DGA-map $M(\mu_{\alpha}) \otimes M(\mu_{\beta}) : (\Lambda V, d_X) \otimes (\Lambda W, d_Y) \to (\Lambda(v_1, ..., v_a, w_{a+1}, ..., w_b), 0)$.

(2) It follows from Proposition 1.3. In this case, $(\Lambda U, d_E)$ is identified to $(\Lambda V \otimes \Lambda W, D)$, it follows from the DGA-map $M(\mu_{\alpha}) \circ M(i)$ in the above diagram and (3) is obvious.

88

Let *A* be a DGA $A = (A^*, d_A)$ with $A^* = \bigoplus_{i \ge 0} A^i$, $A^0 = \mathbb{Q}$, $A^1 = 0$ and the augmentation $\epsilon : A \to \mathbb{Q}$. Define Der_iA the vector space of derivations of *A* decreasing the degree by i > 0, where $\theta(xy) = \theta(x)y + (-1)^{i|x|}x\theta(y)$ for $\theta \in Der_iA$. We denote $\bigoplus_{i>0} Der_iA$ by DerA. The boundary operator $\delta : Der_*A \to Der_{*-1}A$ is defined by $\delta(\sigma) = d_A \circ \sigma - (-1)^{|\sigma|} \sigma \circ d_A$.

Proposition 2.2. [2] For the minimal model $M(X) = (\Lambda V, d)$ of a simply connected finite complex X and the argumentation $\epsilon : \Lambda V \to \mathbb{Q}$,

$$G_n(X_{\mathbb{Q}}) \cong \operatorname{Im}(H_n(\epsilon_*) : H_n(\operatorname{Der}(\Lambda V, d)) \to \operatorname{Hom}_n(V, \mathbb{Q}) = \operatorname{Hom}(V^n, \mathbb{Q}))$$

for all n > 0.

A space *X* or a model $M(X) = (\Lambda V, d)$ is said to be *elliptic* if dim $H^*(X; \mathbb{Q}) = H^*(\Lambda V, d) < \infty$ and dim $\pi_*(X)_{\mathbb{Q}} = \dim V < \infty$. When *X* is elliptic, $cat_0(X) = e_0(\Lambda V, d) := \max\{n \mid [\alpha] \neq 0 \in H^+(\Lambda V, d)$ for $\alpha \in \Lambda^{\geq n}V\}$ [1]. A model $(\Lambda V, d)$ is called *pure* when $dV^{even} = 0$ and $dV^{odd} \subset \Lambda V^{even}$.

Lemma 2.3. For a pure minimal model $M = (\Lambda(x_1, ..., x_m, y_1, ..., y_n), d)$ with $|x_i|$ even and $|y_i|$ odd, we have $v_0(M) = n$.

Proof. The model of an affiliated map is given by the DGA-projection $M(\mu) : M \to (\Lambda(y_1, ..., y_n), 0)$ from Lemma 2.1.

L. Lechuga and A. Murillo give

Theorem 2.4. [7, Theorem 1] For an elliptic model with $M(X) = (\Lambda V, d)$ with $dV \subset \Lambda^{\geq k}V$, $cat_0(X) = (k-2)\dim V^{even} + \dim V^{odd}$.

When $dV \subset \Lambda^2 V$ in $(\Lambda V, d)$, we say that $(\Lambda V, d)$ is quadratic.

Theorem 2.5. If M(X) is a pure elliptic quadratic model, then $\dim G_*(X)_{\mathbb{Q}} = v_0(X) = cat_0(X)$.

Proof. In this case, $G_*(X)_{\mathbb{Q}} = V^{odd}$ from Proposition 2.2 and $v_0(X) = \dim V^{odd}$ from Lemma 2.3. It is also equal to $cat_0(X) = \dim V^{odd}$ from Theorem 2.4.

Remark 2.6. Suppose that the minimal model of *X* is given by $M(X) = (\Lambda(x_1, ..., x_n, y_1, ..., y_n), d)$ with $|x_i|$ even, $|y_i|$ odd, $dx_i = 0$ and $dy_i \in \Lambda(x_1, ..., x_n)$ for all *i*. When its cohomology is finite, *X* is called as an F_0 -space. For a fibration $\xi : X \to E \to S^{2k+1}$, $cat_0(E) = cat_0(X) + 1$ [8, Theorem 4.7]. Also dim $G_*(E)_{\mathbb{Q}} = n + 1$ if and only if ξ is rationally trivial [14, Corollary A]. There is an open problem that ξ is rationally trivial if $cup_0(E) = cup_0(X) + 1$ [8]. We know $v_0(E) = n + 1$ since $Dx_i \in (x_1, ..., x_n)$ for all *i* in the KS-extension

$$M(S^{2k+1}) = (\Lambda z, 0) \rightarrow (\Lambda(z, x_1, ..., x_n, y_1, ..., y_n), D) \rightarrow M(X).$$

Here $(x_1, ..., x_n)$ is the ideal generated by $x_1, ..., x_n$. Indeed, then there is the DGA-projection map $M(X) \rightarrow (\Lambda(z, y_1, ..., y_n), 0)$ and then we have it from Lemma 2.1.

3 Examples

Example 3.1. Let $cup_0(X)$ be the rational cup length of X, the largest integer n such that the *n*-product of $H^+(X;\mathbb{Q})$ is not zero. The following examples are useful for Theorem 3.3 below.

- (1) $v_0(X) = 0$ if and only if $X \simeq_{\mathbb{Q}} *$.
- (2) dim $G_*(S^n)_{\mathbb{Q}} = v_0(S^n) = \dim G_*(\mathbb{C}P^n)_{\mathbb{Q}} = v_0(\mathbb{C}P^n) = 1$ but $cup_0(\mathbb{C}P^n) = cat_0(\mathbb{C}P^n) = n$. (3) dim $G_*(S^m \vee S^n)_{\mathbb{Q}} = 0$ [10] but $v_0(S^m \vee S^n) = cat_0(S^m \vee S^n) = 1$.

Example 3.2. Recall Theorem 2.5. Even if M(X) is a quadratic model, $v_0(X)$ may not be equal to $cat_0(X)$. For example, let $M(X) = (\Lambda(x, y, z, a, b, c), d)$ with |x| = 2, |y| = |z| = 3, |a| = 4, |b| = 5, |c| = 7, dx = dy = 0, $dz = x^2$, da = xy, db = xa + yz and $dc = a^2 + 2yb$, which is an elliptic model [3, p.439]. Then $v_0(X) = 3$ by the affiliated map $\mu : S^3 \times S^5 \times S^7 \to X_Q$. It is given from Lemma 2.1 by the DGA-restriction map

$$(\Lambda(x, y, z, a, b, c), d) \rightarrow (\Lambda(z, b, c), 0)$$

and since we can directly check $v_0(X) \neq 4$. On the other hand, dim $G_*(X)_{\mathbb{Q}} = 1$ from Proposition 2.2 and $cat_0(X) = 4$ from Theorem 2.4.

A space X is said to be *formal* if there is a DGA-map from its minimal model to its rational cohomology with zero differential: $M(X) \xrightarrow{\sim} (H^*(X; \mathbb{Q}), 0)$. For example, homogeneous spaces G/H with rank(G) = rank(H) are formal.

Theorem 3.3. Any triple (a, b, c) of $0 < a \le b \le c$ is realized as $[X] := (\dim G_*(X)_{\mathbb{Q}}, v_0(X), cat_0X)$ for a formal space X.

Proof Notice that $[X \times Y] = [X] + [Y]$. For any triple (a, b, c) of $0 < a \le b \le c$, we have

$$(a,b,c) - [S_1^3 \times S_2^3 \times \dots \times S_{a-1}^3] = (1,b-a+1,c-a+1),$$
$$(1,b-a+1,c-a+1) - [\Pi_{i=1}^{b-a}(S^3 \vee S^3)_i] = (1,1,c-b+1) \text{ and}$$

$$(1,1,c-b+1) = [\mathbb{C}P^{c-b+1}]$$

from the above example. Thus we have [X] = (a, b, c) when

$$X = S_1^3 \times S_2^3 \times \cdots \times S_{a-1}^3 \times \prod_{i=1}^{b-a} (S^3 \vee S^3)_i \times \mathbb{C}P^{c-b+1},$$

for example.

Example 3.4. Recall $cup_0(X) \le cat_0(X)$ in general and the integer $cat_0(X) - cup_0(X)$ can be arbitrarily large for elliptic spaces [13]. If X is formal, it is known that $cup_0(X) = cat_0(X)$ [3]. Then we have $v_0(X) \le cup_0(X)$ from Theorem 1.4. Consider non-formal cases:

(1) When X is the non-formal homogeneous space $SU(6)/SU(3) \times SU(3)$, $M(X) = (\Lambda(x, y, v_1, v_2, v_3), d) = (\Lambda V, d)$ with |x| = 4 and |y| = 6, dx = dy = 0, $dv_1 = x^2$, $dv_2 = xy$ and $dv_3 = y^2$. It satisfies the condition of Theorem 2.5. Then $[x] \cdot [yv_2 - xv_3]$ represents the fundamental class of $H^*(X; \mathbb{Q})$ and it is in $\Lambda^3 V$. Thus we have the inequality:

$$cup_0(X) = 2 < 3 = \dim G_*(X)_{\mathbb{O}} = v_0(X) = cat_0(X).$$

(2) When $M(X) = (\Lambda(v_1, v_2, ..., v_n), d)$ with n > 4 odd, $|v_i|$ odd and $dv_1 = dv_2 = 0$, $dv_3 = v_1v_2$, $dv_4 = v_1v_3$, ..., $dv_n = v_1v_{n-1}$, then $v_0(X) = n-1$ since there is the restriction map $M(X) \to (\Lambda(v_2, v_3, ..., v_n), 0)$. We see $cup_0(X) = (n+1)/2$ since there are cocycles v_1 and $v_2v_n - v_3v_{n-1} + \dots + (-1)^{(n+1)/2}v_{(n+1)/2}v_{(n+3)/2}$ where

$$[v_1] \cdot [v_2v_n - v_3v_{n-1} + \dots + (-1)^{(n+1)/2}v_{(n+1)/2}v_{(n+3)/2}]^{\frac{n-1}{2}} = c[v_1v_2\cdots v_n]$$

for a certain non-zero integer *c*. From Proposition 2.2, dim $G_*(X)_{\mathbb{Q}} = \dim \mathbb{Q}\langle v_n \rangle = 1$. Also $cat_0(X) = e_0(X) = n$. It gives the inequalities:

$$\dim G_*(X)_{\mathbb{O}} < cup_0(X) < v_0(X) < cat_0(X).$$

(3) Let X be the space of the above (2). From Example 3.1(2), we have the inequalities:

 $\dim G_*(X \times \mathbb{C}P^n)_{\mathbb{O}} < v_0(X \times \mathbb{C}P^n) < cup_0(X \times \mathbb{C}P^n) < cat_0(X \times \mathbb{C}P^n)$

for a sufficiently large *n*.

Example 3.5. (1) The space of Example 3.2 is the total space of a fibration $S^4 \times S^5 \to X \to S^2 \times S^3$. Then dim $G(X)_{\mathbb{Q}} = 1 < 2 + 2 = \dim G(S^4 \times S^5)_{\mathbb{Q}} + \dim G(S^2 \times S^3)_{\mathbb{Q}}$, $cat_0X + 1 = 4 + 1 < 3 \cdot 3 = (cat_0(S^4 \times S^5) + 1)(cat_0(S^2 \times S^3) + 1)$ in the fomula of Theorem 1.5 and $v_0(X) = 3 < 2 + 2 = v_0(S^4 \times S^5) + v_0(S^2 \times S^3)$ in the fomula of Theorem 1.7(1).

(2) The space of Example 3.4(1) is the total space of the fibration $S^9 \to X \to S^4 \times S^6$. It gives an example with dim $G(X)_{\mathbb{Q}} = \dim G(S^9)_{\mathbb{Q}} + \dim G(S^4 \times S^6)_{\mathbb{Q}}$ and

$$v_0(X) = 3 = 1 + 2 = v_0(S^9) + v_0(S^4 \times S^6)$$

but $cat_0X + 1 = 3 + 1 < 6 = 2 \cdot 3 = (cat_0S^9 + 1)(cat_0(S^4 \times S^6) + 1)$ in the fomula of Theorem 1.5. (3) Put $S^{4n-1} \rightarrow T \rightarrow S^{4n}$ the sphere bundle associated to the tangent bundle of S^{4n} where *n*

is odd. Put the pull back fibration $S^{4n-1} \to Y \xrightarrow{f} S_1^n \times S_2^n \times S_3^n \times S_4^n$ along the map $S_1^n \times S_2^n \times S_3^n \times S_4^n \times S_4^n \to S^{4n}$ collapsing the (4n-1)-skelton. Then Y is an 8n-1-dimensional manifold with $M(Y) = (\Lambda(w_1, w_2, w_3, w_4, w), d_Y)$ with $|w_i| = n$, |w| = 4n-1, $d_Y w_i = 0$, $d_Y w = w_1 w_2 w_3 w_4$. Then for the basis $A = \{w_1^*, w_2^*, w_3^*, w_4^*, w^*\}$ of $\pi_*(Y) \otimes \mathbb{Q}$, we see $v_0(Y) = 4$ by $S_{i_1}^n \times S_{i_2}^n \times S_{i_3}^n \times S^{4n-1} \to Y_{\mathbb{Q}}$ for $1 \le i_1 < i_2 < i_3 \le 4$. Consider the spherical fibration $S^{2n-1} \to E \to Y$ where $M(E) = (\Lambda(w_1, w_2, w_3, w_4, w, v), D)$ with |v| = 2n-1 and $Dw_1 = Dw_2 = Dw_3 = Dw_4 = 0$, $Dw = d_Y w$ and $Dv = w_1 w_2$. Then there is a DGA-projection $M(E) \to (\Lambda(w_{i_1}, w_{i_2}, w_{i_3}, w, v), 0)$. Thus we have the equalities:

$$v_0(E) = 5 = 1 + 4 = v_0(S^{2n-1}) + v_0(Y).$$

On the other hand, we have $G_*(E)_{\mathbb{Q}} = \mathbb{Q}\langle w_3, w_4, w, v \rangle$ and $G_*(Y)_{\mathbb{Q}} = \mathbb{Q}\langle w \rangle$ from Proposition 2.2. Thus dim $G_*(E)_{\mathbb{Q}} = 4 > 1 + 1 = \dim G_*(S^{2n-1})_{\mathbb{Q}} + \dim G_*(Y)_{\mathbb{Q}}$ and $cat_0E + 1 = 6 + 1 < 12 = 2 \cdot 6 = (cat_0S^{2n-1} + 1)(cat_0Y + 1)$ in the fomula of Theorem 1.5.

Acknowledgement. The author would like to thank Nobuyuki Oda for his valuable comments, especially on "*n*-pairing".

References

- O. Cornea, G. Lupton, J. Oprea and D. Tanré, *Lusternik-Schnirelmann category*, Math. Survey and Mono. 103, A.M.S. 2003
- [2] Y. Félix and S. Halperin, *Rational LS category and its applications*, Trans.A.M.S. 273 (1982) 1-38
- [3] Y. Félix, S. Halperin and J.-C. Thomas, *Rational homotopy theory*, Graduate Texts in Mathematics **205**, Springer-Verlag, 2001
- [4] J.-B. Gatsinzi, On the genus of elliptic fibrations, Proc.A.M.S. 132 (2003) 597-606
- [5] P. Hilton, G. Mislin and J. Roitberg, *Localization of nilpotent groups and spaces*, North-Holland Math. Studies, **15** 1975
- [6] G.E. Lang, Jr. Localizations and evaluation subgroups, Proc.A.M.S. 50 (1975) 489-494

92	T. Yamaguchi
[7]	L. Lechuga and A. Murillo, A formula for the rational LS-category of certain spaces, Ann.Inst.Fourier, Grenoble 52 (2002) 1585-1590
[8]	G. Lupton, <i>Variations on a conjecture of Halperin</i> , Homotopy and Geometry Banach Center Publ. 45 (1998) 115-135
[9]	N. Oda, <i>Pairings and copairings in the category of topological spaces</i> , Publ. Res. Inst. Math. Sci. Kyoto Univ. 28 (1992) 83-97
[10]	S.B. Smith, Rational evaluation subgroups, Math.Z.221 (1996) 387-400
[11]	D. Sullivan, Infinitesimal computations in topology, I.H.E.S., 47 (1978) 269-331
[12]	T. Yamaguchi, <i>On a lower bound for the LS-category of a rationally elliptic space</i> , Bull. Belg. Math. Soc. 12 (2005) 565-568
[13]	T. Yamaguchi, <i>Cup</i> ₀ and cat ₀ can be arbitrary in elliptic spaces, New Zealand J. Math. 35 (2006) 211-213
[14]	T. Yamaguchi, An estimate in Gottlieb ranks of fibration, Bull. Belg. Math. Soc. 15 (2008) 663-675