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Abstract
Let f : S → B be a finite cyclic covering fibration of a fibered surface. We study the lower

bound of the slope λ f when the relative irregularity q f is positive.

Introduction

Let f : S → B be a surjective morphism from a smooth projective surface S to a smooth
projective curve B with connected fibers. We call it a fibration of genus g when a general
fiber is a curve of genus g. A fibration is called relatively minimal, when any (−1)-curve is
not contained in fibers. Here we call a smooth rational curve C with C2 = −n a (−n)-curve.
A fibration is called smooth when all fibers are smooth, isotrivial when all of the smooth
fibers are isomorphic, locally trivial when it is smooth and isotrivial.

Assume that f : S → B is a relatively minimal fibration of genus g ≥ 2. We denote by
Kf = KS − f ∗KB a relative canonical divisor. We associate three relative invariants with f :

K2
f = K2

S − 8(g − 1)(b − 1),

χ f := χ(S ) − (g − 1)(b − 1),

e f := e(S ) − 4(g − 1)(b − 1),

where b and e(S ) respectively denote the genus of the base curve B and the topological
Euler-Poincaré characteristic of S . Then the following are well-known:

• (Noether) 12χ f = K2
f + e f .

• (Arakelov) Kf is nef.
• (Ueno) χ f ≥ 0 and χ f = 0 if and only if f is locally trivial.
• (Segre) e f ≥ 0 and e f = 0 if and only if f is smooth.

When f is not locally trivial, we put

λ f :=
K2

f

χ f

and call it the slope of f according to [5], in which Xiao succeeded in giving its effective
lower bound as

λ f ≥ 4(g − 1)
g

.

Another invariant we are interested in is the relative irregularity of f defined by q f :=

2020 Mathematics Subject Classification. Primary 14D06, 14H10; Secondary 14D99, 14J29.



452 H. Akaike

q(S ) − b, where q(S ) := dimH1(S ,S ) denotes the irregularity of S as usual. When q f is
positive, we call f an irregular fibration. Xiao showed in [5] that λ f ≥ 4 holds for irregular
fibrations. It seems a general rule that the lower bound of the slope goes up, when the
relative irregularity gets bigger.

In the present paper, we consider primitive cyclic covering fibrations of type (g, h, n)
introduced in [2], where Enokizono gave the lower bound of the slope for them. Note that
it is nothing more than a hyperelliptic fibration when h = 0 and n = 2. Recall that Lu
and Zuo obtained the lower bound of the slope for irregular double covering fibrations in
[4] and [3]. Inspired by their results, we try to generalize them to irregular primitive cyclic
covering fibrations with n ≥ 3. We give the lower bound of slope for those of type (g, 0, n)
in Theorems 3.4 and 4.7, and for those of type (g, h, n) with h ≥ 1 in Theorem 3.8.

The key observation for the proof is Proposition 3.2. We apply it to the anti-invariant part
of the Albanese map with respect to the action of the Galois group canonically associated
to the cyclic covering fibration, and derive the “negativity” of the ramification divisor when
q f > 0. Recall that χ f and (the essential part of) K2

f can be expressed in terms of the
so-called k-th singularity index αk defined for each non-negative integer k. The negativity
referred above can be used to get some non-trivial restrictions on α0 which is the most
difficult one to handle with among all αk’s. Thanks to such information together with an
analysis of the Albanese map, we can obtain the desired slope inequalities.

We also give a small contribution to the modified Xiao’s conjecture that q f ≤ � g+1
2 � holds,

posed by Barja, González-Alonso and Naranjo in [1]. It is known to be true for fibrations
of maximal Clifford index [1] and for hyperelliptic fibrations [4] among others. We show in
Theorem 4.5 that q f ≤ (g+ 1− n)/2 holds, when f is a primitive cyclic covering fibration of
type (g, 0, n) under some additional assumptions. For the history around the conjecture, see
the introduction of [1].

The author express his sincere gratitude to Professor Kazuhiro Konno for suggesting this
assignment, his valuable advice and support. The author also thanks Dr. Makoto Enokizono
for his precious advices, allowing him to use Proposition 3.2 freely.

1. Primitive cyclic covering fibrations

1. Primitive cyclic covering fibrations
We recall the basic properties of primitive cyclic covering fibrations, most of which can

be found in [2].

Definition 1.1. Let f : S → B be a relatively minimal fibration of genus g ≥ 2. We
call it a primitive cyclic covering fibration of type (g, h, n), when there are (not necessarily
relatively minimal) fibration ϕ̃ : W̃ → B of genus h ≥ 0 and a classical n-cyclic covering

θ̃ : S̃ = SpecW̃

⎛⎜⎜⎜⎜⎜⎜⎝
n−1⊕
j=0

W̃(− j̃d)

⎞⎟⎟⎟⎟⎟⎟⎠→ W̃

branched over a smooth curve R̃ ∈ |ñd| for some n ≥ 2 and d̃ ∈ Pic(W̃) such that f is the
relatively minimal model of f̃ = ϕ̃ ◦ θ̃.

Let f : S → B be a primitive cyclic covering fibration of type (g, h, n). Let F̃, F, Γ̃ and
Γ be general fibers of f̃ , f , ϕ̃ and ϕ, respectively. Then the restriction map θ̃|F̃ : F̃ → Γ̃ is a
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classical n-cyclic covering branched over R̃ ∩ Γ̃. By the Hurwitz formula for θ̃|F̃ , we get

(1.1) r := R̃ Γ̃ =
2
(
g − 1 − n(h − 1)

)
n − 1

.

From R̃ ∈ |ñd|, it follows that r is a multiple of n.
Let ψ̃ : W̃ → W be the contraction morphism to a relative minimal model W → B of

ϕ̃ : W̃ → B. Since ψ̃ is a composite of blowing-ups, we can write ψ̃ = ψ1 ◦ · · ·ψN , where
ψi : Wi → Wi−1 denotes the blowing-up at xi ∈ Wi−1 (i = 1, · · · ,N), W0 = W and WN = W̃.
We define a reduced curve Ri inductively as Ri−1 = (ψi)∗Ri starting from RN = R̃ down to
R0 = R. We also put Ei = ψ

−1
i (xi) and mi = multxiRi−1 (i = 1, · · · ,N).

Lemma 1.2 ([2], Lemma 1.5). In the above situation, the following hold for any i =
1, · · · ,N.

(1) Either mi ∈ nZ or nZ + 1. Furthermore, mi ∈ nZ if and only if Ei is not contained in
Ri.

(2) Ri = ψ
∗
i Ri−1 − n[ mi

n ]Ei, where [t] denotes the greatest integer not exceeding t.

(3) There exists di ∈ Pic(Wi) such that di = ψ∗i di−1 − [ mi
n ]Ei and Ri ∼ ndi, dN = d̃.

Remark 1.3. By [2], we can assume the following for any primitive cyclic covering fi-
brations. Let σ̃ be a generator of the covering transformation group of θ̃, and σ the auto-
morphism of S over B induced by σ̃. Then the natural morphism ρ : S̃ → S is a minimal
succession of blowing-ups that resolves all isolated fixed points of σ.

We must pay a special attention when h = 0, since we have various relatively minimal
models for ϕ̃ : W̃ → B. Using elementary transformations, one can show the following.

Lemma 1.4 ([2], Lemma 3.1). Let f : S → B be a primitive cyclic covering fibration of
type (g, 0, n). Then there is a relatively minimal model of ϕ̃ : W̃ → B such that

multxRh ≤ r
2
=

g

n − 1
+ 1

for all x ∈ Rh, where Rh denotes the ϕ-horizontal part of R. Moreover if multxR > r
2 , then

multxR ∈ nZ + 1.

When h = 0, we always assume that a relatively minimal model of ϕ̃ : W̃ → B is as in the
above lemma.

Corollary 1.5. Let the situation be the same as in Lemma 1.4. If x is a singular point of
R and m = multxR, then

n
[m

n

]
≤ r

2
.

Proof. When m ∈ nZ, the inequality clearly holds by Lemma 1.4. If m ∈ nZ + 1, then
n[ m

n ] + 1 = m. From Lemma 1.4, we have m ≤ r
2 + 1. So we get n[ m

n ] ≤ r
2 . �

In closing the section, we give an easy lemma that will be usuful in the sequel.
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Lemma 1.6. Let π : C1 → C2 be a surjective morphism between smooth projective
curves. Let Rπ and Δ be the ramification divisor and the branch locus of π, respectively.
Then,

(deg(π) − 1)�Δ ≥ deg Rπ,

where �Δ denotes the cardinality of Δ as a set of points.

Proof. We put Δ = {Q1, . . . ,Q�Δ}. For any Qi ∈ Δ, we put π−1(Qi) = {Pi
1, . . . , P

i
ji
}.

Note that deg(π) = r(Pi
1) + · · · + r(Pi

ji
) for any i = 1, . . . , �Δ, where r(P) denotes the

ramification index of π around P ∈ C1. Then, from the property of ramification divisor,

deg Rπ =

�Δ∑
i=1

ji∑
j=1

(r(Pi
j) − 1)

= deg(π)�Δ − ( j1 + · · · + j�Δ)

≤ (deg(π) − 1)�Δ,

which is what we want. �

Lemma 1.7. Let β : X → P1 be a fibration. Take any finite sub set J of P1 with �J ≥ 4.
For any y ∈ J, let Γy =

∑
ñDD be the fiber of β over y, and put

Fall := β∗Δ, Fr :=
∑

y∈Δ, D⊂Γy, ñD=1

D.

If there is a smooth rational curve C on X which is β-horizontal, then

�(C ∩ Fr) ≥ deg β|C(�J − 4) + 4 ≥ �J.
Proof. From Hurwitz formula for β|C : C → P1,

2 deg β|C − 2 = deg Rβ|C ,

where Rβ|C is ramification divisor of β|C . Let r(P) be the ramification index of β|C at P ∈ C.
Then we have

deg Rβ|C =
∑

P∈C∩Fall

(r(P) − 1).

By definition, r(P) ≥ 2 for any P ∈ (C ∩ Fall) \ (C ∩ Fr). Hence,∑
C∩Fall

(r(P) − 1) =
∑

(C∩Fall)\(C∩Fr)

(r(P) − 1) +
∑

C∩Fr

(r(P) − 1)

≥
∑

(C∩Fall)\(C∩Fr)

r(P)
2
+

∑
C∩Fr

(r(P) − 1)
2

=
∑

C∩Fall

r(P)
2
− �(C ∩ Fr)

2
.

So we have

2 deg β|C − 2 ≥
∑

C∩Fall

r(P)
2
− �(C ∩ Fr)

2
.
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Therefore we get

�(C ∩ Fr) ≥
∑

C∩Fall

r(P) − 4 deg β|C + 4 = deg β|C(�J − 4) + 4 ≥ �J

by the assumption �J ≥ 4. �

2. Singularity indices and the formulae for K2
f

and χ f .

2. Singularity indices and the formulae for K2
f

and χ f .
We let f : S → B be a primitive cyclic covering fibration of type (g, h, n) and freely use

the notation in the previous section. We obtain a classical n-cyclic covering θi : S i → Wi

branched over Ri by setting

S i = Spec (
n−1⊕
j=0

Wi(− jdi))

Since Ri is reduced, S i is a normal surface. There exists a natural birational morphism
S i → S i−1. Set S ′ = S 0, θ = θ0, d = d0 and f ′ = ϕ ◦ θ. Then we have a commutative
diagram:

S̃ = S N

θ̃
��

��

ρ

��
S N−1

θN−1

��

�� · · · �� S 0 = S ′

θ

��

S

f

����
��

��
��

��
��

��
��

�

W̃ = WN
ψN ��

ϕ̃

������������������������������� WN−1
ψN−1 �� · · · ψ1 �� W0 = W

ϕ

��
B

The well-known formulae for cyclic coverings give us

K2
f̃ = n(K2

ϕ̃ + 2(n − 1)d̃Kϕ̃ + (n − 1)2d̃2),(2.1)

χ f̃ = nχϕ̃ +
1
2

n−1∑
j=0

jd̃( jd̃ + Kϕ̃),(2.2)

(see e.g., [2]). From Lemma 1.2 and a simple calculation, we get

d̃2 = d2 −
N∑

i=1

[mi

n

]2
,(2.3)

d̃Kϕ̃ = dKϕ +

N∑
i=1

[mi

n

]
(2.4)

and

(2.5) K2
ϕ̃ = K2

ϕ − N.

Definition 2.1. Let Γp and Fp respectively denote fibers of ϕ : W → B and f : S → B
over a point p ∈ B. For any fixed p ∈ B, we consider all singular points (including infinitely
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near ones) of R on Γp. For any positive integer k, we let αk(Fp) be the number of singular
points of multiplicity either kn or kn + 1 among them, and call it the k-th singularity index
of Fp. We put αk :=

∑
p∈B αk(Fp) and call it the k-th singularity index of the fibration. We

also put α0 := (Kϕ̃ + R̃)R̃ and call it the ramification index of ϕ̃|R̃ : R̃→ B.

By a simple calculation, we get

N =
∑
k≥1

αk,(2.6)

N∑
i=1

[mi

n

]
=

∑
k≥1

kαk,(2.7)

N∑
i=1

[mi

n

]2
=

∑
k≥1

k2αk(2.8)

and

(2.9) α0 = (Kϕ + R)R −
∑
k≥1

nk(nk − 1)αk.

Substituting (2.3), (2.4), · · · ,(2.8) to (2.1) and (2.2), one gets

K2
f̃ = n(K2

ϕ + 2(n − 1)dKϕ + (n − 1)2d2) − n
∑
k≥1

((n − 1)k − 1)2αk

and

χ f̃ = nχϕ̃ +
n(n − 1)

4
dKϕ +

n(n − 1)(2n − 1)
12

d2 − n(n − 1)
12

∑
k≥1

((2n − 1)k2 − 3k)αk.

Since K2
f ≥ K2

f̃
, χ f̃ = χ f and χϕ̃ = χϕ, we obtain

(2.10) K2
f ≥ n(K2

ϕ + 2(n − 1)dKϕ + (n − 1)2d2) − n
∑
k≥1

((n − 1)k − 1)2αk

and

(2.11) χ f = nχϕ +
n(n − 1)

4
dKϕ +

n(n − 1)(2n − 1)
12

d2 − n(n − 1)
12

∑
k≥1

((2n − 1)k2 − 3k)αk.

We treat the cases h = 0 and h > 0 separately.

Proposition 2.2. Let f : S → B be a primitive cyclic covering fibration of type (g, 0, n)
and let αi (i ≥ 0) be the singularity index in Definition 2.1. Then,

(r − 1)K2
f ≥

(r − 2)n − r
n

(n − 1)α0 +

nk≤ r
2∑

k≥1

(n2 − 1
n

nk(r − 1 − (nk − 1)) − (r − 1)n
)
αk,(2.12)

(r − 1)χ f =
(2r − 3)n − r

12n
(n − 1)α0 +

nk≤ r
2∑

k≥1

(n2 − 1
12n

nk(r − 1 − (nk − 1))
)
αk.(2.13)
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Proof. Note that if αk > 0, then nk ≤ r
2 from Corollary 1.5.

We find that R ≡ − r
2 Kϕ + M0Γ for some M0 ∈ 1

2Z, where the symbol ≡ means the
numerical equivalence, since ϕ : W → B is a P1-bundle and we have KWΓ = −2 and
R̃Γ̃ = RΓ = r. Hence we get

RKϕ = −2M0,(2.14)

R2 = 2rM0.(2.15)

Therefore we have

(Kϕ + R)R = 2(r − 1)M0.

From this equality and (2.9), we get

2(r − 1)M0 = α0 +

nk≤ r
2∑

k≥1

nk(nk − 1)αk.(2.16)

On the other hand, substituting (2.14) and (2.15) to (2.10), we get

K2
f ≥

(r − 2)n − r
n

2(n − 1)M0 − n
nk≤ r

2∑
k≥1

((n − 1)k − 1)2αk.

Multiplying this by r − 1 and substituting (2.16) to it, we get (2.12). Similarly one can show
(2.13). �

When h > 0, we have the following:

Proposition 2.3. Let f : S → B be a primitive cyclic covering fibration of type (g, h, n)
such that h ≥ 1 and αi (i ≥ 0) the singularity index in Definition 2.1. Put

t := 2(g − 1) − (h − 1)(n + 1),

T :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2(g − 1)KϕR, if h = 1,

−
(
(g−1−n(h−1))Kϕ−(n−1)(h−1)R

)2

(n−1)(h−1) , if h ≥ 2.

Then t > 0 and T ≥ 0. Furthermore,

tK2
f ≥ tx′

K2
ϕ

(n − 1)(h − 1)
+ ty′T + tz′α0 +

∑
k≥1

akαk(2.17)

and

tχ f = ntχϕ + tx̄′
K2
ϕ

(n − 1)(h − 1)
+ tȳ′T + tz̄′α0 +

∑
k≥1

ākαk(2.18)

hold, where we define

x′ =
(g − 1)(n − 1)

(
(g − 1)(n + 1) − 2n(h − 1)

)
nt

, x̄′ =
(n − 1)(n + 1)(g − 1 − n(h − 1))2

12nt
,

y′ =
(n − 1)

(
2 − n−1

n
)

t
, ȳ′ =

(n − 1)(n + 1)
12nt

,
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z′ =
2(n − 1)2(g − 1)

nt
, z̄′ =

(n − 1)
(
2(2n − 1)(g − 1) − n(n + 1)(h − 1)

)
12nt

,

ak = 12āk − nt, āk =
k

12
(n2 − 1)

(
2(g − 1) + n(h − 1)((n − 1)k − 2)

)
.

In (2.17) and (2.18), we regard
K2
ϕ

(n−1)(h−1) as 0 when h = 1.

Proof. We get t > 0 from r ≥ 0, n ≥ 2 and g ≥ 2. We shall show that T ≥ 0. If h = 1, by
the canonical bundle formula, we have

Kϕ ≡ χ(W)Γ +
l∑

i=1

(
1 − 1

ki

)
Γ

where {ki | i = 1, . . . , l} denotes the set of multiplicities of all multiple fibers of ϕ, ki ≥ 2.
Hence we get

KϕR ≥ χ(W)ΓR =
2(g − 1)

n − 1
χ(W).(2.19)

Since W is an elliptic surface, we have χ(W) ≥ 0 and hence T ≥ 0. If h ≥ 2, we consider
the intersection matrix ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K2
ϕ Kϕd KϕΓ

Kϕd d2 dΓ

KϕΓ dΓ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for {Kϕ, d, Γ}. Since we have K2

ϕ ≥ 0 by Arakelov’s theorem, it is not negative definite.
Hence its determinant is non-negative by the Hodge index theorem, and we get

2(Kϕd)(dΓ)(KϕΓ) − d2(KϕΓ)2 − (dΓ)2K2
ϕ ≥ 0.(2.20)

Since

dΓ =
r
n
=

2(g − 1 − n(h − 1))
n(n − 1)

, KϕΓ = 2(h − 1),

the inequality (2.20) is equivalent to

2
(
g − 1 − n(h − 1)

)
Kϕd − n(n − 1)(h − 1)d2 ≥ 1

n(n − 1)(h − 1)
(
g − 1 − n(h − 1)

)2K2
ϕ.

So we get

0 ≥ (
(g − 1 − n(h − 1))Kϕ − (n − 1)(h − 1)R

)2

and, hence, T ≥ 0.
Now, by a direct calculation, one has

n
(
K2
ϕ +

2(n − 1)
n

KϕR + (
n − 1

n
)2R2) = x′

K2
ϕ

(n − 1)(h − 1)
+ y′T + z′(Kϕ + R)R

and

nχϕ +
n − 1

4
KϕR +

(n − 1)(2n − 1)
12n

R2 = nχϕ + x̄′
K2
ϕ

(n − 1)(h − 1)
+ ȳ′T + z̄′(Kϕ + R)R.
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Hence we obtain from (2.10) and (2.11) that

K2
f ≥ x′

K2
ϕ

(n − 1)(h − 1)
+ y′T + z′(Kϕ + R)R − n

∑
k≥1

(
(n − 1)k − 1

)2
αk(2.21)

and

χ f = nχϕ + x̄′
K2
ϕ

(n − 1)(h − 1)
+ ȳ′T + z̄′(Kϕ + R)R − n(n − 1)

12

∑
k≥1

(
(2n − 1)k2 − 3k

)
αk.

(2.22)

From (2.9) and (2.21), we get

tK2
f ≥ tx′

K2
ϕ

(n − 1)(h − 1)
+ ty′T + tz′α0 +

∑
k≥1

(
2(n− 1)2(g− 1)k(nk − 1)− nt((n− 1)k − 1)2)αk.

Since one sees ak = 2(n− 1)2(g− 1)k(nk− 1)− nt((n− 1)k− 1)2, we obtain (2.17). Similarly,
we obtain (2.18). �

3. Slope inequality for irregular cyclic covering fibrations.

3. Slope inequality for irregular cyclic covering fibrations.
The purpose of this section is to show the slope inequalities for irregular cyclic covering

fibrations of type (g, h, n), n ≥ 3. We start things in a more general setting.

Definition 3.1. Let θ̃ : S̃ → W̃ be a finite Galois cover (not necessarily primitive cyclic)
between smooth projective varieties with Galois group G. Let α : S̃ → Alb(S̃ ) be the
Albanese map. For any σ̃ ∈ G, we denote by α(σ̃) : Alb(S̃ ) → Alb(S̃ ) the morphism
induced from σ̃ : S̃ → S̃ by the universality of the Albanese map. We put

Albσ̃(S̃ ) := Im{α(σ̃) − 1 : Alb(S̃ )→ Alb(S̃ )}
and let

ασ̃ : S̃ → Albσ̃(S̃ )

be the morphism defined by ασ̃ := (α(σ̃) − 1) ◦ α.

The following is due to Makoto Enokizono.

Proposition 3.2. Suppose that G is a cyclic group generated by σ̃ in the above situation.
If qθ̃ := q(S̃ ) − q(W̃) > 0, then the following hold.

(1) dim Albσ̃(S̃ ) = qθ̃.

(2) If Fix(G) := {x ∈ S̃ | σ̃(x) = x} � ∅, then it is contracted by ασ̃ to the unit element
0 ∈ Albσ̃(S̃ ).

(3) If ασ̃(S̃ ) is a curve, then the geometric genus of ασ̃(S̃ ) is not less than qθ̃.

Proof. Firstly, we show (1). By the construction of α(σ̃) − 1 : Alb(S̃ ) → Alb(S̃ ), we get
the following commutative diagram:
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H0(Alb(S̃ ),Ω1
Alb(S̃ )

)(α(σ̃)−1)∗��

α∗

��

H0(Alb(S̃ ),Ω1
Alb(S̃ )

)

α∗

��

H0(S̃ ,Ω1
S̃

)
σ̃∗−1

�� H0(S̃ ,Ω1
S̃

).

Since α∗ is an isomorphism, we have dim Ker(α(σ̃) − 1)∗ = dim Ker(σ̃∗ − 1). Since G is
a cyclic group generated by σ̃, we see that Ker(σ̃∗ − 1) coincides with the G-invariant part
H0(S̃ ,Ω1

S̃
)G of H0(S̃ ,Ω1

S̃
). On the other hand, since θ̃∗ : H0(W̃,Ω1

W̃
) → H0(S̃ ,Ω1

S̃
)G is an

isomorphism, we have dim(Ker(α(σ̃) − 1)∗) = q(W̃) and, hence,

dim(Im(α(σ̃) − 1)∗) = q(S̃ ) − q(W̃).

It follows that Albσ̃(S̃ ) is of dimension qθ̃.
Secondly, we show (2). We take a point x0 in Fix(G) as the base point of the Albanese

map α : S̃ → Alb(S̃ ). Let x ∈ Fix(G). Note that we have

ασ̃(x) = (α(σ̃) − 1)(α(x)) = α(σ̃)(α(x)) − α(x)

and that α(σ̃)(α(x)) − α(x) is the function given by ω �→ ∫ x
x0
σ̃∗ω − ∫ x

x0
ω for ω ∈ H0(S̃ ,Ω1

S̃
)

modulo periods. Since x and x0 are both in Fix(G), we find∫ x

x0

σ̃∗ω −
∫ x

x0

ω =

∫ σ̃(x)

σ̃(x0)
ω −

∫ x

x0

ω = 0.

Hence we get ασ̃(x) = α(σ̃)(α(x))− α(x) = 0. Since x can be taken arbitrarily in Fix(G), we
get (2).

When ασ̃(S̃ ) is a curve, let B′ be a normalization of ασ̃(S̃ ). From the universality of the
Abel-Jacobi map for B′, we have

jB′ : Jac(B′)→ Albσ̃(S̃ ),

where Jac(B′) is the Jacobi variety of B′. On the other hand, since α(S̃ ) generates Alb(S̃ ) as
group, ασ̃(S̃ ) generates Albσ̃(S̃ ). Since jB′ is the group homomorphism, Im( jB′) = ασ̃(S̃ ) is
the sub-group of Albσ̃(S̃ ). Therefore jB′ is surjective, we get (3). �

3.1. The slope inequality in the case of h = 0.
3.1. The slope inequality in the case of h = 0. We consider the primitive cyclic covering

fibration f : S → B of type (g, 0, n) with q f > 0. Since ϕ : W → B is a ruled surface, we
have q(W) = b and it follows qθ̃ = q f . We apply Proposition 3.2 to the cyclic covering
θ̃ : S̃ → W̃ to find that its ramification divisor Fix(G) is contracted to a point by ασ̃ : S̃ →
Albσ̃(S̃ ), where σ̃ denotes a generator of the Galois group G := Gal(S̃ /W̃). So if ασ̃(S̃ ) is a
surface (resp. a curve), from Mumford’s theorem (resp. Zariski’s Lemma), the intersection
form is negative definite (resp. semi-definite) on Fix(G), and we in particular get

Fix(G)2 < 0 (resp. ≤ 0).

Hence, in any way, we have

R̃2 ≤ 0,(3.1)

since θ̃∗R̃ = nFix(G).
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Here, we remark the following.

Lemma 3.3. Let f : S → B be a primitive cyclic covering of type (g, 0, n). If it is not
locally trivial and q f > 0, then r ≥ 2n.

Proof. We assume that r < 2n and show that this leads us to a contradiction.
Recall that r is a multiple of n. If r < 2n, then r ≤ n and R has to be smooth by

Lemmas 1.2 and 1.4. On the other hand, since q f > 0, we already know from (3.1) that the
self-intersection number of any irreducible component C of R is non-positive.

Let C0 be the minimal section with C2
0 = −e and Γ a fiber of ϕ : W → B. Note that we

can choose the normalized vector bundle of rank 2 associated with W so that there are no
effective divisor numerically equivalent to C0−cΓ for any positive integer c. Put C ≡ aC0+bΓ
with two integers a, b. We have a ≥ 0. If a = 0, then we have b = 1, that is, C is a single
fiber by its irreducibility. So we may assume that a is positive.

We have C2 = a(2b − ae) ≤ 0. Hence 2b ≤ ae. Furthermore, since C is irreducible and
a > 0, we have (Kϕ + C)C ≥ 0 by the Hurwitz formula applied for the normalization of C.
Since Kϕ ≡ −2C0 − eΓ, we have

0 ≤ (Kϕ +C)C = (a − 1)(2b − ae) ≤ 0,

by 2b ≤ ae and a ≥ 1. Hence we get (Kϕ + C)C = 0 and, either a = 1 or 2b = ae.
In particular, as the first equality shows, C is smooth and ϕ|C : C → B is unramified.
Furthermore, we get C2 = 0 when a ≥ 2 by 2b = ae. In this case, we also have b ≤ 0,
because 0 ≤ CC0 = b − ae = −b. If a = 1 and 2b < e, then b ≥ 0 and it follows from
CC0 = b − e < −b ≤ 0 that we have C = C0 by the irreducibility of C. We remark here that
we have (a1C0 + b1Γ)(a2C0 + b2Γ) = 0 when ai > 0 and 2bi = aie for i = 1, 2.

In summary, the only possibilities left for smooth R are (i) R consists of several fibers
(including the case R = 0), (ii) R is the minimal section with R2 < 0, and (iii) R consists of
several smooth curves with self-intersection numbers 0 which are unramified over B (via ϕ).
If (i) or (ii) is the case, then we have either g = 0 or r = 1, any of which is absurd. If (iii) is
the case, then f : S → B is a locally trivial fibration, which is again inadequate. �

From R̃2 = R2 −∑
k≥1 n2k2αk, (2.15) and (3.1), we get

2rM0 ≤
nk≤ r

2∑
k≥1

n2k2αk.

Combining this with (2.16), we get

α0 ≤
nk≤ r

2∑
k≥1

nk
r

(r − 1 − (nk − 1))αk.(3.2)

Theorem 3.4. Let f : S → B be a primitive cyclic covering fibration of type (g, 0, n)
which is not locally trivial and q f > 0. Then

λ f ≥ λ1
g,n := 8 − 8(g + n − 1)

(n − 1)(2g − (n − 1)(n − 2))

(
= 8 − 4r

(n − 1)(r − n)

)
.
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Proof. For λ ∈ R, we put

A(λ) :=
n − 1

n

(
(r − 2)n − r − λ (2r − 3)n − r

12

)
.

From Proposition 2.2, we get

(r − 1)(K2
f − λ1

g,nχ f ) ≥ A(λ1
g,n)α0 +

nk≤ r
2∑

k≥1

akαk −
nk≤ r

2∑
k≥1

λ1
g,nākαk

where

ak := (n2 − 1)k(r − 1 − (nk − 1)) − (r − 1)n,

āk :=
n2 − 1

12
k(r − 1 − (nk − 1)).

We can check that A(λ1
g,n) ≤ 0 as follows. Since r ≥ 2n by Lemma 3.3, a calculation shows

that the inequality

A(λ1
g,n) =

n − 1
n

(
(r − 2)n − r − (

8 − 4r
(n − 1)(r − n)

) (2r − 3)n − r
12

)
≤ 0

is equivalent to

(r − n)(−(n − 1)2 + 2) + 2n2 − 3n − r ≤ 0,

and we can check easily its validity. Therefore A(λ1
g,n) ≤ 0. Hence from (3.2), we get

(r − 1)(K2
f − λ1

g,nχ f ) ≥
nk≤ r

2∑
k≥1

( (n − 1)(r − 1)
4r

(8 − λ1
g,n)nk(r − nk) − (r − 1)n

)
αk.(3.3)

For any integer k satisfying r
2n ≥ k ≥ 1, we have nk(r − nk) ≥ n(r − n). Since we have

(n − 1)(r − 1)
4r

(8 − λ1
g,n)n(r − n) − (r − 1)n = 0,

the coefficient of αk in the right hand side of (3.3) is not negative. Therefore, we get K2
f −

λ1
g,nχ f ≥ 0 as desired. �

3.2. The slope inequality in the case of h ≥ 1.
3.2. The slope inequality in the case of h ≥ 1. Before showing the slope inequality

when h ≥ 1 and n ≥ 3, we study the upper bound of α0.
Recall that we decomposed ψ into a succession of blowing-ups ψi as,

ψ : W̃ = WN
ψN→ WN−1 → · · · → W1

ψ0→ W0 = W.

We define the order of blowing-up ψ′ appearing in ψ as follows. If the center of ψ′ is a point
on the branch locus of multiplicity m′, we put

ord(ψ′) :=
[m′

n

]
.

Moreover we introduce a partial order on these blowing-ups ψ′ and ψ′′ appearing in ψ,

ψ′ ≥ ψ′′ def⇐⇒ ord(ψ′) ≥ ord(ψ′′).
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Lemma 3.5. Assume that n ≥ 3. Let x j (∈ Rj ⊂ Wj) be a singular point infinitely near to
xi ∈ Ri. Then the multiplicities satisfy mj ≤ mi.

Proof. Though this can be found in [2], Lemma 3.7, when h = 0, we shall give a proof
for the convenience of readers.

Let xi+1 be the singular point of Ri+1 infinitely near to xi ∈ Ri. If mi ∈ nZ, then Ri+1

coincied with R̂i, the proper transform of Ri by ψi+1, by Lemma 1.2. Hence mi+1 ≤ mi in this
case. If mi ∈ nZ+1, then Ri+1 = R̂i + Ei+1. Hence we get mi+1 ≤ mi + 1 ∈ nZ + 2. From
Lemma 1.2 and the assumption n ≥ 3, we get mi+1 ≤ mi. �

From Lemma 3.5, we can reorder those blowing-ups appearing in ψ so that ψi ≥ ψ j holds
whenever i < j. We put,

M := max{ord(ψ′) | ψ′ is a blowing up in ψ}.
Then we can decompose ψ as

ψ : W̃ = ŴM
ψ̂M→ ŴM−1 · · · ψ̂0→ Ŵ0 = W

in such a way that ord(ψ′) = M + 1 − i holds for any ψ′ appearing in ψ̂i.

Lemma 3.6. Let ψ′ be a blowing-up appearing in ψ̂i and D̃ the proper inverse image of
the exceptional curve of ψ′ on S̃ . Then the geometric genus of D̃ satisfies

g(D̃) ≤ (n − 1)(n(M − i) + n − 2)
2

.

Proof. Let m′ be the multiplicity of the singular point blown up by ψ′, and Ẽ the proper
transform of the exceptional curve of ψ′ on W̃.

When m′ ∈ nZ + 1, since Ẽ is contained in R̃, D̃ is a smooth rational curve.
Assume that m′ ∈ nZ. From m′ = n(M+1− i), the intersection number of the exceptional

curve of ψ′ and the branch locus is n(M + 1 − i). Hence the intersection number of their
proper transforms on W̃ is at most n(M+1−i). On the other hand, we consider the composite

π : D̃′ → D̃
θ̃|D̃→ Ẽ, where D̃′ → D̃ is normalization of D̃, and let Bπ be the branch locus π.

From the Hurwitz formula for π and Lemma 1.6, we get

2g(D̃′) − 2 + 2n ≤ (n − 1)�Bπ.

Since θ̃|D̃ is totally ramified,

�Bπ ≤ �Bθ̃|D̃ ≤ Ẽ R̃ ≤ n(M + 1 − i).

Therefore we get

g(D̃) = g(D̃′) ≤ (n − 1)(n(M − i) + n − 2)
2

,

which is what we want. �

Proposition 3.7. Let f : S → B be a primitive cyclic covering fibration of type (g, h, n)
such that qθ̃ > 0, h ≥ 1, n ≥ 3 and let αi (i ≥ 0) be the singularity index in Definition 2.1.
Then,
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2
(
g − 1 − n(h − 1)

)
α0(3.4)

≤ (
g − 1 − n(h − 1)

)2 K2
ϕ

(n − 1)(h − 1)
+ T +

∑
k≥1

12n
(n − 1)(n + 1)

ākαk,

where āk is defined in Proposition 2.3. If the image ασ̃(S̃ ) is a curve and ν(qθ̃) ≥ 1, where

ν(x) :=
[2(x − 1)
n(n − 1)

− n − 2
n

]
,

then

2
(
g − 1 − n(h − 1)

)(
α0 +

ν(qθ̃)∑
k=1

nk(nk − 1)αk
)

(3.5)

≤ (
g − 1 − n(h − 1)

)2 K2
ϕ

(n − 1)(h − 1)
+ T +

∑
k≥ν(qθ̃)+1

12n
(n − 1)(n + 1)

ākαk.

In (3.4) and (3.5), we regard
K2
ϕ

(n−1)(h−1) as 0 when h = 1.

Proof. Firstly assume that ασ̃(S̃ ) is a curve of geometric genus g′. In this case, by
Proposition 3.2, we have g′ ≥ qθ̃ and see that any curve of geometric genus less than g′ on
S̃ is contracted by ασ̃. Hence, we know from Lemma 3.6 that for any 1 ≤ i ≤ M satisfying

(n − 1)(n(M − i) + n − 2)
2

≤ g′ − 1,

the proper transform of the exceptional curve of ψ̂i to S̃ is contracted by ασ̃. Then, since
qθ̃ ≤ g′, for any 1 ≤ i ≤ M satisfying

(n − 1)(n(M − i) + n − 2)
2

≤ qθ̃ − 1,

the same holds true. So we conclude that the total inverse image of R̂M−ν(qθ̃) in S̃ is contracted
by ασ̃, where R̂M−ν(qθ̃) ⊂ ŴM−ν(qθ̃) is the image of R̃. Therefore, the total inverse image of
R̂M−ν(qθ̃) forms a negative semi-definite configuration. In particular, we have

R̂2
M−ν(qθ̃) ≤ 0.(3.6)

By the construction, we have

R̂2
M−ν(qθ̃) = R2 −

∑
k>ν(qθ̃)

n2k2αk = x̂
K2
ϕ

(n − 1)(h − 1)
+ ŷT + ẑ(Kϕ + R)R −

∑
k>ν(qθ̃)

n2k2αk,

where

x̂ = −
(
g − 1 − n(h − 1)

)2

t
, ŷ = −1

t
, ẑ =

(
g − 1 − n(h − 1)

)
t

.

Hence from (2.9), (3.6) and the above equality, we get

tẑ
(
α0 +

ν(qθ̃)∑
k=1

nk(nk − 1)αk
) ≤ −tx̂

K2
ϕ

(n − 1)(h − 1)
− tŷT +

∑
k>ν(qθ̃)

t
(
n2k2 − nk(nk − 1)ẑ

)
αk.
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This is nothing more than (3.5).
Even when ασ̃(S̃ ) is not a curve, we have R̃2 ≤ 0 by Proposition 3.2. Using this instead

of (3.6), we get (3.4) by a similar argument as above. �

Theorem 3.8. Let f : S → B be a primitive cyclic covering fibration of type (g, h, n)
which is not locally trivial and such that qθ̃ and h are both positive, n ≥ 3. Put

F(g, h, l) = (g − 1)2 − 2n(g − 1)
(
(h + 1)(n − 1)(l + 1) − 1

) − (
(l + 1)(n − 1)2 − 1

)2n2(h2 − 1).

(i) If F(g, h, 0) ≥ 0, then

λ f ≥ λg,h,n := 8 − 2(n + 1)
(
g − 1 − n(h − 1)

)
3ā1

.

(ii) Assume that ασ̃(S̃ ) is a curve and ν(qθ̃) ≥ 1. If F(g, h, ν(qθ̃)) ≥ 0, then

λ f ≥ λg,h,n,qθ̃ := 8 − 2(n + 1)
(
g − 1 − n(h − 1)

)
3āν(qθ̃)+1

.

Proof. Here we restrict ourselves to the case that ασ̃(S̃ ) is a curve and show (ii) only,
since (i) can be shown similarly. From (2.17) and (2.18), we obtain

t(K2
f − λg,h,n,qθ̃χ f ) ≥ t(x′ − λg,h,n,qθ̃ x̄′)

K2
ϕ

(n − 1)(h − 1)
+ t(y′ − λg,h,n,qθ̃ ȳ′)T(3.7)

+ t(z′ − λg,h,n,qθ̃ z̄′)α0 +
∑
k≥1

(ak − λg,h,n,qθ̃ āk)αk − nλg,h,n,qθ̃ tχϕ.

To apply (3.5) to the above inequality, we have to check that z′ − λg,h,n,qθ̃ z̄′ ≤ 0 in advance.
Since

λg,h,n,qθ̃ ≥ 8 − 2(n + 1)
(
g − 1 − n(h − 1)

)
3ā1

(3.8)

= 8 − 8
(
g − 1 − n(h − 1)

)
(n − 1)

(
2(g − 1) + n(h − 1)(n − 3)

) ,
it is sufficient to see that

8 − 8
(
g − 1 − n(h − 1)

)
(n − 1)

(
2(g − 1) + n(h − 1)(n − 3)

) ≥ 24(n − 1)(g − 1)
2(2n − 1)(g − 1) − n(n + 1)(h − 1)

,

which is equivalent to

(g − 1 − n(h − 1))
(
16(g − 1)n(n − 2) + 8n(n + 1)(h − 1)((n − 1)(n − 3) + 1)

) ≥ 0,

the validity of which can be checked directly. Therefore we get z′ − λg,h,n,qθ̃ z̄′ ≤ 0. Applying
(3.5) to (3.7), we obtain

t(K2
f − λg,h,n,qθ̃χ f )

≥ n − 1
12

t
(
12(g − 1) − 3

2
λg,h,n,qθ̃

(
g − 1 − n(h − 1)

)) K2
ϕ

(n − 1)(h − 1)
− nλg,h,n,qθ̃ tχϕ

+
(n − 1)(8 − λg,h,n,qθ̃)
8
(
g − 1 − n(h − 1)

) tT



466 H. Akaike

+
nt
12

ν(qθ̃)∑
k=1

(
(n − 1)k((2n − 1)k − 3)λg,h,n,qθ̃ − 12((n − 1)k − 1)2)αk

+ t
∑

k>ν(qθ̃)

( (8 − λg,h,n,qθ̃)3n
2(n + 1)

(
g − 1 − n(h − 1)

) āk − n
)
αk.

We will show that
(
(n − 1)k((2n − 1)k − 3)λg,h,n,qθ̃ − 12((n − 1)k − 1)2) ≥ 0 for 1 ≤ k ≤ ν(qθ̃).

Note that

(n − 1)k((2n − 1)k − 3)λg,h,n,qθ̃ − 12((n − 1)k − 1)2

=
1
n2

(
nk

(
(n − 1)(nk − 1)(λg,h,n,qθ̃(2n − 1) − 12(n − 1)) + (n2 − 1)(12 − λg,h,n,qθ̃)

) − 12n2
)
.

Firstly we will show that λg,h,n,qθ̃ ≥ 12(n−1)
2n−1 . From (3.8), it is sufficient to check that

8 − 8
(
g − 1 − n(h − 1)

)
(n − 1)

(
2(g − 1) + n(h − 1)(n − 3)

) ≥ 12(n − 1)
2n − 1

.

A calculation shows that it is equivalent to

8n(n − 2)(g − 1) + (4(n2 − 1)(n − 3) + 8(2n − 1))n(h − 1) ≥ 0,

which holds true clearly. So we have shown λg,h,n,qθ̃ ≥ 12(n−1)
2n−1 and it follows that

(n − 1)k((2n − 1)k − 3)λg,h,n,qθ̃ − 12((n − 1)k − 1)2

is increasing in k. Evaluating at k = 1, we get

(n − 1)k((2n − 1)k − 3)λg,h,n,qθ̃ − 12((n − 1)k − 1)2

≥ 2(n − 2)
(
(n − 1)λg,h,n,qθ̃ − 6(n − 2)

)
≥ 0,

by λg,h,n,qθ̃ ≥ 12(n−1)
2n−1 . Since

(8 − λ1
g,h,qθ̃

)3n

2(n + 1)
(
g − 1 − n(h − 1)

) āk − n ≥
(8 − λ1

g,h,qθ̃
)3n

2(n + 1)
(
g − 1 − n(h − 1)

) āν(qθ̃)+1 − n = 0(3.9)

holds for any k ≥ ν(qθ̃) + 1, we obtain

K2
f − λg,h,n,qθ̃χ f(3.10)

≥ n − 1
12

(
12(g − 1) − 3

2
λg,h,n,qθ̃

(
g − 1 − n(h − 1)

)) K2
ϕ

(n − 1)(h − 1)

− nλg,h,n,qθ̃χϕ +
(n − 1)(8 − λg,h,n,qθ̃)
8
(
g − 1 − n(h − 1)

) T.

If F(g, h, ν(qθ̃)) ≥ 0 and h = 1, then by (2.19) we have T = 2(g − 1)Kϕ.R ≥ 4(g−1)2

n−1 χϕ.
Hence it follows from (3.10) that

K2
f − λg,1,n,qθ̃χ f ≥ n + 1

3āν(qθ̃)+1
F(g, 1, ν(qθ̃))χϕ ≥ 0

which gives us (ii) for h = 1. If F(g, h, ν(qθ̃)) ≥ 0 and h ≥ 2, then we can use Xiao’s slope
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inequality K2
ϕ ≥ 4(h−1)

h χϕ and T ≥ 0, to get

K2
f − λg,h,n,qθ̃χ f ≥ n + 1

3hāν(qθ̃)+1
F(g, h, ν(qθ̃))χϕ ≥ 0

from (3.10). Hence we have shown (ii) also for h ≥ 2. �

4. Special irregular cyclic covering fibrations of ruled surfaces.

4. Special irregular cyclic covering fibrations of ruled surfaces.
Let f : S → B be a primitive cyclic covering fibration of type (g, 0, n) with q f > 0 and

suppose that it is not locally trivial. Let ασ̃ : S̃ → Albσ̃(S̃ ) be the morphism defined as in
Definition 3.1 for the generator σ̃ of the covering transformation group G of θ̃ : S̃ → W̃.
Moreover we assume that there is a component C of Fix(G) such that C2 = 0. Note then that
ασ̃(S̃ ) is a curve by Proposition 3.2.

Proposition 4.1. In the above situation, there are fibrations f̃ ′ : S̃ → B′, ϕ̃′ : W̃ → P1

and a morphism θ′ : B′ → P1 with B′ a smooth curve such that R̃ is ϕ̃′-vertical, q f ≤ g(B′),
and they fit into the commutative diagram:

S̃
θ̃ ��

f̃ ′

��

W̃

ϕ̃′

��
B′

θ′
��
P

1.

Proof. We can obtain f̃ ′ : S̃ → B′ from the Stein factorization of ασ̃ : S̃ → ασ̃(S̃ ). Hence
we have g(B′) ≥ q f by Proposition 3.2, (3). We will show that the automorphism σ̃ : S̃ → S̃
induces an automorphism of B′. We assume that there is a fiber F′ of f̃ ′ such that σ̃∗F′ has a
f̃ ′-horizontal component. Let F′C be the fiber of f̃ ′ which contains the curve C with C2 = 0.
Then, from Zariski’s lemma, we see that F′C = aC for some positive integer a and it follows
F′C = σ̃

∗F′C , since C is a component of Fix(G). Hence

0 < σ̃∗F′F′C = (σ̃∗F′)(σ̃∗F′C) = F′F′C = 0,

a contradiction. Therefore σ̃ maps fibers to fibers, and descends down to give an automor-
phism σ̃B′ : B′ → B′. Furthermore we have the commutative diagram

S̃
θ̃ ��

f̃ ′

��

W̃

ϕ̃′

��

ϕ̃ �� B

B′
θ′

�� D′,

where θ′ : B′ → D′ := B′/〈σ̃B′ 〉 denotes the quotient map. In order to complete the proof,
it suffices to see that D′ = P1. This can be shown as follows. Any general fiber of ϕ̃ is ϕ̃′-
horizontal by R̃.̃Γ > 0. Since ϕ̃ is ruled, we see that P1 dominates D′ and it follows D′ = P1.

�

The contraction ϕ : W̃ → W is composed of several blowing-ups. We decompose it as
ψ = ψ̌ ◦ ψ̄ as follows. Let ψ̄ : W̃ → W be the longest succession of blowing-downs such
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that we still have the morphism ϕ̄′ satisfying ϕ̃′ = ϕ̄′ ◦ ψ̄. Then we have the following
commutative diagram.

P
1

W̃

ϕ̃′
��������� ψ̄ ��

ϕ̃ ���
��

��
��

� W
ϕ̄

��

ψ̌ ��

ϕ̄′
		

W

ϕ


��

��
��

��

B

Let R := ψ̄∗R̃ be the image of R̃ by ψ̄.

Lemma 4.2. The morphism ψ̌ : W → W is not the identity map.

Proof. We will prove this by contradiction. Suppose that ψ̌ is the identity map. As one
sees from the proof of Lemma 3.3, any irreducible curve D on W with D2 ≤ 0 is smooth,
and ϕ|D : D → B is an unramified covering when D2 = 0 and D is not a fiber of ϕ. Hence,
any irreducible fiber of ϕ̄′ : W → P1 has to be smooth. Suppose that there is a fiber of ϕ̄′

whose reduced scheme is reducible, and take an irreducible component D0. Then D2
0 < 0

and, from the proof of Lemma 3.3, we conclude that D0 coincides with the minimal section.
The unicity implies that we cannot have such reducible singular fibers. Therefore, a singular
fiber of ϕ̄′, if any, is a multiple fiber whose support is a smooth irreducible curve. Since R is
a reduced divisor with support in fibers of ϕ̄′ by Proposition 4.1, we see that R is smooth and
ϕ|R : R→ B is unramified. Then f : S → B is a locally trivial fibration, which is inadequate.

�

Assume that θ′ : B′ → P1 is branched over Δ ⊂ P1. For any y ∈ Δ, let Γ̃′y =
∑

ñCC be the
fiber of ϕ̃′ over y, and put

R̃all := ϕ̃′∗Δ, R̃r :=
∑

y∈Δ, C⊂Γ̃′y, ñC=1

C.

Lemma 4.3. In the above situation, R̃r � R̃.

Proof. We put

G f̃ ′ := {τ ∈ G | τ(F̃′) = F̃′ for any fiber F̃′ of f̃ ′}.
Since f̃ ′ ◦ τ = τ for any τ ∈ G f̃ ′ , the morphism f̃ ′ induces the morphism π : S̃ /G f̃ ′ → W̃
and we have the following commutative diagram.

S̃

���
��

��
��

� θ̃

��

f̃ ′



S̃ /G f̃ ′

��

π �� W̃

ϕ̃′

��
B′

θ′
��
P

1
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Note that the degree of π is equal to that of θ′. We claim that Fix(G f̃ ′) = Fix(G). This can be
seen as follows. It is clear that Fix(G f̃ ′) ⊃ Fix(G). If there is a point x ∈ Fix(G f̃ ′) \ Fix(G),
then we have σ̃(x) � x for the generator σ̃ of G. On the other hand, since G f̃ ′ is a subgroup
of G of order n/deg θ′, we have G f̃ ′ = 〈σ̃deg θ′ 〉. Hence the number of G-orbits of x is at most
deg θ′. This contradicts that θ̃ : S̃ → W̃ is totally ramified. Therefore Fix(G f̃ ′) = Fix(G).
Hence S̃ /G f̃ ′ is smooth. Let Rπ be the branch locus of π. Since θ̃ is totally ramified, one
can check easily that Rπ = R̃. Hence it is sufficient to prove that R̃r ≤ Rπ. Let C be any
component of R̃r. We can take analytic local coordinates (UP1 , x) on P1, (UW̃ , y, z) on W̃ and
(UB′ , w) on B′ such that ϕ̃′(C) is defined by x = 0, C is defined by y = 0, θ′∗x = wdeg θ′ and
ϕ̃′∗x = y. UB′ ×P1 UW̃ is defined by y = wdeg θ′ in UB′ ×UW̃ . So UB′ ×P1 UW̃ → UW̃ is ramified
over C ∩UW̃ and UB′ ×P1 UW̃ is smooth. Hence the natural morphism S̃ /G f̃ ′ → B′ ×P1 W̃ is
an isomorphism around UB′ ×P1 UW̃ . Therefore we get C � Rπ = R̃. �

We suppose that ψ̌ = ψ̌1 ◦ · · · ◦ ψ̌u, where ψ̌i : W̌i → W̌i−1 is a blowing-up at x̌i−1 ∈ W̌i−1,
W̌0 = W and W̌u = W. Let Ři be the image of R in W̌i, and let x̌i be a singular point of Ři of
multiplicity m̌i.

Lemma 4.4. Assume that n ≥ 3. For 1 ≤ i ≤ u − 1, we have m̌i ≥ 2q f

n−1 + 2. Moreover if
there is m̌i such that equality sign holds, then 2q f

n−1 + 2 ∈ nZ and deg θ′ = n.

Proof. Let  ⊂ W be any (−1)-curve contracted by ψ̌. Note that ϕ̄′| :  → P1 is
surjective and R ∈ nZ. We will show that R ≥ 2q f

n−1 +2. If n ≥ 2q f

n−1 +2, then the assertion is
clear from Lemma 1.2, (1). Hence we may assume that n < 2q f

n−1 + 2. In particular, we have
q f ≥ n − 1. By Lemma 1.6 and q f ≥ n − 1, we get

�Δ ≥ 2
deg θ′ − 1

g(B′) + 2 ≥ 4.

So we apply Lemma 1.7 to ϕ̄′ : W → P1 as J = Δ, Fall = Rall := ϕ̄′∗Δ and Fr = Rr, we have
�( ∩ Rr) ≥ (deg ϕ̄′| )(�Δ − 4) + 4. Therefore we get

(R) ≥ (Rr) ≥ �( ∩ Rr) ≥ (deg ϕ̄′| )
(

2
deg θ′ − 1

g(B′) − 2
)
+ 4

≥ 2
deg θ′ − 1

g(B′) + 2

≥ 2
deg θ′ − 1

q f + 2.

For any x̌i, let x̌i+ ji be the singular point infinitely near to x̌i with i+ ji maximal blown up
by ψ̌, i+ ji the exceptional curve. Then, from the above argument, we get

2
deg θ′ − 1

q f + 2 ≤ (i+ jiR) = m̌i+ ji ≤ m̌i.

Moreover if the equality signs hold everywhere, then we get

m̌i =
2

deg θ′ − 1
q f + 2 = (i+ jiR) ∈ nZ.

Since deg θ′ ≤ n, we are done. �
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Theorem 4.5. Let f : S → B be a locally non-trivial primitive cyclic covering fibration
of type (g, 0, n) with q f > 0 and n ≥ 3. Assume that there is a component C of Fix(σ̃) such
that C2 = 0. Then,

q f ≤ g − n + 1
2

.

Proof. There is a singular point x of R which is blown up by ψ̌ : W → W from Lemma
4.2. If m := multxR ≤ r

2 , then

2q f

n − 1
+ 2 ≤ m ≤ r

2
=

g

n − 1
+ 1

from Lemma 4.4. So we get q f ≤ (g − n + 1)/2. If m > r
2 , then we have m ∈ nZ + 1 from

Lemma 1.4. Let x̌ be the last singular point, infinitely near to x, blown up by ψ̌ and m̌ its
multiplicity. Then it holds that m̌ ∈ nZ. Indeed, if m̌ ∈ nZ + 1, the exceptional curve arizing
from x̌ is contained in branch locus. It contradicts the definition of ψ̌. So we get m̌ + 1 ≤ m.
Therefore we get

2q f

n − 1
+ 3 ≤ m̌ + 1 ≤ m ≤ r

2
+ 1 =

g

n − 1
+ 2

from Lemma 1.4 and Lemma 4.4. It follows q f ≤ (g − n + 1)/2. �

Therefore, the Modified Xiao’s Conjecture is true in this particular case.

Now, we turn our attention to the slope. Let α̌k be the number of the singular points of R
with multiplicity nk or nk + 1 appearing in ψ̌. Then α̌k ≥ 0 and by Lemma 4.4 one has

α̌k = 0(4.1)

for any k satisfying nk + 1 ≤ 2q f

n−1 + 2. We put ᾱk := αk − α̌k then by (4.1),

ᾱk = αk(4.2)

for any k satisfying nk + 1 ≤ 2q f

n−1 + 2. By the construction of ϕ̄′, R is contained in fibers of
ϕ̄′, hence we get

R
2 ≤ 0.

On the other hand, we have

R
2
= R2 −

nk≤ r
2∑

2q f
n−1+2≤nk

n2k2α̌k.

As R2 = 2rM0 by (2.15), we get

2rM0 ≤
nk≤ r

2∑
2q f
n−1+2≤nk

n2k2α̌k.(4.3)

Hence
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α0 +

nk+1≤ 2q f
n−1+2∑

k≥1

nk(nk − 1)αk ≤ α0 +

nk≤ r
2∑

k≥1

nk(nk − 1)ᾱk

≤
nk≤ r

2∑
2q f
n−1+2≤nk

nk
r

(r − 1 − (nk − 1))α̌k

≤
nk≤ r

2∑
2q f
n−1+2≤nk

nk
r

(r − 1 − (nk − 1))αk,

where the first and the last inequalities above follow immediately from ᾱk ≥ 0 and (4.2), and
the second one follows from (2.16) and (4.3). Hence we have shown:

Proposition 4.6. Under the same assumptions as in Proposition 4.1,

α0 +

nk+1≤ 2q f
n−1+2∑

k≥1

nk(nk − 1)αk ≤
nk≤ r

2∑
2q f
n−1+2≤nk

nk
r

(r − 1 − (nk − 1))αk.

Using this, we will prove the following:

Theorem 4.7. Let f : S → B be a locally non-trivial primitive cyclic covering fibration
of type (g, 0, n) such that there is a component C ⊂ Fix(G) with C2 = 0. If q f > 0 and n ≥ 3,
then we have

λ f ≥ λ2
g,n,q f

:= 8 − 2n(g + n − 1)
(g − q f )(q f + n − 1)

(
= 8 − 4rn

(n − 1)(2 + 2q f

n−1 )(r − (2 + 2q f

n−1 ))

)
.(4.4)

Proof. We first remark that, for two real numbers x, y with x + y ≤ r, we have x(r − x) ≥
y(r − y) if and only if x ≥ y. Since we have n + (2 + 2q f /(n − 1)) ≤ r by the proof of
Theorem 4.5 and r ≥ 2n, this observation works for x = n, y = 2 + 2q f /(n − 1).

(i) The case of n ≥ 2 + 2q f

n−1 , i.e., (n−2)(n−1)
2 ≥ q f .

Since n ≥ 2 + 2q f

n−1 , we get

n(r − n) ≥
(
2 +

2q f

n − 1

)(
r −

(
2 +

2q f

n − 1

))
.

Therefore, λ1
g,n ≥ λ2

g,n,q f
, and (4.4) follows from Theorem 3.4.

(ii) The case of n < 2 + 2q f

n−1 .
In this case, we have (

2 +
2q f

n − 1

)(
r −

(
2 +

2q f

n − 1

))
≥ n(r − n)

and, hence, λ1
g,n ≤ λ2

g,n,q f
. Then we have A(λ2

g,n,q f
) ≤ 0, since the function A(λ) defined in the

proof of Proposition 3.4 is decreasing in λ and we have already proved A(λ1
g,n) ≤ 0 there.

From Proposition 2.2, we have

(r − 1)(K2
f − λ2

g,n,q f
χ f ) ≥ A(λ2

g,n,q f
)α0 +

nk≤ r
2∑

k≥1

(ak − λ2
g,n,q f

āk)αk(4.5)
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where ak and āk are the same as in the proof of Proposition 3.4. Applying Proposition 4.6 to
(4.5), we get

(r − 1)(K2
f − λ2

g,n,q f
χ f ) ≥

nk<
2q f
n−1+2∑

k≥1

(−A(λ2
g,n,q f

)nk(nk − 1) + ak − λ2
g,n,q f

āk)αk

+

nk≤ r
2∑

2+
2q f
n−1≤nk

(A(λ2
g,n,q f

)
nk
r

(r − nk) + ak − λ2
g,n,q f

āk)αk.

First, we will show

−A(λ2
g,n,q f

)nk(nk − 1) + ak − λ2
g,n,q f

āk ≥ 0(4.6)

for any positive integer k with nk + 1 ≤ 2 + 2q f

n−1 . By a simple calculation, we get

− A(λ2
g,n,q f

)nk(nk − 1)α0 + ak − λ2
g,n,q f

āk(4.7)

=nk
( (n − 1)(r − 1)

12n
(nk − 1)(λ2

g,n,q f
(2n − 1) − 12(n − 1))

+
(n2 − 1)(r − 1)

12n
(12 − λ2

g,n,q f
)
)
− (r − 1)n.

We claim that λ2
g,n,q f

≥ 12(n−1)
2n−1 . It is equivalent to

4(n + 1)q f (g − n + 1 − q f ) + (2n − 4)g − 2n(n − 1)(2n − 1) ≥ 0.

From g − n + 1 ≥ 2q f and q f ≥ (n−2)(n−1)
2 + 1, we easily see that it holds true. Since

λ2
g,n,q f

≥ 12(n−1)
2n−1 , the right hand side of (4.7), which is incleasing in k, is not less than

n
((n − 1)(r − 1)

12n
(n − 1)(λ2

g,n,q f
(2n − 1) − 12(n − 1))+

(n2 − 1)(r − 1)
12n

(12 − λ2
g,n,q f

)
)
−(r − 1)n

=
n(n − 1)(r − 1)

6

(
λ2
g,n,q f

(n − 2) − 6(n − 3)
)
− (r − 1)n

= n(r − 1)
n(n − 2)
2n − 1

≥ 0.

Therefore we get (4.6).
Secondly, we will show

A(λ2
g,n,q f

)
nk
r

(r − nk) + ak − λ2
g,n,q f

āk ≥ 0(4.8)

for any positive integer k satisfying r
2 ≥ nk ≥ 2 + 2q f

n−1 . By a simple calculation, we get

A(λ2
g,n,q f

)
nk
r

(r − nk) + ak − λ2
g,n,q f

āk

=
(n − 1)(r − 1)

4r
nk(r − nk)(8 − λ2

g,n,q f
) − (r − 1)n.(4.9)

Since we have
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nk(r − nk) ≥
(
2 +

2q f

n − 1

)(
r −

(
2 +

2q f

n − 1

))
for any positive integer k satisfying 2 + 2q f

n−1 ≤ nk ≤ r
2 , the right hand side of (4.9) is not less

than
(n − 1)(r − 1)

4r

(
2 +

2q f

n − 1

)(
r −

(
2 +

2q f

n − 1

))
(8 − λ2

g,n,q f
) − (r − 1)n = 0.

Thus, we obtain K2
f − λ2

g,n,q f
χ f ≥ 0. �

5. An example.

5. An example.
We construct primitive cyclic covering fibrations of type (g, 0, n) with relative irregularity

q f satisfying g + n − 1 = m(q f + n − 1) for any integer m ≥ 2. Hence, when m = 2, this
implies that the bound of q f in Theorem 4.5 is sharp. Also, our examples show that the slope
bound (4.4) in Theorem 4.7 is sharp.

Let ϕ : W := P(P1

⊕
P1 (e)) → B := P1 be the Hirzebruch surface of degree e ≥ 0.

Denote by Γ and C0 a fiber of ϕ and the section with C2
0 = −e, respectively. We know that

mC0 + bΓ is very ample if and only if b > me. So we take b0 with b0 > me.
We take two general members D,D′ of |mC0+b0Γ|which intersect each other transversely.

LetΛ be the pencil generated by D and D′. ThenΛ define the rational map ϕΛ : W · · · → P1.
Let ψ be a minimal succession blowing-ups which eliminates the base points of Λ. We get
a relatively minimal fibration ϕ̃′ : W̃ → P1 by putting ϕ̃′ = ϕΛ ◦ ψ. Denote by Γ̃′ a general
fiber of ϕ̃′ and KW̃ a canonical divisor of W̃. By a simple calculation, we get

K2
W̃
= 8 − x, KW̃ Γ̃

′ =
m − 1

m
x − 2m, Γ̃2 = 0,(5.1)

where x is the number of blowing-ups in ψ. Note that x = (mC0 + b0Γ)2.
Let Δ ⊂ P1 be a set of 2q

n−1 +2 general points, where q is an integer satisfying 2q
n−1 +2 ∈ nZ.

Then there is a divisor d′ on P1 such that nd′ = Δ. Let R̃ = (ϕ̃′)∗Δ be the fiber of ϕ̃′ over Δ.
Since Δ is general, we can assume that R̃ is both reduced and smooth.

We consider a classical cyclic n-covering

θ′ : B′ = Spec
P1

( n−1⊕
j=0

P1 (− jd′)
)
→ P1.

Since Δ is general, we can assume that the fiber product S̃ := B ×P1 W̃ is smooth. Noting
that the morphism θ̃ : S̃ → W̃ induced by θ′ is nothing but the natural one

S̃ = Spec
P1

( n−1⊕
j=0

W̃(− j(ϕ′)∗d′)
)
→ W̃,

one gets a commutative diagram



474 H. Akaike

B

S̃

f̃

		

θ̃ ��

f̃ ′

��

W̃

ϕ̃
����������

ϕ̃′

��
B′

θ′
��
P

1

where f̃ := ϕ̃ ◦ θ̃.
By the construction, we get q f = q = g(B′). From the formulae

K2
S̃
= n(KW̃ +

n − 1
n

R̃)2, χ(S̃ ) = nχ(W̃) +
1
2

n−1∑
j=1

1
n

jR̃
(1
n

jR̃ + KW̃

)
,

and (5.1), we get

K2
S̃
=

(
4

m − 1
m

( q
n − 1

+ 1
)

(n − 1) − n
)

x + 8
(
n − m(n − 1)

( q
n − 1

+ 1
))
,(5.2)

χ(S̃ ) =
m − 1

2m

( q
n − 1

+ 1
)

(n − 1)x + n − m(n − 1)
( q
n − 1

+ 1
)
.(5.3)

Let g be the genus of fibration f : S̃ → B. Then it is easy to see that

2g
n − 1

+ 2 = m
(

2q
n − 1

+ 2
)
.

Hence we get

K2
f̃ = K2

S̃
− 8(g − 1)(g(B) − 1) =

(
4

m − 1
m

( q
n − 1

+ 1
)

(n − 1) − n
)

x,

χ f̃ = χ(S̃ ) − (g − 1)(g(B) − 1) =
m − 1

2m

( q
n − 1

+ 1
)

(n − 1)x.

Therefore we get

λ f̃ =
K2

f̃

χ f̃
= 8 − 2n(g + n − 1)

(g − q f )(q f + n − 1)

by q = q f .
We remark that f̃ is relatively minimal. In fact the singular points of R, the image of R̃ in

W, are all of multiplicity 2q f

n−1 + 2 ∈ nZ and can be resolved by a single blowing-up. So there
is no ϕ̃-vertical (−n)-curve in W̃. Therefore there is no f̃ -vertical (−1)-curve in S̃ .
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