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Abstract. The Lorentz transformation group SO(m,n), m,n ∈ N, is a group

of Lorentz transformations of order (m,n), that is, a group of special linear trans-

formations in a pseudo-Euclidean space R
m,n of signature (m,n) that leave the

pseudo-Euclidean inner product invariant. A parametrization of SO(m,n) is pre-

sented, giving rise to the composition law of Lorentz transformations of order (m,n)
in terms of parameter composition. The parameter composition, in turn, gives

rise to a novel group-like structure that Rm,n possesses, called a bi-gyrogroup.

Bi-gyrogroups form a natural generalization of gyrogroups where the latter form

a natural generalization of groups. Like the abstract gyrogroup, the abstract bi-

gyrogroup can play a universal computational role which extends far beyond the

domain of pseudo-Euclidean spaces.
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1. Introduction

A pseudo-Euclidean space Rm,n of signature (m,n) where the numbers m,n ∈ N,

is an (m + n)-dimensional space with the pseudo-Euclidean inner product of sig-

nature (m,n). A Lorentz transformation of order (m,n) is a special linear trans-

formation Λ ∈ SO(m,n) in R
m,n that leaves the pseudo-Euclidean inner product

invariant. It is special in the sense that the determinant of the (m+ n)× (m+ n)
real matrix Λ is 1, and the determinant of its first m rows and columns is posi-

tive [9, p. 478]. The group of all Lorentz transformations of order (m,n) is also

known as the special pseudo-orthogonal group, denoted by SO(m,n).

A Lorentz transformation without rotations is called a boost. In general, two suc-

cessive boosts are not equivalent to a boost. Rather, they are equivalent to a boost

associated with two rotations, called a left rotation and a right rotation, or col-

lectively, a bi-rotation. The two rotations of a bi-rotation are nontrivial if both
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m > 1 and n > 1. The special case when m = 1 and n > 1 was studied in 1988

in [18]. The study in [18] resulted in the discovery of two novel algebraic struc-

tures that became known as a gyrogroup and a gyrovector space. Subsequent study

of gyrovector spaces reveals in [19, 20, 22–25, 27] that gyrovector spaces form the

algebraic setting for hyperbolic geometry, just as vector spaces form the algebraic

setting for Euclidean geometry. The aim of this paper is to extend the study of the

parametric realization of the Lorentz group in [18] from m = 1 to m ≥ 1, and to

reveal the resulting new algebraic structure, called a bi-gyrogroup.

In order to emphasize that when m > 1 and n > 1 a successive application of two

boosts generates a bi-rotation, a Lorentz boost of order (m,n), m,n > 1, is called

a bi-boost. The composition law of two bi-boosts gives rise in this article to a

bi-gyrocommutative bi-gyrogroup operation, just as the composition of two boosts

gives rise in [18] to a gyrocommutative gyrogroup operation, as demonstrated in

[19]. Accordingly, a bi-gyrogroup of order (m,n), m,n ∈ N, is a group-like

structure that specializes to a gyrogroup when either m = 1 or n = 1.

We show in Theorem 8 that a Lorentz transformation Λ of order (m,n) possesses

the unique parametrization Λ = Λ(P,On, Om), where

1. P ∈ R
n×m is any real n×m matrix, where

2. On ∈ SO(n) is any n × n special orthogonal matrix, taking P into OnP ,

and, similarly, where

3. Om ∈ SO(m) is any m×m special orthogonal matrix, taking P into POm.

In the special case when m = 1, the Lorentz transformation of order (m,n) spe-

cializes to the Lorentz transformation of special relativity theory (n = 3 in physical

applications), where the parameter P is a vector that represents relativistic proper

velocities.

The parametrization of the Lorentz transformation Λ enables in Theorem 21 the

Lorentz transformation composition (or, product) law to be expressed in terms of

parameter composition. Under the resulting parameter composition, the parameter

On of Λ, called a left rotation (of P ∈ R
n×m), forms a group. The group that

the left rotations form is the special orthogonal group SO(n). Similarly, under

the parameter composition, the parameter Om of Λ, called a right rotation (of

P ∈ R
n×m), forms a group. The group that the right rotations form is the special

orthogonal group SO(m). The pair (On, Om) ∈ SO(n) × SO(m) is called a bi-

rotation, taking P ∈ R
n×m into OnPOm ∈ R

n×m.
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Contrasting the left and right rotation parameters, the parameter P does not form

a group under parameter composition. Rather, it forms a novel algebraic structure,

called a bi-gyrocommutative bi-gyrogroup, defined in Definition 53.

A bi-gyrocommutative bi-gyrogroup is a group-like structure that generalizes the

gyrocommutative gyrogroup structure. The latter, in turn, is a group-like structure

that forms a natural generalization of the commutative group.

The concept of the gyrogroup emerged from the 1988 study of the parametrization

of the Lorentz group in [18]. Presently, the gyrogroup concept plays a universal

computational role, which extends far beyond the domain of special relativity, as

noted by Chatelin in [1, p. 523] and in references therein and as evidenced, for

instance, from [2,4–7,11,14–16] and [12,21,26,28]. In a similar way, the concept

of the bi-gyrogroup emerges in this paper from the study of the parametrization of

the Lorentz group SO(m,n), m,n ∈ N. Hence, like gyrogroups, bi-gyrogroups

are capable of playing a universal computational role that extends far beyond the

domain of Lorentz transformations in pseudo-Euclidean spaces.

2. Lorentz Transformations of Order (m,n)

Let Rm,n be an arbitrary (m+n)-dimensional pseudo-Euclidean space of a signa-

ture (m,n), m,n ∈ N, with an orthonormal basis ei, i = 1, . . . ,m+ n

ei·ej = εiδij (1)

where

εi =

{
+1, i = 1, . . . ,m

−1, i = m+ 1, . . . ,m+ n.
(2)

The inner product x·y of two vectors x,y ∈ R
m,n

x =
m+n∑
i=1

xiei and y =
m+n∑
i=1

yiei (3)

is

x·y =
m+n∑
i=1

εixiyi =
m∑
i=1

xiyi −
m+n∑

i=m+1

xiyi. (4)

Let Im be the m×m identity matrix, and let η be the (m+n)× (m+n) diagonal

matrix

η =

(
Im 0m,n

0n,m −In

)
(5)
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where 0m,n is the m× n zero matrix. Then, the matrix representation of the inner

product (4) is

x·y = xtηy (6)

where x and y are the column vectors

x =

⎛
⎜⎜⎜⎝

x1
x2
...

xm+n

⎞
⎟⎟⎟⎠ and y =

⎛
⎜⎜⎜⎝

y1
y2
...

ym+n

⎞
⎟⎟⎟⎠ (7)

and exponent t denotes transposition.

Let Λ be an (m+ n)× (m+ n) matrix that leaves the inner product (6) invariant.

Then, for all x,y ∈ R
m,n

(Λx)tηΛy = xtηy (8)

implying xtΛtηΛy = xtηy, so that

ΛtηΛ = η. (9)

The determinant of the matrix equation (9) yields

(detΛ)2 = 1 (10)

noting that det(ΛtηΛ) = (detΛt)(detη)(detΛ) and detΛt = detΛ. Hence

detΛ = ±1. (11)

The special transformations Λ that can be reached continuously from the identity

transformation in R
m,n constitute the special pseudo-orthogonal group SO(m,n),

also known as the (generalized) Lorentz transformation group of order (m,n).
Each element Λ of SO(m,n) is a Lorentz transformation of order (m,n). It has

determinant one

detΛ = 1 (12)

and the determinant of its first m rows and columns is positive [9, p. 478]. The

Lorentz transformation of order (1, 3) turns out to be the common homogeneous,

proper, orthochronous Lorentz transformation of Einstein’s special theory of rela-

tivity [22].

Let Rm×n be the set of all m × n real matrices. Following Dragon [3], in order

to parametrize the special pseudo-orthogonal group SO(m,n), we partition each

(m + n) × (m + n) matrix Λ ∈ SO(m,n) into four blocks consisting of the
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submatrices i) A ∈ R
m×m, ii) Â ∈ R

n×n, iii) B ∈ R
n×m, and iv) B̂ ∈ R

m×n, so

that

Λ =

(
A B̂

B Â

)
. (13)

By means of (13) and (5), the matrix equation (9) takes the form(
At Bt

B̂t Ât

)(
Im 0m,n

0n,m −In

)(
A B̂

B Â

)
=

(
Im 0m,n

0n,m −In

)
(14)

or, equivalently (
AtA−BtB AtB̂ −BtÂ

B̂tA− ÂtB B̂tB̂ − ÂtÂ

)
=

(
Im 0m,n

0n,m −In

)
(15)

implying

AtA = Im +BtB, ÂtÂ = In + B̂tB̂, AtB̂ = BtÂ. (16)

The symmetric matrix BtB is diagonalizable by an orthogonal matrix with non-

negative diagonal elements [10, pp. 171, 396-398, 402]. Hence, the eigenvalues of

Im + BtB are not smaller than 1, so that (detA)2 = det(Im + BtB) ≥ 1. This,

in turn, implies that A is invertible. Similarly, (detÂ)2 = det(In + B̂B̂t) ≥ 1, so

that Â is invertible.

An invertible real matrix A can be uniquely decomposed into the product of an

orthogonal matrix O ∈ SO(m), Ot = O−1, and a positive-definite symmetric

matrix S, St = S, with positive eigenvalues [8, p. 286]

A = OS. (17)

Following (17) we have

AtA = StOtOS = S2 (18)

with positive eigenvalues λi > 0, i = 1, . . . ,m. Hence

S =
√
AtA (19)

has the positive eigenvalues
√
λi and the same eigenvectors as S2.

The matrix S given by (19) satisfies (17) since AS−1 is orthogonal, as it should

be, by (17). Indeed

(AS−1)tAS−1 = (S−1)tAtAS−1 = S−1S2S−1 = Im. (20)
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Similarly, Â is invertible and possesses the decomposition

Â = ÔŜ (21)

where Ô ∈ SO(n) is an orthogonal matrix and Ŝ is a positive-definite symmetric

matrix.

By means of (17) and (21), the block matrix (13) possesses the decomposition

Λ =

(
O 0m,n

0n,m Ô

)(
S P̂

P Ŝ

)
(22)

where the submatrices P and P̂ are to be determined in (24) below.

Following (22) and (13), along with (17) and (21), we have

Λ =

(
OS OP̂

ÔP ÔŜ

)
=

(
A B̂

B Â

)
(23)

so that ÔP = B and OP̂ = B̂, that is

P = Ô−1B, P̂ = O−1B̂. (24)

In (22), S and Ŝ are invertible symmetric matrices, and O and Ô are orthogonal

matrices with determinant one.

By means of (9) and (22) we have the matrix equation(
St P t

P̂ t Ŝt

)(
Ot 0m,n

0n,m Ôt

)(
Im 0m,n

0n,m −In

)(
O 0m,n

0n,m Ô

)(
S P̂

P Ŝ

)

=

(
Im 0m,n

0n,m −In

)
. (25)

Noting that(
Ot 0m,n

0n,m Ôt

)(
Im 0m,n

0n,m −In

)(
O 0m,n

0n,m Ô

)
=

(
Im 0m,n

0n,m −In

)
(26)

the matrix equation (25) yields(
St P t

P̂ t Ŝt

)(
Im 0m,n

0n,m −In

)(
S P̂

P Ŝ

)
=

(
Im 0m,n

0n,m −In

)
(27)

so that (
St −P t

P̂ t −Ŝt

)(
S P̂

P Ŝ

)
=

(
Im 0m,n

0n,m −In

)
(28)
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and hence (
StS − P tP StP̂ − P tŜ

P̂ tS − ŜtP P̂ tP̂ − ŜtŜ

)
=

(
Im 0m,n

0n,m −In

)
. (29)

Noting that StS = S2 and ŜtŜ = Ŝ2, (29) yields the equations

S2 = Im + P tP, Ŝ2 = In + P̂ tP̂ , StP̂ = P tŜ (30)

Besides, because the matrix S is symmetric, the third and the first equations in (30)

imply

P̂ = S−1P tŜ, S−2 = (Im + P tP )−1. (31)

Inserting (31) into the second equation in (30)

Ŝ2 = In + P̂ tP̂ = In + (ŜtP (St)−1)S−1P tŜ

= In + ŜPS−2P tŜ = In + ŜP (Im + P tP )−1P tŜ.
(32)

Multiplying both sides of (32) by Ŝ−2, we have

In = Ŝ−2 + P (Im + P tP )−1P t. (33)

Let ωωω be an eigenvector of the matrix PP t, and let λ be its associated eigenvalue

PP tωωω = λωωω. (34)

If P tωωω is not zero, P tωωω �= 0, then it is an eigenvector of P tP with the same

eigenvalue λ
(P tP )P tωωω = λP tωωω. (35)

Adding P tωωω to both sides of (35) we have

(Im + P tP )P tωωω = (1 + λ)P tωωω (36)

so that
1

1 + λ
P tωωω = (Im + P tP )−1P tωωω. (37)

Multiplying both sides of (37) by P

1

1 + λ
PP tωωω = P (Im + P tP )−1P tωωω (38)

so that, by means of (34)

P (Im + P tP )−1P tωωω =
λ

1 + λ
ωωω (39)
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for any eigenvector ωωω of PP t for which P tωωω �= 0. Equation (39) remains valid

also when P tωωω = 0 since in this case λ = 0 by (34).

By means of (33) and (39) we have

ωωω = Ŝ−2ωωω + P (Im + P tP )−1P tωωω = Ŝ−2ωωω +
λ

1 + λ
ωωω (40)

so that

Ŝ−2ωωω =
1

1 + λ
ωωω (41)

and, by equation (34)

Ŝ2ωωω = (1 + λ)ωωω = Inωωω + λωωω = Inωωω + PP tωωω = (In + PP t)ωωω (42)

for any eigenvector ωωω of PP t.

The eigenvectors ωωω constitute a basis of Rn. Hence, it follows from (42) that

Ŝ2 = In + PP t (43)

and, hence

Ŝ =
√
In + PP t. (44)

Following (30) – (31) and (44) we have

P̂ = S−1P tŜ =
√
Im + P tP

−1
P t

√
In + PP t. (45)

Employing (45) and the eigenvectors ωωω of PP t, we will show in (50) below that

P̂ = P t.

As in (34), ωωω is an eigenvector of the matrix PP t, P tωωω �= 0, with its associ-

ated eigenvalue λ > 0, implying (37). Following (37), the matrix (Im + P tP )−1

possesses an eigenvector P tωωω with its associated eigenvalue 1/(1 + λ). Hence,

the matrix
√
Im + P tP

−1
possesses the same eigenvector P tωωω with its associated

eigenvalue 1/
√
1 + λ√

Im + P tP
−1

P tωωω =
1√
1 + λ

P tωωω. (46)

Similarly, the matrix In + PP t satisfies the equation (In + PP t)ωωω = (1 + λ)ωωω,

so that it possesses an eigenvector ωωω with its associated eigenvalue 1 + λ. Hence,

the matrix
√
In + PP t possesses the same eigenvectorωωω with its associated eigen-

value
√
1 + λ √

In + PP tωωω =
√
1 + λωωω. (47)
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Hence, by (47) and (46)

√
Im + P tP

−1
P t

√
In + PP tωωω =

√
1 + λ

√
Im + P tP

−1
P tωωω = P tωωω (48)

for any eigenvector ωωω of PP t for which P tωωω �= 0. Equation (48) remains valid

also for ωωω with P tωωω = 0 since in this case λ = 0 by (34).

The eigenvectors ωωω constitute a basis of Rn. Hence, it follows from (48) that

√
Im + P tP

−1
P t

√
In + PP t = P t (49)

so that, by (45) and (49)

P̂ = P t. (50)

Following (50) and the first two equations in (30) we have

P̂ = P t, S =
√
Im + P tP , Ŝ =

√
In + PP t. (51)

Inserting (51) into (22) and denoting O and Ô by Om and On, respectively, we

obtain the (m+n)×(m+n) matrix Λ parametrized by the three matrix parameters

(i) P ∈ R
n×m, (ii) Om ∈ SO(m), and (iii) On ∈ SO(n)

Λ =

(
Om 0m,n

0n,m On

)(√
Im + P tP P t

P
√
In + PP t

)
. (52)

Lemma 1. The following commuting relations hold for all P ∈ R
n×m

P
√
Im + P tP =

√
In + PP t P (53)

P t
√

In + PP t =
√
Im + P tP P t (54)

PP t
√

In + PP t =
√
In + PP t PP t (55)

P tP
√
Im + P tP =

√
Im + P tP P tP. (56)

Proof: The commuting relation (54) follows from (45), noting that P̂ = P t. The

commuting relation (53) is obtained from (54) by matrix transposition. The com-

muting relation (56) is obtained by successive applications of (54) and (53). Fi-

nally, the commuting relation (55) is obtained by successive applications of (53)

and (54). �



Parametric Realization of the Lorentz Transformation Group in Pseudo-Euclidean... 49

3. Parametric Representation of SO(m,n)

The block orthogonal matrix in (52) can be uniquely resolved as a commuting

product of two orthogonal block matrices(
Om 0m,n

0n,m On

)
=

(
Om 0m,n

0n,m In

)(
Im 0m,n

0n,m On

)
. (57)

The first and the second orthogonal matrices on the right side of (57) represent,

respectively, i) a right rotation Om ∈ SO(m) of Rn×m, Om : P �→ POm, and

ii)a left rotation On ∈ SO(n) of Rn×m, On : P �→ OnP . Hence, the orthogonal

matrix on the left side of (57), which represents the composition of the rotations

Om and On, is said to be a bi-rotation of the pseudo-Euclidean space R
m,n about

its origin.

By means of (57), (52) can be written as

Λ =

(
Om 0m,n

0n,m In

)(
Im 0m,n

0n,m On

)(√
Im + P tP P t

P
√
In + PP t

)
. (58)

Lemma 2. The commuting relations√
Im + P tPOm = Om

√
Im + (POm)t(POm)

On

√
In + PP t =

√
In + (OnP )(OnP )tOn

(59)

hold for all P ∈ R
n×m, Om ∈ SO(m) and On ∈ SO(n).

Proof:

Im + P tP = OmImOt
m +OmOt

mP tPOmOt
m

= Om(Im +Ot
mP tPOm)Ot

m

= Om

√
Im +Ot

mP tPOm

√
Im +Ot

mP tPOmOt
m

= Om

√
Im +Ot

mP tPOmOt
mOm

√
Im +Ot

mP tPOmOt
m

= (Om

√
Im +Ot

mP tPOmOt
m)2.

(60)

Hence √
Im + P tP = Om

√
Im +Ot

mP tPOmOt
m (61)

implying the first matrix identity in (59).
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Similarly

In + PP t = Ot
nInOn +Ot

nOnPP tOt
nOn

= Ot
n(In +OnPP tOt

n)On

= Ot
n

√
In +OnPP tOt

n

√
In +OnPP tOt

nOn

= Ot
n

√
In +OnPP tOt

nOnO
t
n

√
In +OnPP tOt

nOn

= (Ot
n

√
In +OnPP tOt

nOn)
2.

(62)

Hence √
In + PP t = Ot

n

√
In +OnPP tOt

nOn (63)

implying the second matrix identity in (59). �

Lemma 3. The commuting relations√
Im + P tP

−1
Om = Om

√
Im + (POm)t(POm)

−1

On

√
In + PP t

−1
=

√
In + (OnP )(OnP )t

−1
On

(64)

hold for all P ∈ R
n×m, Om ∈ SO(m) and On ∈ SO(n).

Proof: Inverting the first matrix identity in (59), we have the matrix identity

O−1
m

√
Im + P tP

−1
=

√
Im + (POm)t(POm)

−1
O−1

m (65)

which implies the first equation in the Lemma.

Similarly, inverting the second matrix identity in (59), we obtain a matrix identity

that implies the second equation in the Lemma. �

Lemma 4. The commuting relation(
Om 0m,n

0n,m In

)⎛
⎝√

Im + (POm)t(POm) (POm)t

POm

√
In + (POm)(POm)t

⎞
⎠

=

(√
Im + P tP P t

P
√
In + PP t

)(
Om 0m,n

0n,m In

) (66)

holds for all P ∈ R
n×m and Om ∈ SO(m).



Parametric Realization of the Lorentz Transformation Group in Pseudo-Euclidean... 51

Proof: Let J1 and J2 denote the left side and the right side of (66), respectively.

Clearly

J2 =

(√
Im + P tPOm P t

POm

√
In + PP t

)
(67)

and, by means of the first commuting relation in Lemma 2

J1 =

⎛
⎝Om

√
Im + (POm)t(POm) Om(POm)t

POm

√
In + (POm)(POm)t

⎞
⎠

=

(√
Im + P tPOm P t

POm

√
In + PP t

)
.

(68)

Hence, J1 = J2, and the proof is complete. �

Lemma 5. The commuting relation⎛
⎝√

Im + (OnP )t(OnP ) (OnP )t

OnP
√

In + (OnP )(OnP )t

⎞
⎠(

Im 0m,n

0n,m On

)

=

(
Im 0m,n

0n,m On

)(√
Im + P tP P t

P
√
In + PP t

) (69)

holds for all P ∈ R
n×m and On ∈ SO(n).

Proof: Let J3 and J4 denote the left side and the right side of (69), respectively.

Clearly

J4 =

(√
Im + P tP P t

OnP On

√
In + PP t

)
(70)

and, by means of the second commuting relation in Lemma 2

J3 =

⎛
⎝√

Im + (OnP )t(OnP ) (OnP )tOn

OnP
√
In + (OnP )(OnP )tOn

⎞
⎠

=

(√
Im + P tP P t

OnP On

√
In + PP t

)
.

(71)
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Hence, J3 = J4, and the proof is complete. �

By (58) and Lemma 5

Λ =

(
Om 0m,n

0n,m In

)(
Im 0m,n

0n,m On

)(√
Im + P tP P t

P
√
In + PP t

)

=

(
Om 0m,n

0n,m In

)⎛
⎝√

Im + (OnP )t(OnP ) (OnP )t

OnP
√
In + (OnP )(OnP )t

⎞
⎠

×
(

Im 0m,n

0n,m On

)
(72)

where P , Om and On are generic elements of Rn×m, SO(m) and SO(n), respec-

tively, forming the three matrix parameters that determine Λ ∈ SO(m,n).

The matrix parameter P of Λ in (58) is a generic element of Rn×m, and the orthog-

onal matrix On ∈ SO(n) maps R
n×m onto itself bijectively, On : P → OnP .

Hence, the generic element OnP ∈ R
n×m in (72) can, equivalently, be replaced

by the generic element P ∈ R
n×m, thus obtaining from (72) the parametric repre-

sentation of the generic Lorentz transformation Λ

Λ =

(
Om 0m,n

0n,m In

)(√
Im + P tP P t

P
√
In + PP t

)(
Im 0m,n

0n,m On

)
(73)

called the bi-gyration decomposition of Λ.

The generic Lorentz transformation matrix Λ of order (m + n) × (m + n) is

expressed in (73) as the product of the following three matrices in (74) – (76).

The bi-boost: The (m+ n)× (m+ n) matrix B(P )

B(P ) :=

(√
Im + P tP P t

P
√
In + PP t

)
(74)

is parametrized by P ∈ R
n×m, m,n ∈ N. In order to emphasize that B(P ) is

associated in (73) with a bi-rotation (Om, On), we call it a bi-boost. If m = 1 and

n = 3, the bi-boost descends to the common boost of a Lorentz transformation in

special relativity theory, studied for instance in [18, 19, 22, 24].

The right rotation: The (m+ n)× (m+ n) block orthogonal matrix

ρ(Om) :=

(
Om 0m,n

0n,m In

)
∈ R

(m+n)×(m+n) (75)
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is parametrized by Om ∈ SO(m). For m > 1, Om is an m×m orthogonal matrix,

destined to be right-applied to the n×m matrices P , P → POm. Hence, ρ(Om)
is called a right rotation of the bi-boost B(P ).

The left rotation: The (m+ n)× (m+ n) block orthogonal matrix

λ(On) :=

(
Im 0m,n

0n,m On

)
∈ R

(m+n)×(m+n) (76)

is parametrized by On ∈ SO(n). For n > 1, On is an n × n orthogonal matrix,

destined to be left-applied to the n×m matrices P , P → OnP . Hence, λ(On) is

called a left rotation of the bi-boost B(P ).

A left and a right rotation are called collectively a bi-rotation. Suggestively, the

term bi-boost emphasizes that the generic bi-boost is associated with a generic

bi-rotation (On, Om) ∈ SO(n)× SO(m).

With the notation in (74) – (76), the results of Lemma 5 and Lemma 4 can be

written as commuting relations between bi-boosts and left and right rotations, as

the following lemma asserts.

Lemma 6. The commuting relations

λ(On)B(P ) = B(OnP )λ(On)

B(P )ρ(Om) = ρ(Om)B(POm)

λ(On)B(P )ρ(Om) = ρ(Om)B(OnPOm)λ(On)

(77)

hold for any P ∈ R
n×m, Om ∈ SO(m) and On ∈ SO(n).

Proof: The first matrix identity in (77) is the result of Lemma 5, expressed in the

notation in (74) – (76). Similarly, the second matrix identity in (77) is the result of

Lemma 4, expressed in the notation in (74) – (76). The third matrix identity in (77)

follows from the first and second matrix identities in (77), noting that λ(On) and

ρ(Om) commute. �

With the notation in (74) – (76), the Lorentz transformation matrix Λ in (72), para-

metrized by P, Om and On, is given by the equation

Λ(Om, P,On) = ρ(Om)B(P )λ(On). (78)

It proves useful to use the column notation

Λ(Om, P,On) =:

⎛
⎝ P
On

Om

⎞
⎠ (79)
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so that a product of two Lorentz matrices is written as a product between two

column triples. Thus, for instance, the product (or, composition) of the two Lorentz

transformations Λ1 = Λ(On,1, P1, Om,1) and Λ2 = Λ(On,2, P2, Om,2) is written

as

Λ1Λ2 =

⎛
⎝ P1

On,1

Om,1

⎞
⎠

⎛
⎝ P2

On,2

Om,2

⎞
⎠ . (80)

The Lorentz transformation product law, written in column notation, will be pre-

sented in Theorem 21, p. 71, following the study of associated special left and right

automorphisms, called left and right gyrations or, collectively, bi-gyrations.

Formalizing the main result of Sections 2 and 3, we have the following definition

and theorem.

Definition 7. (Special Pseudo-Orthogonal Group). A special pseudo-orthogonal
transformation Λ in the pseudo-Euclidean space R

m,n is a linear transformation
in R

m,n, also known as a (generalized, special) Lorentz transformation of order
(m,n), if relative to the basis (1) – (2), it leaves the inner product (4) invariant, has
determinant detΛ = 1, and the determinant of its first m rows and columns is pos-
itive. The group of all special pseudo-orthogonal transformations in R

m,n, that is,
the group of all Lorentz transformations of order (m,n), is denoted by SO(m,n).

Theorem 8. (Lorentz Transformation Bi-gyration Decomposition). A matrix
Λ ∈ R

(m+n)×(m+n) is a Lorentz transformation of order (m,n) (that is, a special
pseudo-orthogonal transformation in R

m,n), Λ ∈ SO(m,n), if and only if it is
given uniquely by the bi-gyration decomposition

Λ =

(
Om 0m,n

0n,m In

)(√
Im + P tP P t

P
√
In + PP t

)(
Im 0m,n

0n,m On

)
(81)

or, parametrically in short

Λ = Λ(Om, P,On) = ρ(Om)B(P )λ(On) =

⎛
⎝ P
On

Om

⎞
⎠ . (82)

Proof: Result (81) is identical with (73). �

Theorem 9. (Lorentz Transformation Polar Decomposition). Any Lorentz Trans-
formation matrix Λ ∈ SO(m,n) possesses the polar decomposition

Λ =

(√
Im + P tP P t

P
√
In + PP t

)(
Om 0m,n

0n,m In

)(
Im 0m,n

0n,m On

)
(83)
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Proof: By Lemma 4 and (72), we have

Λ =

(
Im 0m,n

0n,m On

)⎛
⎝√

Im + (POm)t(POm) (POm)t

POm

√
In + (POm)(POm)t

⎞
⎠

×
(

Om 0m,n

0n,m In

)

=

(√
Im + P tP P t

P
√
In + PP t

)(
Im 0m,n

0n,m On

)(
Om 0m,n

0n,m In

)
(84)

noting that P ∈ R
n×m is a generic main parameter of Λ ∈ SO(m,n) if and only

if POm ∈ R
n×m is a generic main parameter of Λ for any Om ∈ SO(m). �

4. Inverse Lorentz Transformation

Theorem 10. (The Inverse Bi-boost). The inverse of the bi-boost B(P ), P ∈
R
n×m, is B(−P )

B(P )−1 = B(−P ). (85)

Proof: By Lemma 1 we have the commuting relations

P t
√
In + PP t =

√
Im + P tPP t,

√
In + PP tP = P

√
Im + P tP (86)

which, in the notation in (51), are

P̂ Ŝ = SP̂ , ŜP = PS (87)

and, clearly

S2 − P̂P = Im, Ŝ2 − PP̂ = In. (88)

Hence, by (74) and (51)

B(P )B(−P ) =

(
S P̂

P Ŝ

)(
S −P̂

−P Ŝ

)
=

(
S2 − P̂P −SP̂ + P̂ Ŝ

PS − ŜP −PP̂ + Ŝ2

)

=

(
Im 0m,n

0n,m In

)
= Im+n

(89)

as desired. �
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A Lorentz transformation matrix Λ of order (m + n) × (m + n), m,n ≥ 2,

involves the bi-rotation λ(On)ρ(Om), as shown in (82). Bi-boosts are Lorentz

transformations without bi-rotations, that is by (78) – (79), bi-boosts B(P ) are

Λ(Im, P, In) = ρ(Im)B(P )λ(In) = B(P ) =

⎛
⎝ P
In
Im

⎞
⎠ (90)

for any P ∈ R
n×m.

Rewriting (85) in the column notation, we have⎛
⎝ P
In
Im

⎞
⎠−1

=

⎛
⎝−P

In
Im

⎞
⎠ (91)

so that, accordingly ⎛
⎝ P
In
Im

⎞
⎠

⎛
⎝−P

In
Im

⎞
⎠ =

⎛
⎝0n,m

In
Im

⎞
⎠ (92)

(0n,m, In, Im)t being the identity Lorentz transformation of order (m,n).

Theorem 11. (The Inverse Lorentz Transformation). The inverse of a Lorentz
transformation Λ = (P,On, Om)t is given by the equation⎛

⎝ P
On

Om

⎞
⎠−1

=

⎛
⎝−Ot

nPOt
m

Ot
n

Ot
m

⎞
⎠ . (93)

Proof: The proof is given by the following chain of equations, which are numbered

for subsequent explanation

Λ(Om, P,On)
−1

(1)︷︸︸︷
=== {ρ(Om)B(P )λ(On)}−1

(2)︷︸︸︷
=== λ(Ot

n)B(−P )ρ(Ot
m)

(3)︷︸︸︷
=== B(−Ot

nP )λ(Ot
n)ρ(O

t
m)

(4)︷︸︸︷
=== B(−Ot

nP )ρ(Ot
m)λ(Ot

n)

(5)︷︸︸︷
=== ρ(Ot

m)B(−Ot
nPOt

m)λ(Ot
n).

(94)

Derivation of the numbered equalities in (94) follows
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1. By (82).

2. Obvious, noting (85).

3. Follows from (2) by the first matrix identity in (77).

4. Follows from (3) by commuting λ(Ot
n) and ρ(Ot

m).

5. Follows from (4) by the second matrix identity in (77).

�

5. Bi-Boost Parameter Recognition

Composing the bi-gyration decomposition (81) of the Lorentz transformation Λ ∈
SO(m,n) in Theorem 8, we have the Lorentz transformation

Λ =

(
Om

√
Im + P tP OmP tOn

P
√
In + PP tOn

)
=:

(
E11 E12

E21 E22

)
(95)

parametrized by the three parameters

1. P ∈ R
n×m, an n×m real matrix, called the main parameter of the Lorentz

transformation Λ ∈ SO(m,n)

2. On ∈ SO(n), a left rotation of P (or, equivalently, a right rotation of P t)

and

3. Om ∈ SO(m), a right rotation of P (or, equivalently, a left rotation of P t).

We naturally face the task of determining the matrix parameters P , On and Om of

the SO(m,n) matrix Λ in (95) from its block entries Eij , i, j = 1, 2.

The matrix parameters Om and On of Λ in (81) cannot be recognized from (95)

straightforwardly by inspection. Fortunately, however, the matrix parameter P is

recovered from (95) by straightforward inspection, P = E21, thus obtaining the

first equation in (96) below. Then, following (95) we have Im + P tP = Im +
Et

21E21 and In+PP t = In+E21E
t
21, so that (95) yields the following parameter

recognition formulas

P = E21, E12 = OmP tOn

Om = E11

√
Im + Et

21E21

−1

, On =
√

In + E21Et
21

−1

E22.
(96)
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In the parameter recognition formulas (96) the parameters P , On and Om of the

composite Lorentz transformation Λ in (95) and in the decomposed Lorentz trans-

formation Λ in (81) are recognized from the block entries Eij , i, j = 1, 2, of the

composite Lorentz transformation (95). Our ability to recover the main parameter

of a Lorentz transformation suggests the following definition of main parameter

composition, called bi-gyroaddition.

Definition 12. (Bi-gyroaddition, Bi-gyrogroupoid). Let Λ = B(P1)B(P2) be
a Lorentz transformation given by the product of two bi-boosts parametrized by
P1, P2 ∈ R

n×m. Then, the main parameter, P12, of Λ is said to be the composition
of P1 and P2,

P12 = P1⊕P2 (97)

giving rise to a binary operation, ⊕, called bi-gyroaddition, in the space R
n×m

of all n × m real matrices. Being a groupoid of the parameter P ∈ R
n×m, the

resulting groupoid (Rn×m,⊕) is called the parameter bi-gyrogroupoid.

Definition 12 encourages us to the study of the bi-boost composition law in Sec-

tion 6.

6. Bi-Boost Composition Parameters

In general, the product of two bi-boosts is not a bi-boost. However, the product

of two bi-boosts is an element of the Lorentz group SO(m,n) and, hence, by

Theorem 8, can be parametrized, as shown in Section 5. Following (74), let

B(Pk) =

⎛
⎜⎝
√
Im + P t

kPk P t
k

Pk

√
In + PkP

t
k

⎞
⎟⎠ (98)

k = 1, 2, be two bi-boosts, so that their product is

Λ = B(P1)B(P2)

=

⎛
⎝√

Im + P t
1P1

√
Im + P t

2P2 + P t
1P2

√
Im + P t

1P1P
t
2 + P t

1

√
In + P2P t

2

P1

√
Im + P t

2P2 +
√
In + P1P t

1P2 P1P
t
2 +

√
In + P1P t

1

√
In + P2P t

2

⎞
⎠

=:

(
E11 E12

E21 E22

)
. (99)
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By the parameter recognition formulas (96), the main parameter

P12 = P1⊕P2 (100)

and the left and right rotation parameters On,12 and Om,12 of the bi-boost product

Λ = B(P1)B(P2) in (99) are given by

P12 = P1⊕P2 = E21, E12 = Om,12P
t
12On,12

On,12 =
√

In + E21Et
21

−1

E22, Om,12 = E11

√
Im + Et

21E21

−1 (101)

where Eij , i, j = 1, 2, are defined by the last equation in (99).

Hence, by (78)

Λ = B(P1)B(P2) = ρ(Om,12)B(P1⊕P2)λ(On,12). (102)

Following Definition 12, we view ⊕ as a binary operation between elements P ∈
R
n×m, thus obtaining the bi-gyrogroupoid (Rn×m,⊕) that will give rise to a group-

like structure called a bi-gyrogroup. Accordingly, the binary operation ⊕ is the

bi-gyrooperation of Rn×m, called bi-gyroaddition, and P1⊕P2 is the bi-gyrosum
of P1 and P2 in R

n×m.

It is now convenient to rename the right rotation Om,12 and the left rotation On,12

in (101) – (102) as a right and a left gyrations. In symbols

Om,12 =: rgyr[P1, P2] ∈ SO(m), On,12 =: lgyr[P1, P2] ∈ SO(n). (103)

We call rgyr[P1, P2] the right gyration generated by P1 and P2, and call lgyr[P1, P2]
the left gyration generated by P1 and P2. The pair of a left and a right gyration,

each generated by P1 and P2, is viewed collectively as the bi-gyration generated

by P1 and P2.

The bi-boost product (102) is now written as

B(P1)B(P2) = ρ(rgyr[P1, P2])B(P1⊕P2)λ(lgyr[P1, P2]) (104)

demonstrating that the product of two bi-boosts generated by P1 and P2 is a bi-

boost generated by P1⊕P2 along with a bi-gyration generated by P1 and P2.
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The bi-gyrosum P1⊕P2 of P1 and P2, and the bi-gyrations generated by P1 and

P2 that appear in (104) are determined from (99) – (103)

P1⊕P2 = P1

√
Im + P t

2P2 +
√
In + P1P t

1P2

rgyr[P1, P2] =

{
P t
1P2 +

√
Im + P t

1P1

√
Im + P t

2P2

}

×
√
Im + (P1⊕P2)t(P1⊕P2)

−1

lgyr[P1, P2] =
√
In + (P1⊕P2)(P1⊕P2)t

−1

×
{
P1P

t
2 +

√
In + P1P t

1

√
In + P2P t

2

}

rgyr[P1, P2](P1⊕P2)
tlgyr[P1, P2] =

√
Im + P t

1P1P
t
2 + P t

1

√
In + P2P t

2

(1)︷︸︸︷
=== P t

1⊕P t
2

(2)︷︸︸︷
=== (P2⊕P1)

t.

(105)

The equation marked by (1) in (105) follows immediately from the first equation

in (105), replacing P1, P2 ∈ R
n×m by P t

1, P
t
2 ∈ R

m×n.

The equation marked by (2) in (105) is derived from the first equation in (105) in

the following straightforward chain of equations.

(P2⊕P1)
t =

{
P2

√
Im + P t

1P1 +
√

In + P2P t
2P1

}t

=
√
Im + P t

1P1P
t
2 + P t

1

√
In + P2P t

2

= (P t
1)
√

In + (P t
2)

tP t
2 +

√
Im + (P t

1)(P
t
1)

t(P t
2)

= P t
1⊕P t

2.

(106)

Formalizing results in (105), we obtain the following theorem.
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Theorem 13. (Bi-gyroaddition and Bi-gyration). The bi-gyroaddition and bi-
gyration in the parameter bi-gyrogroupoid (Rn×m,⊕) are given by the equations

P1⊕P2 = P1

√
Im + P t

2P2 +
√

In + P1P t
1P2

lgyr[P1, P2] =
√
In + (P1⊕P2)(P1⊕P2)t

−1

×
{
P1P

t
2 +

√
In + P1P t

1

√
In + P2P t

2

}

rgyr[P1, P2] =

{
P t
1P2 +

√
Im + P t

1P1

√
Im + P t

2P2

}

×
√
Im + (P1⊕P2)t(P1⊕P2)

−1

(107)

for all P1, P2 ∈ R
n×m.

The following corollary results immediately from Theorem 13.

Corollary 14. (Trivial Bi-gyrations).

lgyr[0n,m, P ] = lgyr[P, 0n,m] = In, lgyr[	P, P ] = lgyr[P,	P ] = In
(108)

rgyr[0n,m, P ] = rgyr[P, 0n,m] = Im, rgyr[	P, P ] = lgyr[P,	P ] = Im

for all P ∈ R
n×m.

The trivial bi-gyration

lgyr[P, P ] = In, rgyr[P, P ] = Im (109)

for all P ∈ R
n×m cannot be derived immediately from Theorem 13. It will, there-

fore, be derived in (133) and (131), and formalized in Theorem 16, p. 66.

The bi-boost product (104), written in the column notation, takes the elegant form

B(P1)B(P2) =

⎛
⎜⎝
P1

In

Im

⎞
⎟⎠

⎛
⎜⎝
P2

In

Im

⎞
⎟⎠ =

⎛
⎜⎝

P1⊕P2

lgyr[P1, P2]

rgyr[P1, P2]

⎞
⎟⎠ (110)

for all P1, P2 ∈ R
n×m. When P1 = P and P2 = −P , (110) specializes to

B(P )B(−P ) =

⎛
⎜⎝

P

In

Im

⎞
⎟⎠

⎛
⎜⎝
−P

In

Im

⎞
⎟⎠ =

⎛
⎜⎝

P⊕(−P )

lgyr[P,−P ]

rgyr[P,−P ]

⎞
⎟⎠ (111)
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for all P ∈ R
n×m. But, the left side of (111) is also determined in (92), implying

the identities

P⊕(−P ) = 0n,m, lgyr[P,−P ] = In, rgyr[P,−P ] = Im. (112)

The first equation in (112) implies that

−P =: 	P (113)

is the inverse of P with respect to the binary operation ⊕ in R
n×m. Hence, we

use the notations −P and 	P interchangeably. Furthermore, we naturally use the

notation P1⊕(−P2) = P1⊕(	P2) = P1	P2, and rewrite (112) as

P	P = 0, lgyr[P,	P ] = In, rgyr[P,	P ] = Im (114)

in agreement with (108).

Similarly, we rewrite (91) as ⎛
⎝ P
In
Im

⎞
⎠−1

=

⎛
⎝	P

In
Im

⎞
⎠ (115)

that is

B(P )−1 = B(	P ) (116)

for all P ∈ R
n×m.

The first equation in (105) implies that

(−P1)⊕(−P2) = −(P1⊕P2). (117)

Hence, following the definition of 	P in (113), and by (117), the bi-gyroaddition

⊕ obeys the gyroautomorphic inverse property

	(P1⊕P2) = 	P1	P2 (118)

for all P1, P2 ∈ R
n×m.

It follows from the gyroautomorphic inverse property (118) and from (105) that

bi-gyrations are even, that is

lgyr[−P1,−P2] = lgyr[P1, P2], rgyr[−P1,−P2] = lgyr[P1, P2] (119)

or, equivalently

lgyr[	P1,	P2] = lgyr[P1, P2], rgyr[	P1,	P2] = lgyr[P1, P2]. (120)



Parametric Realization of the Lorentz Transformation Group in Pseudo-Euclidean... 63

7. Automorphisms of the Parameter Bi-Gyrogroupoid

Left and right rotations turn out to be left and right automorphisms of the parame-

ter bi-gyrogroupoid (Rn×m,⊕). We recall that a groupoid, (S,+), is a nonempty

set, S, with a binary operation, +. A left automorphism of a groupoid (S,+) is a

bijection f of S, f : S → S, s �→ fs, that respects the binary operation, that is,

f(s1 + s2) = fs1 + fs2. Similarly, a right automorphism of a groupoid (S,+) is

a bijection f of S, f : S → S, s �→ sf , that respects the binary operation, that is,

(s1 + s2)f = s1f + s2f . The need to distinguish between left and right automor-

phisms of the bi-gyrogroupoid (Rn×m,⊕) is clear from Theorem 15 below.

Theorem 15. (Left and Right Automorphisms of (Rn×m,⊕)). Any rotation
On ∈ SO(n) is a left automorphism of the parameter bi-gyrogroupoid (Rn×m,⊕),
and any rotation Om ∈ SO(m) is a right automorphism of the parameter bi-
gyrogroupoid (Rn×m,⊕), that is

On(P1⊕P2) = OnP1⊕OnP2

(P1⊕P2)Om = P1Om⊕P2Om

On(P1⊕P2)Om = OnP1Om⊕OnP2Om

(121)

for all P1, P2 ∈ R
n×m, On ∈ SO(n) and Om ∈ SO(m).

Proof: By the first equation in (107) and the second equation in (59)

On(P1⊕P2) = On(P1

√
Im + P t

2P2 +
√
In + P1P t

1P2)

= OnP1

√
Im + (OnP2)t(OnP2) +On

√
In + P1P t

1P2

= OnP1

√
Im + (OnP2)t(OnP2)

+
√
In + (OnP1)(OnP1)tOnP2 = OnP1⊕OnP2

(122)

thus proving the first identity in (121).

Similarly, by the first equation in (107) and the first equation in (59)

(P1⊕P2)Om = (P1

√
Im + P t

2P2 +
√
In + P1P t

1P2)Om

= P1

√
Im + P t

2P2Om +
√
In + P1P t

1P2Om

= P1Om

√
Im + (P2Om)t(P2Om)

+
√
In + (P1Om)(P1Om)tP2Om = P1Om⊕P2Om

(123)
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thus proving the second identity in (121). The third identity in (121) follows im-

mediately from the first two identities in (121). �

Left gyrations, lgyr[P1, P2], and right gyrations, rgyr[P1, P2], P1, P2 ∈ R
n×m,

are, by (103) and Theorem 15, left and right automorphisms of (Rn×m,⊕).

Accordingly, left and right gyrations are also called left and right gyroautomor-

phisms of (Rn×m,⊕) or, collectively, bi-gyroautomorphisms of the parameter bi-

gyrogroupoid (Rn×m,⊕).

Since −P = 	P , we clearly have the identities

On(	P ) = 	OnP, (	P )Om = 	POm, On(	P )Om = 	OnPOm (124)

for all P ∈ R
n×m, On ∈ SO(n) and Om ∈ SO(m).

8. The Bi-Boost Square

We are now in the position to determine the parameters of the squared bi-boost. If

we use the convenient notation

bm :=
√
Im + P tP, bn :=

√
In + PP t (125)

P ∈ R
n×m, then, by (74)

B(P ) =

(
bm P t

P bn

)
(126)

and the squared bi-boost B(P ) leads to the following chain of equations, which

are numbered for subsequent explanation

B(P )2
(1)︷︸︸︷
===

(
bm P t

P bn

)(
bm P t

P bn

)
(2)︷︸︸︷
===

(
b2m + P tP bmP t + P tbn

Pbm + bnP b2n + PP t

)
(127)

(3)︷︸︸︷
===

(
Im + 2P tP 2P tbn

2bnP In + 2PP t

)
(4)︷︸︸︷
=== :

(
E11 E12

E21 E22

)
.

Derivation of the numbered equalities in (127) follows

1. This equation follows from (126).

2. Follows from Item (1) by block matrix multiplication.

3. Results from (125) and the commuting relations (54) and (53).
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4. This equation defines Eij , i, j = 1, 2.

Hence, by the parameter recognition formulas (101), along with (103), we have

P⊕P = E21, E12 = rgyr[P, P ](P⊕P )tlgyr[P, P ]

(128)

rgyr[P, P ] = E11

√
Im + Et

21E21

−1

, lgyr[P, P ] =
√
In + E21Et

21

−1

E22

where Eij are given by Item (4) of (127).

Following the first equation in (128) and the definition of E21 in Item (4) of (127),

and (53), we have the equations

E21 = P⊕P = 2bnP = 2Pbm. (129)

Let us consider the following chain of equations, some of which are numbered for

subsequent explanation

E11

(1)︷︸︸︷
=== Im + 2P tP===

{
Im + 4P tP + 4(P tP )2

}1
2

===
{
Im + 4(Im + P tP )P tP

}1
2 ===

{
Im + 4b2mP tP

}1
2

(2)︷︸︸︷
===

{
Im + 4P tb2nP

}1
2 ===

{
Im + 2(bnP )t2bnP

}1
2

(3)︷︸︸︷
===

√
Im + Et

21E21.

(130)

Derivation of the numbered equalities in (130) follows

1. This equation follows from the definition of E11 in Item (4) of (127).

2. This equation is obtained from its predecessor by two successive applica-

tions of the commuting relation (54).

3. Follows from (129).

We see from (130) and the second equation in (128) that the right gyration gener-

ated by P and P is trivial

rgyr[P, P ] = Im (131)

for all P ∈ R
n×m.
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Similarly to (130), let us consider the following chain of equations, some of which

are numbered for subsequent explanation

E22

(1)︷︸︸︷
=== In + 2PP t===

{
In + 4PP t + 4(PP t)2

}1
2

===
{
In + 4(In + PP t)PP t

}1
2 ===

{
In + 4b2nPP t

}1
2

(2)︷︸︸︷
===

{
In + 4Pb2mP t

}1
2 ===

{
In + 2Pbm2(Pbm)t

}1
2

(3)︷︸︸︷
===

√
In + E21Et

21.

(132)

Derivation of the numbered equalities in (132) follows

1. This equation follows from the definition of E22 in Item (4) of (127).

2. This equation is obtained from its predecessor by two successive applica-

tions of the commuting relation (53).

3. Follows from (129).

We see from (132) and the third equation in (128) that the left gyration generated

by P and P is trivial

lgyr[P, P ] = In (133)

for all P ∈ R
n×m.

It follows from (128) – (133) that

E11 =
√
Im + (P⊕P )t(P⊕P ), E21 = P⊕P

E22 =
√
In + (P⊕P )(P⊕P )t, E12 = (P⊕P )t.

(134)

Hence, by the extreme sides of (127)

B(P )2 = B(P⊕P ) (135)

so that a the square of a bi-boost is, again, a bi-boost.

As a byproduct of squaring the bi-boost, we have obtained the results in (131) and

(133), which we formalize in the following theorem.

Theorem 16. (A trivial bi-gyration).

lgyr[P, P ] = In, rgyr[P, P ] = Im (136)

for all P ∈ R
n×m.
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9. Commuting Relations Between Bi-Gyrations and Bi-Rotations

Remarkably, bi-gyrations (lgyr[P1, P2], rgyr[P1, P2]) ∈ SO(n) × SO(m) and bi-

rotations (On, Om) ∈ SO(n) × SO(m) possess an elegant commuting relation,

stated in the following theorem.

Theorem 17. (Bi-gyration – bi-rotation commuting relation).

Onlgyr[P1, P2] = lgyr[OnP1, OnP2]On (137)

and
rgyr[P1, P2]Om = Omrgyr[P1Om, P2Om] (138)

for all P1, P2 ∈ R
n×m, On ∈ SO(n) and Om ∈ SO(m).

Proof: The matrix identity (137) is proved in the following chain of equations,

which are numbered for subsequent explanation

Onlgyr[P1, P2]

(1)︷︸︸︷
=== On

√
In + (P1⊕P2)(P1⊕P2)t

−1

×
{
P1P

t
2 +

√
In + P1P t

1

√
In + P2P t

2

}
(2)︷︸︸︷
===

√
In + (OnP1⊕OnP2)(OnP1⊕OnP2)t

−1
On

×
{
P1P

t
2 +

√
In + P1P t

1

√
In + P2P t

2

}
(3)︷︸︸︷
===

√
In + (OnP1⊕OnP2)(OnP1⊕OnP2)t

−1
(139)

×
{
OnP1P

t
2 +On

√
In + P1P t

1

√
In + P2P t

2

}
(4)︷︸︸︷
===

√
In + (OnP1⊕OnP2)(OnP1⊕OnP2)t

−1

×{
(OnP1)(OnP2)

t

+
√
In + (OnP1)(OnP1)t

√
In + (OnP2)(OnP2)t

}
On

(5)︷︸︸︷
=== lgyr[OnP1, OnP2]On.

Derivation of the numbered equalities in (139) follows
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1. This equation follows from the third equation in (105).

2. Follows from Item (1) by Lemma 3, p. 50, and Theorem 15, p. 63.

3. Follows from Item (2) by the linearity of On.

4. Follows from Item (3) by the obvious matrix identity

OnP1P
t
2 = (OnP1)(OnP2)

tOn

and from Lemma 2, p. 49.

5. Follows from Item (4) by the linearity of On and by the third equation in

(105).

The proof of the matrix identity (138) in (140) below is similar to the proof of the

matrix identity (137) in (139)

lgyr[P1, P2]Om

(1)︷︸︸︷
===

{
P t
1P2 +

√
Im + P t

1P1

√
Im + P t

2P2

}

×
√
Im + (P1⊕P2)t(P1⊕P2)

−1
Om

(2)︷︸︸︷
===

{
P t
1P2 +

√
Im + P t

1P1

√
Im + P t

2P2

}
Om

×
√
Im + (P1Om⊕P2Om)t(P1Om⊕P2Om)

−1

(3)︷︸︸︷
===

{
P t
1P2Om +

√
Im + P t

1P1

√
Im + P t

2P2Om

}
(140)

×
√
Im + (P1Om⊕P2Om)t(P1Om⊕P2Om)

−1

(4)︷︸︸︷
===

{
Om(P1Om)t(P2Om)

+Om

√
Im + (P1Om)t(P1Om)

√
Im + (P2Om)t(P2Om)

}
×
√
Im + (P1Om⊕P2Om)t(P1Om⊕P2Om)

−1

(5)︷︸︸︷
=== Omrgyr[P1Om, P2Om].

Derivation of the numbered equalities in (140) follows

1. This equation follows from the second equation in (105).
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2. Follows from Item (1) by Lemma 3, p. 50, and Theorem 15, p.63.

3. Follows from Item (2) by the linearity of Om.

4. Follows from Item (3) by the obvious matrix identity

P t
1P2Om = Om(P1Om)t(P2Om)

and from Lemma 2, p. 49, and from the linearity of Om.

5. Follows from Item (4) by the linearity of Om and by the second equation in

(105).

�

The following corollary results immediately from Theorem 17.

Corollary 18. Let P1, P2 ∈ R
n×m, On ∈ SO(n) and Om ∈ SO(m). Then

lgyr[OnP1, OnP2] = lgyr[P1, P2] (141)

if and only if On and lgyr[P1, P2] commute, that is, if and only if

Onlgyr[P1, P2] = lgyr[P1, P2]On.

Similarly
rgyr[P1Om, P2Om] = rgyr[P1, P2] (142)

if and only if Om and rgyr[P1, P2] commute, that is, if and only if

Omrgyr[P1, P2] = rgyr[P1, P2]Om.

Example 19. The left (right) gyration lgyr[P1, P2] (rgyr[P1, P2]) commutes with
itself. Hence, by Corollary 18

lgyr[lgyr[P1, P2]P1, lgyr[P1, P2]P2] = lgyr[P1, P2]

rgyr[P1rgyr[P1, P2], P2rgyr[P1, P2]] = rgyr[P1, P2].
(143)

Left gyrations are invariant under parameter right rotations Om ∈ SO(m), and

right gyrations are invariant under parameter left rotations On ∈ SO(n), as the

following theorem asserts.

Theorem 20. (Bi-gyration Invariance Relation).

lgyr[P1Om, P2Om] = lgyr[P1, P2] (144)

rgyr[OnP1, OnP2] = rgyr[P1, P2] (145)

for all P1, P2 ∈ R
n×m, On ∈ SO(n) and Om ∈ SO(m).
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Proof: The proof follows straightforwardly from the second and the third equa-

tions in (105), p. 60, and from Theorem 15, p. 63, noting that (P1Om)(P2Om)t =
P1P

t
2 and (OnP1)

t(OnP2) = P t
1P2 for all P1, P2 ∈ R

n×m, On ∈ SO(n) and

Om ∈ SO(m). �

10. Product of Lorentz Transformations

Let Λ1 and Λ2 be two Lorentz transformations of order (m,n), m,n ∈ N, so that,

according to (82)

Λ1 = Λ(On,1, P1, Om,1) = ρ(Om,1)B(P1)λ(On,1)

Λ2 = Λ(On,2, P2, Om,2) = ρ(Om,2)B(P2)λ(On,2).
(146)

The product Λ1Λ2 of Λ1 and Λ2 is obtained in the following chain of equations,

which are numbered for subsequent explanation

Λ1Λ2

(1)︷︸︸︷
=== ρ(Om,1)B(P1)λ(On,1)ρ(Om,2)B(P2)λ(On,2)

(2)︷︸︸︷
=== ρ(Om,1)B(P1)ρ(Om,2)λ(On,1)B(P2)λ(On,2)

(3)︷︸︸︷
=== ρ(Om,1)ρ(Om,2)B(P1Om,2)B(On,1P2)λ(On,1)λ(On,2)

(4)︷︸︸︷
=== ρ(Om,1Om,2)B(P1Om,2)B(On,1P2)λ(On,1On,2)

(5)︷︸︸︷
=== ρ(Om,1Om,2) (147)

×ρ(rgyr[P1Om,2, On,1P2])B(P1Om,2⊕On,1P2)

λ(lgyr[P1Om,2, On,1P2])× λ(On,1On,2)
(6)︷︸︸︷
=== ρ(Om,1Om,2rgyr[P1Om,2, On,1P2])

×B(P1Om,2⊕On,1P2)

×λ(lgyr[P1Om,2, On,1P2]On,1On,2).

Derivation of the numbered equalities in (147) follows

1. This equation follows from (146).

2. Follows from (1) since λ(On,1) and ρ(Om,2) commute.
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3. Follows from (2) by Lemma 6, p. 53.

4. Follows from (3) by the matrix identities ρ(Om,1)ρ(Om,2) = ρ(Om,1Om,2)
and λ(On,1)λ(On,2) = λ(On,1On,2), which are obvious.

5. Follows from (4) by the bi-boost composition law (104), p. 59.

6. Obvious (Similar to the argument in Item (4)).

In the column notation (79), the result of (147) gives the product law of Lorentz

transformations in the following theorem.

Theorem 21. (Lorentz transformation product law). The product of two
Lorentz transformations Λ1 = (P1, On,1, Om,1)

t and Λ2 = (P2, On,2, Om,2)
t of

order (m,n), m,n ∈ N, is given by

Λ1Λ2 =

⎛
⎜⎝

P1

On,1

Om,1

⎞
⎟⎠

⎛
⎜⎝

P2

On,2

Om,2

⎞
⎟⎠ =

⎛
⎜⎝

P1Om,2⊕On,1P2

lgyr[P1Om,2, On,1P2]On,1On,2

Om,1Om,2rgyr[P1Om,2, On,1P2]

⎞
⎟⎠ . (148)

Example 22. In the special case when P1 = P2 = 0n,m and Om,1 = Om,2 = Im,
the parameter composition law (148) yields the equation⎛

⎜⎝
0n,m

On,1

Im

⎞
⎟⎠

⎛
⎜⎝
0n,m

On,2

Im

⎞
⎟⎠ =

⎛
⎜⎝

0n,m

On,1On,2

Im

⎞
⎟⎠ (149)

demonstrating that under the parameter composition law (148) the parameter On

forms the spacial orthogonal group SO(n).

Example 23. In the special case when P1 = P2 = 0n,m and On,1 = On,2 = In,
the parameter composition law (148) yields the equation⎛

⎜⎝
0n,m

In

Om,1

⎞
⎟⎠

⎛
⎜⎝
0n,m

In

Om,2

⎞
⎟⎠ =

⎛
⎜⎝

0n,m

In

Om,1Om,2

⎞
⎟⎠ (150)

demonstrating that under the parameter composition law (148) the parameter Om

forms the spacial orthogonal group SO(m).
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Example 24. In the special case when On,1 = On,2 = In and Om,1 = Om,2 = Im
the parameter composition law (148) yields the equation⎛

⎜⎝
P1

In

Im

⎞
⎟⎠

⎛
⎜⎝
P2

In

Im

⎞
⎟⎠ =

⎛
⎜⎝

P1⊕P2

lgyr[P1, P2]

rgyr[P1, P2]

⎞
⎟⎠ . (151)

Clearly, under the parameter composition law (148) the parameter P ∈ R
n×m

does not form a group. Indeed, following the parametrization of the generalized
Lorentz group SO(m,n) in (146), we face the task of determining the composition
law of the parameter P ∈ R

n×m along with the resulting group-like structure of
the parameter set Rn×m. We will find in the sequel that the group-like structure of
R
n×m that results from the composition law of the parameter P is a natural gener-

alization of the gyrocommutative gyrogroup structure, called a bi-gyrocommutative
bi-gyrogroup.

The Lorentz transformation product (148) represents matrix multiplication. As

such, it is associative and, clearly, its inverse obeys the identity

(Λ1Λ2)
−1 = Λ−1

2 Λ−1
1 . (152)

11. The Bi-Gyrocommutative Law

Bi-boosts are Lorentz transformations without bi-rotations. Let

B(Pk) = (Pk, In, Im)t (153)

Pk ∈ R
n×m, k = 1, 2, be two bi-boosts in R

(m+n)×(m+n). Then, by (148) with

On,1 = On,2 = In and Om,1 = Om,2 = Im (or by (110)), and by (93) with

On = lgyr[P1, P2] and Om = rgyr[P1, P2]

(B(P1)B(P2))
−1 =

⎧⎪⎨
⎪⎩
⎛
⎜⎝
P1

In

Im

⎞
⎟⎠

⎛
⎜⎝
P2

In

Im

⎞
⎟⎠
⎫⎪⎬
⎪⎭

−1

=

⎛
⎜⎝

P1⊕P2

lgyr[P1, P2]

rgyr[P1, P2]

⎞
⎟⎠

−1

=

⎛
⎜⎝
−lgyr−1[P1, P2](P1⊕P2)rgyr

−1[P1, P2]

lgyr−1[P1, P2]

rgyr−1[P1, P2]

⎞
⎟⎠ .

(154)

Here lgyr−1[P1, P2] = (lgyr[P1, P2])
−1 and rgyr−1[P1, P2] = (rgyr[P1, P2])

−1.
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Calculating (B(P1)B(P2))
−1 in a different way, as indicated in (152), yields

(B(P1)B(P2))
−1 = B(P2)

−1B(P1)
−1 =

⎛
⎜⎝
P2

In

Im

⎞
⎟⎠

−1 ⎛⎜⎝
P1

In

Im

⎞
⎟⎠

−1

=

⎛
⎜⎝
−P2

In

Im

⎞
⎟⎠

⎛
⎜⎝
−P1

In

Im

⎞
⎟⎠ =

⎛
⎜⎝

(−P2)⊕(−P1)

lgyr[−P2,−P1]

rgyr[−P2,−P1]

⎞
⎟⎠ .

(155)

Hence, the extreme right sides of (154) – (155) are equal, implying the equality of

their respective entries, giving rise to the three equations in (156) – (157) below.

The second and third entries of the extreme right sides of (154) – (155), along with

the even property (119) of bi-gyrations, imply the bi-gyration inversion law

lgyr−1[P1, P2] = lgyr[−P2,−P1] = lgyr[P2, P1]

rgyr−1[P1, P2] = rgyr[−P2,−P1] = rgyr[P2, P1].
(156)

for all P1, P2 ∈ R
n×m.

The first entry of the extreme right sides of (154) – (155), along with (156) and the

gyroautomorphic inverse property (118), yields

(−P2)⊕(−P1) = −lgyr−1[P1, P2](P1⊕P2)rgyr
−1[P1, P2]

= −lgyr[−P2,−P1](P1⊕P2)rgyr[−P2,−P1]

= lgyr[−P2,−P1]{−(P1⊕P2)}rgyr[−P2,−P1]

= lgyr[−P2,−P1]{(−P1)⊕(−P2)}rgyr[−P2,−P1]

(157)

for all P1, P2 ∈ R
n×m.

Renaming −P1 and −P2 as P2 and P1, the extreme sides of (157) give the bi-
gyrocommutative law of the bi-gyroaddition ⊕

P1⊕P2 = lgyr[P1, P2](P2⊕P1)rgyr[P1, P2] (158)

for all P1, P2 ∈ R
n×m.

Instructively, a short derivation of the bi-gyrocommutative law of ⊕ is presented

below. Transposing the extreme sides of the fourth matrix equation in (105), noting

that by (156)

lgyr[P1, P2]
t = lgyr−1[P1, P2] = lgyr[P2, P1]

rgyr[P1, P2]
t = rgyr−1[P1, P2] = rgyr[P2, P1]

(159)
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and renaming the pair (P1, P2) as (P2, P1), we obtain the matrix identity

P1⊕P2 = lgyr[P1, P2](P2⊕P1)rgyr[P1, P2] (160)

for all P1, P2 ∈ R
n×m.

The matrix identity (160) gives the bi-gyrocommutative law of the binary oper-

ation ⊕ in R
n×m, according to which P1⊕P2 equals P2⊕P1 bi-gyrated by the

bi-gyration (lgyr[P1, P2], rgyr[P1, P2]) generated by P1 and P2, for all P1, P2 ∈
R
n×m.

Formalizing the result in (158) and in (160) we obtain the following theorem.

Theorem 25. (Bi-gyrocommutative Law). The binary operation ⊕ in R
n×m pos-

sesses the bi-gyrocommutative law

P1⊕P2 = lgyr[P1, P2](P2⊕P1)rgyr[P1, P2] (161)

for all P1, P2 ∈ R
n×m.

When m = 1 right gyrations are trivial, rgyr[P1, P2] = Im. Hence, in the spe-

cial case when m = 1, the bi-gyrocommutative law (161) of bi-gyrogroup theory

descends to the gyrocommutative law of gyrogroup theory found, for instance,

in [19, 20, 22–25, 27].

Formalizing the results in (159) we obtain the following theorem.

Theorem 26. (Bi-gyration Inversion Law). The bi-gyrogroupoid (Rn×m,⊕) pos-
sesses the left gyration inversion law

lgyr−1[P1, P2] = lgyr[P2, P1] (162a)

and the right gyration inversion law

rgyr−1[P1, P2] = rgyr[P2, P1] (162b)

for all P1, P2 ∈ R
n×m.

Identities (162a) – (162b) form the inversive symmetric property of bi-gyrations.

12. The Bi-Gyroassociative Law

Matrix multiplication is associative. Hence

(Λ1Λ2)Λ3 = Λ1(Λ2Λ3). (163)
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On the one hand, by (110) and (148)

(B(P1)B(P2))B(P3) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝
P1

In

Im

⎞
⎟⎠

⎛
⎜⎝
P2

In

Im

⎞
⎟⎠
⎫⎪⎬
⎪⎭

⎛
⎜⎝
P3

In

Im

⎞
⎟⎠ =

⎛
⎜⎝

P1⊕P2

lgyr[P1, P2]

rgyr[P1, P2]

⎞
⎟⎠

⎛
⎜⎝
P3

In

Im

⎞
⎟⎠

=

⎛
⎜⎝

(P1⊕P2)⊕lgyr[P1, P2]P3

lgyr[P1⊕P2, lgyr[P1, P2]P3]lgyr[P1, P2]

rgyr[P1, P2]rgyr[P1⊕P2, lgyr[P1, P2]P3]

⎞
⎟⎠ .

(164)

On the other hand, similarly, by (110) and (148),

B(P1)(B(P2)B(P3)) =

⎛
⎜⎝
P1

In

Im

⎞
⎟⎠

⎧⎪⎨
⎪⎩
⎛
⎜⎝
P2

In

Im

⎞
⎟⎠

⎛
⎜⎝
P3

In

Im

⎞
⎟⎠
⎫⎪⎬
⎪⎭ =

⎛
⎜⎝
P1

In

Im

⎞
⎟⎠

⎛
⎜⎝

P2⊕P3

lgyr[P2, P3]

rgyr[P2, P3]

⎞
⎟⎠

=

⎛
⎜⎝

P1rgyr[P2, P3]⊕(P2⊕P3)

lgyr[P1rgyr[P2, P3], P2⊕P3]lgyr[P2, P3]

rgyr[P2, P3]rgyr[P1rgyr[P2, P3], P2⊕P3]

⎞
⎟⎠ .

(165)

Hence, by (163) – (165), corresponding entries of the extreme right sides of (164)

and (165) are equal, giving rise to the bi-gyroassociative law

(P1⊕P2)⊕lgyr[P1, P2]P3 = P1rgyr[P2, P3]⊕(P2⊕P3) (166)

and to the bi-gyration identities

lgyr[P1⊕P2, lgyr[P1, P2]P3]lgyr[P1, P2] = lgyr[P1rgyr[P2, P3], P2⊕P3]lgyr[P2, P3]

(167)

rgyr[P1, P2]rgyr[P1⊕P2, lgyr[P1, P2]P3] = rgyr[P2, P3]rgyr[P1rgyr[P2, P3], P2⊕P3]

for all P1, P2, P3 ∈ R
n×m.

Formalizing the result in (166) we obtain the following theorem.

Theorem 27. (Bi-gyroassociative law in (Rn×m,⊕)). The bi-gyroaddition ⊕ in
R
n×m possesses the bi-gyroassociative law

(P1⊕P2)⊕lgyr[P1, P2]P3 = P1rgyr[P2, P3]⊕(P2⊕P3) (168)

for all P1, P2 ∈ R
n×m.
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Note that in the bi-gyroassociative law (168), P1 and P2 are grouped together on

the left side, while P2 and P3 are grouped together on the right side.

When m = 1 right gyrations are trivial, rgyr[P1, P2] = Im=1 = 1. Hence, in

the special case when m = 1, the bi-gyroassociative law (168) descends to the

gyroassociative law of gyrogroup theory found, for instance, in [19,20,22–25,27].

The bi-gyroassociative law gives rise to the left and right cancellation laws in the

following theorem.

Theorem 28. (Left and right cancellation laws in (Rn×m,⊕)). The bi-gyro-
groupoid (Rn×m,⊕) possesses the left and right cancellation laws

P2 = 	P1rgyr[P1, P2]⊕(P1⊕P2) (169)

and
P1 = (P1⊕P2)	lgyr[P1, P2]P2 (170)

for all P1, P2 ∈ R
n×m.

Proof: The left cancellation law (169) follows from the bi-gyroassociative law

(168) with P1 = 	P2, noting that lgyr[	P2, P2] is trivial by (114), p. 62. The

right cancellation law (170) follows from the bi-gyroassociative law (168) with

P3 = 	P2, noting that rgyr[P2,	P2] is trivial. �

The bi-gyroassociative law gives rise to the left and right bi-gyroassociative laws

in the following theorem.

Theorem 29. (Left and right bi-gyroassociative law in (Rn×m,⊕)). The bi-
gyroaddition ⊕ in R

n×m possesses the left bi-gyroassociative law

P1⊕(P2⊕P3) = (P1rgyr[P3, P2]⊕P2)⊕lgyr[P1rgyr[P3, P2], P2]P3 (171)

and the right bi-gyroassociative law

(P1⊕P2)⊕P3 = P1rgyr[P2, lgyr[P2, P1]P3]⊕(P2⊕lgyr[P2, P1]P3) (172)

for all P1, P2 ∈ R
n×m.

Proof: The left bi-gyroassociative law (171) is obtained from the bi-gyroassociative

law (168) by replacing P1 by P1rgyr[P3, P2] and noting the bi-gyration inversion

law (156). Similarly, the right bi-gyroassociative law (172) is obtained from the

bi-gyroassociative law (168) by replacing P3 by lgyr[P2, P1]P3 and noting the bi-

gyration inversion law (156). �
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13. Bi-Gyration Reduction Properties

A reduction property of a gyration lgyr[P1, P2] or rgyr[P1, P2] is a property en-

abling the gyration to be expressed as a gyration that involves P1⊕P2. Several

reduction properties are derived in Subsections 13.1 – 13.4 below.

13.1. Bi-Gyration Reduction Properties I

When P3 = 	P2, (167) specializes to

lgyr[P1⊕P2,	lgyr[P1, P2]P2]lgyr[P1, P2] = In

rgyr[P1, P2]rgyr[P1⊕P2,	lgyr[P1, P2]P2] = Im
(173)

or, equivalently by bi-gyration inversion, (156)

lgyr[P1, P2] = lgyr[	lgyr[P1, P2]P2, P1⊕P2]

rgyr[P1, P2] = rgyr[	lgyr[P1, P2]P2, P1⊕P2].
(174)

Similarly, when P2 = 	P1, (167) specializes to

In = lgyr[P1rgyr[	P1, P3],	P1⊕P3]lgyr[	P1, P2]

Im = rgyr[	P1, P3]rgyr[P1rgyr[	P1, P3],	P1⊕P3]
(175)

or, equivalently by bi-gyration inversion, (156) and renaming P3 as 	P2

lgyr[P1, P2] = lgyr[P1⊕P2,	P1rgyr[P1, P2]]

rgyr[P1, P2] = rgyr[P1⊕P2,	P1rgyr[P1, P2]].
(176)

Formalizing the results in (174) and (176) we obtain the following theorem.

Theorem 30. (Left and Right Gyration Reduction Properties).

lgyr[P1, P2] = lgyr[	lgyr[P1, P2]P2, P1⊕P2]

rgyr[P1, P2] = rgyr[	lgyr[P1, P2]P2, P1⊕P2]
(177)

and

lgyr[P1, P2] = lgyr[P1⊕P2,	P1rgyr[P1, P2]]

rgyr[P1, P2] = rgyr[P1⊕P2,	P1rgyr[P1, P2]]
(178)

for all P1, P2 ∈ R
n×m.
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13.2. Bi-Gyration Reduction Properties II

In general, the product of bi-boosts in a pseudo-orthogonal group SO(m,n) is a

Lorentz transformation which is not a boost. In some special cases, however, the

product of bi-boosts is again a bi-boost, as shown below.

Let P1, P2 ∈ R
n×m, and let J(P1, P2) be the bi-boost symmetric product

J(P1, P2) = B(P1)B(P2)B(P1) =

⎛
⎜⎝
P1

In

Im

⎞
⎟⎠

⎛
⎜⎝
P2

In

Im

⎞
⎟⎠

⎛
⎜⎝
P1

In

Im

⎞
⎟⎠ (179)

which is symmetric with respect to the central bi-boost factor (P2, In, Im)t. Then,

by the Lorentz product law (148)

J(P1, P2) =

⎛
⎜⎝

P1⊕P2

lgyr[P1, P2]

rgyr[P1, P2]

⎞
⎟⎠

⎛
⎜⎝
P1

In

Im

⎞
⎟⎠

=

⎛
⎜⎝

(P1⊕P2)⊕lgyr[P1, P2]P1

lgyr[P1⊕P2, lgyr[P1, P2]P1]lgyr[P1, P2]

rgyr[P1, P2]rgyr[P1⊕P2, lgyr[P1, P2]P1]

⎞
⎟⎠ =:

⎛
⎜⎝

P3

On

Om

⎞
⎟⎠ .

(180)

By means of (91), p. 56, it is clear that

J(P1, P2)
−1 = J(−P1,−P2). (181)

Hence, by the gyroautomorphic inverse property (118), p. 62, and by the bi-gyration

even property, (119), p. 62, it is clear from (180) that

J(P1, P2)
−1 = J(−P1,−P2) =

⎛
⎜⎝
−P3

On

Om

⎞
⎟⎠ . (182)

But, it follows from the inverse Lorentz transformation (93), p. 56, that

J(P1, P2)
−1 =

⎛
⎜⎝
−O−1

n P3O
−1
m

O−1
n

O−1
m

⎞
⎟⎠ . (183)

Comparing the right sides of (183) and (182), we find that On = O−1
n and Om =

O−1
m , implying On = In and Om = Im. Hence, the bi-boost product J(P1, P2) is,
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again, a bi-boost, so that by (180)

J(P1, P2) =

⎛
⎜⎝
(P1⊕P2)⊕lgyr[P1, P2]P1

In

Im

⎞
⎟⎠ . (184)

Following (184) and (180) we have the bi-gyration identities

lgyr[P1⊕P2, lgyr[P1, P2]P1]lgyr[P1, P2] = In

rgyr[P1, P2]rgyr[P1⊕P2, lgyr[P1, P2]P1] = Im
(185)

implying, by the bi-gyration inversion law (162)

lgyr[P1, P2] = lgyr[lgyr[P1, P2]P1, P1⊕P2]

rgyr[P1, P2] = rgyr[lgyr[P1, P2]P1, P1⊕P2]
(186)

for all P1, P2 ∈ R
n×m.

The results in (184) – (185) can readily be extended to the symmetric product of

any number of bi-boosts that appear symmetrically with respect to a central factor.

Thus, for instance, the symmetric bi-boost product J

J = B(Pk)B(Pk−1) . . . B(P2)B(P1)B(P0)B(P1)B(P2) . . . B(Pk−1)B(Pk)
(187)

is symmetric with respect to the central factor B(P0), for any k ∈ N, and all

Pi ∈ R
n×m, i = 0, 1, 2, . . . , k. In particular, the bi-boost product J in (187) is,

again, a bi-boost.

We now manipulate the first bi-gyration identity in (185) into an elegant form that

will be elevated to the status of a theorem in Theorem 31 below. Let us consider

the following chain of equations, which are numbered for subsequent explanation

In

(1)︷︸︸︷
=== lgyr[P1⊕P2, lgyr[P1, P2]P1]lgyr[P1, P2]

(2)︷︸︸︷
=== lgyr[P1, P2]lgyr[lgyr[P2, P1](P1⊕P2), P1]

(188)
(3)︷︸︸︷
=== lgyr[P1, P2]lgyr[lgyr[P2, P1](P1⊕P2)rgyr[P2, P1], P1rgyr[P2, P1]]

(4)︷︸︸︷
=== lgyr[P1, P2]lgyr[P2⊕P1, P1rgyr[P2, P1]].

Derivation of the numbered equalities in (188) follows
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1. This equation is the first equation in the first bi-gyration identity in (185).

2. Follows from the commuting relation (137), p. 67, with On = lgyr[P1, P2],
noting that lgyr[P2, P1] = lgyr−1[P1, P2].

3. Follows from the bi-gyration invariance relation (144), p. 69.

4. Follows from the bi-gyrocommutative law (161), p. 74.

By (188) and the bi-gyration inversion law (162)

lgyr[P2, P1] = lgyr[P2⊕P1, P1rgyr[P2, P1]]. (189)

Renaming (P1, P2) in (189) as (P2, P1), we obtain the first identity in the following

theorem.

Theorem 31. (Left Gyration Reduction Properties).

lgyr[P1, P2] = lgyr[P1⊕P2, P2rgyr[P1, P2]] (190)

and
lgyr[P1, P2] = lgyr[P1rgyr[P2, P1], P2⊕P1] (191)

for all P1, P2 ∈ R
n×m.

Proof: The bi-gyration identity (190) is identical with (189). The bi-gyration iden-

tity (191) is obtained from (190) by applying the bi-gyration inversion law (162)

followed by renaming (P1, P2) as (P2, P1). �

When m = 1 right gyrations are trivial, rgyr[P1, P2] = Im=1 = 1. Hence, in

the special case when m = 1, the bi-gyration reduction properties (190) – (191)

descend to the gyration properties of gyrogroup theory found, for instance, in [20].

The bi-gyration identity (191) involves both left and right gyrations. We manip-

ulate it into an identity that involves only left gyrations in the following chain of

equations, which are numbered for subsequent explanation

lgyr[P1, P2]

(1)︷︸︸︷
=== lgyr[P1rgyr[P2, P1], P2⊕P1]

(2)︷︸︸︷
=== lgyr[lgyr[P1, P2]P1rgyr[P2, P1], lgyr[P1, P2](P2⊕P1)]

(192)
(3)︷︸︸︷
=== lgyr[lgyr[P1, P2]P1rgyr[P2, P1]rgyr[P1, P2],

lgyr[P1, P2](P2⊕P1)rgyr[P1, P2]]

(4)︷︸︸︷
=== lgyr[lgyr[P1, P2]P1, P1⊕P2].
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Derivation of the numbered equalities in (192) follows

1. This equation is the bi-gyration identity 191.

2. Follows from Result (141) of Corollary 18, p. 69, noting that, by Item (1), the

left gyrations lgyr[P1rgyr[P2, P1], P2⊕P1] and lgyr[P1, P2] commute since

they are equal.

3. Follows from (144), p. 69.

4. Follows from Item (3) by applying both the bi-gyration inversion law (162)

and the bi-gyrocommutative law (161), p. 74.

By means of the bi-gyration inversion law (162), the second bi-gyration identity in

(185) gives rise to the bi-gyration identity

rgyr[P1, P2] = rgyr[lgyr[P1, P2]P1, P1⊕P2] (193)

leading to the following theorem.

Theorem 32. (Right gyration reduction properties).

rgyr[P1, P2] = rgyr[lgyr[P1, P2]P1, P1⊕P2] (194)

and
rgyr[P1, P2] = rgyr[P2⊕P1, lgyr[P2, P1]P2] (195)

for all P1, P2 ∈ R
n×m.

Proof: The bi-gyration identity (194) is identical with (193). The bi-gyration iden-

tity (195) is obtained from (194) by applying the bi-gyration inversion law (162)

followed by renaming (P1, P2) as (P2, P1). �

The bi-gyration identity (195) involves both left and right gyrations. We manipu-

late it into an identity that involves only right gyrations in the following chain of

equations, which are numbered for subsequent explanation

rgyr[P1, P2]

(1)︷︸︸︷
=== rgyr[P2⊕P1, lgyr[P2, P1]P2]

(2)︷︸︸︷
=== rgyr[(P2⊕P1)rgyr[P1, P2], lgyr[P2, P1]P2rgyr[P1, P2]]

(196)
(3)︷︸︸︷
=== rgyr[lgyr[P1, P2](P2⊕P1)rgyr[P1, P2],

lgyr[P1, P2]lgyr[P2, P1]P2rgyr[P1, P2]]

(4)︷︸︸︷
=== rgyr[P1⊕P2, P2rgyr[P1, P2]].
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Derivation of the numbered equalities in (196) follows

1. This equation is the bi-gyration identity 195.

2. Follows from Result (142) of Corollary 18, p. 69, noting that, by Item 1,

the right gyrations rgyr[P2⊕P1, lgyr[P2, P1]P2] and rgyr[P1, P2] commute

since they are equal.

3. Follows from (145), p. 69.

4. Follows from Item (3) by applying both the bi-gyration inversion law (162)

and the bi-gyrocommutative law (161), p. 74.

Formalizing the results in (192) and (196) we obtain the following theorem.

Theorem 33. (Bi-gyration reduction properties).

lgyr[P1, P2] = lgyr[lgyr[P1, P2]P1, P1⊕P2] (197)

and
rgyr[P1, P2] = rgyr[P1⊕P2, P2rgyr[P1, P2]] (198)

for all P1, P2 ∈ R
n×m.

13.3. Bi-Gyration reduction properties III

As in Subsection 13.2, let P1, P2 ∈ R
n×m, and let J(P1, P2) be the bi-boost sym-

metric product

J(P1, P2) =

⎛
⎜⎝
P1

In

Im

⎞
⎟⎠

⎛
⎜⎝
P2

In

Im

⎞
⎟⎠

⎛
⎜⎝
P1

In

Im

⎞
⎟⎠ (199)

which is symmetric with respect to the central bi-boost factor (P2, In, Im)t. Then

J(P1, P2) =

⎛
⎜⎝
P1

In

Im

⎞
⎟⎠

⎛
⎜⎝

P2⊕P1

lgyr[P2, P1]

rgyr[P2, P1]

⎞
⎟⎠

=

⎛
⎜⎝

P1rgyr[P2, P1]⊕(P2⊕P1)

lgyr[P1rgyr[P2, P1], P2⊕P1]lgyr[P2, P1]

rgyr[P2, P1]rgyr[P1rgyr[P2, P1], P2⊕P1]

⎞
⎟⎠ =:

⎛
⎜⎝

P3

On

Om

⎞
⎟⎠ .

(200)
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By means of (91), p. 56, it is clear that

J(P1, P2)
−1 = J(−P1,−P2). (201)

Hence, by the gyroautomorphic inverse property (118), p. 62, and by the bi-gyration

even property, (119), p. 62, it is clear from (200) that

J(P1, P2)
−1 = J(−P1,−P2) =

⎛
⎜⎝
−P3

On

Om

⎞
⎟⎠ . (202)

But, it follows from the inverse Lorentz transformation (93), p. 56, that

J(P1, P2)
−1 =

⎛
⎜⎝
−O−1

n P3O
−1
m

O−1
n

O−1
m

⎞
⎟⎠ . (203)

Comparing the right sides of (203) and (202), we find that Om = Im and On = In.

Hence, the bi-boost product J(P1, P2) is, again, a bi-boost, so that by (200)

J(P1, P2) =

⎛
⎜⎝
P1rgyr[P2, P1]⊕(P2⊕P1)

In

Im

⎞
⎟⎠ . (204)

Following (204) and (200) we have the bi-gyration identities

lgyr[P1rgyr[P2, P1], P2⊕P1]lgyr[P2, P1] = In

rgyr[P2, P1]rgyr[P1rgyr[P2, P1], P2⊕P1] = Im
(205)

implying

lgyr[P1, P2] = lgyr[P1rgyr[P2, P1], P2⊕P1]

rgyr[P1, P2] = rgyr[P1rgyr[P2, P1], P2⊕P1]
(206)

for all P1, P2 ∈ R
n×m.

The first entries of (180) and (200) imply the interesting identity

(P1⊕P2)⊕lgyr[P1, P2]P1 = P1rgyr[P2, P1]⊕(P2⊕P1). (207)
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13.4. Bi-Gyration Reduction Properties IV

Let (P1, In, Im)t and (P2, In, Im)t be two given bi-boosts in the pseudo-Euclidean

space R
m,n, and let the bi-boost (X,On, Om)t be given by the equation

⎛
⎜⎝

X

On

Om

⎞
⎟⎠ =

⎛
⎜⎝
	P1

In

Im

⎞
⎟⎠

−1 ⎛⎜⎝
P2

In

Im

⎞
⎟⎠ . (208)

Then the following two consequences of (208) are equivalent⎛
⎜⎝

X

On

Om

⎞
⎟⎠ =

⎛
⎜⎝
P1

In

Im

⎞
⎟⎠

⎛
⎜⎝
P2

In

Im

⎞
⎟⎠ =

⎛
⎜⎝

P1⊕P2

lgyr[P1, P2]

rgyr[P1, P2]

⎞
⎟⎠ (209)

and ⎛
⎜⎝
P2

In

Im

⎞
⎟⎠ =

⎛
⎜⎝
	P1

In

Im

⎞
⎟⎠

⎛
⎜⎝

X

On

Om

⎞
⎟⎠ =

⎛
⎜⎝

	P1Om⊕X

lgyr[	P1Om, X]On

Omrgyr[	P1Om, X]

⎞
⎟⎠ . (210)

The matrix equation (210) in R
m,n implies

On = lgyr[X,	P1Om], Om = rgyr[X,	P1Om] (211)

so that, by the first entry of the matrix equation (209)

On = lgyr[P1⊕P2,	P1Om], Om = rgyr[P1⊕P2,	P1Om]. (212)

Inserting On and Om from the second and the third entries of the matrix equation

(209) into (212), we obtain the reduction properties

lgyr[P1, P2] = lgyr[P1⊕P2,	P1rgyr[P1, P2]]

rgyr[P1, P2] = rgyr[P1⊕P2,	P1rgyr[P1, P2]]
(213)

thus recovering (178).

As a first example, the first reduction property in (213) gives rise to the reduction

property

lgyr[P1, P2] = lgyr[(P1⊕P2)rgyr[P2, P1],	P1] (214)
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in the following chain of equations, which are numbered for subsequent explana-

tion

lgyr[P1, P2]

(1)︷︸︸︷
=== lgyr[P1⊕P2,	P1rgyr[P1, P2]]

(2)︷︸︸︷
=== lgyr[(P1⊕P2)rgyr[P2, P1],	P1rgyr[P1, P2]rgyr[P2, P1]]

(3)︷︸︸︷
=== lgyr[(P1⊕P2)rgyr[P2, P1],	P1]. (215)

Derivation of the numbered equalities in (215) follows

1. This is the first identity in (213).

2. Item (2) is derived from Item (1) by applying Identity (144) of Theorem 20,

p. 69, with Om = rgyr[P2, P1].

3. Item 3 follows immediately from Item 2 by the bi-gyration inversion law

(156), p. 73.

As a second example, the second reduction property in (213) gives rise to the re-

duction property

rgyr[P1, P2] = rgyr[(P1⊕P2)rgyr[P2, P1],	P1] (216)

in the following chain of equations, which are numbered for subsequent explana-

tion

rgyr[P1, P2]

(1)︷︸︸︷
=== rgyr[P1⊕P2,	P1rgyr[P1, P2]]

(2)︷︸︸︷
=== rgyr[(P1⊕P2)rgyr[P2, P1],	P1rgyr[P1, P2]rgyr[P2, P1]]

(3)︷︸︸︷
=== rgyr[(P1⊕P2)rgyr[P2, P1],	P1]. (217)

Derivation of the numbered equalities in (217) follows

1. This is the second identity in (213).

2. The right gyrations rgyr[P2, P1] and rgyr[P1, P2] commute since they are

inverse of each other. Hence, by Item 1, the right gyrations rgyr[P2, P1] and

rgyr[P1⊕P2,	P1rgyr[P1, P2]] commute. The latter commutativity, in turn,

implies Item 2 by Corollary 18, p. 69, with Om = rgyr[P2, P1].
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3. Item 3 follows immediately from Item 2 by the bi-gyration inversion law

(156), p. 73.

Formalizing the results in (214) and (216) we obtain the following interesting the-

orem.

Theorem 34. For all P1, P2 ∈ R
n×m

lgyr[P1, P2] = lgyr[P1⊕′P2,	′P1]

rgyr[P1, P2] = rgyr[P1⊕′P2,	′P1]
(218)

where ⊕′ is a binary operation in R
n×m given by

P1⊕′P2 = (P1⊕P2)rgyr[P2, P1]. (219)

It follows from (219) that

	′P = 	P = −P (220)

for all P ∈ R
n×m.

14. Bi-Gyrogroups

Theorem 34 indicates that it will prove useful to replace the binary operation ⊕ in

R
n×m by the bi-gyrogroup operation ⊕′ in R

n×m in Definition 35 below.

Definition 35. (Bi-gyrogroup Operation, Bi-gyrogroups). Let (Rn×m,⊕) be a
bi-gyrogroupoid (Definition 12, p. 58). The bi-gyrogroup binary operation ⊕′ in
R
n×m is given by

P1⊕′P2 = (P1⊕P2)rgyr[P2, P1] (221)

for all P1, P2 ∈ R
n×m. The resulting groupoid (Rn×m,⊕′) is called a bi-gyrogroup.

Following (221) we have, by right gyration inversion, (162b), p. 74

P1⊕P2 = (P1⊕′P2)rgyr[P1, P2] (222)

for all P1, P2 ∈ R
n×m.

We will find in the sequel that the bi-gyrogroups (Rn×m,⊕′), rather than the bi-

gyrogroupoids (Rn×m,⊕), form the desired elegant algebraic structure that the

parametrization of the Lorentz group SO(m,n) encodes. The point is that we must

study bi-gyrogroupoids in order to pave the way to the study of bi-gyrogroups.
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Accordingly, we note that the bi-gyrogroup operation ⊕′ is determined in (221) in

terms of the bi-gyrogroupoid operation ⊕ and a right gyration. However, it can be

determined equivalently by ⊕ and a left gyration as well. Indeed, it follows from

(221) and the bi-gyrocommutative law (161), p. 74, in (Rn×m,⊕) that

P1⊕′P2 = lgyr[P1, P2](P2⊕P1) (223)

and hence

P1⊕P2 = lgyr[P1, P2](P2⊕′P1) (224)

for all P1, P2 ∈ R
n×m.

Following Definition 35 of the bi-gyrogroup binary operation ⊕′ in R
n×m, it proves

useful to express the bi-gyrations of Rn×m in terms of ⊕′ rather than ⊕, in the fol-

lowing theorem.

Theorem 36. (Bi-gyrogroup Bi-gyrations). The left and right bi-gyration in the
bi-gyrogroup (Rn×m,⊕′) are given by the equations

lgyr[P1, P2] =
√

In + (P1⊕′P2)(P1⊕′P2)t
−1

×
{
P1P

t
2 +

√
In + P1P t

1

√
In + P2P t

2

}

rgyr[P1, P2] =

{
P t
1P2 +

√
Im + P t

1P1

√
Im + P t

2P2

}
×

√
Im + (P2⊕′P1)t(P2⊕′P1)

−1

(225)

for all P1, P2 ∈ R
n×m.

Proof: Noting that rgyr[P1, P2] ∈ SO(m), the first equation in (225) follows from

(222) and the second equation in (107), p. 61. Similarly, noting that lgyr[P1, P2] ∈
SO(n), the second equation in (225) follows from (224) and the third equation in

(107). �

Note that the first equation in (225) and the second equation in (107), p. 61, are

identically the same equations with a single exception: the binary operation ⊕ in

(107) is replaced by the binary operation ⊕′ in (225). Note also that the order of

gyrosummation in the second equation in (225) is P2⊕′P1 rather than P1⊕′P2.

Clearly, the identity element of the groupoid (Rn×m,⊕′) is 0n,m, and the inverse

	′P of P ∈ (Rn×m,⊕′) is 	′P = 	P = −P , as stated in (220), noting that

rgyr[	P, P ] = Im is trivial according to Corollary 14, p. 61.

Following a study of bi-gyrogroups in the sequel we will present an axiomatic

approach to bi-gyrogroups, which forms a natural extension of the axiomatic ap-

proach to groups and to gyrogroups.
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Theorem 37. (Bi-gyrogroup Left and Right Automorphisms).

On(P1⊕′P2) = OnP1⊕′OnP2

(P1⊕′P2)Om = P1Om⊕′P2Om

On(P1⊕′P2)Om = OnP1Om⊕′OnP2Om

(226)

for all P1, P2 ∈ R
n×m, On ∈ SO(n) and Om ∈ SO(m).

Proof: The first identity in (226) is proved in the following chain of equations,

which are numbered for subsequent explanation

On(P1⊕′P2)

(1)︷︸︸︷
=== On(P1⊕P2)rgyr[P2, P1]

(2)︷︸︸︷
=== (OnP1⊕OnP2)rgyr[P2, P1]

(3)︷︸︸︷
=== (OnP1⊕OnP2)rgyr[OnP2, OnP1]

(4)︷︸︸︷
=== OnP1⊕′OnP2.

(227)

Derivation of the numbered equalities in (227) follows

1. Follows from Definition 35.

2. Follows from the first identity in (121), p. 63.

3. Follows from (145), p. 69.

4. Follows from Definition 35.

The second identity in (226) is proved in the following chain of equations, which

are numbered for subsequent explanation

(P1⊕′P2)Om

(1)︷︸︸︷
=== (P1⊕P2)rgyr[P2, P1]Om

(2)︷︸︸︷
=== (P1⊕P2)Omrgyr[P2Om, P1Om]

(3)︷︸︸︷
=== (P1Om⊕P2Om)rgyr[P2Om, P1Om]

(4)︷︸︸︷
=== P1Om⊕′P2Om.

(228)

Derivation of the numbered equalities in (228) follows
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1. Follows from Definition 35.

2. Follows from in (138), p. 67.

3. Follows from the second identity in (121), p. 63.

4. Follows from Definition 35.

Finally, the third identity in (226) follows immediately from the first two identities

in (226). �

The maps On : P �→ OnP , Om : P �→ POm, and (On, Om) : P �→ OnPOm of

R
n×m onto itself are bijective. Hence, by Theorem 37

1. the map On : P �→ OnP is a left automorphism of the bi-gyrogroup

(Rn×m,⊕′)

2. the map Om : P �→ POm is a right automorphism of the bi-gyrogroup

(Rn×m,⊕′) and

3. the map (On, Om) : P �→ OnPOm is a bi-automorphism of the bi-gyrogroup

(Rn×m,⊕′) (A bi-automorphism being an automorphism consisting of a left

and a right automorphism).

Theorem 38. (Left cancellation law in the groupoid (Rn×m,⊕′)). The bi-gyro-
group (Rn×m,⊕′) possesses the left cancellation law

	′P1⊕′(P1⊕′P2) = P2 (229)

for all P1, P2 ∈ R
n×m.

Proof: The proof is provided by the following chain of equations, which are num-

bered for subsequent explanation

	′P1⊕′(P1⊕′P2)

(1)︷︸︸︷
=== 	P1⊕′(P1⊕P2)rgyr[P2, P1]

(2)︷︸︸︷
=== (	P1⊕(P1⊕P2)rgyr[P2, P1])rgyr[(P1⊕P2)rgyr[P2, P1],	P1]

(3)︷︸︸︷
=== (	P1⊕(P1⊕P2)rgyr[P2, P1])rgyr[P1, P2]

(4)︷︸︸︷
=== 	P1rgyr[P1, P2]⊕(P1⊕P2)

(5)︷︸︸︷
=== P2.

(230)

Derivation of the numbered equalities in (230) follows
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1. Follows from (220) and from Definition 35 of ⊕′ applied to P1⊕′P2.

2. Follows from Definition 35 of ⊕′.

3. Follows from (216), p. 85.

4. Follows from the second identity in (121) of Theorem 15, p. 63, applied with

Om = rgyr[P2, P1], and from the bi-gyration inversion law (156), p. 73.

5. Follows from the left cancellation law (170), p. 76, in (Rn×m,⊕).

�

Lemma 39. Let On ∈ SO(n) and Om ∈ SO(m), n,m ∈ N. Then

OnPOm = P (231)

for all P ∈ R
n×m if and only if On = In and Om = Im.

Proof: If On = In and Om = Im, then obviously (231) is true for all P ∈ R
n×m.

Conversely, assuming OnPOm = P , or equivalently

Ot
nP = POm (232)

On ∈ SO(n), Om ∈ SO(m), for all P ∈ R
n×m, we will show that On = In and

Om = Im.

Let

Ot
n =

⎛
⎜⎜⎝
a11 . . . a1n

...

an1 . . . ann

⎞
⎟⎟⎠ , Om =

⎛
⎜⎜⎝

b11 . . . b1m
...

bm1 . . . bmm

⎞
⎟⎟⎠ . (233)

Furthermore, let Pij ∈ R
n×m be the matrix

Pij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 . . . 0

...

0 . . . 1 . . . 0

...

0 . . . 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×m (234)

with one at the ij-entry and zeros elsewhere, i = 1, . . . , n, j = 1, . . . ,m.
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Then the matrix product Ot
nPij

Ot
nPij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . a1i . . . 0

...

0 . . . aii . . . 0

...

0 . . . ani . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×m (235)

is a matrix with j-th column (a1i, . . . , aii, . . . , ani)
t and zeros elsewhere. Shown

explicitly in (235) are the first column, the j-th column and the m-th column of the

matrix Ot
nPij , along with its first row, i-th row and n-th row.

Similarly, the matrix product PijOm

PijOm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 . . . 0

...

b1j . . . bjj . . . bjm
...

0 . . . 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×m (236)

is a matrix with i-th row (b1j , . . . , bjj , . . . , bjm) and zeros elsewhere. Shown ex-

plicitly in (236) are the first column, the j-th column and the m-th column of the

matrix PijOm, along with its first row, i-th row and n-th row.

It follows from (232) that (235) and (236) are equal. Hence, by comparing entries

of the matrices in (235) – (236) we have

aii = bjj (237)

and

aii1 = 0, bjj1 = 0 (238)

for all i, i1 = 1, . . . , n, and all j, j1 = 1, . . . ,m, i1 �= i and j1 �= j.

By (237) – (238) and (233) we have

Ot
n = λIn, Om = λIm. (239)

Moreover, λ = 1 since, by assumption, On ∈ SO(n) and Om ∈ SO(m). Hence,

On = In and Om = Im, as desired. �

The following Lemma 40 is an immediate consequence of Lemma 39.
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Lemma 40. Let On,k ∈ SO(n) and Om,k ∈ SO(m), n,m ∈ N, k = 1, 2. Then

On,1POm,1 = On,2POm,2 (240)

for all P ∈ R
n×m if and only if On,1 = On,2 and Om,1 = Om,2.

15. Bi-Gyration Decomposition and Polar Decomposition

In this section we present manipulations that lead to the bi-gyroassociative and

bi-gyrocommutative laws of the binary operation ⊕′ in Theorems 41 and 42 below.

The product of two bi-boosts, B(P1) and B(P2), P1, P2 ∈ R
n×m, is a Lorentz

transformation Λ = B(P1)B(P2) ∈ SO(m,n) that need not be a bi-boost. As

such, it possesses the bi-gyration decomposition (73), p. 52, as well as the polar

decomposition (83), p. 54, along with the bi-gyration in (103), p. 59.

The bi-gyration decomposition of the bi-boost product gives rise to the binary op-

eration ⊕ in R
n×m as follows. By (102), p. 59, the bi-boost product B(P1)B(P2)

possesses the unique bi-gyration decomposition (104)

B(P1)B(P2) = ρ(rgyr[P1, P2])B(P12)λ(lgyr[P1, P2]) (241)

where, by Definition 12, p. 58

P12 =: P1⊕P2. (242)

Similarly, the polar decomposition of the bi-boost product gives rise to the binary

operation ⊕′ in R
n×m as follows. By (83), p. 54, and (103), the bi-boost product

B(P1)B(P2) possesses the unique polar decomposition

B(P1)B(P2) = B(P ′′
12)ρ(rgyr[P1, P2])λ(lgyr[P1, P2]) (243)

where, by definition

P ′′
12 =: P1⊕′′P2. (244)

In order to see the relationship between the binary operations ⊕ and ⊕′ in R
n×m we

employ the second identity in (77), p. 53, with Om = rgyr[P1, P2] to manipulate

the polar decomposition (243) into the equivalent bi-gyration decomposition

B(P1)B(P2) = B(P ′′
12)ρ(rgyr[P1, P2])λ(lgyr[P1, P2])

= ρ(rgyr[P1, P2])B(P ′′
12rgyr[P1, P2])λ(lgyr[P1, P2]).

(245)

Comparing (245) with (241), noting that the bi-gyration decomposition is unique,

we find that P ′′
12rgyr[P1, P2] = P12, or equivalently, by means of (242) and (244)

P1⊕′′P2 = (P1⊕P2)rgyr[P2, P1], P1⊕P2 = (P1⊕′′P2)rgyr[P1, P2] (246)
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in agreement with the definition of ⊕′ in Definition 35. Hence

⊕′′ = ⊕′. (247)

It follows from (247) that the bi-gyrogroup operation ⊕′ = ⊕′′ in Definition 35

stems from the polar decomposition (243), just as the bi-gyrogroupoid operation

⊕ stems from the bi-gyration decomposition (241).

It is convenient here to temporarily use the short notation

LP1,P2
:= lgyr[P1, P2], RP1,P2

:= rgyr[P1, P2] (248)

in intermediate results, turning back to the full notation in final results, noting that

L−1
P1,P2

= LP2,P1
and R−1

P1,P2
= RP2,P1

.

Identities (243) and (246) imply

ρ(RP1,P2
)λ(LP1,P2

) = B(−(P1⊕P2)RP2,P1
)B(P1)B(P2). (249)

Identities (241) and (246) imply, by right gyration inversion, the following chain

of equations, which are numbered for subsequent explanation

B(P1⊕P2)λ(LP1,P2
)

(1)︷︸︸︷
=== ρ(RP2,P1

)B(P1)B(P2)

(2)︷︸︸︷
=== B(P1RP1,P2

)ρ(RP2,P1
)B(P2)

(3)︷︸︸︷
=== B(P1RP1,P2

)B(P2RP1,P2
)ρ(RP2,P1

).

(250)

Derivation of the numbered equalities in (250) follows

1. This identity is obtained from (241) and (242) by using the right gyration

inversion law in (156) according to which ρ(rgyr[P1, P2])
−1 = ρ(RP2,P1

).

2. Follows from Item (1) by an application to B(P1) of the second identity

in (77), p. 53, with Om = RP2,P1
, noting the right gyration inversion law,

RP1,P2
RP2,P1

= Im.

3. Like Item (2), Item (3) follows from an application to B(P2) of the second

identity in (77), p. 53, with Om = RP2,P1
, noting the right gyration inversion

law, RP1,P2
RP2,P1

= Im.

By means of (250) and right gyration inversion we have

B(P1⊕P2) = B(P1RP1,P2
)B(P2RP1,P2

)ρ(RP2,P1
)λ(LP2,P1

) (251)
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so that, by bi-boost inversion

ρ(RP2,P1
)λ(LP2,P1

) = B(	P2RP1,P2
)B(	P1RP1,P2

)B(P1⊕P2). (252)

Inverting both sides of (252) and noting that the matrices λ(LP1,P2
) and ρ(RP1,P2

)
commute, we obtain the identity

ρ(RP1,P2
)λ(LP1,P2

) = B(	(P1⊕P2))B(P1RP1,P2
)B(P2RP1,P2

). (253)

Comparing (249) and (253), we obtain the identity

B(	(P1⊕P2)RP2,P1
)B(P1)B(P2) = B(	(P1⊕P2))B(P1RP1,P2

)B(P2RP1,P2
)

(254)
= ρ(RP1,P2

)λ(LP1,P2
)

which, in full notation, takes the form

B(	(P1⊕P2)rgyr[P2, P1])B(P1)B(P2)

= B(	(P1⊕P2))B(P1rgyr[P1, P2])B(P2rgyr[P1, P2])

= ρ(rgyr[P1, P2])λ(lgyr[P1, P2]).

(255)

By Definition 35, the extreme sides of (255) yield the identity

ρ(rgyr[P1, P2])λ(lgyr[P1, P2]) = B(	(P1⊕′P2))B(P1)B(P2) (256)

so that for all P1, P2, X ∈ R
n×m

ρ(rgyr[P1, P2])λ(lgyr[P1, P2])B(X) = B(	(P1⊕′P2))B(P1)B(P2)B(X).
(257)

Let J1 (J2) denote the left (right) side of (257). Using the column notation in (79),

p. 53, we manipulate the left side, J1, of (257) as follows, where we apply the

Lorentz transformation product law (148), p. 71, and note Corollary 14 on trivial

bi-gyrations. Therefore

J1 = ρ(rgyr[P1, P2])λ(lgyr[P1, P2])B(X)

=

⎛
⎜⎝

0n,m

lgyr[P1, P2]

Im

⎞
⎟⎠

⎛
⎜⎝

0n,m

In

rgyr[P1, P2]

⎞
⎟⎠

⎛
⎜⎝

X

In

Im

⎞
⎟⎠=

⎛
⎜⎝

0n,m

lgyr[P1, P2]

rgyr[P1, P2]

⎞
⎟⎠
⎛
⎜⎝

X

In

Im

⎞
⎟⎠ (258)

=

⎛
⎜⎝

lgyr[P1, P2]X

lgyr[0n,m, lgyr[P1, P2]X]lgyr[P1, P2]

rgyr[P1, P2]rgyr[0n,m, lgyr[P1, P2]X]

⎞
⎟⎠=

⎛
⎜⎝
lgyr[P1, P2]X

lgyr[P1, P2]

rgyr[P1, P2]

⎞
⎟⎠=:

⎛
⎜⎝
A1

B1

C1

⎞
⎟⎠ .
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Similarly, applying the Lorentz transformation product law (148) we manipulate

the right side, J2, of (257) as follows

J2 = B(	(P1⊕′P2))B(P1)B(P2)B(X)

=

⎛
⎜⎝
	(P1⊕′P2)

In

Im

⎞
⎟⎠

⎛
⎜⎝
P1

In

Im

⎞
⎟⎠

⎛
⎜⎝
P2

In

Im

⎞
⎟⎠

⎛
⎜⎝

X

In

Im

⎞
⎟⎠

=

⎛
⎜⎝
	(P1⊕′P2)

In

Im

⎞
⎟⎠

⎛
⎜⎝
P1

In

Im

⎞
⎟⎠

⎛
⎜⎝

P2⊕X

lgyr[P2, X]

rgyr[P2, X]

⎞
⎟⎠

=

⎛
⎜⎝
	(P1⊕′P2)

In

Im

⎞
⎟⎠

⎛
⎜⎝

P1rgyr[P2, X]⊕(P2⊕X)

lgyr[P1rgyr[P2, X], P2⊕X]lgyr[P2, X]

rgyr[P2, X]rgyr[P1rgyr[P2, X], P2⊕X]

⎞
⎟⎠ .

(259)

In the following equations (260) we adjust each entry of the right column of the

extreme right side of (259) to our needs.

By the second equation in (121), p. 63, with Om = rgyr[P2, X], and the right

gyration inversion law (162b), and by (221) – (222), we have

P1rgyr[P2, X]⊕(P2⊕X) = {P1⊕(P2⊕X)rgyr[X,P2]}rgyr[P2, X]

= {P1⊕(P2⊕′X)}rgyr[P2, X] (260a)

= {P1⊕′(P2⊕′X)}rgyr[P1, P2⊕′X]rgyr[P2, X].

By (144) with Om = rgyr[X,P2], and the right gyration inversion law (162b), and

by (221), we have

lgyr[P1rgyr[P2, X], P2⊕X] = lgyr[P1, (P2⊕X)rgyr[X,P2]]

= lgyr[P1, P2⊕′X].
(260b)

By (138) with Om = rgyr[P2, X], and the right gyration inversion law (162b), and

by (221), we have

rgyr[P2, X]rgyr[P1rgyr[P2, X], P2⊕X]

= rgyr[P1, (P2⊕X)rgyr[X,P2]]rgyr[P2, X]

= rgyr[P1, P2⊕′X]rgyr[P2, X].

(260c)
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By means of the equations in (260), the extreme right side of (259) can be written

as

J2 =

⎛
⎜⎝
	(P1⊕′P2)

In

Im

⎞
⎟⎠
⎛
⎜⎝
{P1⊕′(P2⊕′X)}rgyr[P1, P2⊕′X]rgyr[P2, X]

lgyr[P1, P2⊕′X]lgyr[P2, X]

rgyr[P1, P2⊕′X]rgyr[P2, X]

⎞
⎟⎠=:

⎛
⎜⎝
A2

B2

C2

⎞
⎟⎠.

(261)

We now face the task of calculating A2, B2 and C2 by means of the Lorentz product

law (148). Applying the Lorentz product law to (261), we calculate the second

entry, B2, of J2 and simplify it in the following chain of equations, which are

numbered for subsequent explanation, and where we use the notation

Om = rgyr[P1, P2⊕′X]rgyr[P2, X] (262)

B2

(1)︷︸︸︷
=== lgyr[	(P1⊕′P2)Om, {P1⊕′(P2⊕′X)}Om]lgyr[P1, P2⊕′X]lgyr[P2, X]

(263)
(2)︷︸︸︷
=== lgyr[	(P1⊕′P2), P1⊕′(P2⊕′X)]lgyr[P1, P2⊕′X]lgyr[P2, X].

Derivation of the numbered equalities in (263) follows

1. This equation is obtained by calculating the Lorentz transformation product

in (261) by means of (148), selecting the resulting second entry, and using

the notation in (262).

2. Follows from Item (1) by omitting the matrix Om from the two entries of

lgyr according to (144), p. 69.

By (257), J1 = J2 and hence, by (258) and (261), B2 = B1, that is, by (263) and

(258)

lgyr[	(P1⊕′P2), P1⊕′(P2⊕′X)]lgyr[P1, P2⊕′X]lgyr[P2, X] = lgyr[P1, P2]
(264)

for all P1, P2, X ∈ R
n×m.

Similarly, we calculate the third entry, C2, of J2 and simplify it in the following

chain of equations, which are numbered for subsequent explanation
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C2

(1)︷︸︸︷
=== rgyr[P1, P2⊕′X]rgyr[P2, X]

rgyr[	(P1⊕′P2)rgyr[P1, P2⊕′X]rgyr[P2, X],

{P1⊕′(P1⊕′X)}rgyr[P1, P2⊕′X]rgyr[P2, X]]
(2)︷︸︸︷
=== rgyr[P1, P2⊕′X]rgyr[	(P1⊕′P2)rgyr[P1, P2⊕′X],

{P1⊕′(P2⊕′X)}rgyr[P1, P2⊕′X]]rgyr[P2, X]
(3)︷︸︸︷
=== rgyr[	(P1⊕′P2), P1⊕′(P2⊕′X)]rgyr[P1, P2⊕′X]rgyr[P2, X].

(265)

Derivation of the numbered equalities in (265) follows

1. This equation is obtained by calculating the Lorentz transformation product

in (261) by means of (148), and selecting the resulting third entry.

2. Follows from Item (1) by applying Identity (138), p. 67, with Om given by

Om = rgyr[P2, X].

3. Follows from Item (2) by applying Identity (138), p. 67, with Om given by

Om = rgyr[P1, P2⊕′X].

By (257), J1 = J2 and hence, by (258) and (261), C2 = C1, that is, by (265) and
(258)

rgyr[�(P1⊕
′P2), P1⊕

′(P2⊕
′X)]rgyr[P1, P2⊕

′X]rgyr[P2, X] = rgyr[P1, P2] (266)

for all P1, P2, X ∈ R
n×m.

We are now in a position to calculate the first entry, A2, of J2 and simplify it in the

following chain of equations, which are numbered for subsequent explanation

A2

(1)︷︸︸︷
=== 	(P1⊕′P2)rgyr[P1, P2⊕′X]rgyr[P2, X]

⊕{P1⊕′(P2⊕′X)}rgyr[P1, P2⊕′X]rgyr[P2, X]

(2)︷︸︸︷
=== {	(P1⊕′P2)⊕{P1⊕′(P2⊕′X)}}rgyr[P1, P2⊕′X]rgyr[P2, X]

(267)
(3)︷︸︸︷
=== {	(P1⊕′P2)⊕′{P1⊕′(P2⊕′X)}}rgyr[	(P1⊕′P2), P1⊕′(P2⊕′X)]

rgyr[P1, P2⊕′X]rgyr[P2, X]

(4)︷︸︸︷
=== {	(P1⊕′P2)⊕′{P1⊕′(P2⊕′X)}}rgyr[P1, P2].

Derivation of the numbered equalities in (267) follows
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1. This equation is obtained by calculating the Lorentz transformation product

in (261) by means of (148), and selecting the resulting first entry.

2. Item (2) is obtained by using the second Identity in (121) with

Om = rgyr[P1, P2⊕′X]rgyr[P2, X].

3. The binary operation ⊕ that appears in Item (2) is expressed here in terms of

the binary operation ⊕′ by means of (222).

4. Item (4) follows from Item (3) by Identity (266).

By (257), J1 = J2 and hence, by (258) and (261), A2 = A1, that is, by (267) and

(258)

{	(P1⊕′P2)⊕′{P1⊕′(P2⊕′X)}}rgyr[P1, P2] = lgyr[P1, P2]X. (268)

Hence, by right gyration inversion

	′(P1⊕′P2)⊕′{P1⊕′(P2⊕′X)} = lgyr[P1, P2]Xrgyr[P2, P1] (269)

for all P1, P2, X ∈ R
n×m.

Left gyroadding (P1⊕′P2)⊕′ to both sides of (269) and applying the left cancella-

tion law (229), we obtain the left bi-gyroassociative law

(P1⊕′P2)⊕′lgyr[P1, P2]Xrgyr[P2, P1]

= (P1⊕′P2)⊕′{	′(P1⊕′P2)⊕′{P1⊕′(P2⊕′X)}} = P1⊕′(P2⊕′X). (270)

Theorem 41. (Bi-gyrogroup left and right bi-gyroassociative law). The binary
operation ⊕′ in R

n×m possesses the left bi-gyroassociative law

P1⊕′(P2⊕′X) = (P1⊕′P2)⊕′lgyr[P1, P2]Xrgyr[P2, P1] (271)

and the right bi-gyroassociative law

(P1⊕′P2)⊕′X = P1⊕′(P2⊕′lgyr[P2, P1]Xrgyr[P1, P2]) (272)

for all P1, P2, X ∈ R
n×m.

Proof: The left bi-gyroassociative law (271) is proved in (270).

The right bi-gyroassociative law (272) results from an application of the left bi-

gyroassociative law to the right side of (272), by means of bi-gyration inversion

P1⊕′(P2⊕′lgyr[P2, P1]Xrgyr[P1, P2])

= (P1⊕′P2)⊕′lgyr[P1, P2]lgyr[P2, P1]Xrgyr[P1, P2]rgyr[P2, P1]

= (P1⊕′P2)⊕′X.

(273)

�
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16. Bi-Gyrocommutative Law

The bi-gyrocommutative law in (Rn×m,⊕′) is obtained in Section 15 by com-

paring the bi-gyration decomposition and the polar decomposition of the bi-boost

product Λ = B(P1)B(P2). In this section we derive the bi-gyrocommutative law

in (Rn×m,⊕′) from its counterpart (161), p. 74, in (Rn×m,⊕).

Theorem 42. (Bi-gyrocommutative law in (Rn×m,⊕′)). The binary operation
⊕′ in R

n×m possesses the bi-gyrocommutative law

P1⊕′P2 = lgyr[P1, P2](P2⊕′P1)rgyr[P2, P1] (274)

for all P1, P2 ∈ R
n×m.

Proof: By means of (222), p. 86, and right gyration inversion (162b), p. 74, the

bi-gyrocommutative law (161), p. 74, in (Rn×m,⊕) can be expressed in terms of

⊕′ rather than ⊕, obtaining

(P1⊕′P2)rgyr[P1, P2] = lgyr[P1, P2](P2⊕′P1)rgyr[P2, P1]rgyr[P1, P2]

= lgyr[P1, P2](P2⊕′P1).
(275)

Identity (274) of the Theorem follows immediately from (275) by right gyration

inversion. �

17. Gyrogroup Gyrations

The bi-gyroassociative laws (271) – (272) and the bi-gyrocommutative law (274)

suggest the following definition of gyrations in terms of left and right gyrations.

Definition 43. (Gyrogroup gyrations). The gyrator

gyr : Rn×m × R
n×m → Aut(Rn×m,⊕′)

generates automorphisms called gyrations, gyr [P1, P2] ∈ Aut(Rn×m,⊕′), given
by the equation

gyr [P1, P2]X = lgyr[P1, P2]Xrgyr[P2, P1] (276)

for all P1, P2, X ∈ R
n×m, where left gyrations, lgyr[P1, P2], and right gyrations,

rgyr[P2, P1], are given in (107), p. 61. The gyration gyr [P1, P2] is said to be
the gyration generated by P1, P2 ∈ R

n×m. Being automorphisms of (Rn×m,⊕′),
gyrations are also called gyroautomorphisms.
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Definition 43 will turn out rewarding, leading to the discovery that any bi-gyrogroup

(Rn×m,⊕′) is a gyrocommutative gyrogroup.

Theorem 44. (Gyrogroup gyroassociative and gyrocommutative laws). The bi-
nary operation ⊕′ in R

n×m obeys the left and the right gyroassociative law

P1⊕′(P2⊕′X) = (P1⊕′P2)⊕′gyr [P1, P2]X (277)

and
(P1⊕′P2)⊕′X = P1⊕′(P2⊕′gyr [P2, P1]X) (278)

and the gyrocommutative law

P1⊕′P2 = gyr [P1, P2](P2⊕′P1). (279)

Proof: Identities (277) – (278) follow immediately from Definition 43 and the left

and right bi-gyroassociative law (271) – (272). Similarly, (279) follow immediately

from Definition 43 and the bi-gyrocommutative law (274). �

Lemma 45. The relation (276) between gyrations gyr [P1, P2] and corresponding
bi-gyrations (lgyr[P1, P2], rgyr[P2, P1]), P1, P2 ∈ (Rn×m,⊕′), is bijective.

Proof: Let Pk ∈ R
n×m, k = 1, 2, 3, 4. Assuming

(lgyr[P1, P2], rgyr[P2, P1]) = (lgyr[P3, P4], rgyr[P4, P3]) (280)

it clearly follows from (276) that

gyr [P1, P2] = gyr [P3, P4]. (281)

Conversely, assuming (281), then

gyr [P1, P2]X = gyr [P3, P4]X (282)

for all X ∈ R
n×m, so that by (276)

lgyr[P1, P2]Xrgyr[P2, P1] = lgyr[P3, P4]Xrgyr[P4, P3] (283)

for all X ∈ R
n×m.

Noting that lgyr[P,Q] ∈ SO(n) and rgyr[P,Q] ∈ SO(m) for any P,Q ∈ R
n×m,

(280) follows from (283) and Lemma 40, p. 92, and the proof is complete. �

It is anticipated in Definition 43 that gyrations are automorphisms. The following

theorem asserts that this is indeed the case.
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Theorem 46. (Gyroautomorphism). Gyrations gyr [P1, P2] of a bi-gyrogroup
(Rn×m,⊕′) are automorphisms of the bi-gyrogroup.

Proof: It follows from the bi-gyration inversion law in Theorem 26, p. 74, and

from (276) that gyr [P1, P2] is invertible

gyr−1[P1, P2] = gyr [P2, P1] (284)

for all P1, P2 ∈ R
n×m.

Furthermore, noting that lgyr[P1, P2] ∈ SO(n) and rgyr[P1, P2] ∈ SO(m) it fol-

lows from (276) and the third identity in (226), p. 88, that

gyr [P1, P2](P⊕′Q) = gyr [P1, P2]P⊕′gyr [P1, P2]Q (285)

for all P1, P2, P,Q ∈ R
n×m. Hence, by (284) and (285), gyrations of (Rn×m,⊕′)

are automorphisms of (Rn×m,⊕′), and the proof is complete. �

Theorem 47. (Left gyration reduction properties). Left gyrations of a
bi-gyrogroup (Rn×m,⊕′) possess the left gyration left reduction property

lgyr[P1, P2] = lgyr[P1⊕′P2, P2] (286)

and the left gyration right reduction property

lgyr[P1, P2] = lgyr[P1, P2⊕′P1]. (287)

Proof: By (190), p. 80, (144), p. 69, with Om = rgyr[P2, P1], gyration inversion,

and (221), p. 86, we have the following chain of equations

lgyr[P1, P2] = lgyr[P1⊕P2, P2rgyr[P1, P2]]

= lgyr[(P1⊕P2)rgyr[P2, P1], P2rgyr[P1, P2]rgyr[P2, P1]]

= lgyr[(P1⊕P2)rgyr[P2, P1], P2]

= lgyr[P1⊕′P2, P2]

(288)

thus proving (286).

By (191), p. 80, (145), p. 69, with Om = rgyr[P1, P2], gyration inversion, and

(221), p. 86, we have the following chain of equations

lgyr[P1, P2] = lgyr[P1rgyr[P2, P1], P2⊕P1]

= lgyr[P1rgyr[P2, P1]rgyr[P1, P2], (P2⊕P1)rgyr[P1, P2]]

= lgyr[P1, (P2⊕P1)rgyr[P1, P2]]

= lgyr[P1, P2⊕′P1]

(289)
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thus proving (287). �

Theorem 48. (Right gyration reduction properties). Right gyrations of a bi-
gyrogroup (Rn×m,⊕′) possess the right gyration left reduction property

rgyr[P1, P2] = rgyr[P1⊕′P2, P2] (290)

and the right gyration right reduction property

rgyr[P1, P2] = rgyr[P1, P2⊕′P1]. (291)

Proof: By (195), p. 81, (145), p. 69, with On = lgyr[P1, P2], gyration inversion,

and (223), p. 87, we have the following chain of equations

rgyr[P1, P2] = rgyr[P2⊕P1, lgyr[P2, P1]P2]

= rgyr[lgyr[P1, P2](P2⊕P1), lgyr[P1, P2]lgyr[P2, P1]P2]

= rgyr[lgyr[P1, P2](P2⊕P1), P2]

= rgyr[P1⊕′P2, P2]

(292)

thus proving (290).

By (194), p. 81, (145), p. 69, with On = lgyr[P2, P1], gyration inversion, and

(223), p. 87, we have the following chain of equations

rgyr[P1, P2] = rgyr[lgyr[P1, P2]P1, P1⊕P2]

= rgyr[lgyr[P2, P1]lgyr[P1, P2]P1, lgyr[P2, P1](P1⊕P2)]

= rgyr[P1, lgyr[P2, P1](P1⊕P2)]

= rgyr[P1, P2⊕′P1]

(293)

thus proving (291). �

Theorem 49. (Gyration reduction properties). The gyrations of any bi-gyrogroup
(Rn×m,⊕′), m,n ∈ N, possess the left and right reduction property

gyr [P1, P2] = gyr [P1⊕′P2, P2] (294)

and
gyr [P1, P2] = gyr [P1, P2⊕′P1]. (295)

Proof: Identities (294) and (295) follow from Definition 43 of gyr in terms of lgyr
and rgyr, and from Theorems 47 and 48. �
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18. Gyrogroups

We are now in a position to present the definition of the abstract gyrocommutative

gyrogroup, and prove that any bi-gyrogroup (Rn×m,⊕′) is a gyrocommutative

gyrogroup.

Forming a natural generalization of groups, gyrogroups emerged in the 1988 study

of the parametrization of the Lorentz group of Einstein’s special relativity the-

ory [18, 19]. Einstein velocity addition, thus, provides a concrete example of a

gyrocommutative gyrogroup operation in the ball of all relativistically admissible

velocities.

Definition 50. (Gyrogroups). A groupoid (G,⊕) is a gyrogroup if its binary op-
eration satisfies the following axioms G1) – G5). In G there is at least one element,
0, called a left identity, satisfying

G1) 0⊕a = a

for all a ∈ G. There is an element 0 ∈ G satisfying axiom G1) such that for each
a ∈ G there is an element 	a ∈ G, called a left inverse of a, satisfying

G2) 	a⊕a = 0.

Moreover, for any a, b, c ∈ G there exists a unique element gyr [a, b]c ∈ G such
that the binary operation obeys the left gyroassociative law

G3) a⊕(b⊕c) = (a⊕b)⊕gyr [a, b]c.

The map gyr [a, b] : G → G given by c �→ gyr [a, b]c is an automorphism of the
groupoid (G,⊕), that is

G4) gyr [a, b] ∈ Aut(G,⊕)

and the automorphism gyr [a, b] of G is called the gyroautomorphism, or the gy-
ration, of G generated by a, b ∈ G. The operator gyr : G × G → Aut(G,⊕) is
called the gyrator of G. Finally, the gyroautomorphism gyr [a, b] generated by any
a, b ∈ G possesses the left reduction property

G5) gyr [a, b] = gyr [a⊕b, b]
called the reduction axiom.

The gyrogroup axioms G1) – G5) in Definition 50 are classified into three classes:

1. The first pair of axioms, G1) and G2), is a reminiscent of the group axioms.

2. The last pair of axioms, G4) and G5), presents the gyrator axioms.

3. The middle axiom, G3), is a hybrid axiom linking the two pairs of axioms in

(1) and (2).
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As in group theory, we use the notation a	b = a⊕(	b) in gyrogroup theory as

well.

In full analogy with groups, gyrogroups are classified into gyrocommutative and

non-gyrocommutative gyrogroups.

Definition 51. (Gyrocommutative gyrogroups). A gyrogroup (G,⊕) is gyro-
commutative if its binary operation obeys the gyrocommutative law

G6) a⊕ b = gyr [a, b](b⊕ a)

for all a, b ∈ G.

Theorem 52. (Gyrocommutative gyrogroup). Any bi-gyrogroup (Rn×m,⊕′),
n,m ∈ N, is a gyrocommutative gyrogroup.

Proof: We will validate each of the six gyrocommutative gyrogroup axioms G1)–

G6) in Definitions 50 and 51.

1. The bi-gyrogroup (Rn×m,⊕′) possesses the left identity 0n,m, thus validat-

ing Axiom G1).

2. Every element P ∈ R
n×m possesses the left inverse 	′P := −P ∈ R

n×m,

thus validating Axiom G2).

3. The binary operation ⊕′ obeys the left gyroassociative law (277) by Theorem

44, thus validating Axiom G3).

4. The map gyr [P1, P2] is an automorphism of (Rn×m,⊕′) by Theorem 46,

that is, gyr [P1, P2] ∈ Aut(Rn×m,⊕′), thus validating Axiom G4).

5. The binary operation ⊕′ in R
n×m possesses the left reduction property (294)

by Theorem 49, thus validating Axiom G5).

6. The binary operation ⊕′ in R
n×m possesses the gyrocommutative law (279)

by Theorem 44, thus validating Axiom G6).

�

19. The Abstract Bi-Gyrogroup

Following the key features of the bi-gyrogroups (Rn×m,⊕′), the abstract (bi-

gyrocommutative) bi-gyrogroup is defined to be an abstract (gyrocommutative) gy-

rogroup the gyrations of which are bi-gyrations. In order to define bi-gyrations in

the abstract context, we introduce the concept of bi-automorphisms of a groupoid.
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An automorphism of a groupoid (S,+) is a bijective map f of S onto itself that

respects the groupoid binary operation, that is, f(s1 + s2) = f(s1) + f(s2) for

all s1, s2 ∈ S. An automorphism group, Aut0(S,+), of (S,+) is a group of auto-

morphisms of (S,+) with group operation given by automorphism composition.

Let AutL(S,+) and AutR(S,+) be two automorphism groups of (S,+), called a

left and a right automorphism group of (S,+), such that

AutL(S,+) ∩AutR(S,+) = I (296)

I being the identity automorphism of (S,+).

Finally, let

Aut0(S,+) = AutL(S,+)×AutR(S,+) (297)

be the direct product of AutL(S,+) and AutR(S,+).

1. The application of fL ∈ AutL(S,+) to s ∈ S is denoted by fL(s) or fLs.

2. The application of fR ∈ AutR(S,+) to s ∈ S is denoted by (s)fR or sfR.

3. Accordingly, the application of (fL, fR) ∈ Aut0(S,+) to s ∈ S is denoted

by

(fL, fR)s = fLsfR (298)

where we assume that the composed map in (298) is associative, that is

(fLs)fR = fL(sfR). (299)

Furthermore, we assume that the composed map in (298) is unique, that is

fL,1sfR,1 = fL,2sfR,2 =⇒ fL,1 = fL,2 andfR,1 = fR,2 (300)

for any fL,k ∈ AutL(S,+), fR,k ∈ AutR(S,+), k = 1, 2, and s ∈ S.

The automorphism group Aut0(S,+) = AutL(S,+) × AutR(S,+) is said to be

a bi-automorphism group of the groupoid (S,+).

Let us now consider the case when the groupoid (S,+) is a gyrogroup. A gyroau-

tomorphism group Aut0(S,+) of (S,+) is any automorphism group of (S,+)
that contains the gyrations of (S,+). If Aut0(S,+) is a bi-automorphism group of

(S,+) then its direct product structure (297) induces a direct product structure for

its subset of gyrations

gyr [s1, s2] = (lgyr[s1, s2], rgyr[s1, s2]) (301)
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for all s1, s2 ∈ (S,+), where

gyr [s1, s2] ∈ Aut0(S,+)

lgyr[s1, s2] ∈ AutL(S,+)

rgyr[s1, s2] ∈ AutG(S,+).

(302)

The gyrations gyr [s1, s2] in (301) of the gyrogroup (S,+) are naturally said to be

bi-gyrations. The application of a bi-gyration gyr [s1, s2] to s is denoted by

gyr [s1, s2]s = (lgyr[s1, s2], rgyr[s1, s2])s = lgyr[s1, s2]srgyr[s1, s2]. (303)

Definition 53. (Bi-gyrogroups). A (gyrocommutative) gyrogroup whose gyra-
tions are bi-gyrations is said to be a (bi-gyrocommutative) bi-gyrogroup.

A detailed study of the abstract bi-gyrogroup is presented in [17].

Our study of special (or, unimodular) pseudo-orthogonal groups SO(m,n) can

be extended straightforwardly to an analogous study of special (or, unimodular)

pseudo-unitary groups SU(m,n). Accordingly, bi-gyrocommutative bi-gyrogroup

theory for (Rn×m,⊕′), as developed in this article, can be extended straightfor-

wardly to (Cn×m,⊕′) where

1. real n × m matrices P ∈ R
n×m are replaced by complex n × m matrices

P ∈ C
n×m

2. the transpose P t of P ∈ R
n×m is replaced by the conjugate transpose P ∗ =

(P̄ )t of P ∈ C
n×m and

3. the special orthogonal matrices Ok ∈ SO(k), k = m,n, are replaced by

special unitary matrices Uk ∈ SU(k).
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