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Abstract. Here we present some new equations which we call Yang-Mills-Proca
equations (or generalized Proca equations). This system of equations is a general-
ization of Proca equation and Yang-Mills equations and it is not gauge invariant.
We present a number of constant solutions of this system of equations in the case
of arbitrary Lie algebra. We consider in detail the case when this Lie algebra is a
Clifford or a Grassmann algebra and derive solutions of Yang-Mills equations in the
form of perturbation theory series near the constant solution.
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1. Introduction

In this paper we present some new equations which we call Yang-Mills-Proca
equations. This system of equations is a generalization of Proca equation and
Yang-Mills equations. In Sections 1-3 we present some well-known facts about
Maxwell’s equations, Proca equation, and Yang-Mills equations and references to
the literature.

Proca introduces his equation as a generalization of the Maxwell’s equations. It
later emerged that Proca equation describes massive particle of spin one. In a simi-
lar manner we generalize Yang-Mills equations. New equations can be considered
as the partial case of Yang-Mills equations with some current that satisfies an addi-
tional condition. Yang-Mills theory provides models for all fundamental types of
interactions.

The considered system of Yang-Mills-Proca equations is not gauge invariant, but
it is invariant with respect to a global transformation which depends on some Lie
group (see Section 4). We are interested in constant solutions of this system of
equations. We study the corresponding algebraic system of cubic equations in the
case of arbitrary Lie algebra g and present some solutions to this system (Sections
5 and 6). We consider in detail the case when this Lie algebra is a Clifford algebra
with respect to the commutator (see sections 8 and 9). In Section 7 we consider
solutions of Yang-Mills equations in the setting of perturbation theory near the
constant solutions.

2. Relativistic Form of Maxwell’s Equations

Let R1,3 be the Minkowski space with Cartesian coordinates xµ, µ = 0, 1, 2, 3 and
let ∂µ = ∂/∂xµ be partial derivatives. The metric tensor of the Minkowski space
is given by the diagonal matrix

η = ‖ηµν‖ = ‖ηµν‖ = diag(1,−1,−1,−1). (1)

The components of tensors (tensor fields) are enumerated by small Greek letters.
If we consider a tensor field of type (r, s) and of rank r + s with components
uµ1...µrν1...νs = uµ1...µrν1...νs (x), x ∈ R1,3, then we write uµ1...µrν1...νs ∈ Tr

s or u ∈ Tr
s. With the

aid of metric tensor we can raise or lower indices of components of tensor fields.
For example, fµν = ηµαηνβfαβ , we use Einstein convention about summation
w.r.t. replicated indices and natural system of units where the speed of light and
the positron charge are equal to one.
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Let us write down Maxwell’s equations (1862) in the relativistic form [21]

∂µaν − ∂νaµ = fµν , ∂µf
µν = jν (2)

where aµ ∈ T1 is a potential of electromagnetic field, fµν = −fνµ ∈ T2 is
a strength of electromagnetic field, and jν ∈ T1 is a four-vector of current. It
follows from (2) that ∂νjν = 0. In the first equation in (2) there are two free
(not contracted) indices µ, ν and in the second equation there is one free index
ν. Therefore, the first equation is satisfied for all µ, ν = 0, 1, 2, 3 and the second
equation is satisfied for all ν = 0, 1, 2, 3.

If we substitute fµν from the first equation of (2) into the second equation, then we
get an equation of second order for electromagnetic potential

∂µ∂
µaν − ∂ν(∂µa

µ) = jν . (3)

The systems of equations (2) and (3) are invariant w.r.t. a gauge transformation

aµ → áµ = aµ + ∂µσ, fµν → f́µν = fµν , jν → j́ν = jν

where σ = σ(x) is a twice differentiable function σ : R1,3 → R.

Pseudo-Euclidean space Rp,q. The relativistic form of the Maxwell’s equation
gives us the possibility of considering these equations in arbitrary n dimensional
pseudo-Euclidean space Rp,q, (p, q are nonnegative integer numbers and p+q = n)
with Cartesian coordinates xµ, µ = 1, . . . , n and with a metric tensor given by the
diagonal n× n- matrix

η = ‖ηµν‖ = ‖ηµν‖ = diag(1, . . . , 1,−1, . . . ,−1)

with p pieces of 1 and q pieces of −1 on the diagonal.

In the sequel we consider Maxwell’s equations (2) and other systems of equations
in the pseudo-Euclidean space Rp,q.

3. Proca Equations

In 1936 the Romanian physicist Alexandru Proca [17] propose the following mod-
ification of the relativistic Maxwell equations

∂µaν − ∂νaµ = fµν , ∂µf
µν +m2aν = 0 (4)

where m is a real constant (mass of a particle of spin 1). From the equations (4)
for m 6= 0 it follows the condition (Lorentz gauge)

∂µa
µ = 0. (5)
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Hence, it follows from (3) that the system of equations (4) can be reduced to Klein-
Gordon-Fock equation for each component aν

∂µ∂
µaν +m2aν = 0. (6)

Let us consider the Maxwell’s equations (2) with current vector jν that satisfies the
condition ∂νjν = 0 and the conditions

∂µ∂
µjν +m2jν = 0. (7)

In this case, Maxwell’s equations have a solution

aµ = − 1

m2
jµ.

This solution is not gauge invariant.

Consequently solutions of the Proca equations can be considered as a partial sub-
class of the solutions of Maxwell’s equations with right hand side (current jν) that
satisfies the additional conditions (7).

4. Yang-Mills Equations

Let G be a semisimple Lie group; g be the real Lie algebra of the Lie group G. A
Lie algebra g is a real vector space of dimensionN with basis t1, . . . , tN . Multipli-
cation of elements of g is given by Lie bracket [A,B] = −[B,A], which satisfies
Jacobi’s identity. Multiplication of basis elements is given with the aid of real
structural constants crsl = −csrl (r, s, l = 1, . . . , N ) of the Lie algebra g

[tr, ts] = crsl t
l. (8)

In this work we represent elements of the Lie algebra g and the Lie group G
by square matrices of respective dimension or by elements of Clifford algebra
C`(p, q). In both cases the Lie bracket is given by the commutator [A,B] =
AB − BA, where on right hand side we use matrix multiplication of matrices
or Clifford multiplication of Clifford algebra elements.

By gTa
b we denote a set of tensor fields of the pseudo-Euclidean space Rp,q of type

(a, b) and of rank a+ b with values in the Lie algebra g.

Consider the following equations in pseudo-Euclidean space Rp,q

∂µAν − ∂νAµ − ρ[Aµ, Aν ] = Fµν , ∂µF
µν − ρ[Aµ, F

µν ] = Jν (9)

where Aµ ∈ gT1, Jν ∈ gT1, Fµν = −Fνµ ∈ gT2, ρ is a real constant (interaction
constant). These equations are called Yang-Mills equations (system of Yang-Mills
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equations). One suggests that Aµ, Fµν are unknown and Jν is known vector with
values in Lie algebra g. One says that the equations (9) define Yang-Mills field
(Aµ, Fµν), where Aµ is potential and Fµν is strength of Yang-Mills field. The
vector Jν is called a non-Abelian current (in the case of Abelian group G the
vector Jν is called current).

The components of the skew-symmetric tensor Fµν from the first equation of (9)
can be substituted into the second equation to get one equation of second order for
the potential of Yang-Mills field

∂µ(∂µAν − ∂νAµ− ρ[Aµ, Aν ])− ρ[Aµ, ∂
µAν − ∂νAµ− ρ[Aµ, Aν ]] = Jν . (10)

Let us consider the equations (9) from another point of view. Let Aµ ∈ gT1 be
arbitrary covector with values in g, which smoothly depends on x ∈ Rp,q. By Fµν
we denote the expression

Fµν := ∂µAν − ∂νAµ − ρ[Aµ, Aν ] (11)

and by Jν we denote the expression

Jν := ∂µF
µν − ρ[Aµ, F

µν ].

Now we can consider the expression ∂νJν − ρ[Aν , J
ν ] and, with the aid of simple

calculations, we may verify that

∂νJ
ν − ρ[Aν , J

ν ] = 0. (12)

This identity is called a non-Abelian conservation law (in the case of Abelian Lie
group G we have ∂νJν = 0, i.e., the divergence of the vector Jν is equal to zero).

Therefore the non-Abelian conservation law (12) is a consequence of Yang-Mills
equations (9).

Consider the tensor fields Aµ, Fµν , Jν that satisfy Yang-Mills equations (9). Let
us take a scalar field with values in Lie group S = S(x) ∈ G and consider the
transformed tensor fields

Áµ = S−1AµS − S−1∂µS, F́µν = S−1FµνS, J́ν = S−1JνS. (13)

These tensor fields satisfy the same Yang-Mills equations

∂µÁν − ∂νÁµ − ρ[Áµ, Áν ] = F́µν , ∂µF́
µν − ρ[Áµ, F́

µν ] = J́ν

i.e., equations (9) are invariant w.r.t. transformations (13). Transformation (13) is
called agauge transformation (or gauge symmetry), and the Lie group G is called
gauge group of Yang-Mills equations (9).
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Partial solutions of Yang-Mills equations. During the last 60 years several classes
of solutions of Yang-Mills equations were discovered. Namely, monopoles (Wu,
Yang [22]), instantons (Belavin, Polyakov, Schwartz, Tyupkin [5]), merons (de
Alfaro, Fubini, Furlan [4]) and so on.1

5. Yang-Mills-Proca Equations

Let G be semisimple Lie group and g be the real Lie algebra of the Lie group G.
Consider the equations in pseudo-Euclidean space Rp,q

∂µAν − ∂νAµ − ρ[Aµ, Aν ] = Fµν , ∂µF
µν − ρ[Aµ, F

µν ] +m2Aν = 0 (14)

where Aµ ∈ gT1, Fµν = −Fνµ ∈ gT2, m, ρ are real constants and [A,B] =
−[B,A] is a Lie bracket. We will call these equations Yang-Mills-Proca equations
(YMP). Let us discuss some properties of this system of equations.

If m 6= 0 then YMP system of equations (14) implies the identity (generalized
Lorentz gauge)

∂µA
µ = 0. (15)

The system of equation (14) is not gauge invariant, but it is invariant w.r.t. the
global (not dependent on x ∈ Rp,q) transformation

Aµ → Áµ = S−1AµS, Fµν → F́µν = S−1FµνS

where S is an element of a Lie group G and S is independent on x.

The system of equations (14) can be reduced to the following equation (system of
equations) of second order for Aµ

∂µ(∂µAν−∂νAµ−ρ[Aµ, Aν ])−ρ[Aµ, ∂
µAν−∂νAµ−ρ[Aµ, Aν ]]+m2Aν = 0.

(16)

For m = 0 this equation coincides with the Yang-Mills equation (10) with the
trivial right hand side (Jν = 0).

Using the condition (15) and the formula

∂µ[A,B] = [∂µA,B] + [A, ∂µB]

the system of equations (16) can be rewritten in the form

∂µ∂
µAν − 2ρ[Aµ, ∂µA

ν ] + ρ[Aµ, ∂
νAµ] + ρ2[Aµ, [A

µ, Aν ]] +m2Aν = 0. (17)
1See the reviews by Actor [3] and Zhdanov and Lagno [23].
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6. Constant Solutions of Yang-Mills-Proca Equations

We are looking for constant (not dependent on x ∈ Rp,q) solutions Aµ ∈ gT1 of
the Yang-Mills-Proca equations (16) for fixed constant m. For these solutions

∂µAν = 0.

Therefore, the system of the nonlinear differential equations (16) reduces to the
system of algebraic (cubic) equations

[Aµ, [A
µ, Aν ]] = λAν (18)

where λ = −m2/ρ2. The constant solutions of Yang-Mills equations (when λ =
0) are discussed in [18] and [19].

Let us write down components of the vector Aµ with values in Lie algebra g in the
form of decomposition w.r.t. the basis of the Lie algebra

Aµ = aµr t
r

where the real coefficients aµr (µ = 1, . . . , n; r = 1, . . . , N ) define N vectors.
Substituting these decompositions into the equations (18) and using the relations
(8), we get nN algebraic cubic equations for nN unknown coefficients aµr . A
resulting system of cubic equations contains a real parameter λ and the structure
constants crsl of the Lie algebra2.

We can not give any standard method to solve the system of cubic equations (if we
have one cubic equation with one unknown, then we can use Cardano’s formula).
Nevertheless, we have found by (guess) several classes of solutions of the system
of equations (18) (for λ > 0, for λ < 0, and for λ = 0).

Commuting solutions of the system of equations (18). Any set of n mutually
commuting elements (matrices) Aµ of the Lie algebra g

[Aµ, Aν ] = 0

is a solution of the system of equations (18) with λ = 0 (i.e., m = 0). Such
solutions of the Yang-Mills equations were considered by Ikeda and Miyachi [10].

2In case the of the Minkowski space R1,3 and (three dimensional) Lie algebra su(2) of special
unitary Lie group SU(2) we have a system of 12 equations about 12 unknowns aµr (µ = 1, 2, 3, 4,
r = 1, 2, 3).
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7. Anti-Commuting Solutions of Yang-Mills-Proca Equations

Let us remind that we represent elements of the Lie group g in the form of square
matrices of some size or in the form of elements of Clifford algebra C`(p, q) and in
both cases the Lie bracket is expressed by the commutator [A,B] = AB−BA. By
1 we denote the identity matrix of the corresponding size or the identity element
of the Clifford algebra.

Theorem 1. Consider the pseudo-Euclidian space Rp,q of dimension n = p+ q ≥ 2.
Let us take a parameter θ = 1 or θ = −1. If the Lie algebra g contains n elements
Aµ such that

AµAν +AνAµ = 2θηµν1 (19)

then these elements Aµ satisfy the system of equations (18) with λ = 4θ(n− 1).

Proof: Let θ = 1 and the Lie algebra g contains n elements (components of a
covector) Aµ that satisfy relations (19). In other words, Aµ are such that

AµAν = −AνAµ, µ 6= ν

and
(Aµ)2 = ηµµ1.

For such set of elements Aµ we have relations

AµA
νAµ = AµAνAµ = (2− n)Aν , AµAµ = n1 (20)

which follow from the theorem about generators contractions (see [15, p. 242]).

Let us calculate the left hand side of the equation (18). Replacing Lie brackets by
commutators and using formulas (20) we get

[Aµ, [A
µ, Aν ]] = AµA

µAν −AµAνAµ −AµAνAµ +AνAµAµ

= 2nAν − 2AµA
νAµ = 4(n− 1)Aν .

The proposition is proved. For θ = −1 the proof is similar. �

The set of elements Aµ (19) generates Clifford algebra of dimension n or, in some
cases, of dimension n − 1 (for more details, see Section 9). For example, in the
case of real Clifford algebra of odd dimension n = p + q and signatures p − q =
1 mod 4, we have such solution (19) for which the elements Aµ are dependent.
For example, if n = 3, then for each of the signatures (2, 1), (1, 2), (0, 3) there
exists a solution to the system of equations (19) such that A1, A2, A3 are arbitrary
variables that satisfy the condition tr(A1A2A3) = 0. But for signatures (2, 1) and
(0, 3) there exists an additional solution to the system of equations (19) of the form
A1, A2, A3, where A3 = A1A2. In this case tr(A1A2A3) 6= 0.
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Theorem 2. Let us consider the pseudo-Euclidean space Rp,q of dimension n =
p + q ≥ 2. Let us take a parameter θ = 1 or θ = −1. Suppose that a set of
n elements (covector components) Aµ satisfy identities (19) and the Lie algebra
g contains a set of n elements Áµ such that this set is obtained from the set Aµ
by taking r (1 ≤ r ≤ n − 2) elements of this set equal to zero. Then the set Áµ
satisfies the system of equations (18) with λ = 4θ(ń− 1), where ń = n− r ≥ 2.

Proof: The proof follows from the proof of Theorem 1. �

Multiplication of a solution by a constant. Suppose that a covector Aµ ∈ gT1 is
independent of x and satisfies the system of equations (18), and κ ∈ R is a nonzero
constant; then the covector Ǎµ = κAµ also satisfies the system of equations (18)
but with the parameter

λ̌ = κ2λ.

Let us summarize our reasoning. Suppose that a pair of non-negative integer num-
bers (p, q) define a signature of the pseudo-Euclidean space Rp,q of dimension
n = p+ q ≥ 2; then the number of pairs (ṕ, q́) that satisfy the conditions

ṕ ≤ p, q́ ≤ q, ṕ+ q́ ≥ 2

are equal to (p + 1)(q + 1) − 3. For “appropriate” Lie algebras g, any of these
pairs (ṕ, q́) is connected to the pair of constant solutions A1, . . . , An (for θ = ±1)
of the system of equations (18) in the pseudo-Euclidean space Rp,q with constant
λ = 4θ(ṕ + q́ − 1). These solutions are defined up to multiplication by a real
nonzero constant κ (in this case the constant λ is multipied by κ2).

What are “appropriate” Lie algebras g? “Appropriate” Lie algebras g must
contain a subalgebra that is isomorphic to Clifford algebra C`R(p, q). Otherwise
a number of considered constant anti-commutative solutions of Yang-Mills-Proca
system of equations is decreased.

Constant solutions of Yang-Mills-Proca system of equations in Minkowski
space. As an example, consider constant solutions of Yang-Mills-Proca system of
equations in Minkowski space R1,3 with Cartesian coordinates xµ, µ = 0, 1, 2, 3
and with the diagonal metric tensor (1). We need four vectors (tetrad) yµa , µ =
0, 1, 2, 3, a = 0, 1, 2, 3, which are numbered by Latin index a and satisfy relations

yµay
ν
b η

ab = ηµν . (21)

By Theorem 1 we must take a covector Aµ with values in some real Lie algebra
g and components of this covector satisfy relations (19) with θ = 1, or θ = −1.
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From the theory of the Dirac equations we know that the set of the four matrices
γa, a = 0, 1, 2, 3 in Dirac representation

γ0 =


1 0 0 0
0 1 0 0
0 0−1 0
0 0 0−1

 , γ1 =


0 0 0 1
0 0 1 0
0−1 0 0
−1 0 0 0



γ2 =


0 0 0−i
0 0 i 0
0 i 0 0
−i 0 0 0

 , γ3 =


0 0 1 0
0 0 0−1
−1 0 0 0

0 1 0 0


(22)

satisfies the relations (19) with θ = 1 and the matrices iγa satisfy conditions (19)
with θ = −1. The Hermitian conjugated matrices satisfy conditions

(γa)† = γ0γaγ0, (iγa)† = −γ0iγaγ0. (23)

Let us remind the definitions of Lie group of special pseudo-unitary matrices SU(2, 2)
and its real Lie algebra su(2, 2)

SU(2, 2) = {S ∈ Mat(4,C) ; S†βS = β, detS = 1}
su(2, 2) = {s ∈ Mat(4,C) ; βs†β = −s, tr s = 0}

where β = diag(1, 1,−1,−1). From these definitions and from formulas (23) we
see that iγa ∈ su(2, 2) (β = γ0).

Whence if we take the Lie algebra g = su(2, 2) then the following vector with
values in g

Aµ = κyµaγ
a (24)

satisfies the conditions (19) for θ = −1 and by Theorem 1 this vector is a solution
to the system of equations (18) with constant λ = −12κ2, (κ is real parameter).
So, for the real Lie algebra g = su(2, 2), we get a constant solution of the Yang-
Mills-Proca system of equations (14) in Minkowski space R1,3 with real constants
that are connected by the relation

m2

ρ2
= 12κ2.

Constant solutions of the Yang-Mills-Proca system of equations in the Eu-
clidean space R3. As a second example let us consider constant solutions of Yang-
Mills-Proca system of equations in Euclidean space R3 with Cartesian coordinates
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xµ, µ = 1, 2, 3 and with the diagonal metric tensor given by 3 × 3 identity ma-
trix η = diag(1, 1, 1). We need three independent of x vectors yµa , µ = 1, 2, 3,
a = 1, 2, 3, which are numbered by Latin index a and satisfy relations

yµay
ν
b η

ab = ηµν . (25)

Let us remind definitions of Lie group of special unitary matrices SU(2) and its
real Lie algebra su(2)

SU(2) = {S ∈ Mat(2,C) ; S† = S−1, detS = 1}
su(2) = {s ∈ Mat(2,C) ; s† = −s, tr s = 0}.

Let τa be the Pauli matrices multiplied by the imaginary unit i, i.e.,

τ1 =

(
0 i
i 0

)
, τ2 =

(
0 1
−1 0

)
, τ3 = i

(
i 0
0 −i

)
. (26)

We see that τa ∈ su(2). And these matrices satisfy conditions (18) with θ = −1.
Therefore, if we take a Lie algebra g = su(2), then the following vector with
values in g

Aµ = κyµa τ
a (27)

satisfies the conditions (19) with θ = −1 and by Theorem 1 this vector is a solution
to the system of equations (18) with constant λ = −8κ2. So, in the Euclidean space
R3 we get a constant solution of Yang-Mills-Proca system of equations with Lie
algebra g = su(2) and with real constants that are connected by the relation

m2

ρ2
= 8κ2.

Note that this example deals with a class of the additional solutions (for which
tr (A1A2A3) 6= 0) which discussed after the proof of Theorem 1.

8. Solutions of Yang-Mills Equations via Perturbations

Consider the pseudo-Euclidean space Rp,q of dimension n = p + q ≥ 2 with
Cartesian coordinates xµ and with the metric tensor ηµν . Let γµ be constant (in-
dependent of x) vector field (with values in matrix algebra or in Clifford algebra)
such that components γµ satisfy the relations γµγν + γνγµ = 2θηµν1, where the
parameter θ = 1 or θ = −1. A real Lie algebra g is such that γµ ∈ gT1. Now we
consider the system of Yang-Mills equations (10) with the Lie algebra g, with the
parameter ρ = 1, and right hand side

Jν = 4θ(n− 1)γν . (28)
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By Theorem 1 this system of Yang-Mills equations, in particular, has constant
solution Aµ = γµ and [γµ, [γ

µ, γν ]] = 4θ(n− 1)γν .

Our aim is to consider solutions of Yang-Mills equations in the form of perturbation
theory series near the constant solutionAµ = γµ. We take a small parameter ε < 1
and substitute the expression

Aµ =

∞∑
k=0

εk
k
Aµ

into the left hand side of equation (10). Let us write the result in the form of power
series w.r.t. ε, i.e.,

∂µ(∂µAν − ∂νAµ − [Aµ, Aν ])− [Aµ, ∂
µAν − ∂νAµ − [Aµ, Aν ]]

=
∞∑
k=0

εkQνk = 4θ(n− 1)γν

where

Qνk = ∂µ∂
µ

k

Aν −∂ν∂µ
k

Aµ −
k∑
l=0

([∂µ
l

Aµ,
k−l
Aν ] + [

l

Aµ, ∂µ
k−l
Aν ])

−
k∑
s=0

[
k−s
Aµ , ∂

µ
s

Aν −∂ν
s

Aµ −
s∑
r=0

[
r

Aµ,
s−r
Aν ]]. (29)

For every integer k ≥ 0, the components of vector Qνk depend on
0
Aµ, . . . ,

k
Aµ.

Therefore some approximate solutions of Yang-Mills equations (10) with the right
hand side (28) can be found with the aid of the following procedure. Let us take
0
Aµ= γµ. Then we get

Qν0 = [γµ, [γ
µ, γν ]] = 4θ(n− 1)γν .

Substitute
0
Aµ= γµ into the expression (29) for k = 1 and take

Qν1 = 0. (30)

As a result, we get a system of linear partial differential equations with constant

coefficients about the variables
1
Aµ. Let us take any solution of this system of

equations (for example, a plane wave solution) and let us substitute this solution

(together with
0
Aµ= γµ) into the expressions

Qν2 = 0.



Constant Solutions of Yang-Mills Equations and Generalized Proca Equations 65

Now we get a system of linear partial differential equations with variable coeffi-

cients (dependent on x ∈ Rp,q) for the variables
2
Aµ. Again we take any solution

of this system of equations and substitute this solution into the expression Qν3 = 0.

Continuing this procedure, we get
k
Aµ for any integer k ≥ 0. So we get an approx-

imate solution (up to terms of order εk) of the Yang-Mills equations with the right
hand side (28).

Let us summarize our reasoning. If we look for approximate solutions of Yang-
Mills system of equations with the right hand side (28) near the constant solution
Aµ = γµ, then we arrive at one linear system of partial differential equations

with constant coefficients (for
1
Aµ) and at sequence of linear systems of partial

differential equations with variable coefficients (for
2
Aµ, . . . ,

k
Aµ).

Let us consider in more details the system of equations (30) for
1
Aµ≡ Bµ

Qν1 ≡ ∂µ∂µBν − ∂ν∂µBµ + [γν , ∂µB
µ]− 2[γµ, ∂µB

ν ] + [γµ, ∂
νBµ]

+ [γµ, [γ
µ, Bν ]] + [γµ, [B

µ, γν ]] + [Bµ, [γ
µ, γν ]] = 0 (31)

obtained by the linearization of the Yang-Mills system of equations (10) (with
parameter ρ = 1 and right hand side Jν = 4θ(n−1)γν) near the constant solution
Aµ = γµ. For this system of equations (31) one can easily find a class of simple
solutions. Namely, let Bµ be a vector such that every component of this vector
commute with all γν . For even n we have Bµ = bµ1, where bµ = bµ(x) is a
covector that satisfies Maxwell’s equations with zero right hand side

∂µ∂
µbν − ∂ν∂µbµ = 0.

For odd n we have Bµ = bµ1 + b̂µγ
1 . . . γn, where the covectors bµ = bµ(x),

b̂µ = b̂µ(x) satisfy the Maxwell’s equations with zero right hand side (jν = 0).
Evidently such Bµ satisfy also the equations (31).

9. Yang-Mills-Proca Equations in Clifford Algebra

Let us recall the basic notation. We consider the real C`R(p, q) [8] and the com-
plexified C`C(p, q) = C ⊗ C`R(p, q) [12] Clifford algebras, p + q = n. In the
general case, we write C`F(p, q), where F = R,C. The construction of the real and
the complexified Clifford algebras is discussed in details in [12], [14] and [15].

Let e be the identity element and ea, a = 1, . . . , n [6] be the generators of the
Clifford algebra C`R(p, q). These generators satisfy the conditions eaeb + ebea =
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2ηabe, where η = ||ηab|| is the diagonal matrix with p pieces of +1 and q pieces
of −1 on the diagonal. The elements ea1...ak = ea1 · · · eak , a1 < · · · < ak,
k = 1, . . . , n, together with the identity element e, form the basis of the Clifford
algebra.

We denote by C`Rk (p, q) the vector space spanned by the basis elements ea1...ak .
Elements of C`Rk (p, q) are said to be elements of grade k. We have C`R(p, q) =⊕n

k=0C`
R
k (p, q).

Clifford algebra can be considered as a Lie algebra with respect to the commutator
[U, V ] = UV − V U , U, V ∈ C`F(p, q). It is well-known that the following set is
a center of Clifford algebra

Cen(C`F(p, q)) =

{
C`F0(p, q), if n is even
C`F0(p, q)⊕ C`Fn(p, q) if n is odd.

The following set

C`Fs(p, q) = C`F(p, q) \ Cen(C`F(p, q))

is a Lie subalgebra of the Clifford algebra (see [13]).

Now we are looking for the constant solutions of Yang-Mills-Proca equations in
the case of Lie algebra g = C`Fs(p, q). We have

[Aµ, [A
µ, Aν ]] = λAν (32)

where Aµ ∈ g = C`Fs(p, q).

We have

[Aµ, [A
µ, Aν ]] = AµA

µAν −AµAνAµ −AµAνAµ +AνAµAµ

= {Aν , AµAµ} − 2AµA
νAµ

where {U, V } = UV + V U is the anticommutator. So, the equations (32) can be
rewritten in the following form

{Aν , AµAµ} − 2AµA
νAµ = λAν . (33)

It is easy to see (see also Section 7), that one has the following class of solutions
to these equations

(Aµ)2 =
ληµµe

4(n− 1)
, µ = 1, 2, . . . , n, {Aµ, Aν} = 0, µ 6= ν. (34)

Really, we have

{eν , eµeµ} − 2eµe
νeµ = 2neν − 2(2− n)eµ = (2n− 4 + 2n)eν = 4(n− 1)eν
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because of the property eaebea = (2 − n)eb of the Clifford algebra generators
(see [15]).

Note, that after normalization such elements Aµ (34) will be generators: 1) of the
Clifford algebra C`F(p, q) or C`F(q, p), p + q = n (in the case of real Clifford al-
gebra F = R there are two cases of signatures - (p, q) and (q, p), complex Clifford
algebra F = C does not depend on the signature). 2) of Clifford algebra of smaller
dimension n− 1 (for p− q = 1 mod 4 in the case of real Clifford algebra and for
p − q = 1, 3 mod 4 in the case of complex Clifford algebra, see [16] and [20]).
3) of the Grassmann algebra (for λ = 0, see Section 10).

Also, there are proportional (and they commute, see Section 6) solutions Aµ of
equations (33) with λ = 0 because of the form (32). Also, there are such solutions
Aµ that some of them are equal to zero and the remaining ones generate a basis of
a Clifford algebra of smaller dimension (see Theorem 2).

Let us consider some examples in the cases of small dimensions n = 2, 3.

n = 2. In this case we have C`Fs(p, q) = C`F1(p, q)⊕ C`F2(p, q). From (33) we get

(A2)2A1 +A1(A2)2 − 2A2A1A2 = λη22A1

(A1)2A2 +A2(A1)2 − 2A1A2A1 = λη11A2.

Using (A1)2, (A2)2, {A1, A2} ∈ C`F0(p, q) = Cen(C`F(p, q)) we obtain

(A2)2A1 −A2A1A2 = λ
η22

2
A1, (A1)2A2 −A1A2A1 = λ

η11

2
A2.

Further,

2(A2)2A1 −A2{A1, A2} = λ
η22

2
A1, 2(A1)2A2 −A1{A1, A2} = λ

η11

2
A2

and

2((A2)2e− λη
22

4
e)A1 −A2{A1, A2} = 0

(35)
2((A1)2e− λη

11

4
e)A2 −A1{A1, A2} = 0.

It is easy to see that the following expressions are solution to this system of equa-
tions

(A1)2 =
λη11

4
e, (A2)2 =

λη22

4
e, {A1, A2} = 0.

If one of the four scalar expressions in (35) does not equal to zero, then we obtain
proportional solutions

A1 = µA2, µ =
{A1, A2}
2(A2)2

=
2(A1)2

{A1, A2}
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(or analogously A2 = µA1), or one of A1, A2 equals to zero (we have λ = 0 in
these cases). So, we obtain all solutions of the system of equations (32) in the case
n = 2 for g = C`Fs(p, q).

n = 3. In this case we have C`Fs(p, q) = C`F1(p, q)⊕C`F2(p, q). The system of the
three equations (33) for A1, A2, A3 can be rewritten in the following form

η22((A2)2A1+A1(A2)2−2A2A1A2)+η33((A3)2A1+A1(A3)2−2A3A1A3)=λA1

η33((A3)2A2+A2(A3)2−2A3A2A3)+η11((A1)2A2+A2(A1)2−2A1A2A1)=λA2

η11((A1)2A3+A3(A1)2−2A1A3A1)+η22((A2)2A3+A3(A2)2−2A2A3A2)=λA3.

Using (Ai)2 ∈ C`F0(p, q) ⊕ C`F3(p, q) and {Ai, Aj} ∈ C`F0(p, q) ⊕ C`F3(p, q) =
Cen(C`F(p, q)), we obtain

η22((A2)2A1 −A2A1A2) + η33((A3)2A1 −A3A1A3) =
λ

2
A1

η33((A3)2A2 −A3A2A3) + η11((A1)2A2 −A1A2A1) =
λ

2
A2

η11((A1)2A3 −A1A3A1) + η22((A2)2A3 −A2A3A2) =
λ

2
A3

respectively

η22(2(A2)2A1 −A2{A1, A2}) + η33(2(A3)2A1 −A3{A1, A3}) =
λ

2
A1

η33(2(A3)2A2 −A3{A2, A3}) + η11(2(A1)2A2 −A1{A2A1}) =
λ

2
A2

η11(2(A1)2A3 −A1{A3, A1}) + η22(2(A2)2A3 −A2{A3, A2}) =
λ

2
A3

and finally

A1(2η22(A2)2+2η33(A3)2−λ
2
e)+A2(−η22{A1, A2})+A3(−η33{A1, A3}) = 0

A1(−η11{A2, A1})+A2(2η33(A3)2+2η11(A1)2−λ
2
e)+A3(−η33{A2, A3}) = 0

A1(−η11{A3, A1})+A2(−η22{A3, A2})+A3(2η11(A1)2+2η22(A2)2−λ
2
e) = 0.

The elements in round brackets are elements of the center of Clifford algebra. If
they are equal to zero, then we obtain the following solution of the system of
equations

η11(A1)2 = η22(A2)2 = η33(A3)2 =
λ

8
e, {Ai, Aj} = 0.
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To obtain other solutions we must consider all the remaining cases (if at least one of
the expressions in round brackets are not equal to zero). It is easy to see, that among
the solutions there will be proportional solutions Aµ with λ = 0. Commuting
solutions with λ = 0, solutions like A1 = 0 and two elements A2, A3 which
generate a basis of the Clifford algebra of dimension n = 2, and similar ones.

10. Grassmann Numbers as Solutions of Yang-Mills-Proca Equations
in Clifford Algebra

Now we want to discuss one another class of solutions of Yang-Mills-Proca equa-
tions (32) with λ = 0. It is easy to see that Grassmann numbers [9] are solutions of
these equations. If we take Lie algebra g = C`Cs(p, q) (let us consider only com-
plex case), then we must realize Grassmann algebra as a subalgebra of Clifford
algebra. We denote complexified Grassmann algebra of dimension n by ΛC(n).
We can also consider degenerate Clifford algebra C`C(p, q, r) in more generale
case.

We have the following well-known construction (see Clifford-Jordan-Wigner rep-
resentation [11], [7]). Let us consider complexified Clifford algebra C`C(n) =
C`C(n, 0) of even dimension n = p + q = 2N (or odd dimension n = 2N + 1).
With the use of generators ea we can construct the following elements

θk =
1

2
(ek + ieN+k), k = 1, . . . , N

πk =
1

2
(ek − ieN+k), k = 1, . . . , N.

Note, that in the opposite way we have

ek = θk + πk, ek+N = i(θk − πk).

It is easy to verify that these elements satisfy conditions

θkπl + πlθk = δkl, θkθl + θlθk = 0, πkπl + πlπk = 0.

So, we have two sets θk and πk of Grassmann numbers with some connections
between each other.

Now let us consider degenerate Clifford algebras C`C(p, q, r) (see [1], [2]) with
generators

e1, . . . , ep, ε1, . . . , εq, θ1, . . . , θr

where (ek)2 = 1, (εl)2 = −1, (θm)2 = 0 for k = 1, . . . , p, l = 1, . . . , q,
m=1, . . . , r.
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The Jacobson radical (intersection of all maximal ideals) consists of elements

I =
∑
A

aAθ
A +

∑
A,B

bABe
AθB +

∑
A,B

cABε
AθB +

∑
A,B,C

dABCe
AεBθC

and it is nilpotent. Algebra C`C(p, q, r) is not semi-simple. But it is well known
that we can realize it in matrix algebra in the following way. Let us consider
ψ : C`C(p, q, r)→ C`C(p+ r, q + r)

ek → ek, k = 1, . . . , p

εl → εl, l = 1, . . . , q

θm → ep+m + εq+m, m = 1, . . . , r.

For example, C`C(0, 0, 2) = ΛC(2) → C`C(2, 2), with θ1 → e1 + ε1 and θ2 →
e2 + ε2. We can consider standard matrix representation of square complex matri-
ces of order order. Degenerate Clifford algebra is a subalgebra of this algebra of
matrices.

So, in Clifford algebra C`C(p, q) we can realize the following algebras

C`C(p−1, q−1, 1), C`C(p−2, q−2, 2), . . . , C`C(p−m, q−m,m)

where m = min(p, q).

The Grassmann algebra of even dimension n can be represented using square com-
plex matrices of order 2n (it is isomorphic to a subalgebra of the algebra of such
matrices), whenever complexified Clifford algebra is isomorphic to an algebra of
square complex matrices of order 2

n
2 . That is why we can always realize n

2 Grass-
mann numbers in Clifford algebra C`C(p, q), p+ q = n.

Let us give one example. In the case of signature (p, q) = (1, 3) we have the
following solution of (32)

A1 = T−1a(ie23 − e13)T, A2 = T−1b(e03 − e3)T, A3 = 0, A4 = 0, λ = 0

for any invertible element T ∈ C`C(p, q) and a, b ∈ C. Really, these Clifford alge-
bra elements satisfy conditions of Grassmann algebra: A2

1 = A2
2 = 0, A1A2 =

−A2A1. In this case we can use the following matrices

A1 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , A2 =


0 0 0 0
0 0 0 0
1 0 0 0
0−1 0 0

 .
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