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Abstract: Aim of this paper is to introduce a generalization of Gelfand—Shilov classes by means
of estimates based on a complete polyhedron (see for instance Gindikin—Volevich [10]). This class
includes the standard Gelfand—Shilov functions and their anisotropic version.
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1. Introduction

Let us begin by recalling the definition of Gevrey classes G*(£2), 1 < s < oo,
open subset of R, and Gelfand—Shilov classes S2(R™), where we shall assume for
simplicity 1 < s < 00, 1 < r < 0.

A function f belongs to G*(2) if for every compact subset K CC Q we have

sup |02 f(x)| < ClF(al)®, VYo e N" (1)
reK

for a suitable positive constant C' independent on the multi-index a.
We then define G§(2) = G*(Q) N C3°(£2). A function f belongs to G§(R™) if

and only if the Fourier transform f of f satisfies

1£(6)] < Cexp(—ele

for suitable constants C' < 0o, € > 0, see for example [12].

Willing to find a counterpart of the Schwartz space S(R™), we are then led to
the classes of Gelfand—Shilov [9]. Namely, a function f belongs to the Gelfand—
Shilov class S2(R™), for r, s > 1 if there exists a constant C' < oo such that

), VEeR" (2)

sup [£°902 f(x)] < CleFIBFL ()38, Va e N, V3 e N". (3)
reR™

According to [7], this definition is equivalent to the following one, reminiscent of
the estimate (2).

2000 Mathematics Subject Classification: Primary 35E15, 35B65



298  Daniela Calvo, Luigi Rodino

A function f belongs to the Gelfand—Shilov class S2(R™), for r,s > 1, if f €
S(R™) and there are constants C' < oo, € > 0 such that f and its Fourier transform
f satisfy the following two conditions

(@) [f(z)
(i) 1f(€)

The Gevrey classes G*(£2) have been generalized in different ways by several au-
thors. Here we address in particular to the multi-anisotropic Gevrey classes, see
Bouzar-Chaili [2, 3|, Calvo [4], Calvo-Hakobyan [5], Gindikin-Volevich [10], Zanghi-
rati [13, 14].

In short, we fix a complete polyhedron P C R’. Let us denote by V(P) the
set of the vertices, and let p be the formal order of P, see the next section 2 for
details. We then define the weight function associated to P

apﬁ:( 3 mw)”, Ve € R™. 5)
)

veV(P

3=

), VaeR",

4
), VEER™ @

We may introduce the multi-anisotropic class with compact support Gé’P(R”) of
all the functions f € C§°(R™) satisfying for suitable C' < oo, € > 0

F(6)] < Cexp(—elelp), Ve ER™ (6)

We recapture (2) and the standard Gevrey classes G§(R™) when P is the polyhe-
dron of vertices {0,me;, 7 =1,...,n} for some integer m > 1. Another relevant
example is given by the anisotropic Gevrey classes, when P is the polyhedron of
vertices {0,m;e;, j =1,...,n} for some integers m; > 1, see [13, 14]. The esti-
mate (6) can be converted into estimates for 9 f(x), « € N, and in this way we
may also define G*7(Q2) for an open subset Q C R™, see Calvo [4].

In this paper we want to present a Gelfand—Shilov version of the multi-anisotropic
Gevrey classes. Namely, taking (4) as a model and fixing two complete polyhedra
P,Q C R, we define Sf:g(R”), s> 1, r > 1, as the subset of S(R™) of all the
functions f satisfying

3=

(i) |f(z)| < Cexp(—elz|p), Vo eR™,
(i) |f(€)] < Cexp(—el¢

for some positive constants C' < oo, € > 0.Main result in the following will be
to show the equivalence of (7) with suitable estimates of type (3), for 292 f(z);
let us address to the next Theorem 2.3 for a precise statement.We leave to future
papers possible applications to partial differential equations in R with polynomial
coefficients, cf. Boggiatto-Buzano-Rodino [1], and a generalization of the definition
(7) to the case when s < 1 or r < 1, which presents difficult problems of non-
triviality for the class S:g (R™).

) (7)
p), VEER"
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2. Definition and main properties

To introduce our study of Gelfand—Shilov classes of multi-anisotropic type, we start
by describing complete polyhedra and some related properties. For more proper-
ties and applications to the theory of partial differential equations of complete
polyhedra, we can refer to [2, 3, 4, 5, 10, 13, 14].

Let P be a convex polyhedron in R™, then P can be obtained as convex hull of
a finite set V(P) C R™ of convex-linearly-independent points, called the vertices
of P and uniquely determined by P. Moreover, if P has non-empty interior and
the origin belongs to P, there is a finite set N'(P) = No(P) UN(P), with |v| =1,
Vv € No(P), such that

P={zeR"w-220, WweNo(P), v-2<1, YveNi(P)},
N1(P) is the set of the normal vectors to the faces of P.

Definition 2.1. A complete polyhedron is a convex polyhedron P C R% such that
the following properties are satisfied

1) V(P) c Q" (i.e. all vertices have rational coordinates);

2) the origin (0,0,...,0) belongs to P;

3) No(P) = {er,ea,...,en}, with ej = (0,...,0,1,_4,0,...,0) € R™ for
i7=1...,n;

4) every v € N1(P) has strictly positive components.

Remark 1. The condition 1, suggested by the applications to the partial differ-
ential equations, is actually superfluous in the following. The condition 4 implies
that for every x € P the set Q(z) = {y € R"|0 < y < z} is included in P and if =
belongs to a face of P and y > x, then y ¢ P (where for z,y € R", y < x means
that y; <, i=1,...,n;and y < x means y < z, y # ).

Let us now summarize some notations related to a complete polyhedron P:

k(s,P)=inf{t >0:t"lse P} = s, VseR";
(s,P) = inf{ s } ue%\l/?fip)y s s v

(P)= max y-fl;
Mj( ) veN;1(P) J

w=p(P)= max i the formal order of P;
j=1,...,n

’u(o) = ,u(o) (P) = mi |y| the minimum order of P;

n
YEV(P)\{0}

p =M (P) = max |y| the maximum order of P.
YEV(P)

Finally, we define the weight function associated to P:

lp = ( T

veV(P

|§U|> " veeRrn ®)
)

It is a weight function according to the definition of Liess-Rodino [11].
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The definition of the previous quantities is clarified by the following result (for
the proof we refer to [4]).

Proposition 2.1. Let P be a complete polyhedron in R™ with vertices s' =

(s,...,8Y), forl=1,... N(P). Then

1) for every j = 1,2,...,n, there is a vertex s of P such that s = sé»jej,
531 = maxsep $; =: m;(P);

2) the boundary of P has at least one vertex lying outside the coordinate azes if
and only if p; > mj, Vj = 1,...n, that is equivalent to ask that the formal
order u(P) is greater than the mazimum order p™ (P);

3) if s belongs to P, then |€%] < Z;i(lp) l&5'|, VE € R™, where & = I, &7 and
N(P) is the number of vertices of P, including the origin;

4) ﬁ, for any o € N belongs to the boundary of P, and therefore a =

k(a,P) >0, Nsl' N >0,i=1,...,m, St At =1, where st s are
the vertices of the face of P where ﬁ lies;

5) For all x € R", saying N(P) the number of vertices of P, the following in-
equality is satisfied N(P)Y =132 cypy [2%7] < |2fp < oN(P)(G—1) S oevip) 271,
foranyj=1,2,....

Proposition 2.2. For any complete polyhedron P and any s € R, k(s,P) is
bounded as follows:
sl

@

The associated weight function ||p satisfies for some constants 0 < Cy,Cy < 00
and all £ € R™:

El
< k(s,P) < W

(0 u(D

Ci() 7 <[Elp < Caf§) # .

Considering a polynomial with complex coeflicients, we can regard it as the
symbol of a differential operator and associate a polyhedron to it. Namely, if
P(D) = X 0j<m €aD®, ca € C, is a differential operator in R" with complex
coefficients and P(§) = Z|a\<m o™, € € R™, its symbol, we define the New-
ton polyhedron or characteristic polyhedron associated to P(D) (or P(£)) as the
convex hull of the set {0} U{a € Z7} : co # 0}.

The Newton polyhedron of an hypoelliptic operator is complete (cf. Friberg
[8]), but the converse is not true in general (cf. Bouzar-Chaili [2, 3], Calvo-
Hakobyan [5] and Zanghirati [13, 14]). To clarify our treatment, we give now
some examples of complete polyhedra (for more details cf. [4]).

1) If P(D) is an elliptic operator of order m, then its Newton polyhedron is the
complete polyhedron of vertices {0,me;, j = 1,...,n}. The set N7(P) is
reduced to the point v = m™! doiy e, and my(P) = p;(P) = pO(P) =
pM(P) = u(P) =m, for all j = 1,2,...,n; the weight function |¢|p associated
to P is equivalent to (€) = (1 + |¢[?)2. It is the standard case.
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2) If P(D) is a quasi-elliptic operator of order m (cf. for instance [10], [12], [14]),
its characteristic polyhedron P is complete and has vertices {0,mje;, j =
1,...,n}, where m; = m;(P) are fixed integers. The set N(P) is reduced to
a point v = Y7, m; ej; then p;(P) = my, for all j = 1,...,n, uO(P) =
minj— . ,m;, u(P) = p(P) = max;—1,..,m; = m. The weight function
associated to P is [€]p = (1+|&1™ 4+ - +]&,|™ ). It is the anisotropic case.

3) If P C R? is the polyhedron of vertices V(P) = {(0, 0) (0,3),(1,2),(2,0)}, then
P is complete and N (P) = {Vl = (3, 3) vy = 2, }1)} We have my(P) =

O (P) =2, my(P) = m(P) pM(P) =3, u(P) = 4. We observe that in this
case the formal order p(P) is bigger than the maximal order m(P), as P has

a vertex lying outside the coordinate axes (cf. Proposition 2.1). The weight

function associated to P is |¢]p = (1 + |&1]2 4 |&]? + |€162])4.

Basing on the definition of complete polyhedra, we now introduce the multi-
anisotropic version of the standard Gelfand—Shilov classes (cf. [9]).

Definition 2.2. Let P and Q be two complete polyhedra in R™. We say that
a function f belongs to the Gelfand Shilov class SS:i(R"), for r,s > 1 if there

are constants C < 0o, € > 0 such that f and its Fourier transform f satisfy the
following two conditions

() /(@) < Cexp(—clalg), VoeR,

. ) 9)
(i) 1f(©I<Cexp(—clglp), vEeR”
From now on, r;s > 1 and P, Q will be complete polyhedra according to
Definition 2.1. Moreover, to simplify the computations we may suppose that the
formal order of P and Q is equal to 1; it is not restrictive in the definition of
Gelfand—Shilov classes of multi-anisotropic type, since it is easy to check that
similar polyhedra P and P/, and Q and Q' define the same class.
By means of the inversion formula for the Fourier transform, it is possible to
prove the following result.

Theorem 2.1. A function f € S(R™) belongs to Sg”:(]R”) if and only if its Fourier
transform f belongs to SS:f(R").

In particular, the spaces S g: (R™) are invariant under the action of the Fourier
transform.

By using the properties of complete polyhedra and the associated weight func-
tion, we can prove an equivalent definition of Gelfand—Shilov classes of multi-
anisotropic type.

Theorem 2.2. A function f € S(R™) belongs to Sg:(R"), forr,s > 14f f €

S(R™) and there is a constant C < oo such that f and its Fourier transform f
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satisfy

(i) sup [ f(2)] < OO (uk(a, Q)9 Va e N,
IGR’!L

(i) sup [€*f(€)] < C1MH (uk(a, P))* ™ *P) Vo e N,
£ER™

(10)

Proof. We prove that if f belongs to S(R™), then condition ¢) of (9) is equivalent
to i) of (10). The equivalence of i) of (9) with 4i) of (10) can be analogously
checked.

Therefore, let us suppose that f € S(R™) satisfies, with some C' < oo and € > 0

@) < Coxp (—elelp), VzeR™, (11)

that can be rewritten (for a new ¢) in the form

1
@) <Cexp(—elely), voeRr,
and, taking the Taylor expansion of the exponential, we get
= aly
Z ——|f(z)|" <oo, VzeR"
=0

The convergence of the series of functions implies that its terms are uniformly
bounded:

i
elzlg
7!
It follows that for a positive constant C'

1
s

[f(@)", 5 =0,1,....

1

A . )
|5l f(z)]7 < CITHL, §j=0,1,....

Therefore, for any a € N", recalling Proposition 2.1, 5, we get for k(«a, Q) < j:

2 f(2)] < |2lg® ()] < (CTH50)"

Taking j = min{k € N : k(a, Q) < k}, and recalling that j! < j7, we get that
|z f(z)| < C7+1577 Yo € N™ for a new constant C' < oo, that is equivalent to

1z f(2)] < C11H ki (a, Q)7F( @9 va e N™.

Conversely, let us suppose that i) of (10) is satisfied. Taking o = vj and recalling
that |v| < 1, Vo € V(P) (since the formal order p < 1), then for any v € V(P) and
any j € N, we get

> S @) < G (12)

veEV(P)
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Thanks to 5) of Proposition 2.1, taking the %—th power of (12), for € = ZCT we get

11 C
|9C\g|f( r)|rel 7 S 95
Summing for j =0,1,... we get
=
Z|x|g|f( i *,\C-
7=0

1
Therefore |f(z)|" exp(elz r|5) < C for a constant C' < oo, and, taking the r-th
1
power, we obtain |f(z)| < Cexp(—¢|z|g), that gives the desired equivalence. B

Lemma 2.1. Conditions (10) are equivalent to the following ones:

(i) sup |z*f(z)] < CTT§™ Va € N*, where j = min{i € N: k(a, Q) < i}
zER™

(i7)  sup |[€¥f(€)] < C7F1j% Vo e N, where j = min{i € N: k(a, P) <i}.
£ERN
(13)

In analogy with Chung-Chung-Kim [7], we prove for Gelfand—Shilov classes of
multi-anisotropic type the following result.

Theorem 2.3. For any f € S(R™), the following conditions are equivalent:

i) f belongs to ng(R”),
it) There exists a constant C' < 0o such that:

sup |2% f(x)| < C1H (uk(a, Q) (9 Vo e N”,

155% €@ f(€)] < Ol (uk(a, P))*HH@P) - o e N (14)
i11) There exists a constant C < oo such that:
12 f(2) 2 < C1H (pk(er, @))M Q) Vo€ N7, (15)
€% F()llze < C1 (uk (a,P))W‘“”’% Vo € N*;
iv) There exists a constant C < oo such that:
2% f(2) 2 < CH (pk(ar, @), Vo€ N, (16)
10°f ()]l 2 < C11F (uk(ar, )M *P) Vo € N™;
v) There exists a constant C < oo such that:
2297 £(@) 12 < €174 ko, @M k(3 PP,

for all o, € N™;
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vi) There exists a constant C' < oo such that:

sup |:Ea8ﬁf(1')| < OlaHWHl(Mk(a’ Q))ruk(a,g)('uk(ﬁ’ P))s#k(ﬁp)7
ERSIING (18)
for all a,3 € N,

Proof. Theorem 2.2 proves the equivalence of i) and 7). We now prove that
1) = 1i1) = v) = v) = Vi) = ).

Let us assume i) and prove 7i). Fixing an integer M > %, so that |[(1 +
|z|2)~M || 12 < 0o, we have

l®f(z)]|2 < C su]R}{:) 1+ |x|2)M|maf(x)|, Vo € N™.
rcR™

We then write (1 + |z|?)M = Doy <M c,x®7, with ¢, positive integers that can be
estimated in terms of M. Therefore

|lz® f(z)|| 2 < C Z sup |$a+2“/f( ), VaeN"

rER™

Applying the first estimate of i), we obtain

H-raf(x)HLQ < C Z C|a+27\+1k(a + 2,77 Q)rk((a-l-Q’Y)vQ)’ Yo € N™.
[vI<M

By taking v € N1(Q) such that k(o + 27, Q) = (a + 27) - v, we obtain

k(a+27,Q9) = a-v+2yv < max a-v+ max 2y-v = k(a, Q)+k(2v,Q), (19)
veN1(Q) veN1(Q)

having the equality only in the case that a = kv, k € R. Therefore, since the 7’s
are fixed and in finite number:

laf@)lle < D CPIHICIN(K(a, Q) + k(2y, Q) (e HHEn 2D
lvIsM
< C«|a|+1( (0& Q))rk a Q)
Arguing similarly for the £ variables, we obtain the second inequality.
By Plancharel’s formula, i) is equivalent to iv).

Let us now prove that iv) = v). Integrating by parts and using Leibniz formula,
we have

1207 f(2) |72 = (87 f (), 2207 f(2)) 12 = (f,0° (270" f(2)) 12

< ¥ (e re )

v<8, v<2a N1/ NT

Since (5) (2,;") < 218+2lel | applying the Cauchy-Schwartz inequality we obtain

2207 f(x) |7, < 2720y T 2o f 12|02 fl g2 (20)

<8, ¥<2a
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Using now the assumptions iv), where we can assume for simplicity that C' > 1,
we have for v < 26, v < 2«

a7 f 22 10%77 | 22
< CeH2B81H201 k(20 — ), Q))F(=1):Q) (k((26 — 7), P))*F((20-1).P)
< ORI ((20), Q) HED D) (k((26), ) H )P,

In fact, by Proposition 2.1,

N

since we are supposing that 4 < 1 and u) < p for both P and Q. Therefore,

Y < k(a, Q> Qk(B, P)+EP),

since we are supposing r, s > 1. Observe that the number of the terms in the sum
(20) does not exceed 2211181427 and that k((20), Q) = 2k(a, Q), k((28),P) =
2k(6,P) an for (19) we conclude that for a new constant C' < oo it is satisfied

2707 f @) < €2l 24, Q)2rHe kg, P) KA,

To prove that v) implies vi) we use the Sobolev embedding theorem. Namely,
fixing an integer d > %, we get for a C' < o0

298P f(z)| < C||z%0° f ()] ya
—C Y 9@ f(@))ll2, VxeR", Va,8eN.  (2D)

lvl<d
By Leibniz rule, we estimate the right hand side by

S x (Qmr e

II<d <y, d<a

Note that (g) (?)5! < €21, with C independent of a. Moreover, the number of
the terms in the sum (22) can be estimated by an integer independent of . On
the other hand, using assumption v) and (19), we get for a new constant C’ < co

22727770 f ()| 2
< Cla\+|5|—2\5\+|7|+1/€((a —9), Q)rk((a—é),Q)k((g + v —6), p)sk((ﬁﬂ—«i)ﬂ’)
< Ol B (o, Q)@ k(8 + ), P)sk(B+).P) (23)
< OB (o, Q)R D (3, P)sk(BP),
Combining (21), (22) and (23), we get
1220° f ()] < OB+ (o, Q) H( @Dk (3, P)*FEP) - yr e R™, Va,3 € N
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Finally, we prove that vi) implies 7). We first observe that vi) for 8 = 0 gives the
first estimate of ii).
By performing the Fourier transform we get

EPFOI= 1@ HOI < 107 f I, VE R (24)

Fixing an integer M > %, so that [|(1 4 |z[?)"*]|: < oo, we obtain

107F ()]l < C Sélﬂ@(l +[z)M]07 f(2)]. (25)

Condition vi) with o = 0 gives (since in this case M is fixed)
(1+ [2)M]0° f ()] < CVPH (B, P) PP v e R™, V3 € N™. (26)

Combining (24), (25) and (26) we get 7). |
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