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QUADRATIC RESIDUES AND CLASS NUMBERS

Wolfgang Knapp, Markus Köcher, Peter Schmid

Abstract: For an odd prime p let ϱp be the least odd prime ( ̸= p) which is a quadratic residue
mod p. Using the theorems of Heegner–Baker–Stark and Siegel–Tatuzawa on the class number
h = h(−p) of the imaginary quadratic number field Q(

√
−p) it is shown that ϱp <

√
p unless p ∈

{3, 5, 7, 17, 19, 43, 67, 163}, possibly with one further exceptional (large) prime p = pu (satisfying
p = 2h+2 − u2 with h > 100 und 5 6 u < 2(h−5)/2). The exceptional prime does not exist if the
Extended Riemann Hypothesis is true.

Keywords: quadratic residues, quadratic forms, class numbers, primes, Siegel–Tatuzawa.

1. Introduction

For an odd prime p let ϱp denote the least odd prime q ̸= p which is a quadratic
residue mod p, that is, where the Legendre symbol ( qp ) = +1. Thus ϱ3 = 7,
ϱ5 = 11 = ϱ7, and we shall see that ϱp < p when p > 7. The results of the present
paper yield that even ϱp <

√
p up to eight or nine exceptions.

Major work on this subject has been done by Nagell many years ago. In 1923
he proved (in [6]) that ϱp 6 √

p− 4 if p ≡ 1 (mod 4) and p ̸= 5, 17, just using
that then p is a sum of two squares of integers (ϱ17 = 13). One year earlier, in
[5], he had treated the case where p ≡ 3 (mod 8) assuming that the class number
h(−p) of the imaginary quadratic number field Q(

√
−p) is not trivial. By the

theorem of Heegner–Baker–Stark one now knows that h(−p) = 1 if and only if
p ∈ {3, 7, 11, 19, 43, 67, 163}; for (different) proofs we refer to [2, Theorem 12.34]
and [8, Theorem 8.11]. One also knows from [6] that ϱp = 1+p

4 if h(−p) = 1 and
p > 7 (independent of the Heegner–Baker–Stark theorem; see also [1]). It follows
that for p ≡ 3 (mod 8) one has ϱp <

√
p unless p ∈ {3, 19, 43, 67, 163}.

So it remains to examine the situation when p ≡ 7 (mod 8). Here Nagell [7]
proved that ϱp < 2

√
p − 1 for p > 7. It is easy to treat the case where p is

a Mersenne prime. On the basis of the Siegel–Tatuzawa theorem (see Lemma 3
below) we get the following.
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Theorem 1. Let the prime p ≡ 7 (mod 8), p > 7. Then ϱp <
√
p with at most

one exception. If the exceptional prime p = pu exists (satisfying ϱp > √
p), the L-

function L(s, χ) to the real odd Dirichlet character χ with conductor pu has a real
zero in the interval ( 7172 , 1), thus violating the Extended Riemann Hypothesis.

From known properties of such L-functions [13] it is clear that the exceptional
prime pu must be fairly large (if it exists). We can describe it in some detail,
thereby giving further indications that this prime possibly does not exist.

Theorem 2. Assume the exceptional prime p = pu exists. Then p = 2h+2 − u2

where h = h(−p) is the class number of Q(
√
−p) and u is an odd integer with

5 6 u < 2(h−5)/2. Here h > 100 and ϱp = 3 · 2(h−1)/2 − u < 1.06275
√
p − u.

Moreover:
(i) The class number of an imaginary quadratic number field having discrim-

inant d ̸= −pu satisfies h(d) > 0.655
18π |d| 49 provided |d| > e18.

(ii) The quadratic polynomial 8X2 + (8− 2u)X + 2h−1 + 2− u takes pairwise
distinct prime values on all integers in the interval [−2

h−3
2 , 2

h−3
2 ].

The estimate in (i) is much better than the (effective) lower bounds given by
Goldfeld, Gross, Zagier and Oesterlé [9]. In proving Theorem 1 we shall establish
with elementary means (avoiding computer calculations) that if p = pu exists
then h(−p) > 25, at least. It then follows that for every imaginary quadratic
number field with class number less than 25 the absolute value of its discriminant
is less than e18. This would provide for a (new) approach to the class number one
problem (much easier than that given in [8, Theorem 8.11]). Application of a deep
result of Watkins [14] yields that even h(−p) > 100 in Theorem 2.

The polynomial in (ii) would be a Frobenius–Rabinowitsch polynomial of an ex-
traordinary kind (as there are more that 250 integers in the interval [−2

h−3
2 , 2

h−3
2 ]).

It should be mentioned that Linnik–Vinogradov [4] and Pintz [10] have shown,
with the help of analytical methods, that ϱp = O(p

1
4+ε) for all ε > 0. However,

such (ineffective) estimates are not helpful in the present work. On the other hand,
on the basis of the Siegel–Tatuzawa theorem one might conjecture that, given any
real number c ∈ ( 14 ,

1
2 ], there is an effective bound β(c) such that ϱp < pc for

p > β(c), with at most one exception. The results obtained in this paper, together
with those obtained previously by Nagell (plus the Heegner–Baker–Stark theorem)
tell us that we may take β( 12 ) = 163.

Acknowledgment. The authors thank the referee for some helpful comments.

2. Preliminaries

Let d be the discriminant of a quadratic number field, and let χd = (d∗ ) denote the
(Kronecker, Dirichlet) character associated to K = Q(

√
d) (with conductor |d|;

recall that every primitive real (quadratic) character χ ̸= 1 is of this type). Let
h(d) be the class number of K (in the usual sense), the order of the ideal class
group C(K) of K.
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We only need to consider the cases where d < 0 (so χd(−1) = −1; χd odd).
Then there is an isomorphism between C(K) and the form group C(d) of (proper)
equivalence classes of (primitive, positive definite) quadratic forms f = aX2 +
bXY + cY 2 over the integers with discriminant d = b2 − 4ac, the latter group
structure induced by composition of quadratic forms (see [2, Theorem 5.30]; there
is a similar correspondence when d > 0 dealing with ideal classes in the narrow
sense [8, Theorem 8.6]). Note that b is odd when d ≡ 1 (mod 4), and even otherwise.
An integer m is said to be represented by f if f(x, y) = m for certain integers x, y;
if one can choose here x, y relatively prime, then m is represented by f properly (or
primitively). This makes no difference when m is square-free. Forms (properly)
equivalent represent the same integers (properly).

Lemma 1. Suppose the integer m is odd and prime to d. Then m is properly
represented by some (primitive) quadratic form with discriminant d if and only if
d is a quadratic residue mod m, in which case every divisor of m is thus represented
too.

This can be deduced from the literature (e.g. see Lemmas 2.3 and 2.5 in [2]).
For an odd prime p let p∗ = (−1

p )p (which is congruent to 1 mod 4). If d = p∗ then
χd(q) = (p

∗

q ) = ( qp ) for every odd prime q ̸= p by quadratic reciprocity. Hence q
is a quadratic residue mod p if and only if it is represented (properly) by a form
with discriminant p∗.

Lemma 2. If d = p∗ for some odd prime p, then h(d) is odd.

This is immediate from genus theory for quadratic forms (cf. [2, Theorem 6.1]
and [15, Section 12]; even the class number in the narrow sense is odd).

Let d = −p (with p ≡ 3 (mod 4)). Then reduction theory applies quite nicely
in order to determine h(d). Indeed every (positive definite) quadratic form with
discriminant −p is properly equivalent to a unique reduced form

f = aX2 + bXY + cY 2.

This means that |b| 6 a 6 c and that b > 0 when |b| = a or a = c (cf. [2, p. 27]
or [15, Section 13]). Suppose we have a = 1. Then necessarily b = 1, and from
p = 4ac− b2 = 4c−1 it follows that c = 1+p

4 . Thus f = f0 = X2+XY + 1+p
4 Y 2 is

the principal form (which is properly equivalent with X2−XY + 1+p
4 Y 2). Suppose

that f ̸= f0 (so that h(−p) > 1). Then a > 1 (by the above). Assume that a = c.
Then b > 1 (b is odd) and

p = 4a2 − b2 = (2a+ b)(2a− b).

It follows that p = 2a+ b and that 2a− b = 1. But then 2a− 1 = b 6 a and a 6 1,
a contradiction. Hence a < c. Assume next that |b| = a. Then 3 6 b = a and
p = 4ac− a2 = a(4c− a), which forces that 4c− a = 1 and c < a, a contradiction.
Hence |b| < a. Now the opposite (inverse) form f− = aX2−bXY +cY 2 is reduced
and is not properly equivalent with f . Thus all reduced non-principal quadratic
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forms with discriminant −p appear in pairs, which gives Lemma 2 for d < 0. From
p = 4ac−b2 > 4a(a+1)−(a−1)2 = 3a2+6a−1 > 3a2+11 we get a 6

√
(p− 11)/3

(and p > 11).
Let us derive Nagell’s [5] results for p ≡ 3 (mod 8). Assume h(−p) > 1 and let

f ̸= f0 as above. Then all coefficients a, b, c of f must be odd now, thus |b| 6 a−2
and c > a+ 2 and so

p = 4ac− b2 > 4a(a+ 2)− (a− 2)2 = 3a2 + 12a− 4.

If q is an (odd) prime dividing a = f(1, 0), then q is a quadratic residue mod p by

Lemma 1 and therefore ϱp 6 q 6 a. This yields Nagell’s estimate ϱp 6
√

p+16
3 −2.

One checks that here equality holds if and only if a = 3 and p = 59.
If h(−p) = 1 and p > 7, then p ≡ 3 (mod 8) and ϱp = 1+p

4 . For then ϱp splits
and is the norm of an integer in Q(

√
−p), which forces that ϱp > 1+p

4 . On the
other hand, 1+p

4 = f0(0, 1) is an odd integer whose prime divisors are squares mod
p by Lemma 1.

Lemma 3 (Siegel–Tatuzawa). Let d be negative (χd odd). Then, given
0 < ε < 1

2 , we have h(d) > 0.655·ε
π |d| 12−ε whenever |d| > max(e

1
ε , e11.2), with

at most one exception.

Improving Siegel’s work [11] Tatuzawa [12] has shown that L(1, χ) > 0.655 · ε ·
k−ε whenever χ is a real Dirichlet character with conductor k > max(e

1
ε , e11.2),

with at most one exception. This gives the lemma in view of the class number
formula [8, p. 436]. If there is an exceptional character χ the L-function L(s, χ)
has a real zero in the interval (1 − ε

4 , 1) [12, Lemma 9], thus contradicting the
Extended Riemann Hypothesis. It is known (see [13]) that L(s, χ) has no positive
real zero if χ is odd and k 6 3 · 108.

Lemma 4. Let p = 2q − 1 be a Mersenne prime with q > 3 (also prime). Then
ϱp = 5 if q ≡ 1 (mod 4) and ϱp = 7 if q ≡ 11 (mod 12). Moreover, in the
remaining cases ϱp = 11 or 13 depending on whether q ≡ 7, 43 (mod 60) or
q ≡ 19, 31 (mod 60).

Proof. Note that 2q is divisible by 4 and so p ≡ 3 (mod 4). Since q is odd,
2q ≡ 2 (mod 3) and so ( 3p ) = −(p3 ) = −( 13 ) = −1. Hence ϱp > 5. If q ≡ 1 (mod 4)

then 2q ≡ 2 (mod 5) and ( 5p ) = (p5 ) = ( 15 ) = 1. On the other hand, if q ≡ 3 (mod 4)

then 2q ≡ 3 (mod 5) and ( 5p ) = −1. Thus ϱp = 5 if and only if q ≡ 1 (mod 4). Let
q ≡ 3 (mod 4) in what follows. Then either q ≡ 7 or 11 mod 12 (as we assumed
that q > 3).

If q ≡ 11 (mod 12) then q ≡ 5 (mod 6) and 2q ≡ 25 ≡ 4 (mod 7), whence
( 7p ) = −(p7 ) = −( 37 ) = 1, by quadratic reciprocity, so that ϱp = 7. If q ≡ 7 (mod 12)

then 2q ≡ 2 (mod 7) and ( 7p ) = −(p7 ) = −( 17 ) = −1, implying that ϱp > 7.
So let p ≡ 7 (mod 12). Then 2q ≡ 27 ≡ 11 (mod 13) and ( 13p ) = ( p

13 ) = ( 1013 ) = 1.
Hence either ϱp = 13 or ϱp = 11 in this case. Observe that q ≡ 7, 19, 31 or 43
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mod 60. If q ≡ 7 (mod 60) then q ≡ 7 (mod 10) and 2q ≡ 27 ≡ 7 (mod 11),
so that ( 11p ) = −( p

11 ) = −( 6
11 ) = 1 and ϱp = 11. If q ≡ 19 (mod 60) then

2q ≡ 29 ≡ 6 (mod 11) and ( 11p ) = −( p
11 ) = −( 5

11 ) = −1. If q ≡ 31 (mod 60) then
2q ≡ 2 (mod 11) and (11p ) = −( p

11 ) = −( 1
11 ) = −1. Finally, for q ≡ 43 (mod 60)

we have 2q ≡ 8 (mod 11) and ( 11p ) = −( p
11 ) = −( 7

11 ) = 1. This completes the
proof. �

It is easy to show that if p = 22
n

+1 is a Fermat prime with n > 1, then ϱp = 11
if n is odd, and ϱp = 13 if n is even.

(
From 22

n ≡ 1 (mod 15) it follows that ( 3p ) =
(p3 ) = ( 23 ) = −1 and ( 5p ) = (p5 ) = ( 25 ) = −1. Similarly, from 22

n ≡ 2, 4 (mod 7) we
get ( 7p ) = −1, so that ϱp > 11. If n > 2 is even, then 22

n ≡ 3 (mod 13), whence
p ≡ 4 (mod 13) and ( 13p ) = ( p

13 ) = 1. Use finally that 22
n ≡ 4, 5, 3, 9 (mod 11) for

n ≡ 1, 2, 3, 0 (mod 4), respectively.
)

Suppose we have p ≡ 1 (mod 4) but p is not a Fermat prime. Let us show
Nagell’s [6] upper bound ϱp 6 √

p− 4 in this case. There are unique positive
integers a, b such that p = a2 + 4b2 (Fermat). Using quadratic reciprocity we see
that ϱp 6 a 6

√
p− 4b2 when a > 1 (as a is odd), and if a = 1 then b is divisible

by some odd prime (being a square mod p) and so ϱp 6 b = 1
2

√
p− 1.

Arguing as in the next section one gets the estimate ϱp < 1
2

√
p if p ≡ 5 (mod 8)

and h(p) > 1; use that 2 remains prime in Q(
√
p) and that the Minkowski constant

of this number field is 1
2 .

3. The Minkowski bound

Let the prime p ≡ 7 (mod 8) in what follows, and let K = Q(
√
−p). By a classical

result of Minkowski (and Dirichlet) in every ideal class of K there is an (integral)
ideal a with (absolute) norm Na < 2

π

√
p (see [8, Lemma 2.3]). This estimate will

be crucial for our approach.

Proposition 1. Let p ≡ 7 (mod 8) and h = h(−p). Assume that ϱp > 2
π

√
p. Then

the ideal class group C(K) of K = Q(
√
−p) is cyclic and p = 2h+2 − u2 for some

positive (odd) integer u < √
p.

Proof. We may assume that p > 7. Then h > 1 (as is easily seen; see below).
Since −p ≡ 1 (mod 8), the prime (2) = pp̄ splits in K. Let 0 ̸= α = x+y

√
−p

2 be an
integer in K, where x, y ∈ Z have the same parity. Then its norm N(α) = x2+py2

4
cannot be equal to 2. So p (and its complex conjugate p̄) cannot be principal ideals
(having norm 2). Let h0 6 h be the order of the ideal class [p] of p. Then h0 > 1

and ph0 = (α), with α = x+y
√
−p

2 as above. Since p̄h0 = (ᾱ) is different from (α),
we have y ̸= 0 (and y2 > 4 if x = 0). Observe that 2h > 2h0 = x2+py2

4 .
Now assume that ϱp > 2

π

√
p. Let a be an ideal of K with norm Na < 2

π

√
p.

Suppose q ̸= p, p̄ is a prime ideal of K appearing in a. Then q|q where q is an odd
rational prime, and we assert that q = (q) is principal. Clearly q 6 Nq < 2

π

√
p
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and so ( qp ) = −1 by assumption. But then (−p
q ) = −1 by quadratic reciprocity.

Hence the assertion. This shows that C(K) is generated by [p] (or [p̄] = [p]−1). In
particular, h = h0 in the notation introduced above, and this is odd by Lemma 2.
For ideals pip̄j in [p](h−1)/2 we have i − j = (h − 1)/2 and N(pip̄j) = 2i+j. Hence
the minimal norm of ideals in this class equals 2(h−1)/2. Consequently

2(h−1)/2 <
2

π

√
p

and, therefore, 2h < 8
π2 p < p. Comparing this with the identity 2h = 2h0 = x2+py2

4
obtained before, this forces that y2 = 1 and that u = |x| is a positive odd integer.
Hence u2 + p = 2h+2 < 32

π2 p, giving u < 3
2

√
p. We have to improve this upper

bound.
One knows that 2X2 − Y 2 is the unique (primitive) quadratic form with dis-

criminant 8, up to proper equivalence (see [15, p. 81]). From ( 8p ) = 1 and Lemma
1 we infer that p = 2a2 − b2 for positive integers a, b. Here a = 2a0 must be even
and b odd (as p ≡ 7 (mod 8)), and by Theorem 1 in [3] we can choose a, b such that
b <

√
p. Assume there is an odd prime q dividing a0. Then ( qp ) = (−p

q ) = ( b
2

q ) = 1

and ϱp 6 q 6 a0 =
√
(p+ b2)/8 < 1

2

√
p, against our assumption. Hence a0 = 2n

and p = 22n+3−b2 for some integer n > 1. We claim that h+2 = 2n+3 and u = b.
Otherwise h+ 2 6 2n+ 1, implying that p < 2h+2 6 22n+1 = (p+ b2)/4 < p/2, or
h+ 2 > 2n+ 5 and this implies that p > 2h > 22n+3 = p+ b2 > p. In both cases
we get a contradiction. Hence u = b <

√
p, as desired. �

Remark. We have ϱp > 2
π

√
p for the Mersenne primes p = 7, 31, 127 (Lemma 4)

and also for p ∈ {103, 463, 487} (ϱ103 = 7, ϱ463 = 17, ϱ487 = 19). One can deduce
from Lemma 3 that these are the only primes p ≡ 7 (mod 8) where this happens,
with at most one exception, where the possible exceptional prime will be the same
as that described in Theorems 1, 2 (provided pu exists). We do not go into details
but remark that the elementary approach to our theorems given below applies also
in this case (with a bit more effort).

4. Towards the exceptional prime

Let p ≡ 7 (mod 8), p > 7 and h = h(−p). Assume in what follows that ϱp > √
p.

By Lemma 2 we know that h is odd, and h > 1 (as p > 7). Let h = 2n+1 (n > 1).
From Proposition 1 it follows that p = 22n+3 − u2 for some positive odd integer
u <

√
p. In particular 22n+2 < p < 22n+3.

For any integer r with 1 6 r 6 n let ur be the least positive (odd) integer such
that 2r+2 is a divisor of u2r+p. Then 2r+2 also divides (2r+1−ur)2+p (as r+2 > 3)
and so |2r+1 − ur| > ur. Since ur − 2r+1 < ur, we must have 2r+1 − ur > ur
and hence ur < 2r (as ur is odd). By definition u1 = 1 (as p ≡ 7 (mod 8)) and
1 = u1 6 u2 6 . . . 6 un 6 u. Let cr =

u2
r+p

2r+2 (1 6 r 6 n).

Proposition 2. Under the above assumptions, the quadratic forms fr = 2rX2 +
urXY + crY

2, together with their opposites f−r and the principal form f0, are
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precisely all the distinct reduced forms with discriminant −p (1 6 r 6 n). The
coefficients cr are strictly decreasing, with c1 = 1+p

8 > c2 > · · · > cn = 2n+1.
Moreover:

(i) Each odd integer in the interval (1, p) which is properly represented by f0
or some form fr is a prime.

(ii) We have 5 6 u = un < (3 −
√
7)2n−1 < 2n−2, and u is divisible only by

primes congruent 5 or 7 mod 8.
(iii) 22n −u2 = (2n −u)(2n +u) is divisible only by primes congruent 3 mod 4.

In particular, u ≡ 3, 5 or 7 mod 10 when n is odd, and u ≡ 1, 5 or 9 mod
10 otherwise.

Proof. Clearly cr > 22n+2−r−2 > 2n (as p > 22n+2). In particular cr > 2r for
each r and so fr is reduced. Now recall that h = 2n + 1 and that there are just
h distinct reduced forms with discriminant −p. This gives the first assertion. Of
course f1 = 2X2 + XY + 1+p

8 Y 2. Let us consider fn = 2nX2 + unXY + cnY
2.

We know that un < 2n < 1
2

√
p and that cn > 2n. On the other hand un 6 u (by

definition) and so

cn =
u2n + p

2n+2
6 u2 + p

2n+2
= 2n+1 <

√
p.

If there is an odd prime q dividing cn = fn(0, 1), then q is a quadratic residue
mod p by Lemma 1. We infer that cn must be a power of 2, and this implies that
cn = 2n+1 and that u = un. By Lemma 4 and assumption we also have u > 1.

If ur = ur+1 for some r, then cr = 2cr+1. Suppose ur < ur+1. This means
that 2r < ur+1 < 2r+1, by definition of reduced forms. Hence ur+1 − 2r <
2r+1 − 2r = 2r. Since 2r+2 is a divisor of both u2r + p and u2r+1 + p, it divides
u2r+1 − u2r = (ur+1 − ur)(ur+1 + ur). Since ur and ur+1 are odd, 2r+1 is a divisor
of just one of ur+1 − ur or ur+1 + ur (the other one being ≡ 2 (mod 4)). Using
that ur < 2r, ur+1 < 2r+1 are positive we infer that ur = 2r+1 − ur+1. We derive
that

cr =
(2r+1 − ur+1)

2 + p

2r+2
= 2cr+1 − (ur+1 − 2r) > 2cr+1 − 2r > cr+1.

So the sequence {cr} is strictly decreasing with r.
(i) Let f be any quadratic form with discriminant −p, and let x, y be relatively

prime integers such that the odd part, say m, of f(x, y) is greater than
1 and less than p. Then each (odd) prime q dividing m is a square mod
p by Lemma 1. Assume m is no prime. Then we may arrange matters
such that q 6 m

q and so q2 6 m < p. But then ϱp 6 q <
√
p, against our

general assumption. Hence m = q is a prime.
(ii) We know already that u = un. Let w = fn(1,−1) = 3 · 2n − u. By (i) w

is an (odd) prime, and (wp ) = 1 by Lemma 1. Thus w2 > p = 22n+3 − u2

by assumption. It follows that u2 − 3 · 2nu + 22n−1 > 0, yielding that
u < (3 −

√
7)2n−1 < 2n−2. Let q be an (odd) prime dividing u. Then

q 6 u <
√
p and so ( qp ) = (−p

q ) = (−2
q ) = −1, whence q ≡ 5, 7 (mod 8).

This also shows that u > 5, and that n > 5 (at least).
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(iii) Consider p = 22n+2 + (22n+2 − u2). We have 2n+1 + u <
√
p, because u <

2n−2, u2 +2n+1u < 22n−4 +22n−1 < 22n and so 22n+2 +2n+2u+u2 < p =
22n+3−u2. If q is an odd prime dividing 22n+2−u2 = (2n+1−u)(2n+1+u),
then ( qp ) = (−p

q ) = (−1
q ) = −1 and so q ≡ 3 (mod 4) (as ϱp > √

p by
assumption). Let n be odd. Then 2n+1 ≡ pm4 (mod 10) and so one of
2n+1pmu is divisible by 5 if u ≡ pm1 (mod 10), which cannot happen.
Hence u ≡ 3, 5 or 7 mod 10 in this case. Similarly, u ≡ 1, 5 or 9 mod 10
when n is even. The proof is complete. �

5. Proof of Theorem 1

Keep the assumptions and notation introduced in the preceding section. We prove
that we must have n > 12 (h = h(−p) = 2n + 1). We know already that n > 5.
In our argumentation we ignore that 22n+3 − u2 may be no prime (using a table
of the primes up to 10, 000 only). Mostly we argue by verifying that one of w =
fn(1,−1) = 3 · 2n − u or w′ = fn(1, 1) = 3 · 2n + u is not prime, contrary to
statement (i) in Proposition 2. Of course w = w(n, u) and w′ = w′(n, u) depend
on n and u. Fortunately u = u(n) is quite restricted by Proposition 2.

Assume that n = 5. Then u < (3−
√
7) ·24 < 6 and so necessarily u = 5 (where

p = 213 − 25 = 8167 actually is a prime). But here w = 3 · 25 − 25 = 7 · 13 is no
prime. For n = 6 we have u < 12 but u ̸= 7, 11 by Proposition 2, and w = 3 ·26−u
is no prime for u = 5, 9.

Let n = 7. Then u < 23, and by Proposition 2 only the possibilities u = 5, 7, 13
remain. Now w = 3 · 27 − u is not prime for u = 7, 13 (namely 13 · 29 and 7 · 53,
respectively). For u = 5 both w and w′ are primes, but 9 · 2n−1 − u equals 31 · 37
for n = 7, u = 5.

Let n = 8. Then u < 46, and we have to examine the cases u = 5, 25, 29, 31
(Proposition 2). Here w = 3 · 28 − u is no prime for u = 5, 31 (namely 7 · 109
resp. 11 · 67), and w′ = 3 · 28 + 25 = 13 · 161. Finally, 2n+1 + u = 29 + 29 = 541
is a prime congruent 1 mod 4 (and so ϱp 6 541 <

√
p); alternately, fn−1(3, 1) =

17 · 2n−1 + 3u = 31 · 73 for n = 8, u = 29 (and so ϱp 6 31).
Let n = 9. Then u < 91 and u = 5, 7, 13, 23, 25, 35, 37, 43, 47 or 53 (Proposi-

tion 2). Here one of w,w′ is no prime for u ∈ {5, 7, 23, 25, 35, 37}. Also, 9 · 28 + u
is not prime for u = 13, 43 and 47.

Let n = 10. Then u < 182 and u = 5, 25, 29, 31, 49, 61, 71, 79, 91, 101, 109, 115,
125, 131, 139, 145, 149, 151, 155, 161, 169, 175, 179 or 181 (Proposition 2). Here one
of w,w′ is not prime except when u ∈ {5, 109, 115}. Also, 9 · 29 − u is not prime
for u = 109, 115, and 211 + 5 = 2053 is a prime congruent 1 mod 4.

Let n = 11. Then u < 363 and u = 5, 7, 13, 23, 25, 35, 37, 43, 47, 53, 65, 103,
115, 125, 127, 155, 157, 167, 173, 175, 185, 197, 203, 217, 223, 233, 235, 235,
263, 265, 277, 293, 305, 317, 325, 343 or 355 (Proposition 2). Here one of w,w′

is no prime unless u ∈ {23, 157, 217, 277, 305}. But 9 · 210 − u is not prime for
u ∈ {23, 277, 305}. Further 212 − 157 = 3 · 13 · 101 with 13 ≡ 1 (mod 4). Finally,
fn−2(1,−1) equals 13 · 1283 for n = 11 and u = 217. Consequently n > 12, as
desired.
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Now we apply Lemma 3, picking ε = 1
18 . Then

p > 22n+2 > 226 > max(e18, e11.2) = e18

but h = 2n+ 1 < 0.655
18π p

1
2−

1
18 , because

2n+ 1 <
0.655

18π
(2

4
9 )2n+2

for n > 12. Thus χ = (−p
∗ ) must be the unique (exceptional) primitive real

Dirichlet character with conductor |d| = p > e18 which possibly exists by virtue
of the Siegel–Tatuzawa theorem. By [12, Lemma 9] L(s, χ) has a real zero in the
interval ( 7172 , 1), which violates the Extended Riemann Hypothesis. This completes
the proof of Theorem 1.

6. Proof of Theorem 2

Assume the large exceptional prime p = pu exists (with ϱp > √
p). Then p =

2h+2 − u2 where h = h(−p) and u is a positive odd integer (Proposition 1). In
view of Proposition 2 we know that 5 6 u < (3 −

√
7)2(h−3)/2 < 2(h−5)/2. In

the course of the proof for Theorem 1 we have shown that h > 25 and, therefore,
p > 226. But if h(d) 6 100 for some negative fundamental discriminant d, then
|d| 6 222 by the work of Watkins [14]. Thus we even have h > 100.

It follows from Proposition 2 that ϱp = fn(1,−1) = 3 · 2(h−1)/2 −u. Define the
real number t through 3 · 2(h−1)/2 = t

√
p. Then 9 · 2h−1 = t2p = t2(2h+2 − u2) >

t2(2h+2 − (3−
√
7)22h−3) and t < 1.06275. Thus ϱp < 1.06275

√
p−u, as asserted.

(i) By the Siegel–Tatuzawa theorem (Lemma 3), for every negative fundamen-
tal discriminant d ̸= −p with |d| > e18 we have h(d) > 0.655

18π |d| 49 .
(ii) Consider the quadratic form f = 2X2 + uXY + 2h−1Y 2. This form is

properly equivalent with the reduced form f1 when u ≡ 1 (mod 4) and
with f−1 otherwise (in the notation of Proposition 2). The class of each of
f , f1, f−1 generates the form class group C(−p) (as these forms correspond
to one of the prime ideals above 2 in Q(

√
−p) described in Proposition 1).

The quadratic polynomial

f(2X + 1,−1) = 8X2 + (8− 2u)X + 2h−1 + 2− u

takes only odd (positive) values on integers. It follows from statement (i)
of Proposition 2 that this polynomial takes prime values on all integers
in [−2(h−3)/2, 2(h−3)/2] (as these values are less than p). These primes
are pairwise distinct, because if the polynomial takes the same value on
integers x ̸= y, then we get x + y = 2u−8

8 , which is impossible. We are
done.
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