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Abstract. The explicit matrix realizations of reversion and spin groups depend

on the set of matrices chosen to represent a basis of one-vectors for a Clifford alge-

bra. On the other hand, there are iterative procedures to obtain bases of one-vectors

for higher dimensional Clifford algebras, starting from those for lower dimensional

ones. For a basis of one-vectors for Cl(0, 5), obtained by applying such procedures

to the Pauli basis for Cl(3, 0) the matrix form of reversion involves neither of the

two standard matrices representing the symplectic form. However, by making use of

the relation between 4× 4 real matrices and the quaternion tensor product (H⊗H),

the matrix form of reversion for this basis of one-vectors is identified. The cor-

responding version of the Lie algebra of the spin group, spin(5), has useful matrix

properties which are explored. Next, the form of reversion for a basis of one-vectors

for Cl(0, 6) obtained iteratively from Cl(0, 0) is obtained. This is then applied to

computing exponentials of 5 × 5 and 6 × 6 real antisymmetric matrices in closed

form, by reduction to the simpler task of computing exponentials of certain 4×4 ma-

trices. For the latter purpose closed form expressions for the minimal polynomials

of these 4×4 matrices are obtained, without availing of their eigenstructure.Among

the byproducts of this work are natural interpretations for members of an orthogonal

basis for M(4,R) provided by the isomorphism with H ⊗ H, and a first principles

approach to the spin groups in dimensions five and six.
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1. Introduction

The anti-automorphism reversion is central to the theory of Clifford algebras. While

it is unambiguously defined at the level of abstract Clifford algebras, its explicit

form as an involution of the matrix algebra, to which the Clifford Algebra in ques-

tion is isomorphic to, very much depends on the specific basis of matrices for

one-vectors chosen to make concrete this isomorphism (see Definition 4 in Section

2.2 for the terminology one and two-vectors). Since there are canonical iterations

supplying bases of one-vectors for higher dimensional Clifford algebras, starting

from well known bases of one-vectors for lower dimensional ones (such as the

Pauli matrices for Cl (3, 0)), it is natural to endow these bases with a privileged

status. Hence finding the form of reversion and Clifford conjugation with respect

to these bases is interesting. For Clifford conjugation it is known [12] that there is

(usually more than one) a choice of basis of one-vectors for Cl (0, n), with respect

to which Clifford conjugation’s matrix form is given by Hermitian conjugation.

However, no such easily stated result is available for the matrix form of reversion
on Cl (0, n).

Explicit expressions for these two anti-automorphisms are important for a variety

of applications. An application, motivating this work, is that explicit matrix forms

of these 2 involutions are very much needed for the success of a useful technique

for computing the exponentials of elements of so (n,R) (the Lie algebra of n× n

real, antisymmetric matrices). We note that this Lie algebra and its Lie group arise

in several applications such as robotics, electrical and energy networks, photonic

lattice filters, communication satellites etc., [3–5, 8–10, 24]

Computing the exponential of a matrix is arguably one of the central tasks of ap-

plied mathematics. In general, this is quite a thankless job, [19]. However, for
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matrices with additional structure certain simplifications may be available. In par-

ticular, the theory of Clifford Algebras and spin groups enables the reduction of

finding eX , with X ∈ so (n,R), to the computation of eY , where Y is the associ-

ated element in the Lie algebra of the corresponding spin group. Frequently this

means dealing with a matrix of smaller size. In particular, the minimal polyno-

mial of Y is typically of lower degree than that of X . This connection, perhaps

folklore, seems to have escaped the notice of a variety of practitioners (see, how-

ever, [6, 21] for variants on this theme). Let us first illustrate this via the famous

Euler-Rodrigues formula for so (3,R).

Example 1. Let X =

⎛⎝ 0 −c b

c 0 −a

−b a 0

⎞⎠ be a 3× 3 antisymmetric real matrix.

As is well known, X has a cubic minimal polynomial, viz., X3 + λ2X = 0, with
λ2 = a2 + b2 + c2. Hence eX = I + sinλ

λ
X + 1−cosλ

λ2 X2. This is the famous
Euler-Rodrigues formula. We will now show that this formula coincides with the
following procedure:

Step 1 Identify su (2) with P , the purely imaginary quaternions, and SU (2) with
the unit quaternions.

Step 2 Let ψ : P → so (3,R) be the map obtained by linearizing the covering map
Φ : SU (2) → SO (3,R), where Φ is the matrix of the map, which sends
v ∈ P to gvg−1, with g a unit quaternion.

Step 3 Find ψ−1(X). This is 1
2(ai + bj + ck).

Step 4 Compute the exponential of ψ−1(X). This is the unit quaternion

p = cos(λ2 )1+
sin(λ

2
)

λ
(ai + bj + ck), with λ =

√
a2 + b2 + c2.

Step 5 Compute the matrix of the map x ∈ P → pxp̄ ∈ P , with respect to the basis
{i, j, k}.

The matrix computed in Step 5 coincides with the matrix provided by the Euler-
Rodrigues formula, eX = I + sinλ

λ
X + 1−cosλ

λ2 X2. For instance, the first column
of the matrix is Step 5 is found by computing pip̄ and rewriting this element of P
as a vector in R

3. Computing pip̄ we find, it is

pip̄ = cos2(
λ

2
)i+

cos(λ2 ) sin(
λ
2 )

λ
)(2cj−2bk)+

sin2(λ2 )

λ2
(a2i−b2i−c2i+2ack+2abj)
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This can be rewritten as

cos2(
λ

2
)i+

sin(λ)

λ
(cj−bk)+

sin2(λ2 )

λ2

(
(a2 + b2 + c2)i− 2(b2 + c2)i + 2ack + 2abj

)
.

This simplifies to

i +
sinλ

λ
(cj− bk) +

1− cosλ

λ2

(−(b2 + c2)i + ack + abj
)
.

Rewritten as a vector in R
3 it is⎛⎜⎝ 1− (b2 + c2)1−cosλ

λ2

c sinλ
λ

+ ab1−cosλ
λ2

−b sinλ
λ

+ ac1−cosλ
λ2

⎞⎟⎠
which is precisely the first column of Euler-Rodrigues formula for eX .

Strictly speaking, the above calculation is not what stems from considering Cl (0, 3),
since the latter is the double ring of the quaternions. However, it is an easy exer-
cise to show that doing all calculations in Cl (0, 3) amounts to the same calculation
outlined in the five step procedure above.

Though not of immense computational superiority in this simple instance, it worth
noting that the exponentiation of a 3×3 matrix has been reduced to the exponenti-
ation of a 2× 2 matrix in su (2), the Lie algebra of 2× 2 traceless, anti-Hermitian
matrices (equivalently of a purely imaginary quaternion). Such matrices have
quadratic minimal polynomials, unlike X which has a cubic minimal polynomial.

The methodology of the above example extends in general. We will restrict our-

selves to Cl (0, n) for simplicity. The method proceeds as follows:

Algorithm 2.

Step 1 Identify a collection of matrices which serve as a basis of one-vectors for the
Clifford Algebra Cl (0, n).

Step 2 Identify the explicit form of Clifford conjugation (φcc) and the grade (or so-
called main) automorphism on Cl (0, n), with respect to this collection of
matrices. Equivalently identify the explicit form of Clifford conjugation and
reversion (φrev) with respect to this collection of matrices.

Step 3 Steps 1 and 2 help in identifying both the spin group Spin (n) and its Lie
algebra spin (n), as sets of matrices, within the same matrix algebra, that
the matrices in Step 1 live in. Hence, one finds an matrix form for the double
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covering Φn : Spin (n) → SO (n,R). This is given typically as the matrix,
with respect to the basis of one-vectors in Step 1, of the linear map
H → ZHφcc(Z), with H a matrix in the collection of one-vectors in Step

1 and Z ∈ Spin (n). This enables one to express Φn(Z) as a matrix in
SO (n,R).

Step 4 Linearize Φn to obtain Lie algebra isomorphism Ψn : spin (n) → so (n,R).
This reads as W → YW −WY , with W once again a one-vector and Y ∈
spin (n). Once again this leads to a matrix in so (n,R) which is Ψn(Y ).

Step 5 Given X ∈ so (n,R) find Ψ−1
n (X) = Y ∈ spin (n).

Step 6 Compute the matrix eY and use Step 3 to find the matrix Φn(e
Y ). This matrix

is eX .

The key steps for the success of this algorithm are really Steps 1, 2 and 3.

In the literature, the identification of Spin(n), is usually achieved by using the

isomorphism between Cl(0, n−1) and the even vectors in Cl (0, n), see [16,20]. In

other words, Spin (n), is identified as a subset of Cl (0, n− 1). However, this does

not enable the finding of the matrix form of reversion. Similarly, to use Algorithm

2 above, one needs the one-vectors, the two-vectors (since they intervene in the Lie

algebra of the spin group) and Spin (n) to be identified as explicit subcollections of

matrices within the same matrix algebra that Cl (0, n) is isomorphic to. Therefore,

once a basis of one-vectors as a specific collection of matrices has been found,

one needs to find what forms Clifford conjugation and reversion take with respect

to this collection for the successful realization of the applications above. Even if

a realization of one-vectors of Cl (0, n) as a subset of Cl (0, n− 1), is specified,

one still needs a prescription of how both Spin (n) and spin(n) act on this set

of one-vectors. Furthermore, the latter action should be the linearization of the

former action for applicability to the problem of finding exponentials of matrices

in so (n,R). See Remark 3 below for more on this issue.

In this note, therefore, we prefer to do all calculations within Cl (0, n). One virtue

of this is that it is a first principles approach to the problem of identifying the spin

group and thus has some didactical advantages also.

As mentioned above, there are iterative constructions enabling one to find a basis

of one-vectors for Cl (0, n), starting from certain obvious bases of one-vectors for

lower-dimensional Clifford algebras (the iterative constructions, pertinent to this

work, are summarized in Section 2.3). Hence, it seems natural to use these for

Step 1 of the last algorithm.
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We found, to our initial chagrin, that for a basis of one-vectors for Cl (0, 5), ob-

tained from the Pauli basis {σj ; j = 1, 2, 3} for Cl (3, 0), reversion is not given

by X → M−1XTM for M = J4 or M = J̃4, as one might expect from the cir-

cumstance that Spin (5) is isomorphic to Sp (4) (the group of 4×4 matrices which

are both unitary and symplectic). The matrices M = J2n and M = J̃2n are, of

course, the two standard matrices representing the symplectic bilinear form - see

Section 2.1 for the precise definitions of these matrices.

To circumvent this difficulty, we use the isomorphism between H⊗H and M(4,R)
to find a skew-symmetric and orthogonal M , for which reversion is indeed de-

scribed by X → M−1XTM . Furthermore, this isomorphism also enables us to

find a conjugation between this M and J4, and thus produce a basis of one-vectors

of Cl (0, 5) = M(4,C), with respect to which Spin (5) is indeed the standard rep-

resentation of Sp (4). It is emphasized, however, that it is not obvious how to obtain

this latter basis from first principles, and hence the detour through H⊗H is really

useful, apart from being of independent interest. See, Remark26, for instance, for

another illustration of this utility.

It turns out that one obstacle to reversion not involving either J4 nor J̃4 is the pres-

ence of either of these matrices themselves in the basis of one-vectors for Cl (0, 5).
Not having a tool such as the H⊗H isomorphism in higher dimensions, we work

very carefully to arrive at a basis of one-vectors for Cl (0, 6) which contains neither

J8 nor J̃8. For this we start with the sole possible basis for Cl (0, 0) and apply a

judicious combination of the iterative procedures in Section 2.3, to find a desirable

basis of one-vectors for Cl (0, 6). This then very naturally leads to SU (4) being

the covering group in dimension six.

Remark 3. In [20] the derivation of SU (4) as the spin group in dimension six,
is carried out in pp 80, 151 and 264 − 265. As mentioned before, the Clifford
algebra that [20] works with for this purpose is actually Cl (0, 5). In particular, on
pp 264 − 265, an embedding of R6, - the one-vectors for Cl (0, 6), in Cl (0, 5) =
M(4,C) is used. Specifically, R6 is identified with C

3 and then (z0, z1, z2) ∈ C
3

is identified with the following matrix in M(4,C)

X (z0, z1, z2) =

⎛⎜⎜⎝
z̄2 0 z0 z̄1
0 z̄2 z1 −z̄0

−z̄0 −z̄1 z2 0
−z1 z0 0 z2

⎞⎟⎟⎠ .

But then the action of spin(6) = su (4) cannot be the usual one, viz., A ∈ su (4)
sending the one vector X (z0, z1, z2) to the matrix AX (z0, z1, z2)−X (z0, z1, z2)A,
since the latter is not of the form X (w0, w1, w2) for some triple (w0, w1, w2) ∈
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C
3. Indeed, the (1, 2) entry of AX(z0, z1, z2)−X (z0, z1, z2)A is non-zero typi-

cally.

It is emphasized that [20] does not make the claim in the above paragraph, and the
matrix X (z0, z1, z2) is used therein for an entirely different reason, viz., to avail of
the fact that every element of Spin(n) can be factorized as a product of an element
in Sn−1 (the unit sphere in R

n) and an element in Spin(n− 1). The association of
the matrix X (z0, z1, z2) to the triple (z0, z1, z2) is indeed elegant and the associ-
ated factorization is quite useful. However, for the purposes of this note it is neces-
sary to proceed from first principles and work directly with Cl (0, 6) = M(8,R).
It seems that this is also didactically simpler for these purposes.

There is also an unexpected benefit from working in Cl (0, 6). Specifically, by

starting with the obvious basis for Cl (0, 1) and mimicking for Cl (0, 5), the itera-

tive constructions for Cl (0, 6), alluded to above, we arrive at a basis of one-vectors

for Cl (0, 5) which sheds some light on the matrix X (z0, z1, z2) - see Remark (33),

part b). Further, by slightly modifying this construction we find a natural interpre-

tation of yet another member of the H⊗H basis for M(4,R).

Thus, one by-product of this note is useful interpretations for at least three elements

of a basis of orthogonal matrices for M(4,R), yielded by its isomorphism to H⊗
H are provided. More generally, our work can be seen as showing the utility of

Clifford Algebras for questions in algorithmic/computational linear algebra. Thus

this note is in the spirit of [1, 2, 7, 11, 17, 18, 21–23].

The other component of this work is an explicit characterization of the minimal

polynomials of matrices in the Lie algebra of the spin groups of dimensions 5 and

6. These expressions are constructive and do not require any knowledge of the

eigenvalues/eigenvectors of these matrices. Once one has access to these minimal

polynomials computing the exponentials of matrices in these Lie algebras is facile.

One can either use recursions for the coefficients of the exponential or use simple

Lagrange interpolation (since the matrices in question are all evidently diagonaliz-

able and thus their minimal polynomials have distinct roots). As mentioned before

it is often the case that the minimal polynomials of matrices in the Lie algebra of

the spin group is far lower than that of the corresponding element in so (n,R). Ex-

ample 30 provides a striking illustration of this circumstance. Of course, a natural

question that could be asked is whether one could not directly compute exponen-

tials of elements of spin (n), without passing to a matrix algebra representation of

them, e.g., without using the fact that spin(6) ∼= su (4), for instance. Computing

exponentials of matrices by computing exponentials directly within Clifford alge-

bras has indeed been proposed in [1]. However, it has been our experience that it

is only by passing to the matrix representation that we are able to avail of certain
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simplifications. For example, the fact that only certain types of polynomials can

arise as the minimal polynomials of matrices in su (4) is not evident from the fact

that it is isomorphic to spin(6). A full analysis of the advantages/disadvantages

of passing to the matrix representation is beyond the scope of this paper, though it

certainly is an interesting question to investigate.

The balance of this note is organized as follows. In the next section basic notation

and preliminary facts are presented. Section 3 derives the explicit form of the re-

version map for Cl (0, 5) with respect to a basis of one-vectors obtained iteratively

from the Pauli matrices. An algorithm is then presented, which uses the derived

form of reversion on Cl (0, 5) to exponentiate in closed form a matrix in so (5,R)
by reducing this to the exponentiation of a 4 × 4 matrix in a Lie algebra, denoted

ŝp (4). Section 4 derives explicit forms for minimal polynomials of matrices in

ŝp (4), thereby providing a complete solution to the problem of exponentiation of

matrices in so (5,R). The block structure of elements of ŝp (4) is shown to be

amenable for calculation of the quantities intervening in the expressions for these

minimal polynomials. Section 5 obtains the form of reversion on Cl (0, 6) with re-

spect to a basis of one-vectors obtained iteratively from the sole possible basis for

Cl (0, 0). This is then applied to provide an algorithm for exponentiating a matrix

in so (6,R) by reducing it to the corresponding problem in su (4). The next section

then provides a complete list of closed form expressions for minimal polynomials

of matrices in su (4). Remark 33 in this section revisits reversion on Cl (0, 5) and

sheds light on the matrix X (z0, z1, z2) in Remark 3 and also finds an interpretation

for yet another element of the H⊗H basis. The final section offers conclusions.

2. Notation and Preliminary Observations

2.1. Notation

We use the following notation throughout

N1 H is the set of quaternions, while P is the set of purely imaginary quater-

nions. Let K be an associative algebra. Then M(n,K) is just the set of

n × n matrices with entries in K. For K = C, H we define X∗ as the

matrix obtained by performing entrywise complex (resp. quaternionic) con-

jugation first, and then transposition. For K = C, X̄ is the matrix obtained

by performing entrywise complex conjugation.

N2 J2n =

(
0n In
−In 0n

)
. Associated to J2n are

i) Sp (2n) = {X ∈ M(2n,C) ; X∗X = In, J
−1
2n XTJ2n = J2n}.
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Sp (2n) is a Lie group, and

ii) sp (2n) = {X ∈ M(2n,C) ; X∗ = −X, XTJ2n = −J2nX}.

sp (2n) is the Lie algebra of Sp (2n). Note many authors write Sp (n) in-

stead of our Sp (2n).

N3 J̃2n = J2 ⊕ J2 ⊕ . . . ⊕ J2. Thus J̃2n is the n-fold direct sum of J2. J̃2n,

is of course, explicitly permutation similar to J2n, but it is important for our

purposes to maintain the distinction. Accordingly

i) S̃p (2n) = {X ∈ M(2n,C) ; X∗X = In, J̃
−1
2n XT J̃2n = J̃2n}.

S̃p (2n) is a Lie group, and

ii) s̃p (2n) = {X ∈ M(2n,C) ; X∗ = −X, XT J̃2n = −J̃2nX}.

s̃p (2n) is the Lie algebra of S̃p (2n).
Other variants of J4 are of importance to this paper, and they will be intro-

duced later at appropriate points (see Remark 17 below).

N4 The Pauli Matrices are

σx = σ1 =

(
0 1
1 0

)
, σy = σ2 =

(
0 −i
i 0

)
, σz = σ3 =

(
1 0
0 −1

)
N5 SO(n,R) stands for the n×n real orthogonal matrices with determinant one.

so (n,R) is its Lie algebra - the set of n× n real antisymmetric matrices.

N6 SU (n) is the Lie group of unitary matrices with unit determinant, and su (n)
is its Lie algebra - the set of anti-Hermitian matrices with zero trace.

N7 A⊗B stands for the Kronecker product of A and B.

N8 ‖X‖F , for a matrix X , is
√
Tr(X∗X) =

√∑∑
i,j |xij |2.

2.2. Reversion and Clifford Conjugation

We will begin with informal definitions of the notions of one and two-vectors for a

Clifford algebra, which is sufficient for the purpose of this work. The texts [16,20]

are excellent sources for more precise definitions in the theory of Clifford algebras.

Definition 4. Let p, q be non-negative integers with p + q = n. A collection of
matrices {X1, . . . , Xp, Xp+1, . . . , Xp+q} , with entries in R C, or H is a basis of
one-vectors for the Clifford algebra Cl (p, q) if

1. X2
i = Id, for i = 1, 2, ..., p, where Id is the identity matrix of the appropri-

ate size (this size is typically different from n).
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2. X2
i = −Id, for i = p+ 1, p+ 2, ..., p+ q.

3. XiXj = −XjXi, for i 	= j; i, j = 1, 2, ..., n.

A one-vector is just a real linear combination of the Xi’s, i = 1, 2, ..., n. Similarly,
a two-vector is a real linear combination of the matrices XiXj , i < j; i, j = 1, 2,
..., n. Analogously, we can define three, four, ... n-vectors, etc. Cl (p, q) is just a
real linear combination of Id, one-vectors, ..., n-vectors.

Definition 5. I) The reversion anti-automorphism on a Clifford algebra, φrev,
is the linear map defined by requiring that i) φrev(ab) = φrev(b)φrev(a); ii)
φrev(v) = v, for all one-vectors v; and iii) φrev(1) = 1. For brevity we will
write Xrev instead of φrev(X).

II) The Clifford conjugation anti-automorphism on a Clifford algebra, φcc, is
the linear map defined by a requiring that i) φcc(ab) = φcc(b)φcc(a); ii)
φcc(v) = −v, for all one-vectors v; and iii) φcc(1) = 1. For brevity φcc(X)
will be written in the form Xcc.

III) The grade automorphism on a Clifford algebra, φgr is φrev ◦ φcc. As is well
known it is also true that φgr = φcc ◦ φrev. Once again we write Xgr for
φgr(X).

IV) Spin (n) is the collection of elements x in Cl (0, n) satisfying the following
requirements: i) xgr = x, i.e., x is even, ii) xxcc = 1, and iii) For all
one-vectors v in Cl (0, n), xvxcc is also a one-vector. The last condition,
in the presence of the first two conditions, is known to be superfluous for
n ≤ 5, [16, 20].

2.3. Iterative Constructions in Clifford Algebras

Here will outline three iterative constructions of one-vectors for certain Clifford

Algebras, given a choice of one vectors for another Clifford Algebra, [16, 20]:

IC1 Cl (p+ 1, q + 1) as M(2,Cl (p, q)), where M(2, A) stands for the set of

2× 2 matrices with entries in an associative algebra A:

Suppose {e1, . . . , ep, f1, . . . , fq} is a basis of one-vectors for Cl (p, q). So,

in particular, e2k = +1, k = 1, . . . , p and f2
l = −1, l = 1, . . . , q. Then a

basis of one-vectors for Cl (p+ 1, q + 1) is given by the following collection
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of elements in M(2, Cl (p, q))(
ek 0
0 −ek

)
, k = 1, . . . , p,

(
0 1
1 0

)
(
fl 0
0 −fl

)
, l = 1, . . . , q,

(
0 1

−1 0

)
The 1 and the 0 in the matrices above are the identity and zero elements of

Cl (p, q) respectively.

IC2 From Cl (p, q) to Cl (p− 4, q + 4), for p ≥ 4:

Suppose {e1, . . . , ep, f1, . . . , fq} is a basis of one-vectors for Cl (p, q). Let

us label this basis as {gi ; i = 1, . . . , n}. Thus, gi = ei, i = 1, . . . , p
and gp+j = fj , j = 1, . . . , q. Then, to obtain a basis of one-vectors for

Cl (p− 4, q + 4), we first compute

g = e1e2e3e4.

Then a basis {hi ; i = 1, . . . , p + q} of one-vectors for Cl (p− 4, q + 4) is

obtained by setting

hi = gig, i = 1, . . . , 4, hi = gi, i > 4.

IC3 From Cl (p, q) to Cl (q + 1, p− 1) if p ≥ 1.

Suppose {e1, . . . , ep, f1, . . . , fq} is a basis of one-vectors for Cl (p, q).
Then a basis {ε1, . . . , εq+1, μ1, . . . , μp−1} is obtained by defining

ε1 = e1, εk+1 = fke1, k = 1, . . . , q

and

μk = ek+1e1, k = 1, . . . , p− 1.

In this last basis, the ε’s square to +1, while the μ’s square to −1.

Remark 6. In the last construction IC3 above, the special role played by e1 could
have been played by any one of the ek, k = 1, . . . , p. This would yield different sets
of bases of one-vectors for Cl (q + 1, p− 1), starting from a basis of one-vectors
for Cl (p, q). We will make use of this observation in Remark 33 part c).

2.4. θC and θH Matrices

Some of the material here is to be found in [13], for instance.
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Definition 7. Given a matrix M ∈ M(n,C), define a matrix θC(M) ∈ M(2n,R)

by first setting θC(z) =

(
x y

−y x

)
for a complex scalar z = x+ iy. We then define

θC(M) = (θC(mij)), i.e., θC(M) is a n × n block matrix, with the (i, j)th block
equal to the 2× 2 real matrix θC(mij).

Remark 8. Properties of θC

i) θC is an R-linear map.

ii) θC(MN) = θC(M)θC(N).

iii) θC(M
∗) = [θC(M)]T .

iv) θC(In) = I2n.

v) A useful property is the following: X ∈ M(2n,R) is in the image of θC iff
XT = J̃−1

2n XT J̃2n.

Remark 9. We call an X ∈ im(θC), a θC matrix. It is tempting, but confusing,
to call such matrices complex matrices. Similarly, if X ∈ M(2n,R) satisfies
XT = −J̃−1

2n XT J̃2n, it will be called an anti - θC matrix. These are precisely the
linear anti-holomorphic maps on R

2n.

Next, to a matrix with quaternion entries will be associated a complex matrix.

First, if q ∈ H is a quaternion, it can be written uniquely in the form q = z + wj,
for some z, w ∈ C. Note that jη = η̄j, for any η ∈ C. With this at hand, the

following construction associating complex matrices to matrices with quaternionic

entries (see [13] for instance) is useful

Definition 10. Let X ∈ M(n, H). By writing each entry xpq of X as

xpq = zpq + wpqj, zpq, wpq ∈ C

we can write X uniquely as X = Z +W j with Z, W ∈ M(n,C). Associate to X

the following matrix θH(X) ∈ M(2n,C)

θH(X) =

(
Z W

−W̄ Z̄

)
Remark 11. Viewing an X ∈ M(n,C) as an element of M(n, H) it is immediate
that jX = X̄j, where X̄ is entrywise complex conjugation of X .
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Next some useful properties of the map θH : M(n, H) → M(2n,C) are collected.

Remark 12. Properties of θH

i) θH is an R-linear map.

ii) θH(XY ) = θH(X)θH(Y ).

iii) θH(X
∗) = [θH(X)]∗. Here the ∗ on the left is quaternionic Hermitian con-

jugation, while that on the right is complex Hermitian conjugation.

iv) θH(In) = I2n.

v) A less known property is the following: Λ ∈ M(2n,C) is in the image of θH
iff Λ∗ = J−1

2n XTJ2n.

Remark 13. We call an Λ ∈ im(θH), a θH matrix. In [13] such matrices are
called matrices of the quaternion type. But we eschew this nomenclature for the
same reason as for avoiding the terminology complex matrices.
Similarly, if Λ ∈ M(2n,C) satisfies Λ∗ = −J−1

2n XTJ2n, we say Λ is an anti-θH
matrix.

2.5. Minimal Polynomials and Exponential Formulae

The minimal polynomial of a matrix X ∈ M(n,C) is the unique monic poly-

nomial, mX(x), of minimal degree which annihilates X . Minimal polynomials

can, just as any other annihilating polynomial, be used to compute functions of

X . One typical mode to do so is to use the annihilating polynomial to establish

recurrences for higher powers of X , and in turn for any analytic function of X .

Naturally the recurrences are simpler on the eye, when the minimal polynomial

is used. An alternative method is to use such polynomials and interpolation tech-

niques for constructing functions of X , [14]. This method is particularly useful

when it is known in advance that X is diagonalizable (the only case of pertinence

to this paper). In this case the roots of the minimal polynomial are distinct and the

venerable Lagrange interpolation technique yields the desired function. We will

confine ourselves to giving explicit formulae for eX when mX is one of the four

following polynomials. Both the recurrence method and the interpolation method

lead to the same representation for eX as one may confirm.

Theorem 14. Let X ∈ M(n,C) be non-zero. Then we have

I) If mX(x) = x2 + λ2, with 0 	= λ ∈ R, then eX = cos(λ)I + sin(λ)
λ

X .
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II) If mX = x2 + 2iγx+ λ2, with γ, λ ∈ R, both non-zero, then
eX = e−iγ [(cos(σ)+ iγ

σ
sin(σ))I+ sin(σ)

σ
X] , where σ is the positive square

root of λ2 + γ2.

III) If mX = x3 + c2x, with 0 	= c ∈ R, then eX = I + sin c
c
X + 1−cos c

c2
X2.

IV) If mX(x) = x4 + θ2x2 + λ2, with θ, λ ∈ R, both non-zero, and satisfying
θ4 > 4λ2, then

eX =
1

b2 − a2

[
(
b sin a− a sin b

ab
)X3 + (cos a− cos b)X2

+(
b3 sin a− a3 sin b

ab
)X + (b2 cos a− a2 cos b)I

]
Here a and b are positive square roots of positive numbers a2 and b2, which
in turn are defined to be the unique positive solutions to a2 + b2 = θ2,

a2b2 = λ2.

Remark 15. It is possible that a matrix may be the sum of commuting summands,
each of which has a low degree minimal polynomial, even though the original ma-
trix has a high degree minimal polynomial. Thus, the exponential of such matrices
can be quite easily found. Some instances of this phenomenon are to be found
in [22].

2.6. H⊗H and M(4,R)

The algebra isomorphism between H⊗H and M(4,R) (also denoted by gl(4, R))
may be summarized as follows

• Associate to each product tensor p ⊗ q ∈ H ⊗ H, the matrix, Mp⊗q, of

the map which sends x ∈ H to pxq̄, identifying R
4 with H via the basis

{1, i, j, k}. Here, q̄ = q0 − q1i− q2j− q3k.

• Extend this to the full tensor product by linearity. This yields an associative

algebra isomorphism between H⊗H and M(4,R). Furthermore, a basis for

gl(4, R) is provided by the sixteen matrices Mex⊗ey as ex, ey run through 1,
i, j, k.

• We define conjugation on H⊗H by setting ¯p⊗ q = p̄⊗ q̄ and then extending

by linearity. Conjugation in H⊗H corresponds to matrix transposition, i.e.,

Mp̄⊗q̄ = (Mp⊗q)
T . A consequence of this is that any matrix of the form

M1⊗p or Mq⊗1, with p, q ∈ P is a real antisymmetric matrix. Similarly, the
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most general special orthogonal matrix in M(4,R) admits an expression of

the form Mp⊗q, with p and q both unit quaternions.

Remark 16. M(4,C) : Since any complex matrix can be written Y + iZ, with
Y, Z in M(n,R), it follows that matrices in M(4,C) also possess quaternionic
representations. In particular a complex symmetric matrix can be written as
Mp⊗i+q⊗j+r⊗k, with p, q, r ∈ C

3. It should be clear from the context whether i
is a complex number or a quaternion, in this regard. For instance iMi⊗j [or just
i(i⊗ j)] is the complex matrix equalling the complex number i times the real matrix
Mi⊗j.

Remark 17. Three matrices from this basis for M(4,R) provided by H ⊗ H are
important for us. They are

• M1⊗j is precisely J4.

• The matrix M1⊗i, which we denote by Ĵ4.

• The matrix Mj⊗1, which we denote by J̆4.

2.7. Other Matrix Theoretic Facts

Throughout this note many important matrices are expressible as Kronecker prod-

ucts A ⊗ B and so, the following properties of Kronecker products will be freely

used

• (A⊗B)(C ⊗D) = AC ⊗BD, (A⊗B)T = AT ⊗BT .

• If A and B are square then Tr(A⊗B) = Tr(A)Tr(B).

Schur’s Determinantal Formulae: We will use the following special case of Schur’s

Determinantal Formulae, [13]: Suppose X2n×2n is

X =

(
A B

C D

)
with A, B, C, D all n× n. Then if B is invertible,

det(X) = (−1)n
2
det(B)det(C −DB−1A).
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3. Reversion and Rotation in Dimension Five

First a basis of one-vectors for Cl (0, 5) will be constructed by starting with the

Pauli basis for Cl (3, 0) and applying the iterative constructions IC1 and IC2 of

Section 2.3. Thus, let {Z1 = σx, Z2 = σy, Z3 = σz} be a basis of one-vectors for

Cl (3, 0). Applying IC1 to this yields the following basis for Cl (4, 1)

ε1 =

(
σx 0
0 −σx

)
, ε2 =

(
σy 0
0 −σy

)
, ε3 =

(
σz 0
0 −σz

)
ε4 =

(
0 I2
I2 0

)
, e1 =

(
0 I2

−I2 0

)
.

Next let us apply IC2 of Section 2.3 to this last basis to arrive at a basis for Cl (0, 5).
To that end we first need the product ε1ε2ε3ε4. A quick calculation shows

ε1ε2ε3ε4 = i

(
0 I2

−I2 0

)
= iJ4

Table 1. One-vectors for Cl (0, 5).

F1 = (ε1ε2ε3ε4)ε1i

(
0 −σx

−σx 0

)
= σx ⊗ (−iσx)

F2 = (ε1ε2ε3ε4)ε2

(
0 −iσy

−iσy 0

)
= σx ⊗ (−iσy)

F3 = (ε1ε2ε3ε4)ε3

(
0 −iσz

−iσz 0

)
= σx ⊗ (−iσz)

F4 = (ε1ε2ε3ε4)ε2

(
iI2 0
0 −iI2

)
= iσz ⊗ I2

F5 = e1 = J4

Then IC2 says that a basis of one-vectors for Cl (0, 5) is {Fi ; i = 1, . . . , 5}, where

F ′
i s are given in Table 1. Note that the presence of J4 in the basis is unavoidable, by

construction, since the presence of e1 = J4 in a basis of one-vectors for Cl (4, 1)
and hence in that for Cl (0, 5) is required by construction. Inspired by the expected

role of J4, we now seek an expression for reversion on Cl (0, 5) of the form

Φrev(X) = M−1XTM
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where M is a real orthogonal antisymmetric matrix. The unavoidable presence of

J4 in the basis of one-vectors, immediately implies that M 	= J4 and M 	= J̃4.

Indeed, for these two choices of M , we find that

M−1F T
5 M = M−1JT

4 M = −F5 	= F5.

So an alternative choice for M is needed.

Given that we are working 4 × 4 matrices, we are lead inexorably to the H ⊗ H

basis for M(4,R). Slight experimentation reveals that

M = M1⊗i =

⎛⎜⎜⎝
0 1 0 0

−1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠
does the job, i.e., M−1

1⊗iF
T
i M1⊗i = Fi, for all i = 1, . . . , 5.

It is useful to note that M1⊗i also equals the following two matrices:

i) M1⊗i = J2 ⊕ (−J2).

ii) M1⊗i = σz ⊗ (iσy), and thus, M−1
1⊗i = σz ⊗ (−iσy). This representation

is pertinent since the Fi all have the form of Kronecker products of 2 × 2
matrices and thus we will be able to use the properties of the Kronecker

product (see Section 2.7) to facilitate calculation of M−1
1⊗iF

T
i M1⊗i.

The second of these two representations confirms that φrev(X) = M−1
1⊗iX

TM1⊗i.

For future convenience we denote M1⊗i as Ĵ4, and correspondingly denote

Ŝp (4) =
{
X ∈ M(4,C) ; X ∈ U(4) , XT Ĵ4X = Ĵ4

}
.

It is well-known, and confirmed also by the above basis {Fi}, that Clifford conju-

gation on Cl (0, 5) is

φcc(X) = X∗.

Hence the grade automorphism becomes

φgr(X) = Ĵ−1
4 X̄Ĵ4.

Thus, with respect to this choice of a basis of one-vectors, it is seen that

Spin (5) =
{
X ∈ M(4,C) ; X∗X = I4,M1⊗iX = X̄M1⊗i

}
= Ŝp (4) .

In summary, we have shown the following
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Proposition 18. Let B be the following set

{F1 = σx⊗(−iσx), F2 = σx⊗(−iσy), F3 = σx⊗(−iσz), F4 = iσz⊗I2, F5 = J4}.
Then B is a basis for V , the space of one-vectors for Cl (0, 5). With respect to B

we have the following

i) The reversion anti-automorphism on Cl (0, 5) is given by

φrev(X) = M−1
1⊗iX

TM1⊗i.

ii) Clifford conjugation is given by φcc(X) = X∗.

iii) Spin (5) = Ŝp (4) =
{
X ∈ M(4,C) ; X∗X = I4, X

T Ĵ4X = Ĵ4

}
, where

Ĵ4 = M1⊗i.

iv) The standard covering map Φ5 : Spin (5) → SO (5,R) is given by sending
G ∈ Ŝp (4) to the matrix of the linear map, with respect to the basis B,
ΨG : V → V, where

ΦG(Y ) = GY G∗

v) The Lie algebra isomorphism Ψ5 : ŝp (4) → so (5,R), where ŝp (4) is the
Lie algebra of the group Ŝp (4), is obtained by linearizing
Φ5 : Spin (5) → SO (5,R). Thus it is the map which sends A ∈ ŝp (4) to
the matrix, with respect to B, of the linear map ψA : V → V, where

ψA(Z) = AZ − ZA.

3.1. Computing the Lie Algebra Isomorphism ψ : ŝp (4) → so (5,R)

The Lie algebra of the Ŝp (4) is given by

ŝp (4) =
{
X ∈ M(4,C) ; X∗ = −X,XT Ĵ4 = −Ĵ4X

}
The second condition is equivalent to saying that the X ∈ ŝp (4) can be expressed

as Ĵ4S, where S is a complex symmetric matrix. In view of Remark 16, this

condition alone says that such an X’s H⊗H representation must be of the form

X = (1⊗ i)(p⊗ i + q ⊗ j + r ⊗ k + a1⊗ 1)

with p, q, r ∈ C
3 and a ∈ C. However, the other condition, X∗ = −X , forces

p ∈ R
3, a ∈ R and q, r ∈ (iR)3 (that is the components of q, r are purely

imaginary).
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Table 2. Basis for ŝp(4).

X1 = i(j⊗ j) X6 = i(i⊗ j)

X2 = i⊗ 1 X7 = 1⊗ i

X3 = k⊗ 1 X8 = j⊗ 1

X4 = i(j⊗ k) X9 = i(k⊗ k)

X5 = i(k⊗ j) X10 = i(i⊗ k)

Thus the most general such X has an H⊗H representation of the form

X = −p⊗ 1 + a1⊗ i + q ⊗ k− r ⊗ j

with p ∈ R
3, a ∈ R and q, r ∈ (iR)3. The negative signs are inessential and so

a basis of ŝp (4) can be written in H ⊗ H form, keeping in mind the remark on

notation in Remark 16, as in Table 2.

Now to compute the image under Ψ5 of such a basis element of ŝp (4), call it X ,

we have to compute XFi − FiX, i = 1, . . . , 5 where {Fi} is the basis of one-

vectors in Proposition 18 and express the result as a real linear combination of the

Fi. We will content ourselves with an illustration of the calculation for X7 = 1⊗ i.
We find

• X7F1−F1X7 = (σz ⊗ iσy)(σx⊗ (−iσx))− (σx⊗ (−iσx))(σz ⊗ iσy) = 0.

Here, the fact that X7 can also be written as (σz ⊗ iσy) and that F1 can also

be written in the form σx ⊗ (−iσx) was employed.

• X7F2 − F2X7 = (σz ⊗ iσy)((σx ⊗ (−iσy)) − (σx ⊗ (−iσy))(σz ⊗ iσy)
= 2σzσx ⊗ I2 = 2iσy ⊗ I2 = 2F5.

• X7F3−F3X7 = (σz ⊗ iσy)(σx⊗ (−iσz))− (σx⊗ (−iσz))(σz ⊗ iσy) = 0.

• X7F4 − F4X7 = (σz ⊗ iσy)(iσz ⊗ I2 − (iσz ⊗ I2(σz ⊗ iσy) = 0.

• X7F5 − F5X7 = (σz ⊗ iσy)iσy ⊗ I2 − iσy ⊗ I2(σz ⊗ iσy) = 2σx ⊗ (iσy)
= −2F5.

Hence Ψ5(X7) =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 −2
0 0 0 0 0
0 0 0 0 0
0 2 0 0 0

⎞⎟⎟⎟⎟⎠. More compactly,

Ψ5(X7) = 2(e5e
T
2 − e2e

T
5 ) (here, of course ei is the ith standard unit vector)
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Table 3. Lie algebra isomorphism between ŝp(4) and so (5,R).

ŝp (4) so (5,R) ŝp (4) so (5,R)
iMj⊗j 2(e1e

T
2 − e2e

T
1 ) iMi⊗j 2(e2e

t
4 − e4e

T
2 )

Mi⊗1 2(e3e
T
1 − e1e

T
3 ) M1⊗i 2(e5e

T
2 − e2e

T
5 )

Mk⊗1 2(e1e
T
4 − e4e

T
1 ) Mj⊗1 2(e4e

T
3 − e3e

T
4 )

iMj⊗k 2(e1e
T
5 − e5e

T
1 ) iMk⊗k 2(e5e

T
3 − e3e

T
5 )

iMk⊗j 2(e2e
T
3 − e3e

T
2 ) iMi⊗k 2(e5e

T
4 − e4e

T
5 )

In summary, the following holds

Theorem 19. The Lie algebra isomorphism Ψ5 : ŝp (4) → so (5,R) is described
by Table 3.

Remark 20. We have Ĵ4 = M1⊗i, while the standard representation of the sym-
plectic form, J4 is J4 = M1⊗j. This makes it extremely easy to find a special
orthogonal conjugation between the two. Since every element of SO(4,R) has a
H⊗H representation of the form Mp⊗q, for unit quaternions, we let UT = Mp⊗q

and seek U so that
UT Ĵ4U = J4.

Using results of Section 2.6, it is obvious that we can let p = 1 and seek q to be a
unit quaternion satisfying

qiq̄ = j.

Of the infinite choices possible, let us pick q = 1
√
2
(1 + k) for concreteness.

With this explicit conjugation available, the following are immediate:

I) U [Sp (4)]UT = Ŝp (4), and U [sp (4)]UT = ŝp (4).

II) One can use this conjugation to find yet another basis of one-vectors for
Cl (0, 5), viz.,

{I2 ⊗ (iσz), σx ⊗ (iσy), I2 ⊗ (iσx), iσy ⊗ σy, σz ⊗ (iσy)} .
With respect to this basis Clifford conjugation is once again Hermitian con-
jugation, but reversion is Y → J−1

4 Y TJ4. Thus, Spin (5) is, with respect to
this basis, the standard representation of Sp (4).

We emphasize however, that this basis was arrived at only by going through Ĵ4
first. In other words, this basis, to the best of our knowledge, does not naturally
arise from first principles as does the basis {Fi ; i = 1, . . . , 5} in Proposition 18.
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Computing Exponentials in so(5, R)

Specializing Algorithm 2 yields the following method for computing the exponen-

tial of a matrix in so (5,R):

• If X ∈ so (5,R), find Y = Ψ−1
5 (X) ∈ ŝp (4) using the table in Theorem 19.

• Compute eY .

• Find eY Fje
−Y , ∀j = 1, . . . , 5. Express eY Fje

−Y =
∑5

i=1 cijFi.

• Then eX is the matrix whose ith column is

⎛⎜⎜⎜⎝
ci1
ci2
...

ci5

⎞⎟⎟⎟⎠.

Thus, the problem of computing eX is reduced to the problem of computing the ex-

ponential of a 4×4 matrix, Y , which furthermore has additional structure, thereby

rendering the computation of eY in closed form very easy.

4. Minimal Polynomials of Matrices in ̂sp (4)

In this section we show that the minimal polynomials of matrices in Y ∈ ŝp (4)
can be computed explicitly, and that these explicit forms lead correspondingly to

explicit formulae for eY . Indeed, as will be seen below, the minimal polynomials

that arise are each one of the four types in Theorem 14.

To this end, it is easier to work with matrices in the standard representation, viz.,

sp (4), and use the connection of such matrices to M(2,H). It should be pointed

that the results obtained below are invariant under conjugation by a special orthog-

onal matrix, and hence extend verbatim to matrices in ŝp (4) and thus there is no

need to find the element in sp (4) conjugate to the matrix Y ∈ ŝp (4) (See Remark

25). In fact, it will be seen in Remark 26 that the quantities intervening in the result

about the minimal polynomials are easier to calculate for ŝp (4).

Recall that if Z ∈ M(2,H), then Z = A+Bj, with A, B ∈ M(2,C). Denote

Y = θH(Z) =

(
A B

−B̄ Ā

)
.

Hence by v) of Remark 12 of Section 2.4

Y ∗ = Y †

where Y † = −J4Y
TJ4. Matrices in sp (4) are clearly θH-matrices. Therefore, the

following result is pertinent:
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Proposition 21. If Y ∈ M(2n,C) is a θH-matrix then its minimal and character-
istic polynomials are both real polynomials.

Proof: Let mY (x) = xk + ck−1x
k−1+ . . . +c0.

So from

Y k + ck−1Y
k−1 + . . .+ c1Y + c0I = 0

we get

(Y ∗)k + c̄k−1(Y
∗)k−1 + . . .+ c̄1Y

∗ + c̄0I = 0.

Thus m̄Y (x) = xk + c̄k−1x
k−1+ . . . +c̄0 annihilates Y ∗. Suppose

q(x) = xl + dl−1x
l−1 + . . .+ d0

annihilates Y ∗, with l < k. Then the same argument just used shows that q̄, a

polynomial of degree l, annihilates Y . Thus contradicts the minimality of mY (x).
Hence k is also the degree of the minimal polynomial of Y ∗, and standard prop-

erties of minimal polynomials shows that the minimal polynomial of Y ∗ is indeed

m̄Y (x). But Y † is evidently similar to Y T , and thus to Y . So as Y is a θH-matrix,

we see that my(x) = m̄Y (x). Hence mY (x) is a real polynomial.

Next let pY (x) = det(xI − A) be the characteristic polynomial of Y . Then the

characteristic polynomial of Y ∗ is the complex conjugate of pY (x̄), and hence

pY ∗(x) = pY (x). But pY †(x) = pY T (x) = pY (x). So, as Y † = Y ∗, it is evident

that pY is also a real polynomial. �

Matrices in sp (4) are not only θH matrices, but are also anti-Hermitian. This leads

to further simplifications in their minimal polynomials

Proposition 22. Let Y ∈ sp (4) and mY (x) be its minimal polynomial. Then
mY (−x) = mY (x) if the degree of mY is even, otherwise mY (−x) = −mY (x).

The proof of Proposition 22 is left to the reader.

Remark 23. A similar result shows that the characteristic polynomial of
Y ∈ sp (4) is a real polynomial with only even degree terms.

Let us now apply the foregoing results to hone our statements about mY (x) for

Y ∈ sp (4). Let

Y =

(
A B

−B̄ Ā

)
.

Now Y ∈ sp (4) is equivalent to (A+Bj)∗ = −(A+Bj) (here the ∗ is Hermitian

conjugation of matrices in M(2,H)). This is, of course, equivalent to A∗ = −A

and BT = B.
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Since the characteristic polynomial of Y is of the form x4 + c2x
2 + c0, we have

c2 =
1

2

(
[Tr(Y )]2 − Tr(Y 2)

)
.

Quite clearly Tr(Y ) = 2Re[Tr(A)]. But as A is anti-Hermitian its trace is purely

imaginary. So Tr(Y ) = 0. Hence

c2 = −1

2
Tr(Y 2).

Now Y 2 = θH[(A+Bj)2], and

(A+Bj)2 = (A2 −BB̄) + (AB +BĀ)j.

Hence

Tr(Y 2) = 2Re[Tr(A2 −BB̄)].

But A2−BB̄ = −AA∗−BB∗, which is a negative semidefinite matrix, and hence

a matrix with real trace. So

c2 = Tr(AA∗ +BB∗) =
1

2
‖Y ‖2F .

So, we have an explicit formula for the characteristic polynomial of Y , viz.,

pY (x) = x4 + (
1

2
‖Y ‖2F )x2 + det(Y ).

Since Y is diagonalizable, its minimal polynomial has distinct roots which are the

eigenvalues of Y . Therefore, it suffices to examine the eigenstructure of Y with

multiplicity. We find

• Y has 4 distinct eigenvalues, ia, −ia, ib, −ib, iff ‖Y ‖4F > 16det(Y ) and

det(Y ) 	= 0.

• It has 3 distinct eigenvalues, ia,−ia, 0 (with 0 repeated twice) iff det(Y ) = 0.

• It has 2 distinct eigenvalues, ia and −ia (each repeated twice) iff

‖Y ‖4F = 16det(Y ) (notice that in this case Y is non-singular, since Y 	= 0,

precludes ‖Y ‖F = 0 ). Hence its minimal polynomial is in each case is

given as follows

• x4 + (12 ‖Y ‖2F )x2 + det(Y ).

• x3 + a2x. To find a, note that the non-zero roots of the characteristic poly-

nomial are in this case i
√
2
‖Y ‖F , − i

√
2
‖Y ‖F . So a2 = 1

2 ‖Y ‖2F .
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• x2 + a2. In this case the roots of the characteristic polynomial are i
2 ‖Y ‖F

and − i
2 ‖Y ‖F . So the minimal polynomial is x2 +

‖Y ‖
2
F

4 ·
Summarizing we have:

Theorem 24. Let Y ∈ sp (4) or ŝp (4). Its minimal polynomial is one of the
following

• x, which happens iff Y = 0.

• x2 +
‖Y ‖

2
F

4 , which happens iff Y 	= 0 and ‖Y ‖4F = 16det(Y ).

• x3 + 1
2(‖Y ‖2F )x, which happens iff Y 	= 0, but det(Y ) = 0.

• x4 + (12 ‖Y ‖2F )x2 + det(Y ), which happens iff Y 	= 0, det(Y ) 	= 0.

We emphasize that in Theorem 24 the eigenvalues of Y do not appear and there-

fore, one does need to know its eigenvalues in advance.

Remark 25. Since all quantities intervening in the above theorem are invariant
under real orthogonal similarity, the theorem extends verbatim to matrices Y ∈
ŝp (4). Indeed, per Remark 20, if Y ∈ ŝp (4), then Z = U TY U is in sp (4), where
U is the explicit real orthogonal matrix in Remark 20. Thus, i) the determinants
of Y and Z coincide, ii) ‖Y ‖F = ‖Z‖F , and iii) the minimal polynomials of Y
and Z coincide.

Remark 26. Block Structure of ŝp (4): It will be seen that the block structure of a
matrix in ŝp (4) has some benefits which matrices in sp (4) do not. Let X ∈ ŝp (4).
If X is written as a 2× 2 block matrix, with each block 2× 2

X =

(
A B

C D

)
then i) A, D are both in sp (2), ii) B = −C∗ and iii) B is an anti - ΘH matrix in
M(2,C).

To see this, note that X = Ĵ4S for some 4 × 4 symmetric matrix S =

(
W Y

Y T Z

)
and X∗ = −X . Since Ĵ4 = J2 ⊕ (−J2), the first of these conditions says A and
D are in sp (2,C) and that B = J2Y, C = −J2Y

T. Together with the second
condition it follows that A, D ∈ sp (2) and B = −C∗ and hence that Y ∗ =
J2Y

TJ2. This last condition is equivalent to Y being an anti-ΘH matrix. Since
B = J2Y and J2 itself is a θH matrix, it follows that B is an anti-ΘH matrix in
M(2,C). From this we can conclude the following
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1. ‖X‖2F = 2
(
|x11|2 + |x12|2 + |x33|2 + |x34|2

)
+ 4

(
|x13|2 + |x14|2

)
.

2. The determinant of X requires only the computation of 2× 2 determinants.

To that end, first observe that an anti - θH matrix is of the form

(
θ ζ

ζ̄ −θ̄

)
,

for some θ, ζ ∈ C. So it is either invertible or identically zero. Hence,
representing X ∈ ŝp (4) as a block matrix, it follows that if B = 0, then
det(X) = det(A)det(D). If B is invertible, then

det(X) = (−1)4det(B)det(−B∗−DB−1A) = det(B)det(B∗+DB−1A)

which follows from the special case of the determinantal formulae of Schur
mentioned in Section 2.7.

The last item above shows that for a determinant calculation at least ŝp (4) is more

amenable than sp (4). Indeed, if

(
A B

−B̄ Ā

)
∈ sp (4), then one will need a 4× 4

determinant calculation, when both A and B fail to be invertible, since it is now
possible for A and B to be singular without being identically zero.

5. su (4) and so (6,R)

As is well known the spin group of SO (6,R) is SU (4), and there is correspond-

ingly an isomorphism of so (6,R) and su (4). In this section we will produce a

basis of one-vectors of Cl (0, 6) which is natural from the point of view of the con-

structions of Section 2.3 and which will enable the computation of exponentials

of matrices in so (6,R) via a computation of exponentials of matrices in su (4).

Moreover in this construction, the matrix J̃8 naturally intervenes.

We begin with Cl (0, 0) and repeatedly apply IC1 of Section 2.3, to first produce a

basis of one-vectors for Cl (3, 3) = M(8,R).

Since the set of one-vectors for Cl (0, 0) is the empty set, {σx, σy} is what IC1

gives for a basis of one-vectors for Cl(1, 1).

Hence a basis of one-vectors for Cl(2, 2) is then(
σx 0
0 −σx

)
,

(
0 I2
I2 0

)
,

(
iσy 0
0 −iσy

)
,

(
0 I2

−I2 0

)
.

This produces the following basis of one-vectors for Cl (3, 3)

{σz ⊗ σz ⊗ σx, σz ⊗ σx ⊗ I2, σz ⊗ σz ⊗ iσy, σz ⊗ iσy ⊗ I2, σx ⊗ I4, iσy ⊗ I4}
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Table 4. Basis of one-vectors for Cl(0, 6).

Y1 = (σz ⊗ σz ⊗ σx)(iσy ⊗ σx ⊗ iσy) = σx ⊗ (iσy)⊗ (−σz)

Y2 = (I2 ⊗ I2 ⊗ σz)(iσy ⊗ σx ⊗ iσy) = iσy ⊗ σx ⊗ σx

Y3 = (−I2 ⊗ σx ⊗ σx)(iσy ⊗ σx ⊗ iσy) = iσy ⊗ I2 ⊗ σz

Y4 = (−σx ⊗ σz ⊗ σx)(iσy ⊗ σx ⊗ iσy) = −σz ⊗ (iσy)⊗ σz

Y5 = −I2 ⊗ iσy ⊗ σx = −I2 ⊗ iσy ⊗ σx

Y6 = −iσy ⊗ σz ⊗ σx = −iσy ⊗ σz ⊗ σx

Next, we use IC3 of Section 2.3, relating Cl (p, q) and Cl(p+1, q−1), to produce,

via this basis, a basis of one-vectors for Cl (4, 2)

ẽ1 = σz ⊗ σz ⊗ σx, ẽ4 = (iσy ⊗ I4)(σz ⊗ σz ⊗ σx)

ẽ2 = (σz ⊗ σz ⊗ iσy)(σz ⊗ σz ⊗ σx), ẽ5 = (σz ⊗ σx ⊗ I2)(σz ⊗ σz ⊗ σx)

ẽ3 = (σz ⊗ iσy ⊗ I2)(σz ⊗ σz ⊗ σx), ẽ6 = (σx ⊗ I4)(σz ⊗ σz ⊗ σx).

Doing the requisite Kronecker multiplications this basis of one-vectors for Cl (4, 2)
assumes the following form

ẽ1 = σz ⊗ σz ⊗ σx, ẽ4 = −σx ⊗ σz ⊗ σx

ẽ2 = I2 ⊗ I2 ⊗ σz, ẽ5 = −I2 ⊗ iσy ⊗ σx

ẽ3 = −I2 ⊗ σx ⊗ σx, ẽ6 = −iσy ⊗ σz ⊗ σx.

Finally, using IC2 of Section 2.3, relating Cl (p, q) to Cl(p−4, q+4), we produce

a basis of one-vectors for Cl (0, 6). To that end, we first need to find ẽ1ẽ2ẽ3ẽ4.

This is given by

ẽ1ẽ2ẽ3ẽ4 = iσy ⊗ σx ⊗ iσy.

The basis of one-vectors, {Yi}, for Cl (0, 6) is therefore given by Table 4.

Remark 27. Each of the Yi are tensor products of 3 matrices, of which two are
real symmetric and one is real antisymmetric. Hence, Y T

i = −Yi, for all i. Since
matrix transposition is an anti-involution, we find, as expected, from this that (with
respect to this basis of one-vectors, Clifford conjugation on Cl (0, 6) coincides with
matrix transposition.

Next a matrix form for reversion on Cl (0, 6) (with respect to the basis,

{Yi ; i = 1, . . . , 6}, of one-vectors) will be found. We are guided in this by 3 facts:
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i) the Yi are all tensor products of 3 matrices, and the matrix iσy is one of the 3

factors in each Yi; ii) the matrices J8 and J̃8 are also triple tensor products with

iσy again one of the factors. Specifically, J8 = iσy ⊗ I4 = iσy ⊗ I2 ⊗ I2 and

J̃8 = I4 ⊗ (iσy) = I2 ⊗ I2 ⊗ (iσy); and iii) Neither J8 nor J̃8 are any of the

Yi, i = 1, . . . , 6. In view of the multiplication table for the Pauli matrices, it is

natural to seek reversion in the form M−1XTM , with M either J8 or J̃8. A few

calculations reveal that J−1
8 Y T

i J8 	= Yi, ∀i. Hence, reversion cannot be given by

J−1
8 XTJ8. However, we have the following proposition

Proposition 28. i) The reversion anti-involution on Cl (0, 6), with respect to
the basis

Y1 = σx ⊗ (iσy)⊗ (−σz) Y4 = −σz ⊗ (iσy)⊗ σz

Y2 = iσy ⊗ σx ⊗ σx Y5 = −I2 ⊗ iσy ⊗ σx

Y3 = iσy ⊗ I2 ⊗ σz Y6 = −iσy ⊗ σz ⊗ σx

of one-vectors is given by Φrev(X) = J̃T
8 X

T J̃8, for all X ∈ Cl (0, 6).

ii) The grade involution on Cl (0, 6), with respect to the basis {Yi ; i = 1, . . . , 6}
of one-vectors is given by Φgr(X) = J̃T

8 XJ̃8. Thus, the algebra of even vec-
tors in Cl (0, 6) is the image of M(4,C), under θC, in M(8,R).

Proof: First note that

J̃−1
8 = J̃T

8 = I2 ⊗ I2 ⊗ (−iσY ).

Next, it suffices to check that the map X → J̃T
8 X

T J̃8, which is evidently an anti-

involution, is the identity map on one-vectors. For this, in turn, it suffices to verify

that J̃T
8 Y

T
i J̃8 = Yi, for all i = 1, . . . , 6. This computation is facilitated by the

representations of the Yi, J̃8, J̃
T
8 all as threefold Kronecker products. We will

content ourselves with demonstrating this for Y1

J̃T
8 Y

T
1 J̃8 = [I2 ⊗ I2 ⊗ (−iσy)][σx ⊗ (iσy)⊗ (−σz)]

T [(I2 ⊗ I2 ⊗ (iσy)].

Using the fact that iσy is antisymmetric, while σx, σz are symmetric, we find that

J̃T
8 Y

T
1 J̃8, is therefore

[I2⊗I2⊗(−iσy)][σx⊗(−iσy)⊗(−σz)][(I2⊗I2⊗(iσy)] = σx⊗(iσy)⊗(−σz) = Y1.

A similar computation reveals the result to hold for the remaining Yi’s.

The second part of the proposition now is just a consequence of the last sentence

of Remark 27. Hence, being an even vector is equivalent to X = J̃T
8 XJ̃8, i.e., to
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XT = J̃T
8 X

T J̃8, which by v) of Remark 8 says precisely that X = ΘC(Y ) for

some Y ∈ M(4,C). �

It now follows that Spin(6) is the collection of Z ∈ Cl (0, 6) = M(8,R) satisfying

i) ZZT = In.

ii) Z is even, i.e., Z = ΘC(W ), for some W ∈ M(4,C).

iii) ZY ZT is a one-vector for all one-vectors Y ∈ Cl (0, 6).

The first two conditions say that Z = ΘC(W ) for some W ∈ U(4). However, as is

well known, unlike the case of Spin (5), the last condition is no longer superfluous.

Dimension considerations say that the third condition force the corresponding W

to be a connected 15 dimensional subgroup of U(4). The obvious candidate is

SU (4). Within the context of the derivation above, this can be verified in one of

several explicit ways. For instance, for each element X of a basis for su (4), it

suffices to check θC(X)Yi − YiθC(X) is a real linear combination of the Yi’s.

Verification of this is carried out in Theorem 29 below, since it will be needed at

other points as well. It is also interesting to note that the archtypal element in the

Lie algebra u (4), but not in su (4), viz., iI4, violates the linearization of the third

condition for Spin(6) in a rather strong way. In other words, denoting by V , the

matrix I4 ⊗ (iσy) = ΘC(iI4), one finds that V Yi − YiV is not a one-vector for any

Yi. We will just demonstrate this for Y1. Computing V Y1 − Y1V , we find that it

equals

(I2 ⊗ I2 ⊗ (iσy)(σx ⊗ (iσy)⊗ (−σz)− (σx ⊗ (iσy)⊗ (−σz)(I2 ⊗ I2 ⊗ (iσy)

= 2σx ⊗ (iσy)⊗ σx.

If we denote the end product of this computation by Λ1, then Λ1 is, in fact, or-

thogonal to every one-vector, with respect to the trace inner product on defined

M(8,R) = Cl (0, 6). This is because a quick calculation of the matrices ΛT
1 Yi

reveals that each of them is a threefold Kronecker product, in which at least one

factor is a multiple of one of the Pauli matrices σi, i = x, y, z. Since the Pauli

matrices are traceless, it follows that each ΛT
1 Yi is traceless. Similar calculations

show that V Yi − YiV is not a one-vector for i ≥ 2 also. On the other hand, the

calculations below confirm that if V = θC(W ),W ∈ su (4), then V Yi − YiV is a

one-vector, i = 1, . . . , 6.

Computation of the Lie Algebra Isomorphism Between su (4) and so(6,R)

To achieve the said computation we first need to identify the elements of M(8,R)
which arise as ΘC(X), as X runs over a basis of su (4). The basis of su (4) we
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Table 5. ΘC embedding of su (4).

X ∈ su (4) ΘC(X) X ∈ su (4) ΘC(X)

iσx ⊗ I2 σx ⊗ I2 ⊗ (iσy) I2 ⊗ (iσz) I2 ⊗ σx ⊗ (iσy)
iσy ⊗ I2 iσy ⊗ I2 ⊗ I2) iσz ⊗ σz σz ⊗ σz ⊗ (iσy)
iσz ⊗ I2 σz ⊗ I2 ⊗ (iσy) iσz ⊗ σx σz ⊗ σz ⊗ (iσy)
I2 ⊗ (iσx) I2 ⊗ σx ⊗ (iσy) iσz ⊗ σy σz ⊗ (iσy ⊗ I2
I2 ⊗ (iσy) I2 ⊗ (iσy ⊗ I2 iσx ⊗ σx σx ⊗ σx ⊗ (iσy)
iσx ⊗ σy σx ⊗ (iσy)⊗ I2 iσy ⊗ σy iσy ⊗ (iσy)⊗ (iσy)
iσx ⊗ σz σx ⊗ σz ⊗ (iσy) iσy ⊗ σz iσy ⊗ σz ⊗ I2
iσy ⊗ σx iσy ⊗ σx ⊗ I2

Table 6. Lie algebra isomorphism between su (4) and so (6, R).

Basis of su (4) Basis of so (6,R) Basis of su (4) Basis of so (6,R)
iσx ⊗ I2 2(e1e

T
5 − e5e

T
1 ) I2 ⊗ (iσz) 2(e6e

T
3 − e3e

T
6 )

iσy ⊗ I2 2(e4e
T
1 − e1e

T
4 ) iσz ⊗ σz 2(e2e

T
1 − e1e

T
2 )

iσz ⊗ I2 2(e4e
T
5 − e5e

T
4 ) iσz ⊗ σx 2(e6e

T
1 − e1e

T
6 )

I2 ⊗ (iσx) 2(e3e
T
2 − e2e

T
3 ) iσz ⊗ σy 2(e3e

T
1 − e1e

T
3 )

I2 ⊗ (iσy) 2(e2e
T
6 − e6e

T
2 ) iσx ⊗ σx 2(e4e

T
6 − e6e

T
4 )

iσx ⊗ σy 2(e4e
T
3 − e3e

T
4 ) iσy ⊗ σy 2(e3e

T
5 − e5e

T
3 )

iσx ⊗ σz 2(e4e
T
2 − e2e

T
4 ) iσy ⊗ σz 2(e2e

T
5 − e5e

T
2 )

iσy ⊗ σx 2(e5e
T
6 − e6e

T
5 )

will work with is the basis consisting of Kronecker products of the Pauli matrices

(including σ0 = I2). We then obtain Table 5.

We can now state

Theorem 29. The Lie algebra isomorphism Ψ6 : su (4) → so (6,R) is prescribed
by its effect on the basis {iσj ⊗ I2, I2 ⊗ (iσk), iσp ⊗ σq}, j, k, p, q ∈ {x, y, z} of
su (4) via Table 6.

Proof: For each of the Ak, k = 1, . . . , 15 in the II column of Table 5, we compute

AkYi − YiAk, where {Y1, . . . , Y6} is the basis of one-vectors of Cl (0, 6) and

express the result as a linear combination of the Yl, l = 1, . . . , 6. The resulting

matrix is the image of Ψ6(X), where X is an element of the basis of su (4) listed

in the I column of Table 5. This is a long calculation. We will just record the details
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for A2 for illustration. We compute

A2Y1 − Y1A2 = (iσy ⊗ I2 ⊗ I2)(σx ⊗ (iσy ⊗ (−σz)

−(σx ⊗ (iσy ⊗ (−σz)(iσy ⊗ I2 ⊗ I2)

= −2σz ⊗ (iσy)⊗ σz = 2Y4

A2Y2 − Y2A2 = (iσy ⊗ I2 ⊗ I2)(iσy ⊗ σx ⊗ σx)

−(iσy ⊗ σx ⊗ σx)(iσy ⊗ I2 ⊗ I2) = 0

A2Y3 − Y3A2 = (iσy ⊗ I2 ⊗ I2)(iσy ⊗ I2 ⊗ σz)

−(iσy ⊗ I2 ⊗ σz)(iσy ⊗ I2 ⊗ I2) = 0

A2Y4 − Y4A2 = iσy ⊗ I2 ⊗ I2)(−σz ⊗ (iσy)⊗ σz)

−(σz ⊗ (iσy ⊗ (−σz)(iσy ⊗ I2 ⊗ I2)

= 2σx ⊗ (iσy)⊗ σz = −2Y1

A2Y5 − Y5A2 = iσy ⊗ I2 ⊗ I2)(−I2 ⊗ (iσy)⊗ σx)

−(−I2 ⊗ (iσy)⊗ σx)(iσy ⊗ I2 ⊗ I2) = 0

A2Y6 − Y6A2 = iσy ⊗ I2 ⊗ I2)(−iσy ⊗ σz ⊗ σx)

−(−iσy ⊗ σz ⊗ σx)(iσy ⊗ I2 ⊗ I2) = 0.

Hence χ(iσy ⊗ I2) = 2(e4e
T
1 − e1e

T
4 ). �

Computing Exponentials in so (6,R) via those in su (4)

We finish this section with an example which illustrates the utility of passing to the

SU (4) for calculating exponentials in so (6,R).

Example 30. Consider the matrix X = β(e4e
T
6 − e6e

T
4 ) + δ(e6e

T
1 − e1e

T
6 ), for

some β, δ ∈ R. Let us call the two summands X1, X2. The summands X1 and X2

do not anticommute or commute, as can be easily verified. While the individual ex-
ponentials of X1 and X2 are easily found (both have cubic minimal polynomials),
their sum, without availing of the isomorphism with su (4), presents a greater chal-
lenge. In fact, X has a quintic minimal polynomial as a brute force calculation,
which we eschew, shows. On the other hand, Ψ−1

6 (X) has a quadratic minimal
polynomial!

Computing W = Ψ−1
6 (X) ∈ su (4), we find that it is

iβ

2
σx ⊗ σx +

i(γ − α)

2
σz ⊗ σx = Z1 + Z2.
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In keeping with the fact that the map Ψ6 is a Lie algebra isomorphism, we see that
[Z1, Z2] 	= 0. However, Z1Z2 = −Z2Z1. Thus, W ’s minimal polynomial is
quadratic and one finds

eW = cI4 + (
s

λ
)

(
iβ

2
σx ⊗ σx +

i(γ − α)

2
σz ⊗ σx

)
where λ = 1

2

√
β2 + (γ − α)2, and c = cos(λ), s = sin(λ). We next find

Λ = θC(e
W ). It is given by

Λ = cI8 +
s

λ

(
β

2
(σx ⊗ σx ⊗ iσy) +

(γ − α)

2
(σz ⊗⊗σx ⊗ iσy)

)
.

Hence

ΛT = cI8 − s

λ

(
β

2
(σx ⊗ σx ⊗ iσy) +

(γ − α)

2
(σz ⊗⊗σx ⊗ iσy)

)
.

To find eX , we compute ΛYiΛ
T , i = 1, . . . , 6. Suppose ΛYjΛ

T =
∑6

i=1 cijYi,

then eX = (cij). To that end, we need the following

• ΛY1Λ
T = Λ(σx ⊗ (iσy)⊗ (−σz))Λ

T is given by(
c2 − s2

4λ2
((γ − α)2 − β2)

)
Y1 +

2s2β(γ − α)

4λ2
Y4 +

cs(γ − α)

λ
Y6

• ΛY2Λ
T = Λ(iσy ⊗ σx ⊗ σx)Λ

T is given by(
β2 + (γ − α)2

)
c2 + s2β2 + s2 (γ − α)2

β2 + (γ − α)2
Y2 = Y2

• ΛY3Λ
T = Λ(iσy ⊗ I2 ⊗ σz)Λ

T is given by

(c2 +
s2[β2 + (γ − α)2]

4λ2
Y3 = Y3

• ΛY4Λ
T = Λ(−σz ⊗ (iσy)⊗ σz)Λ

T is given by

2s2β(γ − α)

β2 + (γ − α)2
Y1 +

(γ − α)2 + β2(c2 − s2)

β2 + (γ − α)2
Y4 − 2csβ

2λ
Y6

• ΛY5Λ
T = Λ(−I2 ⊗ (iσy)⊗ σx)Λ

T is given by

β2 + (γ − α)2(c2 + s2)

β2 + (γ − α)2
Y5 = Y5
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• ΛY6Λ
T = Λ((−iσy)⊗ σz ⊗ σx)Λ

T is given by

−2cs(γ − α)

2λ
Y1 +

csβ

λ
Y4 + (c2 − s2)Y6.

Hence,

Exp(X) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

β2+(γ−α)2(c2−s2)
β2+(γ−α)2

0 0 2s2β(γ−α)
β2+(γ−α)2

0 − cs(γ−α)
λ

0 1 0 0 0 0
0 0 1 0 0 0

2s2β(γ−α)
β2+(γ−α)2

0 0 (γ−α)2+β2(c2−s2)
β2+(γ−α)2

0 csβ
λ

0 0 0 0 1 0
cs(γ−α)

λ
0 0 − csβ

λ
0 c2 − s2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1)

6. Minimal Polynomials of Matrices in su (4)

In this section the minimal polynomials of matrices X ∈ su (4), is characterized

completely. Thus, the problem of exponentiation in su (4) and hence in so (6,R)
admit solutions which are constructive. The characterization of the minimal poly-

nomials will involve verifiable conditions on the Ek(X), k = 2, 3, 4. Recall

Ek(X) is the sum of all k × k principal minors of X and these are easy to com-

pute.

The initial observation, which follows from arguments similar to those in Proposi-

tion 21 and Proposition 22, is that the minimal polynomial, mX , of X ∈ su (4) ,
has the following property:

A) If the degree of mX is even, then the coefficients of all the even powers of x

in it are real, while those of the odd powers are purely imaginary.

B) If the degree of mX is odd, then the coefficients of all the odd powers of x

in it are real, while those of the even powers are purely imaginary.

This observation can be honed into the following result

Theorem 31. Let X be a non-zero matrix in su (4). Then the structure of the
minimal polynomials of X is given by

1. X has the minimal polynomial x2 + λ2, with λ ∈ R non-zero, iff E3 = 0,
E2 	= 0 and E4 =

1
4(E2)

2.
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2. X has the minimal polynomial x2 + iγx+ λ2 , with γ, λ ∈ R both non-zero

iff E2 > 0, E4 = − 1
12(E2)

2, E3 = 8i(
√

E2
6 )3.

3. X has the minimal polynomial x3+ θ2x, with θ ∈ R non-zero, iff E3 = 0 =
E4 and E2 > 0.

4. X has minimal polynomial x3 + iγx2 + θ2x , with γ, θ ∈ R both non-zero

iff E2 > 0 and E3 is either +2i(
√

E2
3 )3 or −2i(

√
E2
3 )3.

5. X has minimal polynomial x3 + iγx2 + θ2x + iδ, with γ, θ, δ ∈ R, all
non-zero iff E4 	= 0, and

16E4
2E4 − 4E3

2E
2
3 − 128E2

2E
2
4 + 144E2E

2
3E4 − 27E4

3 + 256E3
4 = 0 (2)

and at least one of the conditions in each of items 1) and 2) above is violated.

6. The minimal polynomial of X is its characteristic polynomial iff the condi-
tion in equation (2) is violated.

Furthermore, in each of these cases the coefficients of the minimal polynomial can
be determined constructively from the Ek.

Proof: First, since X is skew-Hermitian, so is every principal submatrix of X .

Since the determinant of an even sized (resp. odd sized) skew-Hermitian matrix is

real (resp. purely imaginary) it follows that E2, E4 ∈ R and iE3 ∈ R.

Next, since X is diagonalizable its minimal polynomial has distinct roots. In view

of E1 = 0 and X 	= 0, the following are the root configurations of the characteristic

polynomial, pX(x), which lead to its minimal polynomial, mX(x), being of strictly

lower degree than 4:

Case 1) The two distinct roots of pX are ia and −ia, each with multiplicity 2, and

a ∈ R non-zero. In this case mX = x2 + a2.

Case 2) The two distinct roots of pX are ia and ib with i) a, b non-zero real, and

ii) the former repeated thrice and the latter once. In this case, necessarily

b = −3a. In this case mX = x2 + 2iax+ 3a2.

Case 3) The three distinct roots of pX are 0 (repeated twice) and ia and −ia of mul-

tiplicity one each (with a ∈ R non-zero). In this case mX = x3 + a2x.

Case 4) The three distinct roots of pX are ia, ib and 0, with first repeated twice and

the latter two of multiplicity one each. Once again a, b ∈ R are non-zero. In

this case, necessarily b = −2a and mX = x3 + iax2 + 2a2x.
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Case 5) The three distinct roots of pX are ia, ib and ic, with i) a, b, c ∈ R and

abc 	= 0, and ii) the multiplicity of ia is two, while that of the other roots is

one each. In this case necessarily, b+ c = −2a. Furthermore,

mX = (x−ia)(x−ib)(x−ic) = x3−i(a+b+c)x2+(−a2−ab−ac)x+iabc.

Since, b+ c = −2a, this simplifies, for the moment, to

mx = x3 + iax2 + a2x+ iabc.

Case 6) All roots of pX(x) are distinct. In this case the minimal polynomial is pX .

To now characterize these root configurations, without having to find the roots,

we note that Ek = Sk, ∀k, where Sk is, of course, the kth elementary symmetric

polynomial of the roots of the characteristic polynomial. So we have

Case 1) In this case E2 = −a2+a2+a2+a2+a2−a2 = 2a2. Similarly E3 = 0 and

E4 = a4. So for X to have the minimal polynomial x2 + λ2 , it is necessary

that E3 = 0, E2 > 0 and E4 = 1
4(E2)

2. Furthermore, λ =
√

E2
2 · The

converse is also true. If these conditions on the Ek hold,

pX = x4 + E2x
2 + E4 = x4 + E2x

2 +
E2

2

4
·

Quite clearly this is a quadratic in x2, leading to the eigenvalues being of the

form ia and −ia, each repeated twice, with a the positive square root of E2
2 ,

which, of course leads to mX = x2 + E2
2 ·

Case 2) In this case E2 = 6a2, while E3 = 8ia3 and finally, E4 = −3a4. From this

it follows that a necessary condition for X to have the minimal polynomial

mX(x) = x2 + iγx+ c2

is that E2 > 0, E3 = 8i
(
E2
6

)3/2
and E4 = −E2

2
12 ·

The converse also holds. Indeed, in this case, pX has a triple root. Hence p
′

X

has a double root and this double root is one of the roots of p
′′

X . Now

p
′′

X = 12x2 + 2E2.

Its roots are i
√

E2
6 and −i

√
E2
6 · Only one of these can be a root of pX ,

since neither is −3 times the other and pX has only one multiple root. We

calculate

pX(i

√
E2

6
) =

E2
2

36
− E2

2

6
+

8E2
2

36
− E2

2

12
= 0.
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Here we have made use of the necessary conditions E2 > 0, E3 = 8i
√
(E2

6 )3

and E4 = − 1
12(E2)

2.

Thus, sufficiency has also been verified. Finally, note that the coefficients of

the minimal polynomial satisfy γ = 2a, c2 = 3a2. Both can be obtained

without finding a. Clearly, c2 = E2
2 and to find γ we look at the sign of the

purely imaginary number E3. Its sign coincides with the sign of γ, and the

actual value of γ is then found from, say, just E2.

Case 3) In this case, we find E2 = a2 and that E3 = 0 = E4. So the stated con-

ditions are obviously necessary. They are also sufficient, since under these

conditions the characteristic polynomial is

pX(x) = x4 + E2x
2 = x2(x2 + E2).

Since E2 > 0, its roots are obviously 0 (repeated twice) and i
√
E2 and

−i
√
E2.

Finally, the minimal polynomial, in this case, is mX = x3 + c2x , and c2 is

evidently uniquely determined as c2 = E2.

Case 4) In this case E2 = 3a2, E3 = 2ia3, E4 = 0. So necessarily E2 > 0 and E3

is plus or minus 2i(E2
3 )

3
2 and E4 = 0.

To verify the converse note that, if the stated conditions on E2, E3, E4 hold

then

pX(x) = x4 + E2x
2 − 2i(

E2

3
)
3
2x = x

(
x3 + E2x− 2i(

E2

3
)
3
2

)
So 0 is a single root and the remaining roots of pX are the roots of

q(x) = x3 + E2x− 2i(
E2

3
)
3
2 .

To show that q(x), and thus pX , has a double root we compute

q
′

(x) = 3x2 + E2.

Its roots are x = i
√

E2
3 and x = −i

√
E2
3 · We check if one of these roots is

a root of pX . We find, if E3 = 2i(E2
3 )

3
2 , then

p

(
i

√
E2

3

)
= 0.
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If E3 = −2i(E2
3 )

3
2 , then

p

(
−i

√
E2

3

)
= 0.

So indeed the stated conditions are sufficient as well.

Finally, to determine the coefficients of mX(x) = x3+ iγx2+ θ2x, we note

that since mX is also x3+ iax2+2a2x, we must have θ2 = 2a2 = 2
3E2 and

that γ is plus or minus i
√

E2
3 , depending on the sign of the non-zero purely

imaginary number E3.

Case 5) X has a minimal polynomial, which is of lower degree than 4, iff pX has

a repeated root. Now pX has a repeated root iff it and its derivative have

a common root. The latter condition obtains iff the resultant of pX and

p
′

X vanish. This condition is precisely the validity of equation (2). The

remaining conditions ensure that this repeated root configuration is not one

of the preceding cases, and thus has to correspond to the root configuration

{ia, ia, ib, ic}, with abc 	= 0 .

To determine the coefficients of mX , we first note that, since c = −(b+2a)
one has

mX = x3 + (ia)x2 + (2a2 − bc)x+ iabc.

Let us write this as

mX = x3 + c1x
2 + c2x+ c3.

Now, E2 = −a2−2a(b+c)−bc = 3a2−bc. Thus, c2 = E2−a2. Similarly,

c3 = iE4
a

. Hence,

mX = x3 + (ia)x2 + (E2 − a)x+ i
E4

a
·

So to fully find mX we need a. To that end, we proceeds as follows. Note

first that

E3 = i(2a3 − 2abc).

Since E2 = 3a2 − bc, we find

E3 = i
(−4a3 + (2a)E2

)
.

Equivalently, iE3 = 4a3 − (2a)E2. Hence, a is a root of the cubic

c(x) = 4X3 − (2E2)x− iE3 = 0. (3)
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Since E2 and iE3 are real, this cubic has at least one real root. If this cubic

has only one real root then, that real root gives a and we are done. If it has

three real roots, say α, β, γ, then by construction precisely one of {iα, iβ,
iγ} is a double root of pX . So we evaluate pX and p

′

X at these points and

see at which of these both vanish. That gives a and hence mX .

�

Remark 32. eX can be found for any X ∈ su (4) satisfying the first three cases of
Theorem 31 by using the formulae presented in Theorem 14. For cases 4) and 5)
of Theorem 31 one can use Lagrange interpolation, i.e., eX is that polynomial in
X which takes on the value eir at a root ir, r ∈ R of the corresponding minimal
polynomial. Note that the proof of Theorem 31 supplies, as a by-product, recipes
to find the roots of the minimal polynomial in cases 4) and 5). For case 6), if
E3 = 0, then one can invoke case IV ) of Theorem 14. Similarly, in Case 6)
if E4 = det(X) = 0, then one can easily find the roots of the characteristic
polynomial. They are given by 0, iα, iβ, −i(α + β), with αβ 	= 0 and α 	= β and
α 	= −β. These can be found by solving a cubic. Finally, in Case 6), if neither
E3 nor E4 is zero, then one has to solve a quartic to find the eigenvalues, which,
albeit, complicated, can be found in closed form. One can then use Lagrange
interpolation to find eX .

Remark 33. Spin (5) Reconsidered: Section 3 started with a basis of one-vectors
for Cl (3, 0) (namely the Pauli basis) and applied the natural constructions in Sec-

tion 2.3 to arrive at a basis of one-vectors for Cl (0, 5). The ability to produce a
basis of one-vectors for Cl (0, 6), starting from Cl (0, 0), which lead to J̃8 play-
ing a role in reversion, naturally raises the question whether following that set
of iterative constructions could lead to something similar for Cl (0, 5). We show
below that this is the case and more importantly that a slight variation of this con-
struction reveals a role in reversion for yet another matrix in the H ⊗ H basis for
M(4,R), viz., the matrix Mj⊗1! In the process, a natural interpretation of the
matrix X (z0, z1, z2) of Remark 3 is also found.

a) Start with Cl (0, 1) and apply the construction IC1 of Section 2.3 twice to
arrive at a basis of one-vectors for Cl (2, 3). Next we use IC3 of Section 2.3

to arrive at a basis of one-vectors for Cl (4, 1), and then finally use IC2 of
Section 2.3 to arrive at a basis of one-vectors for Cl (0, 5). We begin with
{i} as the obvious basis of one-vectors for Cl (0, 1). The basis of one-vectors
for Cl (2, 3) produced in this manner(
σx 0
0 −σx

)
,

(
0 I2
I2 0

)
,

(
iσy 0
0 −iσy

)
,

(
iσz 0
0 −iσz

)
,

(
0 I2

−I2 0

)
.
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Applying IC3 and then IC2 (after removing inessential negative signs) yields
the following basis for Cl (0, 5)

g1 = {σx⊗I2, g2 = iσy⊗σy, g3 = iσy⊗σz, g4 = iσz⊗I2, g5 = iσy⊗σx}.
With respect to this basis reversion on Cl (0, 5) = M(4,C) is described by

Φrev(X) = J̃−1
4 XT J̃4.

b) A typical one-vector, with respect to the basis {gk} in part a) is given by the
following matrix ⎛⎜⎜⎝

id 0 c+ ia e− bi
0 id e+ ib −c+ ia

−c+ ia −e+ ib −id 0
−e− ib c+ ia 0 −id

⎞⎟⎟⎠
(with a, b, c, d, e ∈ R). But this matrix is precisely X (z0, zi, z2) described
in Remark 3, with z0 = c + ia, z1 = e + ib, z2 = id. This gives a dif-
ferent motivation for this matrix in [20]. It should be pointed out that the
basis {gi ; i = 1, . . . , 5} given in part a) is not present in [20], since for
identification of Spin (5), [20] works in Cl (0, 4).

c) We now discuss a slight variation on the construction in part a). Everything
remains verbatim up to the basis of one-vectors for Cl (2, 3). However, for
the production of a basis of one-vectors for Cl (4, 1) using IC3 we have
interchanged the roles of σz ⊗ σx and σx ⊗ I2 - the two one-vectors in
Cl (2, 3) which square to +1, cf., Remark 6. This then yields yet another
basis of one-vectors for Cl (0, 5) given by

f̂1 = iσz⊗σx, f̂2 = I2⊗iσz, f̂3 = −I2⊗iσy, f̂4 = −iσx⊗σx, f̂5 = iσy⊗σx

Now the form of reversion on Cl (0, 5) with respect to this basis of one-
vectors is

Φrev(X) = J̆−1
4 XT J̆4

where J̆4 = Mj⊗1.

7. Conclusions

In this note we have derived explicit matrix realizations of the reversion automor-

phism for Cl (0, 5) and Cl (0, 6), with respect to bases of one-vectors which are
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natural from the point of view of the standard iterative procedures, described in

Section 2.3. This also leads to a first principles approach to the spin groups in these

dimensions, in the sense that they are obtained by working entirely in Cl (0, 5) and

Cl (0, 6) respectively. These constructions are then used to find closed form ex-

pressions for the exponentials of real antisymmetric matrices of size 5 × 5 and

6 × 6. This is facilitated by the derivation of explicit expressions for the mini-

mal polynomials of matrices in the Lie algebras of the corresponding spin groups.

These expressions do not require any spectral knowledge of the matrices in ques-

tion. An important by-product of this note is that it provides further evidence for

the importance of the isomorphism between H ⊗ H and M(4,R). It would be

interesting to examine whether the explicit relations between the spin group for

n = 5, 6 and the special orthogonal group for n = 5, 6, established in this work,

can be used to shed light constructively on further relations between these groups,

analogous to those discussed in [10].

There are some questions whose study this work naturally suggests. We mention

two here:

• It would be useful to obtain expressions for minimal polynomials of matrices

in su (4) directly from their H⊗H representations, analogous to the formulae

in [23]. Specifically, if one writes an X ∈ su (4) as Y + iZ with Y, Z real

matrices, then Y T = −Y and ZT = Z. This is significant because any such

work will also yield formulae for minimal polynomials of the real matrix

Y + Z. Since such a matrix is the most general traceless real 4 × 4 matrix,

the benefits are obvious. In Section 6, while no knowledge of eigenvalues

or eigenvectors was needed, the diagonalizability of matrices in su (4) was

heavily used. On the other hand, the methods in [23] never used any such

information. Since there are many important non-diagonalizable matrices in

M(4,R), this would be of high utility.

• It is important to be able to invert the covering maps Φ5 and Φ6. One ap-

plication of this would be the ability to deduce factorizations of matrices in

SO (n,R), for n = 5, 6, from those for matrices in their spin groups. The

inversion of these maps requires solving a system polynomial equations in

several variables which are essentially quadratic.
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