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SELF-DUALITY FOR LANDAU–GINZBURG MODELS
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Abstract. P. Clarke describes mirror symmetry as a duality between Landau–
Ginzburg models, so that the dual of an LG model is another LG model. We describe
examples in which the underlying space is a total space of a vector bundle on the
projective line, and we show that self-duality occurs in precisely two cases: the
cotangent bundle and the resolved conifold.

1. Introduction

For us a Landau–Ginzburg model (LG) is a variety X together with a regular func-

tion W : X → C called the superpotential. Clarke [1] showed that one can state

a generalised version of the Homological Mirror Symmetry conjecture of Kontse-

vich [4] as a duality between LG models. He also showed that this correspondence

generalises those of Batyrev–Borisov, Berglung–Hübsch, Givental, and Hori–Vafa.

This paper is an exercise in understanding the details of this correspondence. We

summarise the construction in [1], which, for a given LG model (X,W ), produces

a dual (X∨,W∨). When (X∨,W∨) ∼= (X,W ), we call X self-dual. We then

study the case when X is the total space of a vector bundle on P
1 and prove that

self-duality occurs in only two cases: X = Tot(O(−2)) and X = Tot(O(−1) ⊕
O(−1)).

2. The Character to Divisor Map

Let X be a toric variety of rank n with a torus embedding ι : T −→ X . The torus

T = (C∗)n is an algebraic group, whose algebraic functions are characters, that is,

group morphisms, χ : T −→ C
∗. Let M denote the group of characters of T , and

N the group of one-parameter subgroups, naturally identified with the dual of M ,

HomZ(M,Z). Let MR and NR denote the tensor products M ⊗Z R and N ⊗R Z,

respectively.

Since ι(T ) is dense inside X , each character χ ∈ M can be thought of as a rational

map, fχ : X ��� C, which is nowhere zero on ι(T ). Let R = {D1, . . . , Dr}
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denote the set of irreducible components of X \ ι(T ). These are prime T -invariant

Weil divisors and can be read off the moment polytope for X . Since each D ∈ R
is irreducible and X is normal, one can compute the order of vanishing, ordD(fχ),
of fχ along D. This defines a map

div(X) : M −→ Z
R, χ �→ (ordD1(fχ), . . . , ordDr

(fχ)) .

Choosing ordered generators for M and an ordering of R gives a matrix Mdiv(X) ∈
Matn×r(Z). For each Dk ∈ R, let vk ∈ N be a generator for the corresponding

ray in the fan. By [2, Section 3.3], ordDk
(fχ) = 〈χ, vk〉. This implies that, when

the bases of N and M are dual, the rows of the matrix Mdiv(X) are simply the

generating vectors, vk.

The cokernel of div(X) is the Chow group of X , written An−1(X). When X is

a complete toric variety, the Chow group can be identified with the second integral

cohomology H2(X,Z) and is torsion free. The following lemma is from [1].

Lemma 1 ([1], Corollary 4.5) . If D1, . . . , Dc are T -invariant Cartier divisors
and X is the total space of the split bundle OY (−D1) ⊕ · · · ⊕ OY (−Dc) over a
toric variety Y , then the character group of X decomposes as

MX
∼= MY ⊕ Zσ1 ⊕ · · · ⊕ Zσc

where σj is a rational section of OY (Dj) whose divisor is Dj , interpreted here as
a character of T . The T -invariant Weil divisors of X are the preimages under p of
the T -invariant Weil divisors of Y as well as the total spaces Xj of the c subbundles
E∨

j , where E∨
j is the dual bundle to ker(πj : E → O(Dj)). Furthermore

divX =

(
divY | D1 | · · · | Dc

0 id

)
with respect to the decomposition of MX above and

Z
RX = Z

RY ⊕ ZX1 ⊕ · · · ⊕ ZXc.

3. The Infinitesimal Action on Monomials

Let E be a vector bundle on a Kähler manifold Y with a global section w ∈
H0(Y,E). Assume that X = Tot(E∨) is a toric variety. A superpotential
W : X → C is a regular function on X . It can be determined by w as follows.

In the category of coherent OY -modules, there are isomorphisms

H0(Y,E) ∼= Hom(OY , E) ∼= Hom(E∨,OY ).
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Thus, w determines a morphism from E∨ to OY , or, equivalently, a regular func-

tion W on the total space of E∨. Since T acts freely on the embedded torus

ι(T ) ⊂ X , the zeroes of the function W must lie on the locus of T -invariant

divisors. Thus, W ◦ ι : T → C
∗ is a homomorphism of algebraic groups, which

may be expressed as a finite linear sum of characters of T

ι∗W =
s∑

i=1

aiξi

for scalars ai ∈ C and characters ξi ∈ M . Set Ξ := {ξ1, . . . , ξs}.

The scalars {a1, . . . , as} depend on the initial choice of embedding ι. In turn, the

map ι is determined by a point x ∈ X, namely, the image of 1 ∈ T . Write ιx for

the map sending 1 to x. If x′ = tx is another point in ι(T ) for some t ∈ T , we

have

ι∗x′W =
s∑

i=1

aiξi(t)ξi.

Let (C∗)Ξ denote the space of all C∗-linear sums of monomials in Ξ – these are

regular functions on T . Now T acts on (C∗)Ξ as above; that is, if ι∗xW ∈ (C∗)Ξ

and t ∈ T , then t · ι∗xW := ι∗t·xW . In order to eliminate the dependence of ι∗W on

the choice of embedding, we consider ι∗W as an element of the quotient (C∗)Ξ/T .

The kernel of the exponential map C
n −→ T ; (t1, . . . , tn) �→ (et1 , . . . , etn) is

isomorphic to Z
n, as is the lattice of one-parameter subgroups N . Let ZΞ denote

the kernel of the corresponding exponential map on C
Ξ. The action of T on (C∗)Ξ

gives a map f : T −→ (C∗)Ξ, t �→ t · (ξ1 + · · ·+ ξs). Restricting the derivative

df : Cr −→ C
Ξ to the kernel N of e(−) yields a map which we denote by

mon : N −→ Z
Ξ.

Hence, the maps f , df , and mon define a morphism of the following short exact

sequences

0 �� N ��

mon

��

C
n e(−)

��

df
��

T

f
��

�� 0

0 �� Z
Ξ �� C

Ξ e(−)
�� (C∗)Ξ �� 0

Choosing an ordered basis for N and an ordering of the monomials in Ξ allows

us to express the map mon as a matrix Mmon(X) ∈ Matn×s(Z) such that the

kth row of this matrix is given by the n-tuple (b1, . . . , bn) defined by the equation

ξk(t1, . . . , tn) = tb11 · · · tbnn .
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4. Toric LG Models

A toric Landau–Ginzburg model is a triple, (X,W,K), where X is a toric vari-

ety, W is a regular function on X and K ∈ An−1(X)⊗ZC/Z is an element of the

Chow group (with C/Z coefficients). To such a model we have associated linear

maps div(X) and mon(X). Choosing an element L ∈ coker(mon) ⊗Z C/Z
determines the linear data associated to (X,W,K), namely, the pairs (div,K)
and (mon, L). We now provide an inverse to this construction.

First we specify the conditions on R-linear data (C, c) for it to yield an appropriate

toric variety. Let C : M → Z
r be a linear map, and c ∈ Z

r. We say that the

R-linear data (C, c) is kopaseptic if

1. the polyhedral set P = {ξ ∈ M ; Cξ + c ≥ 0} associated to (C, c) has

non-empty interior, and

2. there exists a surjection k : Zr → Z
RX(C,c) sending standard generators ei-

ther to standard generators or to zero such that the following diagram com-

mutes

M Z
r

Z
RX(C,c)

C

divX(C,c)

k

where RX(C,c) denotes the number of torus-invariant divisors of the toric

variety X(C, c).

Condition 1 guarantees that the toric variety X(C, c) corresponding to the polyhe-

dral set of (C, c) is well-defined, and thus allows us to make sense of condition 2.

Some of the inequalities Cξ + c ≥ 0 defining the polyhedral set may be redundant

and condition 2 tells us how to remove these redundances. In fact, k is almost

uniquely determined, the only choice being which redundant condition to drop.

Now we need to determine precisely when a potential W (defined on a toric variety

X) is regular. Since it is regular if and only if all its monomials are regular, and

the mon matrix encodes all the information about those monomials, we can state

our condition in terms of that matrix. Indeed, a monomial ξ is regular if and only

if div ξ ≥ 0, which implies the following lemma.

Lemma 2. W is regular if and only if div ◦mon
T ≥ 0.

We now combine the above remarks into one definition. Let A and B be homo-

morphisms of free abelian groups of finite rank such that the domains of A and
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B have the same rank, and let K and L be elements in coker(A) ⊗Z C/Z and

coker(B) ⊗Z C/Z, respectively. A pair (A,K) and (B,L) is called C/Z-linear
data. Such data is said to be kopaseptic if

1. (A, (
K)) is kopaseptic, and

2. the entries of the matrix A ◦BT are all non-negative.

Here 
K denotes the imaginary part of K.

Given kopaseptic C/Z-linear data (A,K), (B,L), we can define the corresponding

toric Landau–Ginzburg model (X,W,K) given by

1. the toric variety X := X(A,
K) determined by A and 
K

2. the regular function W := W (B,L) determined by B and L.

The element K specifies a choice of complexified Kähler class for our Landau–

Ginzburg model.

5. Self-Duality

Let (X,W,K) be a toric Landau–Ginzburg model with linear data (div(X),K),
(mon, L). Then the dual (X∨,W∨,K∨) of (X,W,K) is the toric Landau–

Ginzburg model corresponding to the linear data obtained exchanging (div,K)
and (mon, L).

Lemma 3. Let (X,W,K) and (Y,W ′,K ′) be toric Landau–Ginzburg models.
Then (X×Y,W +W ′,K+K ′) is a toric Landau–Ginzburg model and div(X×
Y ) = div(X)⊕ div(Y ) and mon(X × Y ) = mon(X)⊕mon(Y ).

Proof: This follows directly from the definitions, given that the torus action on

X × Y agrees with the original actions on X and Y . �

This immediately implies the following.

Corollary 4. Suppose (X,W,K) is a toric Landau–Ginzburg model which is dual
to (X∨,W ′,K ′). Then (X ×X∨,W +W ′,K +K ′) is self-dual.

5.1. The CY Condition

There are several inequivalent definitions of a Calabi–Yau manifold. Some authors

require that the manifold be a compact complex Kähler manifold with a Ricci flat
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metric, while others use a stronger condition that implies the former: a compact

complex Kähler manifold with trivial canonical bundle. When a Kähler manifold

is non-compact, the triviality of the canonical bundle does not necessarily imply

the existence of a complete Ricci flat metric. In this case we make the following

definition.

Definition 5. A complex Kähler manifold is Calabi–Yau if it has trivial canonical
bundle and admits a complete Ricci-flat metric. Such a metric is called a Calabi–
Yau metric.

The dual of a Calabi–Yau variety is expected to also be Calabi–Yau.

6. Self-Duality for Bundles on P
1

We now describe such dualities for the case when our variety X is the total space

of a vector bundle on P
1.

6.1. Rank One

Let X = Tot(OP1(−k)). For k < 0, E has no global sections, so assume k ≥ 0.

The chart U := {[z : 1] ; z ∈ C} of P1 determines a chart of X on which points

may be described as pairs (z, u), where u is the coordinate for the fibre of E∨|U .

The point x = (1, 1) determines the embedding ιx, so that an element (t1, t2) ∈ T
acts on X by (t1, t2) · (z, u) = (t1z, t2u). Having embedded the torus this way,

Laurent polynomials in t1 and t2 can be interpreted both as characters of the torus

T and as rational functions on X . This gives a basis for the group of characters

M = 〈t1, t2〉. Let ν1, ν2 be the dual basis for the one-parameter subgroups N . The

T -invariant divisors of X are f0 = {t1 = 0}, f∞ = {t1 = ∞} and � = {t2 = 0}.

The moment polytope for X is given by connecting the vertices (0, 1)-(0, 0)-(1, 0)-
(k + 1, 1). Fig. 1 illustrates the case k = 2.

Figure 1. The moment polytope of Tot(O(−2)) with invariant divisors �,
f0, and f∞.
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Remark 6. The unique value of k for which X is Calabi–Yau is k = 2.

Proposition 7. The toric variety X = Tot(OP1(−k)) belongs to a self-dual Lan-
dau–Ginzburg model (X,W,K) if and only if k = 2.

Proof: With respect to the fixed basis above, the rows of the div-matrix are given

by the vectors normal to the edges of the moment polytope, which are (1, 0), (0, 1),
and (−1, k). Hence

Mdiv(X) =

⎛⎝ 1 0
−1 k
0 1

⎞⎠ .

A global section w of E is represented by a polynomial of degree k (we assume

that k ≥ 0). Identifying P
1 with the subvariety of X cut out by t2 = 0 gives

a superpotential W = a0t2 + a1t1t2 + · · · + akt
k
1t2 for some a0, . . . , ak ∈ C.

For X to belong to a self-dual toric Landau–Ginzburg model, there must exist a

choice of basis for N and an ordering of Ξ such that Mdiv(X) = Mmon(X).
Clearly, Ξ must have cardinality three, so Ξ is a subset of three of the monomials

in {t2, . . . , t
k
1t2}. With the dual basis for M , the mon-matrix for X is given by

Mmon(X) =

⎛⎝a 1
b 1
c 1

⎞⎠
where a, b, c are distinct integers in {0, . . . , k}. If a choice of basis for N exists

such that Mmon(X) = Mdiv(X), then there are (non-zero) integers λ, μ ∈ Z such

that λ(a, b, c)+μ(1, 1, 1) = (1,−1, 0). This implies a+b−2c = 0. Likewise, there

exist (non-zero) integers λ′, μ′ ∈ Z such that λ′(a, b, c) + μ(1, 1, 1) = (0, k, 1).
This implies the equation (k − 1)a + b − kc = 0. Together these two equations

give (k − 2)(a− c) = 0, which, since a and c are distinct, implies that k = 2.

It remains to show that, for k = 2, an element K ∈ An−1⊗ZC/Z can be chosen so

that (div, Im(K)) is kopaseptic. The Chow group in this case is isomorphic to Z

by an isomorphism sending the generator (1, 1,−2) in the codomain of Mdiv(X)
to 1 ∈ Z. The polyhedral set defined by choosing t > 0 ∈ An−1 has non-empty

interior and produces inward normals that determine the fan for X . On the other

hand, for t ≤ 0, the relation from the third row of Mdiv(X) is made redundant. It

follows that lifting (1, 1,−2) to C/Z gives a K such that (X,W,K) is self-dual.

�

6.2. Rank Two Bundles

Now we consider the rank two bundles on P
1 whose total space is Calabi–Yau, so

E = O(−k) ⊕ O(k + 2) on Y = P
1. Let X = Wk := Tot (E∨). Note that

Wk � W−k−2, so we can assume k ≥ −1.
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Proposition 8. The toric variety X = Wk belongs to a self-dual toric Landau–
Ginzburg model (X,W,K) if and only if k = 0,−1.

Proof: As in the example above, the chart U := {[z : 1] ; z ∈ C} of P1 gives

a chart on X on which points may be described as triples, (z, u, v), where u is

the coordinate along a fibre of O(k)|U and v is the coordinate along a fibre of

O(−k − 2)|U . Let T = (C∗)3 be embedded in X so that (t1, t2, t3) ∈ T acts by

the rule (t1, t2, t3) · (z, u, v) = (t1z, t2u, t3v). Again we let Laurent polynomials

in ti represent both the characters of T and the rational functions on X . With

this notation, the T -invariant divisors are f0 = {t1 = 0}, f∞ = {t1 = ∞},

l1 = {t2 = 0} and l2 = {t3 = 0}. Let [∞] denote the divisor of P1 which is the

intersection of P1 with f∞ in X . Applying Lemma 1 with c = 2, D1 = −k[∞],
D2 = (k + 2)[∞], σ1 = t2 and σ2 = t3 gives the matrix

Mdiv(X) =

⎛⎜⎜⎝
1 0 0

−1 −k k + 2
0 1 0
0 0 1

⎞⎟⎟⎠ .

The following three cases describe the global sections of E = O(−k)⊕O(2 + k)
on P

1

H0(P1, E) =

⎧⎪⎨⎪⎩
H0(P1,O(1)⊕O(1)) ∼= C[x]1 ⊕ C[x]1 when k = −1

H0(P1,O(2)⊕O) ∼= C[x]2 ⊕ C when k = 0

H0(P1,O(k + 2)) ∼= C[x]k+2 when k ≥ 1.

When k ≥ 0 the div and mon matrices decompose into the direct sum of the div

and mon matrices for Tot(O(−k − 2)) with the identity matrix. That X belongs

to a self-dual Landau–Ginzburg model for k = 0 but not for k ≥ 1 follows from

Proposition 7.

Consider k = −1. A generic section of E is a pair of linear polynomials in a single

variable. This produces the superpotential W = a0t2 + a1t1t2 + b0t3 + b1t1t3
on X , where a0, a1, b0, b1 ∈ C. Judiciously order the monomials in W so that

Ξ = {t1t3, t2, t3, t1t2}. Let s1, s2, s3 denote one-parameter subgroups dual to the

characters t1, t2, t3. Finally, choose the basis N = 〈s1s3, s3, s1s2〉. With respect

to these choices, Mmon(Wk) = Mdiv(Wk). The Chow group is isomorphic to

Z, which we identify with the subgroup {(t, t,−t,−t) ; t ∈ Z} of the codomain

of Mdiv(X). Again, if t < 0, then the relations from the third and forth rows

of Mdiv(X) are redundant, but t > 0 produces a polytope with inward normals

which define the fan for X . Choosing a lifting of (1, 1,−1,−1) yields the required

Chow group element K. �
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6.3. Higher Rank Bundles

We recall the following definition.

Definition 9. A vector bundle on a curve is polystable if it is isomorphic to a sum
of stable bundles with the same slope.

The following theorem of Hori is from [3, Theorem 32.8.8].

Theorem 10 (Hori) . A holomorphic vector bundle admits a Calabi–Yau metric if
and only if it is polystable.

Theorem 11. Let X be the total space of a vector bundle on P
1. Suppose, ad-

ditionally, that such a bundle is Calabi–Yau. Then X is self-dual if and only if
X = O(−2) or X = O(−1)⊕O(−1).

Proof: The previous sections deal with the rank one and two cases. The Grothen-

dieck splitting lemma states that a rank n bundle E on P
1 splits as a sum of line

bundles E ∼= O(a1) ⊕ · · · ⊕ O(an). The total space of E has trivial canonical

bundle if and only if
∑

ai = −2.

If E is a sum of two line bundles, O(a)⊕O(b), with a ≥ b, then the slope of O(a)
is greater than or equal to the slope of E. Induction on the rank r of E, for r ≥ 2,

shows that vector bundles on P
1 of rank r ≥ 2 are not stable. Thus, the only stable

vector bundles on P
1 are the line bundles. It follows that a vector bundle on P

1 is

polystable if and only if it is of the form

O(a)⊕ · · · ⊕ O(a)

for some a. Therefore, vector bundles on P
1 with rank greater than two do not

satisfy the Calabi–Yau condition required for self-duality. �

Remark 12. We expect that the hypothesis that the bundle is Calabi–Yau can be
removed from this theorem.

Remark 13. The Calabi–Yau condition used in Theorem 11 is stronger than the
commonly used definition that only requires triviality of the canonical bundle. Us-
ing the latter, one can apply the algebraic argument from the proof of Proposition 7

to show that a Calabi–Yau vector bundle on P
1 can also be a direct sum of O(−2)

or O(−1)⊕2 with O⊕k for some k ≥ 0. That the former, stronger condition re-
moves the trivial summands gives a justification of its suitability.



10 Brian Callander, Elizabeth Gasparim, Rollo Jenkins and Lino Marcos Silva

Acknowledgements

We thank Patrick Clarke for patiently explaining details of his work, and Tony

Pantev for enlightening discussions. Elizabeth Gasparim was supported by Fapesp

grant 2012/10179-5 and Rollo Jenkins was supported by Faepex-PRP-Unicamp

under grant number PRP/FAEPEX 005/2014 and Fapesp grant 2013/17654-3.

References

[1] Clarke P., Duality for Toric Landau–Ginzburg Models, arXiv:0803.0447,

2008.

[2] Fulton W., Introduction to Toric Varieties, Annals of Math. Studies 131
Princeton University Press, Princeton 1993.

[3] Hori K., Katz S., Klemm A., Pandharipande R., Thomas R., Vafa C., Vakil R.

and Zaslow E., Mirror Symmetry, Clay Math. Monographs 1, AMS and Clay

Mathematics Institute, Providence 2003.

[4] Kontsevich M., Homological Algebra of Mirror Symmetry, Proc. Int.

Congress of Mathematicians (Zurich, 1994), Birkhäuser, Basel 1995 pp 120–

139.

Address of all authors:

IMECC, UNICAMP

Universidade Estadual de Campinas

Rua Sérgio Buarque de Holanda 651

Cidade Universitária “Zeferino Vaz”

Barão Geraldo, Campinas

São Paulo, BRAZIL

E-mail addresses:

Brian Callander - briancallander@gmail.com

Rollo Jenkins - rollojenkins@gmail.com

Elizabeth Gasparim - etgasparim@gmail.com

Lino Marcos Silva - linofriend@gmail.com



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ([Based on 'High Quality No Color Changes'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


