Pairing Rank in Rational Homotopy Group

Toshiniro Yamaguchi*
Faculty of Education, Kochi University, 2-5-1,Kochi,780-8520, JAPAN

Abstract

Let X be a simply connected CW complex of finite rational LS-category. The dimension of rational Gottlieb group $G_{*}(X) \otimes \mathbb{Q}$ is upper-bounded by the rational LS-category cat ${ }_{0}(X)$ [2]. Then we introduce a new rational homotopical invariant between them, denoted as the pairing rank $v_{0}(X)$ in the rational homotopy group $\pi_{*}(X) \otimes \mathbb{Q}$. If $\pi_{*}(f) \otimes \mathbb{Q}$ is injective for a map $f: X \rightarrow Y$, then we have $v_{0}(X) \leq v_{0}(Y)$. Also it has a good estimate for a fibration $X \rightarrow E \rightarrow Y$ as $v_{0}(E) \leq v_{0}(X)+v_{0}(Y)$.

AMS Subject Classification: 55P62, 55M30, 55R05, 55Q70
Keywords: Gottlieb group, LS-category, n-pairing, pairing rank, Sullivan minimal model, rational homotopy

Received: Jan 20, 2014 || Accepted: Sept 5, 2014

1 Introduction

In this paper, all spaces are connected and simply connected based CW complexes of finite rational LS-category [2] and maps are based unless otherwise noted. Let $G_{n}(X)$ be the n-th Gottlieb group (evaluation subgroup) of X, which consists of elements a of $\pi_{n}(X)$ with the homotopy commutative diagram:

where $\left\langle a, i d_{X}\right\rangle(x)=\nabla_{X} \circ\left(a \vee i d_{X}\right)$. Here $\nabla_{X}: X \vee X \rightarrow X$ is the folding map of X. Let $G_{*}(X)$ be the total Gottlieb group $\oplus_{n>0} G_{n}(X)$. For any (homogeneous) elements $a_{i 1}, \cdots, a_{i_{n}}$ of $G_{*}(X)$ with $\operatorname{deg} a_{i_{k}}=l_{k}$, there is a map $\mu_{a}: S^{l_{1}} \times \cdots \times S^{l_{n}} \rightarrow X$ such that (*):

[^0]since there is a composition of affiliated maps $\{1 \times \cdots \times 1 \times \mu\}$:
$$
S^{l_{1}} \times \cdots \times S^{l_{n-1}} \times\left(S^{l_{n}} \times X\right) \rightarrow S^{l_{1}} \times \cdots \times S^{l_{n-2}} \times\left(S^{l_{n-1}} \times X\right) \rightarrow \cdots \rightarrow X
$$

As a general formula of (*),
Definition 1.1. [9] We say that maps $f_{i}: X_{i} \rightarrow Y(i=1, . ., n)$ have an n-pairing if there is a homotopy commutative diagram:

with a map μ, which is called an affiliated map. Then we write $f_{1} \perp f_{2} \perp \cdots \perp f_{n}$.
Definition 1.2. Let the pairing rank $v_{0}(X)$ of X in the rational homotopy group be

$$
\max \left\{n \mid a_{i_{1}} \perp \cdots \perp a_{i_{n}} \text { for }\left\{a_{i_{1}}, . ., a_{i_{n}}\right\} \subset A \text { with some basis } A \text { of } \pi_{o d d}(X)_{\mathbb{Q}}\right\}
$$

where A is a homogeneous basis of the graded vector space $\pi_{o d d}(X)_{\mathbb{Q}}=\oplus_{k>0} \pi_{2 k+1}(X) \otimes \mathbb{Q}$; i.e., $A=\cup_{i} A_{i}$ with A_{i} a basis of $\pi_{i}(X)_{\mathbb{Q}}(i$ is odd $)$.

Let $X_{\mathbb{Q}}$ and $f_{\mathbb{Q}}$ be the rationalizations of a space X and a map $f: X \rightarrow Y$, respectively [5]. It is known that $G_{*}\left(X_{\mathbb{Q}}\right)=G_{*}(X)_{\mathbb{Q}}$ when X is finite [6] (in general, $\left.G_{*}\left(X_{\mathbb{Q}}\right) \supset G_{*}(X)_{\mathbb{Q}}\right)$ and $G_{\text {even }}(X)_{\mathbb{Q}}=0$ [2, 6.12]. Y. Félix and S. Halperin [2, p.35] conjecture that $G_{n}(X)_{\mathbb{Q}}=0$ for all $n \geq 2 q$ if X is a complex of dimension q. When $G_{*}\left(X_{\mathbb{Q}}\right)=\mathbb{Q}\left\langle a_{i_{1}}, \cdots, a_{i_{n}}\right\rangle$ with $\operatorname{deg} a_{i_{k}}=l_{k}$, there is the restriction map $\mu_{a}^{\prime}: S^{l_{1}} \times \cdots \times S^{l_{n}} \rightarrow X_{\mathbb{Q}}$ of μ_{a} in $(*)$ such that

homotopically commutes. Thus we have $\operatorname{dim} G_{*}\left(X_{\mathbb{Q}}\right) \leq v_{0}(X) \leq \operatorname{dim} \pi_{*}(X)_{\mathbb{Q}}$.
Let $\operatorname{cat}(X)$ be the Lusternik-Schnirelmann (LS) category of X, which is the least integer n such that X is the union of $n+1$ open subsets contractible in $X[1]$. Let $\operatorname{cat}_{0} X:=\operatorname{cat}\left(X_{\mathbb{Q}}\right)$ be the rational LS-category of X. Then $c a t_{0} X \leq c a t X$. It is known that $\operatorname{dim} G_{*}\left(X_{\mathbb{Q}}\right) \leq \operatorname{cat}_{0} X[2,6.12]$. Recall Y. Félix and S. Halperins'

Mapping theorem [2, Theorem I]. If $\pi_{*}(f) \otimes \mathbb{Q}$ is injective for a map $f: X \rightarrow Y$, then $c a t X \leq \operatorname{cat}_{0} Y$.

We have a similar result about our pairing rank:
Proposition 1.3. If $\pi_{\text {odd }}(f) \otimes \mathbb{Q}$ is injective for a map $f: X \rightarrow Y$, then $v_{0}(X) \leq v_{0}(Y)$.
Proof. It is given by the homotopy commutative diagram:

when $v_{0}(X)=n$. It means $f_{\mathbb{Q}} \circ a_{i_{1}} \perp \cdots \perp f_{\mathbb{Q}} \circ a_{i_{n}}$ for the sub-basis $\left\{f_{\mathbb{Q}} \circ a_{i_{1}}, \cdots, f_{\mathbb{Q}} \circ a_{i_{n}}\right\}$ of $\pi_{o d d}(Y)_{\mathbb{Q}}$.

In particular, when $X_{\mathbb{Q}} \simeq Y_{\mathbb{Q}}$, we have $v_{0}(X)=v_{0}(Y)$.
Theorem 1.4. $v_{0}(X) \leq \operatorname{cat}_{0}(X)$.
Proof. When $v_{0}(X)=n$, the induced map of an affiliated map $\pi_{*}(\mu)_{\mathbb{Q}}: \pi_{*}\left(S^{i_{1}} \times \cdots \times S^{i_{n}}\right)_{\mathbb{Q}}=\pi_{i_{1}}\left(S^{i_{1}}\right)_{\mathbb{Q}} \oplus$ $\cdots \oplus \pi_{i_{n}}\left(S^{i_{n}}\right)_{\mathbb{Q}} \rightarrow \pi_{*}(X)_{\mathbb{Q}}$ is injective. Recall cat $_{0}\left(S^{i_{1}} \times \cdots \times S^{i_{n}}\right)=n$. From the above Mapping theorem, we have $n \leq \operatorname{cat}_{0}(X)$.

Accordingly, we have the main inequalities:

$$
\operatorname{dim} G_{*}(X)_{\mathbb{Q}} \leq v_{0}(X) \leq \operatorname{cat}_{0}(X)
$$

If X is the product of spheres, $\operatorname{dim} G_{*}(X)_{\mathbb{Q}}=v_{0}(X)=\operatorname{cat}_{0}(X)$. In Theorem 2.5, we give a relaxed condition in the terms of Sullivan models [11],[3].

Recall a (rationalized) result of Varadarajan and Hardie:
Theorem 1.5. [3, Proposition 30.6] For a fibration $X \rightarrow E \rightarrow Y$, cat E is upper bounded by cat ${ }_{0} X$ and $\operatorname{cat}_{0} Y$ as

$$
c a t_{0} E+1 \leq\left(c a t_{0} X+1\right)\left(c a t_{0} Y+1\right)
$$

and this inequality is best possible.
For example, the projectivization of a complex n-bundle over $S^{2 n}$ is given by a non-trivial fibration $\mathbb{C} P^{n-1} \rightarrow \mathbb{C} P^{2 n-1} \rightarrow S^{2 n}$, where $\mathbb{C} P^{n}$ is the n-dimensional complex projective space. It induces the equation $\operatorname{cat}_{0} E+1=2 n=n \cdot 2=\left(\right.$ cat $\left._{0} X+1\right)\left(c a t_{0} Y+1\right)$. Recall that K. Hess showed that $\operatorname{cat}_{0}(X \times Y)=\operatorname{cat}_{0} X+\operatorname{cat}_{0} Y$ in 1991 [1]. There is a problem: when X is elliptic (see $\S 2$ for the definition $), \operatorname{dim} H^{*}(X ; \mathbb{Q}) \leq 2^{\text {cat }_{0}(X)}$? [12].

Claim 1.6. (1) Gottlieb group is not functorial, that is, a map $f: X \rightarrow Y$ does not induce $G_{*}(X) \rightarrow$ $G_{*}(Y)$ in general. Thus, even if $\pi_{*}(f) \otimes \mathbb{Q}$ is injective, it does not hold that $\operatorname{dim} G_{*}(X)_{\mathbb{Q}} \leq \operatorname{dim} G_{*}(Y)_{\mathbb{Q}}$. For example, let $M(Y)=\left(\Lambda\left(v_{1}, v_{2}, v_{3}\right), d\right)$ with $\left|v_{i}\right|$ odd, $d v_{1}=d v_{2}=0, d v_{3}=v_{1} v_{2}$ and $M(X)=$ $\left(\Lambda\left(v_{2}, v_{3}\right), 0\right)$. When $M(f)$ is the projection removing $v_{1}, \pi_{*}(f) \otimes \mathbb{Q}$ is injective. But $\operatorname{dim} G_{*}(X)_{\mathbb{Q}}=$ $2>1=\operatorname{dim} G_{*}(Y)_{\mathbb{Q}}$.
(2) Although $\operatorname{dim} G_{*}(X \times Y)_{\mathbb{Q}}=\operatorname{dim} G_{*}(X)_{\mathbb{Q}}+\operatorname{dim} G_{*}(Y)_{\mathbb{Q}}$, there is no good estimate of $\operatorname{dim} G_{*}(E)_{\mathbb{Q}}$ in terms of $\operatorname{dim} G_{*}(X)_{\mathbb{Q}}$ and $\operatorname{dim} G_{*}(Y)_{\mathbb{Q}}$ for a fibration $X \rightarrow E \rightarrow Y$. Indeed, they can be arbitrary ([14, Example 1]).

Our pairing rank has a good evaluation inequality induced by an inclusion $\pi_{o d d}(E)_{\mathbb{Q}} \subset \pi_{\text {odd }}(X)_{\mathbb{Q}} \oplus$ $\pi_{o d d}(Y)_{\mathbb{Q}}$ as

Theorem 1.7. For a fibration $\xi: X \xrightarrow{i} E \xrightarrow{p} Y$,
(1) $v_{0}(E) \leq v_{0}(X)+v_{0}(Y)$.
(2) $v_{0}(X) \leq v_{0}(E)$ if it is weakly rational trivial; i.e., $\pi_{*}(E)_{\mathbb{Q}}=\pi_{*}(X)_{\mathbb{Q}} \oplus \pi_{*}(Y)_{\mathbb{Q}}$.
(3) In particular, $v_{0}(X \times Y)=v_{0}(X)+v_{0}(Y)$.

In general, even if $v_{0}(E)=v_{0}(X)+v_{0}(Y)$, the fibration $\xi: X \rightarrow E \rightarrow Y$ may not be trivial (See Example $3.5(2)(3)$ in $\S 3)$. In the future works, it is expected to find some relations between other numerical invariants as in [1], [4].

2 Sullivan model

Recall the Sullivan minimal model $M(X)$ of a simply connected space X of finite type. It is a free \mathbb{Q} commutative differential graded algebra (DGA) $(\Lambda V, d)$ with a \mathbb{Q}-graded vector space $V=\bigoplus_{i>1} V^{i}$ of $\operatorname{dim} V^{i}<\infty$ and a decomposable differential d. Denote the degree of a homogeneous element x of a graded algebra as $|x|$, the \mathbb{Q}-vector space of basis $\left\{v_{i}\right\}_{i}$ as $\mathbb{Q}\left\langle v_{i}\right\rangle_{i}$. A fibration $p: E \rightarrow Y$ has a minimal model which is a DGA-map $M(p): M(Y) \rightarrow M(E)$. It is induced by a relative model (KS-extension)

$$
M(Y)=\left(\Lambda W, d_{Y}\right) \rightarrow(\Lambda W \otimes \Lambda V, D)
$$

where $(\Lambda V, \bar{D})=\left(\Lambda V, d_{X}\right)$ is the minimal model of the homotopy fibre X of p and there is a quasiisomorphism $\rho: M(E) \xrightarrow{\rightarrow}(\Lambda W \otimes \Lambda V, D)$. Notice that $M(X)$ determines the rational homotopy type of X, especially $H^{*}(X ; \mathbb{Q}) \cong H^{*}(M(X))$ as graded algebras and $\pi_{i}(X) \otimes \mathbb{Q} \cong \operatorname{Hom}\left(V^{i}, \mathbb{Q}\right)$. We refer to [3] for a general introduction and the standard notations. The next lemma immediately follows:

Lemma 2.1. The inequality $v_{0}(X) \geq n$ is given by an affiliated map

$$
\mu: S^{a_{1}} \times \cdots \times S^{a_{n}} \rightarrow X_{\mathbb{Q}}
$$

where $\left|a_{i}\right|$ are odd if and onl if there is a subspace $\mathbb{Q}\left\langle v_{1}, \cdots v_{n}\right\rangle$ of V with $\left|v_{i}\right|=a_{i}$ for $M(X)=(\Lambda V, d)$ such that there is a DGA-map

$$
M(\mu):(\Lambda V, d) \rightarrow\left(\Lambda\left(v_{1}, \cdots, v_{n}\right), 0\right),
$$

where $M(\mu)\left(v_{i}\right)=v_{i}$.
Proof of Theorem 1.7. (1) Suppose $\mu: S^{n_{1}} \times \cdots \times S^{n_{b}} \rightarrow E_{\mathbb{Q}}$ is an affiliated map. Then we can assume that it is $\mu: S^{n_{1}} \times \cdots \times S^{n_{a}} \times S^{n_{a+1}} \times \cdots \times S^{n_{b}} \rightarrow E_{\mathbb{Q}}$ such that $\alpha_{i}: S^{n_{i}} \rightarrow E_{\mathbb{Q}}$ is an element of $\pi_{n_{i}}(X)_{\mathbb{Q}}$ for $1 \leq i \leq a$ and $\beta_{i}: S^{n_{i}} \rightarrow E_{\mathbb{Q}}$ is an element of $\pi_{n_{i}}(Y)_{\mathbb{Q}}$ for $a+1 \leq i \leq b$. (The existence of such elements are guaranteed by the construction of Sullivan relative model as we see below.) Then there is a homotopy commutative diagram

and it induces $\mu^{\prime}=\mu_{\alpha} \times \mu_{\beta}:\left(S^{n_{1}} \times \cdots \times S^{n_{a}}\right) \times\left(S^{n_{a+1}} \times \cdots \times S^{n_{b}}\right) \rightarrow X_{\mathbb{Q}} \times Y_{\mathbb{Q}}$. From Lemma 2.1, it is equivalent to the homotopy commutative diagram of DGAs:

where $\left(\Lambda V, d_{X}\right),\left(\Lambda U, d_{E}\right)$ and $\left(\Lambda W, d_{Y}\right)$ are the Sullivan minimal models of X, E and Y with $U \subset$ $V \oplus W$. It induces the DGA-map $M\left(\mu_{\alpha}\right) \otimes M\left(\mu_{\beta}\right):\left(\Lambda V, d_{X}\right) \otimes\left(\Lambda W, d_{Y}\right) \rightarrow\left(\Lambda\left(v_{1}, . ., v_{a}, w_{a+1}, . ., w_{b}\right), 0\right)$.
(2) It follows from Proposition 1.3. In this case, $\left(\Lambda U, d_{E}\right)$ is identified to $(\Lambda V \otimes \Lambda W, D)$, it follows from the DGA-map $M\left(\mu_{\alpha}\right) \circ M(i)$ in the above diagram and (3) is obvious.

Let A be a DGA $A=\left(A^{*}, d_{A}\right)$ with $A^{*}=\oplus_{i \geq 0} A^{i}, A^{0}=\mathbb{Q}, A^{1}=0$ and the augmentation $\epsilon: A \rightarrow \mathbb{Q}$. Define $D e r_{i} A$ the vector space of derivations of A decreasing the degree by $i>0$, where $\theta(x y)=$ $\theta(x) y+(-1)^{i|x|} x \theta(y)$ for $\theta \in \operatorname{Der}_{i} A$. We denote $\oplus_{i>0} \operatorname{Der}_{i} A$ by DerA. The boundary operator $\delta:$ $\operatorname{Der}_{*} A \rightarrow \operatorname{Der}_{*-1} A$ is defined by $\delta(\sigma)=d_{A} \circ \sigma-(-1)^{|\sigma|} \sigma \circ d_{A}$.

Proposition 2.2. [2] For the minimal model $M(X)=(\Lambda V, d)$ of a simply connected finite complex X and the argumentation $\epsilon: \Lambda V \rightarrow \mathbb{Q}$,

$$
G_{n}\left(X_{\mathbb{Q}}\right) \cong \operatorname{Im}\left(H_{n}\left(\epsilon_{*}\right): H_{n}(\operatorname{Der}(\Lambda V, d)) \rightarrow \operatorname{Hom}_{n}(V, \mathbb{Q})=\operatorname{Hom}\left(V^{n}, \mathbb{Q}\right)\right)
$$

for all $n>0$.
A space X or a model $M(X)=(\Lambda V, d)$ is said to be elliptic if $\operatorname{dim} H^{*}(X ; \mathbb{Q})=H^{*}(\Lambda V, d)<\infty$ and $\operatorname{dim} \pi_{*}(X)_{\mathbb{Q}}=\operatorname{dim} V<\infty$. When X is elliptic, $\operatorname{cat}_{0}(X)=e_{0}(\Lambda V, d):=\max \left\{n \mid[\alpha] \neq 0 \in H^{+}(\Lambda V, d)\right.$ for $\alpha \in \Lambda^{\geq n} V$ [[1]. A model $(\Lambda V, d)$ is called pure when $d V^{\text {even }}=0$ and $d V^{\text {odd }} \subset \Lambda V^{\text {even }}$.

Lemma 2.3. For a pure minimal model $M=\left(\Lambda\left(x_{1}, . ., x_{m}, y_{1}, . ., y_{n}\right), d\right)$ with $\left|x_{i}\right|$ even and $\left|y_{i}\right|$ odd, we have $v_{0}(M)=n$.

Proof. The model of an affiliated map is given by the DGA-projection $M(\mu): M \rightarrow\left(\Lambda\left(y_{1}, . ., y_{n}\right), 0\right)$ from Lemma 2.1.
L. Lechuga and A. Murillo give

Theorem 2.4. [7, Theorem 1] For an elliptic model with $M(X)=(\Lambda V, d)$ with $d V \subset \Lambda^{\geq k} V, \operatorname{cat}_{0}(X)=$ $(k-2) \operatorname{dim} V^{\text {even }}+\operatorname{dim} V^{\text {odd }}$.

When $d V \subset \Lambda^{2} V$ in $(\Lambda V, d)$, we say that $(\Lambda V, d)$ is quadratic.
Theorem 2.5. If $M(X)$ is a pure elliptic quadratic model, then $\operatorname{dim} G_{*}(X)_{\mathbb{Q}}=v_{0}(X)=\operatorname{cat}_{0}(X)$.
Proof. In this case, $G_{*}(X)_{\mathbb{Q}}=V^{\text {odd }}$ from Proposition 2.2 and $v_{0}(X)=\operatorname{dim} V^{\text {odd }}$ from Lemma 2.3. It is also equal to $\operatorname{cat}_{0}(X)=\operatorname{dim} V^{\text {odd }}$ from Theorem 2.4.

Remark 2.6. Suppose that the minimal model of X is given by $M(X)=\left(\Lambda\left(x_{1}, . ., x_{n}, y_{1}, . ., y_{n}\right), d\right)$ with $\left|x_{i}\right|$ even, $\left|y_{i}\right|$ odd, $d x_{i}=0$ and $d y_{i} \in \Lambda\left(x_{1}, \ldots, x_{n}\right)$ for all i. When its cohomology is finite, X is called as an F_{0}-space. For a fibration $\xi: X \rightarrow E \rightarrow S^{2 k+1}$, cat $_{0}(E)=$ cat $_{0}(X)+1$ [8, Theorem 4.7]. Also $\operatorname{dim} G_{*}(E)_{\mathbb{Q}}=n+1$ if and only if ξ is rationally trivial [14, Corollary A]. There is an open problem that ξ is rationally trivial if $\operatorname{cup}_{0}(E)=\operatorname{cup}_{0}(X)+1$ [8]. We know $v_{0}(E)=n+1$ since $D x_{i} \in\left(x_{1}, \ldots, x_{n}\right)$ for all i in the KS-extension

$$
M\left(S^{2 k+1}\right)=(\Lambda z, 0) \rightarrow\left(\Lambda\left(z, x_{1}, . ., x_{n}, y_{1}, . ., y_{n}\right), D\right) \rightarrow M(X)
$$

Here $\left(x_{1}, . ., x_{n}\right)$ is the ideal generated by x_{1}, \ldots, x_{n}. Indeed, then there is the DGA-projection map $M(X) \rightarrow\left(\Lambda\left(z, y_{1}, . ., y_{n}\right), 0\right)$ and then we have it from Lemma 2.1.

3 Examples

Example 3.1. Let $\operatorname{cup}_{0}(X)$ be the rational cup length of X, the largest integer n such that the n product of $H^{+}(X ; \mathbb{Q})$ is not zero. The following examples are useful for Theorem 3.3 below.
(1) $v_{0}(X)=0$ if and only if $X \simeq_{\mathbb{Q}} *$.
(2) $\operatorname{dim} G_{*}\left(S^{n}\right)_{\mathbb{Q}}=v_{0}\left(S^{n}\right)=\operatorname{dim} G_{*}\left(\mathbb{C} P^{n}\right)_{\mathbb{Q}}=v_{0}\left(\mathbb{C} P^{n}\right)=1$ but cup $p_{0}\left(\mathbb{C} P^{n}\right)=c a t_{0}\left(\mathbb{C} P^{n}\right)=n$.
(3) $\operatorname{dim} G_{*}\left(S^{m} \vee S^{n}\right)_{\mathbb{Q}}=0[10]$ but $v_{0}\left(S^{m} \vee S^{n}\right)=\operatorname{cat}_{0}\left(S^{m} \vee S^{n}\right)=1$.

Example 3.2. Recall Theorem 2.5. Even if $M(X)$ is a quadratic model, $v_{0}(X)$ may not be equal to $c a t_{0}(X)$. For example, let $M(X)=(\Lambda(x, y, z, a, b, c), d)$ with $|x|=2,|y|=|z|=3,|a|=4,|b|=5,|c|=7$, $d x=d y=0, d z=x^{2}, d a=x y, d b=x a+y z$ and $d c=a^{2}+2 y b$, which is an elliptic model [3, p.439]. Then $v_{0}(X)=3$ by the affiliated map $\mu: S^{3} \times S^{5} \times S^{7} \rightarrow X_{\mathbb{Q}}$. It is given from Lemma 2.1 by the DGA-restriction map

$$
(\Lambda(x, y, z, a, b, c), d) \rightarrow(\Lambda(z, b, c), 0)
$$

and since we can directly check $v_{0}(X) \neq 4$. On the other hand, $\operatorname{dim} G_{*}(X)_{\mathbb{Q}}=1$ from Proposition 2.2 and $\operatorname{cat}_{0}(X)=4$ from Theorem 2.4.

A space X is said to be formal if there is a DGA-map from its minimal model to its rational cohomology with zero differential: $M(X) \xrightarrow{\sim}\left(H^{*}(X ; \mathbb{Q}), 0\right)$. For example, homogeneous spaces G / H with $\operatorname{rank}(G)=\operatorname{rank}(H)$ are formal.

Theorem 3.3. Any triple (a, b, c) of $0<a \leq b \leq c$ is realized as $[X]:=\left(\operatorname{dim} G_{*}(X)_{\mathbb{Q}}, v_{0}(X)\right.$, cat $\left.t_{0} X\right)$ for a formal space X.

Proof Notice that $[X \times Y]=[X]+[Y]$. For any triple (a, b, c) of $0<a \leq b \leq c$, we have

$$
\begin{gathered}
(a, b, c)-\left[S_{1}^{3} \times S_{2}^{3} \times \cdots \times S_{a-1}^{3}\right]=(1, b-a+1, c-a+1), \\
(1, b-a+1, c-a+1)-\left[\Pi_{i=1}^{b-a}\left(S^{3} \vee S^{3}\right)_{i}\right]=(1,1, c-b+1) \text { and } \\
(1,1, c-b+1)=\left[\mathbb{C} P^{c-b+1}\right]
\end{gathered}
$$

from the above example. Thus we have $[X]=(a, b, c)$ when

$$
X=S_{1}^{3} \times S_{2}^{3} \times \cdots \times S_{a-1}^{3} \times \Pi_{i=1}^{b-a}\left(S^{3} \vee S^{3}\right)_{i} \times \mathbb{C} P^{c-b+1}
$$

for example.

Example 3.4. Recall $\operatorname{cup}_{0}(X) \leq \operatorname{cat}_{0}(X)$ in general and the integer $\operatorname{cat}_{0}(X)-\operatorname{cup}_{0}(X)$ can be arbitrarily large for elliptic spaces [13]. If X is formal, it is known that $\operatorname{cup}_{0}(X)=\operatorname{cat}_{0}(X)$ [3]. Then we have $v_{0}(X) \leq$ cup $_{0}(X)$ from Theorem 1.4. Consider non-formal cases:
(1) When X is the non-formal homogeneous space $S U(6) / S U(3) \times S U(3), M(X)=\left(\Lambda\left(x, y, v_{1}, v_{2}\right.\right.$, $\left.\left.v_{3}\right), d\right)=(\Lambda V, d)$ with $|x|=4$ and $|y|=6, d x=d y=0, d v_{1}=x^{2}, d v_{2}=x y$ and $d v_{3}=y^{2}$. It satisfies the condition of Theorem 2.5. Then $[x] \cdot\left[y v_{2}-x v_{3}\right]$ represents the fundamental class of $H^{*}(X ; \mathbb{Q})$ and it is in $\Lambda^{3} V$. Thus we have the inequality:

$$
\operatorname{cup}_{0}(X)=2<3=\operatorname{dim} G_{*}(X)_{\mathbb{Q}}=v_{0}(X)=\operatorname{cat}_{0}(X)
$$

(2) When $M(X)=\left(\Lambda\left(v_{1}, v_{2}, . ., v_{n}\right), d\right)$ with $n>4$ odd, $\left|v_{i}\right|$ odd and $d v_{1}=d v_{2}=0, d v_{3}=v_{1} v_{2}, d v_{4}=$ $v_{1} v_{3}, \cdots, d v_{n}=v_{1} v_{n-1}$, then $v_{0}(X)=n-1$ since there is the restriction map $M(X) \rightarrow\left(\Lambda\left(v_{2}, v_{3}, \ldots, v_{n}\right), 0\right)$. We see $\operatorname{cup}_{0}(X)=(n+1) / 2$ since there are cocycles v_{1} and $v_{2} v_{n}-v_{3} v_{n-1}+\cdots+(-1)^{(n+1) / 2} v_{(n+1) / 2} v_{(n+3) / 2}$ where

$$
\left[v_{1}\right] \cdot\left[v_{2} v_{n}-v_{3} v_{n-1}+\cdots+(-1)^{(n+1) / 2} v_{(n+1) / 2} v_{(n+3) / 2}\right]^{\frac{n-1}{2}}=c\left[v_{1} v_{2} \cdots v_{n}\right]
$$

for a certain non-zero integer c. From Proposition 2.2, $\operatorname{dim} G_{*}(X)_{\mathbb{Q}}=\operatorname{dim} \mathbb{Q}\left\langle v_{n}\right\rangle=1$. Also cat $(X)=$ $e_{0}(X)=n$. It gives the inequalities:

$$
\operatorname{dim} G_{*}(X)_{\mathbb{Q}}<\operatorname{cup}_{0}(X)<v_{0}(X)<\operatorname{cat}_{0}(X)
$$

(3) Let X be the space of the above (2). From Example 3.1(2), we have the inequalities:

$$
\operatorname{dim} G_{*}\left(X \times \mathbb{C} P^{n}\right)_{\mathbb{Q}}<v_{0}\left(X \times \mathbb{C} P^{n}\right)<\operatorname{cup}_{0}\left(X \times \mathbb{C} P^{n}\right)<\operatorname{cat}_{0}\left(X \times \mathbb{C} P^{n}\right)
$$

for a sufficiently large n.
Example 3.5. (1) The space of Example 3.2 is the total space of a fibration $S^{4} \times S^{5} \rightarrow X \rightarrow S^{2} \times$ S^{3}. Then $\operatorname{dim} G(X)_{\mathbb{Q}}=1<2+2=\operatorname{dim} G\left(S^{4} \times S^{5}\right)_{\mathbb{Q}}+\operatorname{dim} G\left(S^{2} \times S^{3}\right)_{\mathbb{Q}}, c a t_{0} X+1=4+1<3 \cdot 3=$ $\left(\operatorname{cat}_{0}\left(S^{4} \times S^{5}\right)+1\right)\left(\operatorname{cat}_{0}\left(S^{2} \times S^{3}\right)+1\right)$ in the fomula of Theorem 1.5 and $v_{0}(X)=3<2+2=v_{0}\left(S^{4} \times\right.$ $\left.S^{5}\right)+v_{0}\left(S^{2} \times S^{3}\right)$ in the fomula of Theorem 1.7(1).
(2) The space of Example 3.4(1) is the total space of the fibration $S^{9} \rightarrow X \rightarrow S^{4} \times S^{6}$. It gives an example with $\operatorname{dim} G(X)_{\mathbb{Q}}=\operatorname{dim} G\left(S^{9}\right)_{\mathbb{Q}}+\operatorname{dim} G\left(S^{4} \times S^{6}\right)_{\mathbb{Q}}$ and

$$
v_{0}(X)=3=1+2=v_{0}\left(S^{9}\right)+v_{0}\left(S^{4} \times S^{6}\right)
$$

but $c a t_{0} X+1=3+1<6=2 \cdot 3=\left(\operatorname{cat}_{0} S^{9}+1\right)\left(\operatorname{cat}_{0}\left(S^{4} \times S^{6}\right)+1\right)$ in the fomula of Theorem 1.5.
(3) Put $S^{4 n-1} \rightarrow T \rightarrow S^{4 n}$ the sphere bundle associated to the tangent bundle of $S^{4 n}$ where n is odd. Put the pull back fibration $S^{4 n-1} \rightarrow Y \xrightarrow{f} S_{1}^{n} \times S_{2}^{n} \times S_{3}^{n} \times S_{4}^{n}$ along the map $S_{1}^{n} \times S_{2}^{n} \times S_{3}^{n} \times$ $S_{4}^{n} \rightarrow S^{4 n}$ collapsing the ($4 n-1$)-skelton. Then Y is an $8 n-1$-dimensional manifold with $M(Y)=$ $\left(\Lambda\left(w_{1}, w_{2}, w_{3}, w_{4}, w\right), d_{Y}\right)$ with $\left|w_{i}\right|=n,|w|=4 n-1, d_{Y} w_{i}=0, d_{Y} w=w_{1} w_{2} w_{3} w_{4}$. Then for the basis $A=\left\{w_{1}^{*}, w_{2}^{*}, w_{3}^{*}, w_{4}^{*}, w^{*}\right\}$ of $\pi_{*}(Y) \otimes \mathbb{Q}$, we see $v_{0}(Y)=4$ by $S_{i_{1}}^{n} \times S_{i_{2}}^{n} \times S_{i_{3}}^{n} \times S^{4 n-1} \rightarrow Y_{\mathbb{Q}}$ for $1 \leq i_{1}<i_{2}<$ $i_{3} \leq 4$. Consider the spherical fibration $S^{2 n-1} \rightarrow E \rightarrow Y$ where $M(E)=\left(\Lambda\left(w_{1}, w_{2}, w_{3}, w_{4}, w, v\right), D\right)$ with $|v|=2 n-1$ and $D w_{1}=D w_{2}=D w_{3}=D w_{4}=0, D w=d_{Y} w$ and $D v=w_{1} w_{2}$. Then there is a DGA-projection $M(E) \rightarrow\left(\Lambda\left(w_{i_{1}}, w_{i_{2}}, w_{i_{3}}, w, v\right), 0\right)$. Thus we have the equalities:

$$
v_{0}(E)=5=1+4=v_{0}\left(S^{2 n-1}\right)+v_{0}(Y)
$$

On the other hand, we have $G_{*}(E)_{\mathbb{Q}}=\mathbb{Q}\left\langle w_{3}, w_{4}, w, v\right\rangle$ and $G_{*}(Y)_{\mathbb{Q}}=\mathbb{Q}\langle w\rangle$ from Proposition 2.2. Thus $\operatorname{dim} G_{*}(E)_{\mathbb{Q}}=4>1+1=\operatorname{dim} G_{*}\left(S^{2 n-1}\right)_{\mathbb{Q}}+\operatorname{dim} G_{*}(Y)_{\mathbb{Q}}$ and $c a t_{0} E+1=6+1<12=2 \cdot 6=$ $\left(c a t_{0} S^{2 n-1}+1\right)\left(c^{2} t_{0} Y+1\right)$ in the fomula of Theorem 1.5.

Acknowledgement. The author would like to thank Nobuyuki Oda for his valuable comments, especially on " n-pairing".

References

[1] O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik-Schnirelmann category, Math. Survey and Mono. 103, A.M.S. 2003
[2] Y. Félix and S. Halperin, Rational LS category and its applications, Trans.A.M.S. 273 (1982) 1-38
[3] Y. Félix, S. Halperin and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics 205, Springer-Verlag, 2001
[4] J.-B. Gatsinzi, On the genus of elliptic fibrations, Proc.A.M.S. 132 (2003) 597-606
[5] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, NorthHolland Math. Studies, 151975
[6] G.E. Lang,Jr. Localizations and evaluation subgroups, Proc.A.M.S. 50 (1975) 489-494
[7] L. Lechuga and A. Murillo, A formula for the rational LS-category of certain spaces, Ann.Inst.Fourier, Grenoble 52 (2002) 1585-1590
[8] G. Lupton, Variations on a conjecture of Halperin, Homotopy and Geometry Banach Center Publ. 45 (1998) 115-135
[9] N. Oda, Pairings and copairings in the category of topological spaces, Publ. Res. Inst. Math. Sci. Kyoto Univ. 28 (1992) 83-97
[10] S.B. Smith, Rational evaluation subgroups, Math.Z. 221 (1996) 387-400
[11] D. Sullivan, Infinitesimal computations in topology, I.H.E.S., 47 (1978) 269-331
[12] T. Yamaguchi, On a lower bound for the LS-category of a rationally elliptic space, Bull. Belg. Math. Soc. 12 (2005) 565-568
[13] T. Yamaguchi, Cup 0 and cat t_{0} can be arbitrary in elliptic spaces, New Zealand J. Math. 35 (2006) 211-213
[14] T. Yamaguchi, An estimate in Gottlieb ranks of fibration, Bull. Belg. Math. Soc. 15 (2008) 663-675

[^0]: *e-mail address: tyamag@kochi-u.ac.jp

