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ON SIDON SETS WHICH ARE ASYMPTOTIC BASES
OF ORDER 4

Sándor Z. Kiss, Eszter Rozgonyi, Csaba Sándor

Abstract: Let h > 2 be an integer. We say that a set A of positive integers is an asymptotic
basis of order h if every large enough positive integer can be represented as the sum of h terms
from A. A set of positive integers A is called a Sidon set if all the sums a+ b with a, b ∈ A, a 6 b
are distinct. In this paper we prove the existence of Sidon set A which is an asymptotic basis of
order 4 by using probabilistic methods.
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1. Introduction

Let N denote the set of nonnegative integers. Let A = {a1, a2, . . . } (a1 < a2 < . . . )
be an infinite sequence of positive integers. For h > 2 integer let Rh(A, n) denote
the number of solutions of the equation

ai1 +ai2 + · · ·+aih = n, ai1 ∈ A, . . . , aih ∈ A, ai1 6 ai2 6 . . . 6 aih , (1)

where n ∈ N. A (finite or infinite) set A of positive integers is said to be a Sidon
set if all the sums a + b with a, b ∈ A, a 6 b are distinct. In other words A is
a Sidon set if for every n positive integer R2(A, n) 6 1. We say a set A ⊂ N is
an asymptotic basis of order h, if every large enough positive integer n can be
represented as the sum of h terms from A, i.e., if there exists a positive integer
n0 such that Rh(A, n) > 0 for n > n0. In [3] and [4] P. Erdős, A. Sárközy and
V.T. Sós asked if there exists a Sidon set which is an asymptotic basis of order 3.
The problem was also appears in [10] (with a typo in it: order 2 is written instead
of order 3). It is easy to see [5] that a Sidon set cannot be an asymptotic basis
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of order 2. A few years ago J. M. Deshouillers and A. Plagne in [2] constructed
a Sidon set which is an asymptotic basis of order at most 7. In [8] S. Kiss proved
the existence of a Sidon set which is an asymptotic basis of order 5. In this paper
we will improve this result by proving that there exists an asymptotic basis of
order 4 which is a Sidon set by using probabilistic methods.

Theorem 1. There exists an asymptotic basis of order 4 which is a Sidon set.

Note that at the same time Javier Cilleruelo [1] has proved a slightly stronger
result namely the existence of a Sidon set which is an asymptotic basis of order 3+ε.
He obtained his result independently from our work by using other probabilistic
methods. Before we prove the above theorem, we give a short survey of the
probabilistic method we are working with.

2. Probabilistic tools

The proof of Theorem 1 is based on the probabilistic method due to Erdős and
Rényi. There is an excellent summary of this method in the Halberstam - Roth
book [6]. We use the notation and terminology of this book. First we give a survey
of the probabilistic tools and notations which we use in the proof of Theorem 1.
Let Ω denote the set of strictly increasing sequences of positive integers. In this
paper we denote the probability of an event E by P(E) and the expectation of
a random variable ξ by E(ξ).

Lemma 1. Let θ1, θ2, θ3, . . . be real numbers satisfying

0 6 θn 6 1 (n = 1, 2, . . .).

Then there exists a probability space (Ω, X, P) with the following two properties:

(i) For every n ∈ N, the event E(n) = {A : A ∈ Ω, n ∈ A} is measurable, and
P(E(n)) = θn.

(ii) The events E(1), E(2), ... are independent.

See Theorem 13. in [6], p. 142. We denote the characteristic function of the
event E(n) by t(A,n) or we can say the the boolean variable t(A,n) means that:

t(A,n) = tn =

{
1, if n ∈ A
0, if n /∈ A.

Furthermore, for some A = {a1, a2, . . . } ∈ Ω we denote the number of solutions
of ai1 + ai2 + . . . + aih = n with ai1 , . . . , aih ∈ A, 1 6 ai1 < ai2 . . . < aih < n by
rh(A, n).
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Let
rh(A, n) =

∑
(ai1 ,ai2 ,...,aih )

16ai1<...<aih<n
ai1+ai2+...+aih=n

t(A,a1)t(A,a2) . . . t(A,ah). (2)

Let r∗h(A, n) denote the number of those representations of n in the form (1) in
which there are at least two equal terms. Thus we have

Rh(A, n) = rh(A, n) + r∗h(A, n). (3)

It is easy to see from (2) that rh(A, n) is the sum of random variables. However,
for h > 2 these variables are not independent because the same t(A,ai) may appear
in many terms. To overcome this problem we need deeper probabilistic tools.
Our proof is based on a method of J. H. Kim and V. H. Vu. We give a short
survey of this method. Interested reader can find more details in [7], [11], [12],
[13]. Assume that t1, t2, . . . , tn are independent binary (i.e., all ti’s are in {0, 1})
random variables. Consider a polynomial Y = Y (t1, . . . tn) in t1, t2, . . . , tn with
degree k (where the degree of this polynomial equals the maximum of the sum
of the exponents of the monomials). We say a polynomial Y is totally positive
if it can be written in the form Y =

∑
i eiΓi, where the ei’s are positive and

Γi is a product of some tj ’s. Furthermore, Y is regular if all of its coefficients
are between zero and one. We also say Y is simplified, if all of its monomials
are square-free (i.e. do not contain any factor of t2i ), and homogeneous if all
the monomials have the same degree. Thus for instance a boolean polynomial is
automatically regular and simplified, though not necessarily homogeneous. Given
any multi-index α = (α1, . . . , αn) ∈ Nn, we define the partial derivative ∂α(Y )
of Y as

∂α(Y ) =

(
∂

∂t1

)α1

· · ·
(

∂

∂tn

)αn
Y (t1, . . . tn),

and denote the order of α as |α| = α1 + · · ·+ αn. For any order d > 0, we denote
Ed(Y ) = maxα:|α|=dE (∂αY ). Thus for instance E0(Y ) = E(Y ) and Ed(Y ) = 0 if d
exceeds the degree of Y . We also define E>d(Y ) = maxd′>dEd′(Y ). The following
result is due to Kim and Vu.

Lemma 2 (J.H. Kim and V.H. Vu). Let k > 1 and Y = Y (t1, . . . , tn) be
a totally positive polynomial of n independent boolean variables t1, . . . , tn. Then
there exists a constant Ck > 0 depending only on k (which is the degree of the
polynomial) such that

P
(
|Y − E(Y )| > Ckλk−

1
2

√
E>0(Y )E>1(Y )

)
= Ok

(
e−

λ
4 +(k−1) logn

)
for all λ > 0.

See [7] for the proof. Informally this theorem asserts that when the derivatives
of Y are smaller on average than Y itself, and the degree of Y is small, then Y is
concentrated around its mean.
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Finally we need the Borel - Cantelli lemma:

Lemma 3 (Borel-Cantelli). Let X1, X2, . . . be a sequence of events in a proba-
bility space. If

+∞∑
j=1

P(Xj) <∞,

then with probability 1, at most a finite number of the events Xj can occur.

See in [6], p. 135.

3. Proof of Theorem 1

Define the sequence θn in Lemma 1 by

θn = n−
5
7 , (4)

that is P ({A : A ∈ Ω, n ∈ A}) = n−
5
7 , for n ∈ N. For a given set A ∈ Ω let the

set B be the following

B = {b : b ∈ A,∃a′, a′′, a′′′ ∈ A : b+ a′ = a′′ + a′′′, a′, a′′, a′′′ < b} . (5)

Thus A \ B is a Sidon set. We will prove that A \ B is an asymptotic basis of
order 4 with probability 1. This means that there exists integer N0 such that with
probability 1, r4(A \ B, n) > 0 for n > N0. Since

r4(A \ B, n) = r4(A, n)− (r4(A, n)− r4(A \ B, n)) ,

if we get a lower bound for r4(A, n) and an upper bound for (r4(A, n)−
r4(A\B, n)) then we will have a lower bound for r4(A\B, n). So formally we will
show that there are positive constants C1 and N1 such that with probability 1,

r4(A, n) > C1n
1
7 , n > N1, (6)

and there are positive constants C2 and N2 such that with probability 1,

r4(A, n)− r4(A \ B, n) < C2 (log n)
6.5
, n > N2. (7)

In order to prove (6) and (7) we use Lemma 2.
We need the following Lemma (see in [9], p. 134., Lemma 5.3). For the sake

of completeness we sketch the proof.

Lemma 4. Let N > 3, α, β > −1. Then

N−1∑
n=1

nα(N − n)β = Θα,β

(
Nα+β+1

)
.
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Proof.

N−1∑
n=1

nα(N − n)β =
∑

16n6N
2

nα(N − n)β +
∑

N
2 <n<N

nα(N − n)β

= Θα,β

Nβ
∑

16n6N
2

nα

+ Θα,β

Nα
∑

N
2 <n<N

(N − n)β


= Θα,β

(
Nβ

∫ N
2

1

xαdx

)
+ Θα,β

(
Nα

∫ N

N
2

xβdx

)
= Θα,β

(
Nα+β+1

)
. �

In the first step we prove (6) by using Lemma 2. To do this, we need the
following Lemma.

Lemma 5. Assume that all of the variables yi’s are different and the tyi ’s are
random boolean variables.

1. For every nonzero integer a1 and for every integer m

E

 ∑
y1

a1y1=m

ty1

 = Oa1 (1) .

2. For every nonzero integers a1, a2 and for every integer m

E

 ∑
(y1,y2)

a1y1+a2y2=m

ty1ty2

 = Oa1,a2 (1) .

3. For every nonzero integers a1, a2, a3 and for every integer m

E

 ∑
(y1,y2,y3)

a1y1+a2y2+a3y3=m

ty1ty2ty3

 = Oa1,a2,a3 (1) .
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Proof.

(1)

E

 ∑
y1

a1y1=m

ty1

 =


(
m
a1

)− 5
7

= Oa1 (1) if m
a1
∈ Z+

0 if m
a1
6∈ Z+

(2) We distinguish two different cases.

Case 1: Assume, that a1 > 0, a2 > 0, thus m > 0. (Since y1, y2, a1, a2 are
nonnegative, therefore m can not be negative, at this case.) Thus applying
Lemma 4 we get

E

 ∑
(y1,y2)

a1y1+a2y2=m

ty1ty2

 = Oa1,a2

 m
a1∑
y1=1

y
− 5

7
1

(
m− a1y1

a2

)− 5
7



Oa1,a2

 m
a1∑
y1=1

(a1y1)−
5
7 (m− a1y1)

− 5
7

 = Oa1,a2

(
m−1∑
y=1

y−
5
7 (m− y)−

5
7

)

= Oa1,a2

(
m−

3
7

)
= Oa1,a2 (1) .

Case 2: Now assume that a1 > 0, a2 < 0 and m > 0. (If m is negative,
then consider the equation −a1y1 − a2y2 = m.) We apply Lemma 4 again.

E

 ∑
(y1,y2)

a1y1+a2y2=m

ty1ty2

 = Oa1,a2

( ∞∑
y2=1

y
− 5

7
2

(
m− a2y2

a1

)− 5
7

)

= Oa1,a2

( ∞∑
y=1

y−
10
7

)
= Oa1,a2 (1) .

The other cases can be deduced from the aboves. So we leave the details to
the reader. (The case a1 < 0, a2 > 0, either m > 0 or m < 0 is almost the
same like Case 2, we have to change the role of a1 and a2. The case a1 < 0,
a2 < 0, thus m < 0 is almost the same like Case 1, we have to get −a1 and
−a2 instead of a1 and a2.)
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(3) We distinguish three different cases.
Case 1: Assume, that a1 > 0, a2 > 0, a3 > 0 thus m > 0. (Since y1, y2, y3,
a1, a2, a3 are nonnegative, therefore m can not be negative, at this case.)
Thus applying Lemma 4 we get

E

 ∑
(y1,y2,y3)

a1y1+a2y2+a3y3=m

ty1ty2ty3


= Oa1,a2,a3


m
a1∑
y1=1

y
− 5

7
1

m−a1y1
a2∑
y2=1

y
− 5

7
2

(
m− a1y1 − a2y2

a3

)− 5
7


= Oa1,a2,a3


m
a1∑
y1=1

y
− 5

7
1

m−a1y1
a2∑
y2=1

(a2y2)−
5
7 (m− a1y1 − a2y2)

− 5
7


= Oa1,a2,a3

 m
a1∑
y1=1

y
− 5

7
1 (m− a1y1)

− 3
7

 = Oa1,a2,a3

(
m−

1
7

)
= Oa1,a2,a3 (1) .

Case 2: Now assume that a1 > 0, a2 > 0, a3 < 0 and m > 0. Thus applying
Lemma 4 again we get

E

 ∑
(y1,y2,y3)

a1y1+a2y2+a3y3=m

ty1ty2ty3


= Oa1,a2,a3

 ∞∑
y3=1

y
− 5

7
3

m−a3y3
a1∑
y1=1

y
− 5

7
1

(
m− a3y3 − a1y1

a2

)− 5
7


= Oa1,a2,a3

 ∞∑
y3=1

y
− 5

7
3

m−a3y3
a1∑
y1=1

(a1y1)−
5
7 (m− a3y3 − a1y1)

− 5
7


= Oa1,a2,a3

( ∞∑
y3=1

y
− 5

7
3 (m− a3y3)

− 3
7

)
= Oa1,a2,a3

( ∞∑
y=1

y−
8
7

)
= Oa1,a2,a3 (1) .
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Case 3: Now assume that a1 > 0, a2 > 0, a3 < 0 and m < 0. By Lemma 4
we get

E

 ∑
(y1,y2,y3)

a1y1+a2y2+a3y3=m

ty1ty2ty3


= Oa1,a2,a3

 ∞∑
y3=b ma3 c+1

y
− 5

7
3

m−a3y3
a1∑
y1=1

y
− 5

7
1

(
m− a3y3 − a1y1

a2

)− 5
7


= Oa1,a2,a3

 ∞∑
y3=b ma3 c

y
− 5

7
3

m−a3y3
a1∑
y1=1

(a1y1)−
5
7 (m− a3y3 − a1y1)

− 5
7


= Oa1,a2,a3

 ∞∑
y3=b ma3 c

y
− 5

7
3 (m− a3y3)

− 3
7

 = Oa1,a2,a3

( ∞∑
y=1

y−
8
7

)

= Oa1,a2,a3 (1) .

The other cases can be deduced from the aboves again. We leave the details
to the reader. (The case a1 > 0, a2 < 0, a3 < 0, either m > 0 or m < 0 is
almost the same as Case 2: and as Case 3. The case a1 < 0, a2 < 0, a3 < 0
thus m < 0 is almost the same as Case 1. In both we have to get −a1, −a2

and −a3 instead of a1, a2 and a2.) �

Now we are ready to prove (6). In view of (2) define Y by

Y = r4(A, n) =
∑

(x1,x2,x3,x4)
16x1<···<x4

x1+x2+x3+x4=n

tx1
tx2
tx3
tx4
.

We want to use Lemma 2. To do this we have to estimate the expectation of the
variable Y and its partial derivatives. Let α = (α1, . . . , αn) be a multi-index. In
the first step we prove that for α = 0

E (∂αY ) = E(Y ) = Θ(n
1
7 ), (8)

and for α 6= 0

E (∂αY ) = O(1). (9)
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Let α = 0. By using Lemma 4 we have

E (∂αY ) = E(Y ) = E


∑

(x1,x2,x3,x4)
16x1<···<x4

x1+x2+x3+x4=n

tx1tx2tx3tx4


= Θ

(
n−3∑
x1=1

x
− 5

7
1

n−x1−2∑
x2=1

x
− 5

7
2

n−x1−x2−1∑
x3=1

x
− 5

7
3 (n− x1 − x2 − x3)−

5
7

)

= Θ

(
n−3∑
x1=1

x
− 5

7
1

n−x1−2∑
x2=1

x
− 5

7
2 (n− x1 − x2)−

3
7

)

= Θ

(
n−3∑
x1=1

x
− 5

7
1 (n− x1)−

1
7

)
= Θ

(
n

1
7

)
,

which shows (8).
Now assume that α = (α1, . . . , αn) 6= 0. If there exists an index i such that

αi > 2 or |α| =
∑n
i=1 αi > 5, then ∂αY = 0. It means that in this case

E(∂αY ) = 0. So we may assume that for every index i, αi 6 1 and |α| 6 4.
Let l1 < l2 < · · · < lw, for which αl1 = . . . = αlw = 1, 1 6 w 6 4. If
1 6 κ1 < . . . < κ4−w 6 4, κj ∈ N, then {1, 2, 3, 4}\{κ1, . . . , κ4−w} = {r1, . . . , rw},
where r1 < · · · < rw and xr1 = l1, . . . , xrw = lw. It means that the variables
xr1 , . . . , xrw occur in the partial derivative of Y and the variables xκ1

, . . . , xκ4−w

do not. Thus

E (∂αY ) =
∑

(κ1,...,κ4−w)
16κ1<...<κ4−w64

E


∑

(xκ1 ,...,xκ4−w )∑4−w
j=1 xκj=n−

∑w
j=1 lj

txκ1 . . . txκ4−w

 .

Since w > 1, thus 4− w 6 3. Since the number of the tuples (κ1, . . . , κ4−w) is
bounded, by Lemma 5 part (2) we get that the expectation is

E (∂αY ) =
∑

(κ1,...,κ4−w)
16κ1<...<κ4−w64

O(1) = O(1),

which proves (9).
From (8) and (9) we get that

E>0(Y ) = maxd′>0Ed′(Y ) = E(Y ) = Θ(n
1
7 ),

and

E>1(Y ) = maxd′>1Ed′(Y ) = O(1).
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Now apply Lemma 2 with λ = 20 log n and k = 4. We get that

P
(
|Y − E(Y )| > C4(20 log n)3.5

√
E>0(Y )E>1(Y )

)
= O

(
1

n2

)
. (10)

Thus by (10) and Lemma 3 we get that if n is large enough, with probability 1,

Y = E(Y )+O

(
(log n)3.5

√
E>0(Y )E>1(Y )

)
= E(Y )+O

(
n

1
14 (log n)3.5

)
= Θ(n

1
7 ),

which means, that (6) holds.
In the next step we will prove (7), which shows us that the number of those

representations in which there is at least one element from the set B is not too
big. Using the definition of the representation functions and the definitions of the
sets A and B we get

r4(A, n)− r4(A \ B, n) =
∑

(ai,aj ,ak,al)
ai<aj<ak<al

ai+aj+ak+al=n
∃m∈{i,j,k,l},∃au,av,az∈A

au,av,az<am
am+au=av+az

taitaj taktal (11)

To make the analytic calculations easier we estimate (11) and we have that

r4(A, n)− r4(A \ B, n) =
1

24

∑
(ai,aj ,ak,al)

ai,aj ,ak,al∈A are distinct
ai+aj+ak+al=n

∃m∈{i,j,k,l},∃au,av,az∈A
au,av,az<am
am+au=av+az

taitaj taktal

=
4

24

∑
(ai,aj ,ak,al)

ai,aj ,ak,al∈A are distinct
ai+aj+ak+al=n
∃au,av,az∈A
au,av,az<al
al+au=av+az

taitaj taktal (12)

6
1

6

∑
(ai,aj ,ak,al,au,av,az)

ai,aj ,ak,al,au,av,az∈A are distinct
ai+aj+ak+al=n
au,av,az<al
al+au=av+az

taitaj taktaltautav taz

Using the variables xi-s we can write this in the following form

r4(A, n)− r4(A \ B, n) 6
∑

(x1,x2,x3,x4,x5,x6,x7)
x1+x2+x3+x4=n

x1,x2,x3,x4 are distinct
x4+x5=x6+x7
x5,x6,x7<x4

tx1
. . . tx7

. (13)
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So this estimation means, that always x4 will be the element in the 4-tuple
(x1, x2, x3, x4) which hurts the Sidon property. It is easy to see that in the product
tx1 . . . tx7 the txi variables are not necessarily independent. So we need to trans-
form (13). For any 7-tuple (x1, x2, x3, x4, x5, x6, x7) with condition x5, x6, x7 < x4

let {x1, x2, x3} ∩ {x5, x6, x7} = {xi1 , . . . , xis}, where 1 6 i1 < · · · < is 6 3.
Let {x5, x6, x7} \ {xi1 , . . . , xis} = {xh1

, . . . , xhu}, where 5 6 h1 < · · · < hu 6 7
and u 6 3 − s. Then for every fixed s-tuple (i1, . . . , is) there exist s + u tuple
(di1 , . . . , dis , bh1 , . . . , bhu) such that we can write the condition x4+x5−x6−x7 = 0
in the following form:

x4 + di1xi1 + . . .+ disxis + bh1xh1 + . . .+ bhuxhu = 0, (14)

where x4, xi1 , . . . , xis , xh1 , . . . , xhu are different. In (14) dij 6= 0, j = 1, . . . , s,
bhj 6= 0, j = 1, . . . , u, there is only one positive coefficients, which is equal to 1 and
the sum of the negative coefficients is equal to −2. Since tkx = tx, if k > 1 then
tx1

. . . tx7
= tx1

tx2
tx3
tx4
txh1 . . . txhu .

Thus (13) is equal to the following

∑
(i1,...,is)

16i1<...<is63

∑
(di1 ,...,dis ,bh1 ,...,bhu )

only one term is positive and=1
the sum of the negative terms is−2

×
∑

(x1,x2,x3,x4,xh1 ,...,xhu )
x1+x2+x3+x4=n

x4+di1xi1+...+disxis+bh1xh1+...+bhuxhu=0

xij<x4,j=1,...,s;xh
j′
<x4,j

′=1,...,u

x1,x2,x3,x4,xh1 ,...,xhuare distinct

tx1 . . . tx4txh1 . . . txhu .

Let the inner sum be

Ydi1 ,...,dis ,bh1 ,...,bhu =
∑

(x1,x2,x3,x4,xh1 ,...,xhu )
x1+x2+x3+x4=n

x4+di1xi1+...+disxis+bh1xh1+...+bhuxhu=0

xij<x4,j=1,...,s;xh
j′
<x4,j

′=1,...,u

x1,x2,x3,x4,xh1 ,...,xhuare distinct

tx1
. . . tx4

txh1 . . . txhu .

Since the number of the variables Ydi1 ,...,dis ,bh1 ,...,bhu is bounded, it is enough
to show that for every s+ u tuple (di1 , . . . , dis , bh1

, . . . , bhu) with probability 1,

Ydi1 ,...,dis ,bh1 ,...,bhu = O
(
(log n)6.5

)
. (15)
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Let’s fix an s+u tuple (di1 , . . . , dis , bh1
, . . . , bhu). We will use Lemma 2. So we have

to estimate both the expectation of Ydi1 ,...,dis ,bh1 ,...,bhu and its partial derivatives.
First we will show that for every α = (α1, . . . , αn),

E
(
∂αYdi1 ,...,dis ,bh1 ,...,bhu

)
= O(1) (16)

holds.
Let α = (α1, . . . , αn). If there exists an index i such that αi > 2 or |α| =∑n
i=1 αi > 5+u, then ∂αYdi1 ,...,dis ,bh1 ,...,bhu = 0. So we may assume that for every

index i, αi 6 1 and |α| 6 4+u. Let’s fix α = (α1, . . . , αn) and let β = (β1, . . . , βn),
γ = (γ1, . . . , γn), where βi ∈ N, γi ∈ N and α = β + γ. Here β shows the partial
derivatives of the variables x1, x2, x3, x4 and γ shows the derivatives of the variables
xh1

, . . . , xhu . So we can write the partial derivatives of Ydi1 ,...,dis ,bh1 ,...,bhu in the
following form

∂αYdi1 ,...,dis ,bh1 ,...,bhu =
∑
(β,γ)

β+γ=α

∑
(x1,x2,x3,x4)

x1+x2+x3+x4=n
x1,x2,x3,x4are distinct

×
(
∂βtx1

. . . tx4

)


∑
(xh1 ,...,xhu )

x4+di1xi1+...+disxis+bh1xh1+...+bhuxhu=0

xij<x4,j=1,...,s;xh
j′
<x4,j

′=1,...,u

x1,x2,x3,x4,xh1 ,...,xhuare distinct

∂γtxh1 . . . txhu


.

Since the number of pairs (β, γ) is bounded, it is enough to show that for every
fixed pair (β, γ), where 0 6 βi 6 1, 0 6 γi 6 1, |β|+ |γ| =

∑n
i=1(βi + γi) 6 4 + u,

E


∑

(x1,x2,x3,x4)
x1+x2+x3+x4=n

x1,x2,x3,x4are distinct

×
(
∂βtx1

. . . tx4

)


∑
(xh1 ,...,xhu )

x4+di1xi1+...+disxis+bh1xh1+...+bhuxhu=0

xij<x4,j=1,...,s;xh
j′
<x4,j

′=1,...,u

x1,x2,x3,x4,xh1 ,...,xhuare distinct

∂γtxh1 . . . txhu




= O(1)

(17)
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holds. Let’s fix now a pair (β, γ). We will show that for every 4-tuple (x1, x2, x3, x4)

E


∑

(xh1 ,...,xhu )
x4+di1xi1+...+disxis+bh1xh1+...+bhuxhu=0

xij<x4,j=1,...,s;xh
j′
<x4,j

′=1,...,u

x1,x2,x3,x4,xh1 ,...,xhuare distinct

∂γtxh1 . . . txhu


= O(1). (18)

Let |γ| = w, γl1 = . . . = γlw = 1, 1 6 l1 < . . . < lw 6 n. Let {g1, . . . , gw} ⊆
{h1, . . . hu} and {j1, . . . , ju−w} = {h1, . . . , hu} \ {g1, . . . , gw}. These sets shows us
that the variables xg1 , . . . , xgw occurs in the partial derivative of Ydi1 ,...,dis ,bh1 ,...,bhu
and the variables xj1 , . . . , xju−w do not. Thus we have

E


∑

(xh1 ,...,xhu )
x4+di1xi1+...+disxis+bh1xh1+...+bhuxhu=0

xij<x4,j=1,...,s;xh
j′
<x4,j

′=1,...,u

x1,x2,x3,x4,xh1 ,...,xhuare distinct

∂γtxh1 . . . txhu


=

∑
(j1,...,ju−w)

{j1,...,ju−w}⊆{h1,...,hu}

∑
π

(xg1 ,...,xgw )=π(l1,...,lw)

× E


∑

(xj1 ,...,xju−w )∑u−w
q=1 bjqxjq=−x4−di1xi1−...−disxis−

∑t
q=1 bgqxgq

txj1 . . . txju−w

 ,

where π(l1, . . . , lw) denotes the permutations of (l1, . . . , lw).

Since the number of the u−w tuples (j1, . . . , ju−w) and the permutations are
bounded and since u− w 6 3, thus from Lemma 4 we get that this expectationis
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bounded i.e.,

E


∑

(xj1 ,...,xju−w )∑u−w
q=1 bjqxjq=−x4−di1xi1−...disxis−

∑w
q=1 bgqxgq

txj1 . . . txju−w

 = O(1). (19)

So from (19) we get that the left hand side of the equation (17) is equal to the
following ∑

(x1,x2,x3,x4)
x1+x2+x3+x4=n

x1,x2,x3,x4are distinct

E
(
∂βtx1

. . . tx4

)

× E


∑

(xh1 ,...,xhu )
x4+di1xi1+...+disxis+bh1xh1+...+bhuxhu=0

xij<x4,j=1,...,s;xh
j′
<x4,j

′=1,...,u

x1,x2,x3,x4,xh1 ,...,xhuare distinct

∂γtxh1 . . . txhu



= O


∑

(x1,x2,x3,x4)
x1+x2+x3+x4=n

x1,x2,x3,x4are distinct

E
(
∂βtx1

. . . tx4

)
 .

By (9) we get that if β 6= 0 then this term is equal to O(1). So we may assume
that β = 0. This means, that we have to prove that

E


∑

(x1,x2,x3,x4)
x1+x2+x3+x4=n

x1,x2,x3,x4are distinct

tx1 . . . tx4

×


∑

(xh1 ,...,xhu )
x4+di1xi1+...+disxis+bh1xh1+...+bhuxhu=0

xij<x4,j=1,...,s;xh
j′
<x4,j

′=1,...,u

x1,x2,x3,x4,xh1 ,...,xhuare distinct

∂γtxh1 . . . txhu




= O(1). (20)
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If 1 6 i1 < . . . < is 6 3 then let {1, 2, 3} \ {i1, . . . is} = {f1, . . . , f3−s}. Thus
(20) is equivalent to the following

E


∑

(xi1 ,...,xis ,x4,xh1 ,...,xhu )
x4+di1xi1+...+disxis+bh1xh1+...+bhuxhu=0

xij<x4,j=1,...,s;xh
j′
<x4,j

′=1,...,u

xi1 ,...,xis ,x4,xh1 ,...,xhuare distinct

∂γtxi1 . . . txis tx4txh1 . . . txhu

×


∑

(xf1 ,...,xf3−s )

xf1+...+xf3−s=n−xi1−...−xis−x4

xi1 ,...,xis ,x4,xf1 ,...,xf3−sare distinct

txf1 . . . txf3−s




=

∑
(xi1 ,...xis ,x4,xh1 ,...,xhu )

x4+di1xi1+...+disxis+bh1xh1+...+bhuxhu=0

xij<x4,j=1,...,s;xh
j′
<x4,j

′=1,...,u

xi1 ,...,xis ,x4,xh1 ,...,xhuare distinct

(
E
(
∂γtxi1 . . . txis tx4

txh1 . . . txhu
)

× E


∑

(xf1 ,...,xf3−s )

xf1+...+xf3−s=n−xi1−...−xis−x4

xi1 ,...,xis ,x4,xf1 ,...,xf3−sare distinct

txf1 . . . txf3−s



 . (21)

By using Lemma 5 we have

E


∑

(xf1 ,...,xf3−s )

xf1+...+xf3−s=n−xi1−...−xis−x4

xi1 ,...,xis ,x4,xf1 ,...,xf3−sare distinct

txf1 . . . txf3−s

 = O(1).

It follows that (21) is equal to

O


E


∂γ

∑
(xi1 ,...xis ,x4,xh1 ,...xhu )

x4+di1xi1+...+disxis+bh1xh1+...+bhuxhu=0

xij<x4,j=1,...,s;xh
j′
<x4,j

′=1,...,u

xi1 ,...,xis ,x4,xh1 ,...,xhuare distinct

txi1 . . . txis tx4
txh1 . . . txhu




.
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Let γ = (γ1, . . . , γn), |γ| = w, γl1 = . . . = γlw = 1, 1 6 l1 < . . . < lw 6 n. If
{v1, . . . , vw} ⊂ {h1, . . . , hu}, then let {e1, . . . , eu−w} = {h1, . . . , hu}\{v1, . . . , vw}.
Thus we have

E

∂
γ

∑
(xi1 ,...xis ,x4,xh1 ,...xhu )

x4+di1xi1+...+disxis+bh1xh1+...+bhuxhu=0

xij<x4,j=1,...,s;xh
j′
<x4,j

′=1,...,u

txi1 . . . txis tx4
txh1 . . . txhu


=

∑
{v1,...vw}⊂{h1,...,hu}

∑
π

(xv1 ,...,xvw )=π(l1,...,lw)

(22)

× E


∑

(xi1 ,...,xis ,x4,xe1 ...xeu−w )

x4+di1xi1+...+disxis+bh1xh1+...+bhuxhu=0

xij<x4,j=1,...,s;xh
j′
<x4,j

′=1,...,u

xi1 ,...,xis ,x4,xh1 ,...,xhuare distinct

txi1 . . . txis tx4txe1 . . . txeu−w


,

where π(l1, . . . , lw) denotes the permutations of (l1, . . . , lw).
Since s + u + 1 is the number of the variables in the equation x4 + di1xi1 +

. . . + disxis + bh1
xh1

+ . . . + bhuxhu = 0, it is clear, that s + u + 1 is equal to 3
or 4. So s+ u+ 1−w 6 3, except if s+ u+ 1 = 4 and w = 0. If s+ u+ 1−w 6 3
then we may use Lemma 4 again, which implies (20). So we can only show the
case s+ u+ 1 = 4 and w = 0, which is equivalent to γ = 0. To do this, it remains
to prove the following Lemma.

Lemma 6. The following expectation are bounded.

1. E
(∑

(x1,x2,x3,x4)
x1+x2+x3+x4=n

tx1
tx2
tx3
tx4

(∑
(x5,x6,x7)

x4+x5=x6+x7

tx5
tx6
tx7

))
= O(1)

2. E
(∑

(x1,x2,x3,x4)
x1+x2+x3+x4=n

tx1
tx2
tx3
tx4

(∑
(x5,x6)

x4+x3=x5+x6

tx5
tx6

))
= O(1)

3. E
(∑

(x1,x2,x3,x4)
x1+x2+x3+x4=n

tx1
tx2
tx3
tx4

(∑
(x5,x6)

x4+x5=x3+x6

tx5
tx6

))
= O(1)

4. E
(∑

(x1,x2,x3,x4)
x1+x2+x3+x4=n

tx1
tx2
tx3
tx4

(∑
x5

x4+x3=x2+x5

tx5

))
= O(1)

5. E
(∑

(x1,x2,x3,x4)
x1+x2+x3+x4=n

tx1
tx2
tx3
tx4

(∑
x5

x4+x5=x2+x3

tx5

))
= O(1)

6. E

∑
(x1,x2,x3,x4)

x1+x2+x3+x4=n
x4+x3=x2+x1

tx1
tx2
tx3
tx4

 = O(1)
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Proof.
(1) Using the definition of the variables ti’s get that the order of this expectation

is

O

(
n∑

x1=1

x
− 5

7
1

n−x1∑
x2=1

x
− 5

7
2

n−x1−x2−1∑
x3=1

x
− 5

7
3 (n− x1 − x2 − x3)−

5
7

x4−1∑
x5=1

x
− 5

7
5

x4+x5−1∑
x6=1

x
− 5

7
6 (x4 + x5 − x6)−

5
7

)
. (23)

Applying Lemma 4 to the last sum it follows that (23) is equivalent to the
following

O

(
n∑

x1=1

x
− 5

7
1

n−x1∑
x2=1

x
− 5

7
2

n−x1−x2−1∑
x3=1

x
− 5

7
3 (n− x1 − x2 − x3)−

5
7

x4−1∑
x5=1

x
− 5

7
5 (x4 + x5)−

3
7

)
. (24)

Since
x4−1∑
x5=1

x
− 5

7
5 (x4 + x5)−

3
7 = O

(
x
− 3

7
4

x4−1∑
x5=1

x
− 5

7
5

)
= O

(
x
− 1

7
4

)
= O

(
(n− x1 − x2 − x3)−

1
7

)
,

it follows that (24) is equal to

O

(
n∑

x1=1

x
− 5

7
1

n−x1∑
x2=1

x
− 5

7
2

n−x1−x2−1∑
x3=1

x
− 5

7
3 (n− x1 − x2 − x3)−

6
7

)

= O

(
n∑

x1=1

x
− 5

7
1

n−x1∑
x2=1

x
− 5

7
2 (n− x1 − x2)−

4
7

)

= O

(
n∑

x1=1

x
− 5

7
1 (n− x1)−

2
7

)
= O(1). (25)

(2) Using again the definition of the variables ti’s this expression is equivalent
with the following

n∑
x1=1

x
− 5

7
1

n−x1∑
x2=1

x
− 5

7
2

n−x1−x2−1∑
x3=1

x
− 5

7
3 (n− x1 − x2 − x3)−

5
7

x4+x3−1∑
x5=1

x
− 5

7
5 (x4 + x3 − x5)−

5
7 . (26)
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Since

x4+x3−1∑
x5=1

x
− 5

7
5 (x4 + x3 − x5)−

5
7 = O

(
(x4 + x3)−

3
7

)
= O

(
x
− 3

7
4

)
= O

(
x
− 1

7
4

)
= O

(
(n− x1 − x2 − x3)−

1
7

)
,

it follows that (26) is equal to

O

(
n∑

x1=1

x
− 5

7
1

n−x1∑
x2=1

x
− 5

7
2

n−x1−x2−1∑
x3=1

x
− 5

7
3 (n− x1 − x2 − x3)−

6
7

)
.

It follows from (25) that this is equal to O(1).
(3) Since x3 < x4, thus x3 <

x3+x4

2 = n−x1−x2

2 . This expectation is

O

 n∑
x1=1

x
− 5

7
1

n−x1∑
x2=1

x
− 5

7
2

n−x1−x2
2∑

x3=1

x
− 5

7
3 (n− x1 − x2 − x3)−

5
7

×
x4−1∑
x5=1

x
− 5

7
5 (x4 + x5 − x3)−

5
7

)
, (27)

where

x4−1∑
x5=1

x
− 5

7
5 (x4 + x5 − x3)−

5
7 =

x4−x3∑
x5=1

x
− 5

7
5 (x4 + x5 − x3)−

5
7

+

x4−1∑
x5=x4−x3+1

x
− 5

7
5 (x4 + x5 − x3)−

5
7

= O

(
(x4 − x3)−

5
7

x4−x3∑
x5=1

x
− 5

7
5

)

+O

(∫ ∞
x4−x3

x−
10
7 dx

)
= O

(
(x4 − x3)−

3
7

)
.

Equation (27) is equal to

O

 n∑
x1=1

x
− 5

7
1

n−x1∑
x2=1

x
− 5

7
2

n−x1−x2
2∑

x3=1

(2x3)−
5
7 (n− x1 − x2 − 2x3)−

6
7

 .

It follows from (25) that this is equal to O(1).
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(4) Note, that here n = x1 + 2x2 + x5. This expectation is

O

 n∑
x1=1

x
− 5

7
1

n−x1
2∑

x2=1

x
− 5

7
2

n−x1−x2
2∑

x3=1

x
− 5

7
3 (n− x1 − x2 − x3)−

5
7

× (x4 + x3 − x2)−
5
7

)
, (28)

where

(x4 + x3 − x2)−
5
7 = (n− x1 − x2 − x2)−

5
7 = (n− x1 − 2x2)−

5
7 .

Equation (28) is equal to

O

 n∑
x1=1

x
− 5

7
1

n−x1
2∑

x2=1

x
− 5

7
2 (n− x1 − 2x2)−

5
7

×

n−x1−x2
2∑

x3=1

x
− 5

7
3 (n− x1 − x2 − x3)−

5
7


= O

 n∑
x1=1

x
− 5

7
1

n−x1
2∑

x2=1

x
− 5

7
2 (n− x1 − 2x2)−

5
7 (n− x1 − x2)−

3
7


= O

 n∑
x1=1

x
− 5

7
1

n−x1
2∑

x2=1

(2x2)−
5
7 (n− x1 − 2x2)−

5
7


= O

(
n∑

x1=1

x
− 5

7
1 (n− x1)−

3
7

)
= O

(
n−

1
7

)
= O(1).

(5) It is clear that the n = x1+x2+x3+x4, x4+x5 = x2+x3 equation-system is
equivalent with n = x1 +2x4 +x5, x4 +x5 = x2 +x3. Thus this expectation
is

O

 n∑
x1=1

x
− 5

7
1

n−x1
2∑

x4=1

x
− 5

7
4 (n− x1 − 2x4)−

5
7

x4+x5−1∑
x3=1

x
− 5

7
3 (x4 + x5 − x3)−

5
7

 ,

(29)

O

(
x4+x5−1∑
x3=1

x
− 5

7
3 (x4 + x5 − x3)−

5
7

)
= O

(
(x4 + x5)−

3
7

)
= O(1).
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So (29) is equal to

O

 n∑
x1=1

x
− 5

7
1

n−x1
2∑

x4=1

(2x4)−
5
7 (n− x1 − 2x4)−

5
7

 = O

(
n∑

x1=1

x
− 5

7
1 (n− x1)−

3
7

)

= O
(
n−

1
7

)
= O(1).

(6) It is clear that the n = x1 +x2 +x3 +x4, x1 +x2 = x3 +x4 equation-system
is equivalent with n

2 = x1 + x2 = x3 + x4. Thus this expectation is

O

 n
2∑

x1=1

x
− 5

7
1

(n
2
− x1

)− 5
7

n
2∑

x3=1

x
− 5

7
3

(n
2
− x1

)− 5
7

 (30)

= O

 n
2∑

x1=1

x
− 5

7
1

(n
2
− x1

)− 5
7

n−
3
7

 = O
(
n−

6
7

)
= O(1). �

So from (16) we get that

E>0(Ydi1 ,...,dis ,bh1 ,...,bhu ) = maxd′>0Ed′(Ydi1 ,...,dis ,bh1 ,...,bhu ) = O(1),

and

E>1(Ydi1 ,...,dis ,bh1 ,...,bhu ) = maxd′>1Ed′(Ydi1 ,...,dis ,bh1 ,...,bhu ) = O(1).

In Lemma 2, we have k 6 7 and λ = 32 log n. Thus

P
(∣∣Ydi1 ,...,dis ,bh1 ,...,bhu − E(Ydi1 ,...,dis ,bh1 ,...,bhu )

∣∣
> Ck(32 log n)k−

1
2

√
E>0(Ydi1 ,...,dis ,bh1 ,...,bhu )E>1(Ydi1 ,...,dis ,bh1 ,...,bhu )

)
= Ok

(
e−8 logn+(k−1) logn

)
= Ok

(
1

n2

)
. (31)

Thus by (16) and Lemma 2 we get that with probability 1,

Ydi1 ,...,dis ,bh1 ,...,bhu = E(Ydi1 ,...,dis ,bh1 ,...,bhu )

+O
(

(log n)k−
1
2

√
E>0(Ydi1 ,...,dis ,bh1 ,...,bhu )E>1(Ydi1 ,...,dis ,bh1 ,...,bhu )

)
= O

(
(log n)6.5

)
,

which shows (16), which proves (7). And this completes the proof.
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