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Abstract: Aim of this paper is to introduce a generalization of Gelfand–Shilov classes by means
of estimates based on a complete polyhedron (see for instance Gindikin–Volevich [10]). This class
includes the standard Gelfand–Shilov functions and their anisotropic version.
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1. Introduction

Let us begin by recalling the definition of Gevrey classes Gs(Ω), 1 < s < ∞, Ω
open subset of Rn, and Gelfand–Shilov classes Ss

r(Rn), where we shall assume for
simplicity 1 6 s < ∞, 1 6 r < ∞.

A function f belongs to Gs(Ω) if for every compact subset K ⊂⊂ Ω we have

sup
x∈K

|∂α
x f(x)| 6 C |α|+1(α!)s, ∀α ∈ Nn (1)

for a suitable positive constant C independent on the multi-index α.
We then define Gs

0(Ω) = Gs(Ω) ∩ C∞0 (Ω). A function f belongs to Gs
0(Rn) if

and only if the Fourier transform f̂ of f satisfies

|f̂(ξ)| 6 C exp(−ε|ξ| 1s ), ∀ξ ∈ Rn (2)

for suitable constants C < ∞, ε > 0, see for example [12].
Willing to find a counterpart of the Schwartz space S(Rn), we are then led to

the classes of Gelfand–Shilov [9]. Namely, a function f belongs to the Gelfand–
Shilov class Ss

r(Rn), for r, s > 1 if there exists a constant C < ∞ such that

sup
x∈Rn

|xβ∂α
x f(x)| 6 C |α|+|β|+1(α!)s(β!)r, ∀α ∈ Nn, ∀β ∈ Nn. (3)

According to [7], this definition is equivalent to the following one, reminiscent of
the estimate (2).
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A function f belongs to the Gelfand–Shilov class Ss
r(Rn), for r, s > 1, if f ∈

S(Rn) and there are constants C < ∞, ε > 0 such that f and its Fourier transform
f̂ satisfy the following two conditions

(i) |f(x)| 6 C exp(−ε|x| 1r ), ∀x ∈ Rn,

(ii) |f̂(ξ)| 6 C exp(−ε|ξ| 1s ), ∀ξ ∈ Rn.
(4)

The Gevrey classes Gs(Ω) have been generalized in different ways by several au-
thors. Here we address in particular to the multi-anisotropic Gevrey classes, see
Bouzar-Chaili [2, 3], Calvo [4], Calvo-Hakobyan [5], Gindikin-Volevich [10], Zanghi-
rati [13, 14].

In short, we fix a complete polyhedron P ⊂ Rn
+. Let us denote by V(P) the

set of the vertices, and let µ be the formal order of P, see the next section 2 for
details. We then define the weight function associated to P

|ξ|P :=
( ∑

v∈V(P)

|ξv|
) 1

µ

, ∀ξ ∈ Rn. (5)

We may introduce the multi-anisotropic class with compact support Gs,P
0 (Rn) of

all the functions f ∈ C∞0 (Rn) satisfying for suitable C < ∞, ε > 0

|f̂(ξ)| 6 C exp(−ε|ξ|
1
s

P), ∀ξ ∈ Rn. (6)

We recapture (2) and the standard Gevrey classes Gs
0(Rn) when P is the polyhe-

dron of vertices {0,mej , j = 1, . . . , n} for some integer m > 1. Another relevant
example is given by the anisotropic Gevrey classes, when P is the polyhedron of
vertices {0,mjej , j = 1, . . . , n} for some integers mj > 1, see [13, 14]. The esti-
mate (6) can be converted into estimates for ∂α

x f(x), α ∈ Nn, and in this way we
may also define Gs,P(Ω) for an open subset Ω ⊂ Rn, see Calvo [4].

In this paper we want to present a Gelfand–Shilov version of the multi-anisotropic
Gevrey classes. Namely, taking (4) as a model and fixing two complete polyhedra
P,Q ⊂ Rn

+, we define Ss,P
r,Q(Rn), s > 1, r > 1, as the subset of S(Rn) of all the

functions f satisfying

(i) |f(x)| 6 C exp(−ε|x|
1
r

Q), ∀x ∈ Rn,

(ii) |f̂(ξ)| 6 C exp(−ε|ξ|
1
s

P), ∀ξ ∈ Rn
(7)

for some positive constants C < ∞, ε > 0.M̧ain result in the following will be
to show the equivalence of (7) with suitable estimates of type (3), for xα∂β

x f(x);
let us address to the next Theorem 2.3 for a precise statement.W̧e leave to future
papers possible applications to partial differential equations in Rn with polynomial
coefficients, cf. Boggiatto-Buzano-Rodino [1], and a generalization of the definition
(7) to the case when s < 1 or r < 1, which presents difficult problems of non-
triviality for the class Ss,P

r,Q(Rn).
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2. Definition and main properties

To introduce our study of Gelfand–Shilov classes of multi-anisotropic type, we start
by describing complete polyhedra and some related properties. For more proper-
ties and applications to the theory of partial differential equations of complete
polyhedra, we can refer to [2, 3, 4, 5, 10, 13, 14].

Let P be a convex polyhedron in Rn, then P can be obtained as convex hull of
a finite set V(P) ⊂ Rn of convex-linearly-independent points, called the vertices
of P and uniquely determined by P. Moreover, if P has non-empty interior and
the origin belongs to P, there is a finite set N (P) = N0(P)∪N1(P), with |ν| = 1,
∀ν ∈ N0(P), such that

P = {z ∈ Rn|ν · z > 0, ∀ν ∈ N0(P), ν · z 6 1, ∀ν ∈ N1(P)},
N1(P) is the set of the normal vectors to the faces of P.
Definition 2.1. A complete polyhedron is a convex polyhedron P ⊂ Rn

+ such that
the following properties are satisfied
1 ) V(P) ⊂ Qn (i.e. all vertices have rational coordinates);
2 ) the origin (0, 0, . . . , 0) belongs to P;
3 ) N0(P) = {e1, e2, . . . , en}, with ej = (0, . . . , 0, 1j−th, 0, . . . , 0) ∈ Rn for

j = 1, . . . , n;
4 ) every ν ∈ N1(P) has strictly positive components.

Remark 1. The condition 1, suggested by the applications to the partial differ-
ential equations, is actually superfluous in the following. The condition 4 implies
that for every x ∈ P the set Q(x) = {y ∈ Rn|0 6 y 6 x} is included in P and if x
belongs to a face of P and y > x, then y 6∈ P (where for x, y ∈ Rn, y 6 x means
that yi 6 xi, i = 1, . . . , n; and y < x means y 6 x, y 6= x).

Let us now summarize some notations related to a complete polyhedron P:
k(s,P) = inf{t > 0 : t−1s ∈ P} = max

ν∈N1(P)
ν · s, ∀s ∈ Rn

+;

µj(P) = max
ν∈N1(P)

ν−1
j ;

µ = µ(P) = max
j=1,...,n

µj the formal order of P;

µ(0) = µ(0)(P) = min
γ∈V(P)\{0}

|γ| the minimum order of P;

µ(1) = µ(1)(P) = max
γ∈V(P)

|γ| the maximum order of P.

Finally, we define the weight function associated to P:

|ξ|P :=
( ∑

v∈V(P)

|ξv|
) 1

µ

, ∀ξ ∈ Rn. (8)

It is a weight function according to the definition of Liess-Rodino [11].
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The definition of the previous quantities is clarified by the following result (for
the proof we refer to [4]).

Proposition 2.1. Let P be a complete polyhedron in Rn with vertices sl =
(sl

1, . . . , s
l
n), for l = 1, . . . , N(P). Then

1 ) for every j = 1, 2, . . . , n, there is a vertex slj of P such that slj = s
lj
j ej,

s
lj
j = maxs∈P sj =: mj(P);

2 ) the boundary of P has at least one vertex lying outside the coordinate axes if
and only if µj > mj , ∀j = 1, . . . n, that is equivalent to ask that the formal
order µ(P) is greater than the maximum order µ(1)(P);

3 ) if s belongs to P, then |ξs| 6
∑N(P)

l=1 |ξsl |, ∀ξ ∈ Rn, where ξs =
∏n

j=1 ξ
sj

j and
N(P) is the number of vertices of P, including the origin;

4 ) α
k(α,P) , for any α ∈ Nn, belongs to the boundary of P, and therefore α =

k(α,P)
∑m

i=1 λisli , λi > 0, i = 1, . . . , m,
∑m

i=1 λi = 1, where sl1 , . . . , slm are
the vertices of the face of P where α

k(α,P) lies;
5 ) For all x ∈ Rn, saying N(P) the number of vertices of P, the following in-

equality is satisfied N(P)j−1
∑

v∈V(P) |xvj | 6 |x|jP 6 2N(P)(j−1)
∑

v∈V(P) |xvj |.
for any j = 1, 2, . . . .

Proposition 2.2. For any complete polyhedron P and any s ∈ Rn
+, k(s,P) is

bounded as follows:
|s|
µ(1)

6 k(s,P) 6 |s|
µ(0)

.

The associated weight function |ξ|P satisfies for some constants 0 < C1, C2 < ∞
and all ξ ∈ Rn:

C1〈ξ〉
µ(0)

µ 6 |ξ|P 6 C2〈ξ〉
µ(1)

µ .

Considering a polynomial with complex coefficients, we can regard it as the
symbol of a differential operator and associate a polyhedron to it. Namely, if
P (D) =

∑
|α|6m cαDα, cα ∈ C, is a differential operator in Rn with complex

coefficients and P (ξ) =
∑
|α|6m cαξα, ξ ∈ Rn, its symbol, we define the New-

ton polyhedron or characteristic polyhedron associated to P (D) (or P (ξ)) as the
convex hull of the set {0}⋃{α ∈ Zn

+ : cα 6= 0}.
The Newton polyhedron of an hypoelliptic operator is complete (cf. Friberg

[8]), but the converse is not true in general (cf. Bouzar-Chaili [2, 3], Calvo-
Hakobyan [5] and Zanghirati [13, 14]). To clarify our treatment, we give now
some examples of complete polyhedra (for more details cf. [4]).

1) If P (D) is an elliptic operator of order m, then its Newton polyhedron is the
complete polyhedron of vertices {0, mej , j = 1, . . . , n}. The set N1(P) is
reduced to the point ν = m−1

∑m
j=1 ej , and mj(P) = µj(P) = µ(0)(P) =

µ(1)(P) = µ(P) = m, for all j = 1, 2, . . . , n; the weight function |ξ|P associated
to P is equivalent to 〈ξ〉 = (1 + |ξ|2) 1

2 . It is the standard case.



Gelfand–Shilov classes of multi-anisotropic type 301

2) If P (D) is a quasi-elliptic operator of order m (cf. for instance [10], [12], [14]),
its characteristic polyhedron P is complete and has vertices {0,mjej , j =
1, . . . , n}, where mj = mj(P) are fixed integers. The set N1(P) is reduced to
a point ν =

∑n
j=1 m−1

j ej ; then µj(P) = mj , for all j = 1, . . . , n, µ(0)(P) =
minj=1,...,n mj , µ(P) = µ(1)(P) = maxj=1,...,n mj = m. The weight function
associated to P is |ξ|P = (1+ |ξ1|m1 + · · ·+ |ξn|mn)

1
m . It is the anisotropic case.

3) If P ⊂ R2 is the polyhedron of vertices V(P) = {(0, 0), (0, 3), (1, 2), (2, 0)}, then
P is complete and N1(P) =

{
ν1 =

(
1
3 , 1

3

)
, ν2 =

(
1
2 , 1

4

)}
. We have m1(P) =

µ(0)(P) = 2, m2(P) = m(P) = µ(1)(P) = 3, µ(P) = 4. We observe that in this
case the formal order µ(P) is bigger than the maximal order m(P), as P has
a vertex lying outside the coordinate axes (cf. Proposition 2.1). The weight
function associated to P is |ξ|P = (1 + |ξ1|2 + |ξ2|3 + |ξ1ξ

2
2 |)

1
4 .

Basing on the definition of complete polyhedra, we now introduce the multi-
anisotropic version of the standard Gelfand–Shilov classes (cf. [9]).

Definition 2.2. Let P and Q be two complete polyhedra in Rn. We say that
a function f belongs to the Gelfand Shilov class SP,s

Q,r(Rn), for r, s > 1 if there
are constants C < ∞, ε > 0 such that f and its Fourier transform f̂ satisfy the
following two conditions

(i) |f(x)| 6 C exp
(
− ε|x|

1
r

Q
)
, ∀x ∈ Rn,

(ii) |f̂(ξ)| 6 C exp
(
− ε|ξ|

1
s

P
)
, ∀ξ ∈ Rn

(9)

From now on, r, s > 1 and P, Q will be complete polyhedra according to
Definition 2.1. Moreover, to simplify the computations we may suppose that the
formal order of P and Q is equal to 1; it is not restrictive in the definition of
Gelfand–Shilov classes of multi-anisotropic type, since it is easy to check that
similar polyhedra P and P ′, and Q and Q′ define the same class.

By means of the inversion formula for the Fourier transform, it is possible to
prove the following result.

Theorem 2.1. A function f ∈ S(Rn) belongs to SQ,r
P,s (Rn) if and only if its Fourier

transform f̂ belongs to SP,s
Q,r(Rn).

In particular, the spaces SQ,r
Q,r (Rn) are invariant under the action of the Fourier

transform.
By using the properties of complete polyhedra and the associated weight func-

tion, we can prove an equivalent definition of Gelfand–Shilov classes of multi-
anisotropic type.

Theorem 2.2. A function f ∈ S(Rn) belongs to SP,s
Q,r(Rn), for r, s > 1 if f ∈

S(Rn) and there is a constant C < ∞ such that f and its Fourier transform f̂
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satisfy

(i) sup
x∈Rn

|xαf(x)| 6 C |α|+1(µk(α,Q))rµk(α,Q), ∀α ∈ Nn,

(ii) sup
ξ∈Rn

|ξαf̂(ξ)| 6 C |α|+1(µk(α,P))sµk(α,P), ∀α ∈ Nn.
(10)

Proof. We prove that if f belongs to S(Rn), then condition i) of (9) is equivalent
to i) of (10). The equivalence of ii) of (9) with ii) of (10) can be analogously
checked.

Therefore, let us suppose that f ∈ S(Rn) satisfies, with some C < ∞ and ε > 0

|f(x)| 6 C exp
(
− ε|x|

1
r

Q
)
, ∀x ∈ Rn, (11)

that can be rewritten (for a new ε) in the form

|f(x)| 1r 6 C exp
(
− ε|x|

1
r

Q
)
, ∀x ∈ Rn,

and, taking the Taylor expansion of the exponential, we get

∞∑

j=0

εj |x|
j
r

Q
j!

|f(x)| 1r < ∞, ∀x ∈ Rn.

The convergence of the series of functions implies that its terms are uniformly
bounded:

εj |x|
j
r

Q
j!

|f(x)| 1r , j = 0, 1, . . . .

It follows that for a positive constant C

|x|
j
r

Q|f(x)| 1r 6 Cj+1j!, j = 0, 1, . . . .

Therefore, for any α ∈ Nn, recalling Proposition 2.1, 5, we get for k(α,Q) 6 j:

|xαf(x)| 6 |x|k(α,Q)
Q |f(x)| 6 (Cj+1j!)r.

Taking j = min{k ∈ N : k(α,Q) 6 k}, and recalling that j! 6 jj , we get that
|xαf(x)| 6 Cj+1jrj , ∀α ∈ Nn for a new constant C < ∞, that is equivalent to

|xαf(x)| 6 C |α|+1k(α,Q)rk(α,Q), ∀α ∈ Nn.

Conversely, let us suppose that i) of (10) is satisfied. Taking α = vj and recalling
that |v| 6 1, ∀v ∈ V(P) (since the formal order µ 6 1), then for any v ∈ V(P) and
any j ∈ N, we get ∑

v∈V(P)

|xvj ||f(x)| 6 Cj+1(j!)r. (12)
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Thanks to 5) of Proposition 2.1, taking the 1
r -th power of (12), for ε = 1

2Cr we get

|x|
j
r

Q|f(x)| 1r εj 1
j!

6 C

2j
.

Summing for j = 0, 1, . . . we get

∞∑

j=0

|x|
j
r

Q|f(x)| 1r εj

j!
6 C.

Therefore |f(x)| 1r exp(ε|x|
1
r

Q) 6 C for a constant C < ∞, and, taking the r-th

power, we obtain |f(x)| 6 C exp(−ε|x|
1
r

Q), that gives the desired equivalence. ¥

Lemma 2.1. Conditions (10) are equivalent to the following ones:

(i) sup
x∈Rn

|xαf(x)| 6 Cj+1jrj , ∀α ∈ Nn, where j = min{i ∈ N : k(α,Q) 6 i}

(ii) sup
ξ∈Rn

|ξαf̂(ξ)| 6 Cj+1jsj , ∀α ∈ Nn, where j = min{i ∈ N : k(α,P) 6 i}.
(13)

In analogy with Chung-Chung-Kim [7], we prove for Gelfand–Shilov classes of
multi-anisotropic type the following result.

Theorem 2.3. For any f ∈ S(Rn), the following conditions are equivalent:

i) f belongs to SP,s
Q,r(Rn);

ii) There exists a constant C < ∞ such that:

sup
x∈Rn

|xαf(x)| 6 C |α|+1(µk(α,Q))rµk(α,Q), ∀α ∈ Nn,

sup
ξ∈Rn

|ξαf̂(ξ)| 6 C |α|+1(µk(α,P))sµk(α,P), ∀α ∈ Nn;
(14)

iii) There exists a constant C < ∞ such that:

‖xαf(x)‖L2 6 C |α|+1(µk(α,Q))rµk(α,Q), ∀α ∈ Nn,

‖ξαf̂(ξ)‖L2 6 C |α|+1(µk(α,P))sµk(α,P), ∀α ∈ Nn;
(15)

iv) There exists a constant C < ∞ such that:

‖xαf(x)‖L2 6 C |α|+1(µk(α,Q))rµk(α,Q), ∀α ∈ Nn,

‖∂αf(x)‖L2 6 C |α|+1(µk(α,P))sµk(α,P), ∀α ∈ Nn;
(16)

v) There exists a constant C < ∞ such that:

‖xα∂βf(x)‖L2 6 C |α|+|β|+1(µk(α,Q))rµk(α,Q)(µk(β,P))sµk(β,P),

for all α, β ∈ Nn;
(17)
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vi) There exists a constant C < ∞ such that:

sup
x∈Rn

|xα∂βf(x)| 6 C |α|+|β|+1(µk(α,Q))rµk(α,Q)(µk(β,P))sµk(β,P),

for all α, β ∈ Nn.
(18)

Proof. Theorem 2.2 proves the equivalence of i) and ii). We now prove that
ii) ⇒ iii) ⇒ iv) ⇒ v) ⇒ vi) ⇒ ii).

Let us assume ii) and prove iii). Fixing an integer M > n
4 , so that ‖(1 +

|x|2)−M‖L2 < ∞, we have

‖xαf(x)‖L2 6 C sup
x∈Rn

(1 + |x|2)M |xαf(x)|, ∀α ∈ Nn.

We then write (1 + |x|2)M =
∑
|γ|6M cγx2γ , with cγ positive integers that can be

estimated in terms of M . Therefore

‖xαf(x)‖L2 6 C
∑

|γ|6M

sup
x∈Rn

|xα+2γf(x)|, ∀α ∈ Nn.

Applying the first estimate of ii), we obtain

‖xαf(x)‖L2 6 C
∑

|γ|6M

C |α+2γ|+1k(α + 2γ,Q)rk((α+2γ),Q), ∀α ∈ Nn.

By taking ν ∈ N1(Q) such that k(α + 2γ,Q) = (α + 2γ) · ν, we obtain

k(α+2γ,Q) = α·ν+2γ ·ν 6 max
ν∈N1(Q)

α·ν+ max
ν∈N1(Q)

2γ ·ν = k(α,Q)+k(2γ,Q), (19)

having the equality only in the case that α = kγ, k ∈ R. Therefore, since the γ’s
are fixed and in finite number:

‖xαf(x)‖L2 6
∑

|γ|6M

C |2γ|+1C |α|(k(α,Q) + k(2γ,Q))r(k(α,Q)+k(2γ,Q))

6 C |α|+1(k(α,Q))rk(α,Q).

Arguing similarly for the ξ variables, we obtain the second inequality.
By Plancharel’s formula, iii) is equivalent to iv).
Let us now prove that iv) ⇒ v). Integrating by parts and using Leibniz formula,

we have

‖xα∂βf(x)‖2L2 = (∂βf(x), x2α∂βf(x))L2 = (f, ∂β(x2α∂βf(x))L2

6
∑

γ6β, γ62α

(
β

γ

)(
2α

γ

)
γ!

∣∣(x2α−γf, ∂2β−γf)L2

∣∣

Since
(
β
γ

)(
2α
γ

)
6 2|β|+2|α|, applying the Cauchy-Schwartz inequality we obtain

‖xα∂βf(x)‖2L2 6 2|β|+2|α| ∑

γ6β, γ62α

γ!‖x2α−γf‖L2‖∂2β−γf‖L2 . (20)
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Using now the assumptions iv), where we can assume for simplicity that C > 1,
we have for γ 6 2β, γ 6 2α

γ!‖x2α−γf‖L2‖∂2β−γf‖L2

6 C2|α|+2|β|+2γ!(k((2α− γ),Q))rk((2α−γ),Q)(k((2β − γ),P))sk((2β−γ),P)

6 C2|α|+2|β|+2(k((2α),Q))rk((2α),Q)(k((2β),P))sk((2β),P).

In fact, by Proposition 2.1,

γ! 6 µ(1)(Q)k(α,Q) 6 k(α,Q),

γ! 6 µ(1)(P)k(β,P) 6 k(β,P),

since we are supposing that µ 6 1 and µ(1) 6 µ for both P and Q. Therefore,

γ! 6 k(α,Q)rk(α,Q)k(β,P)sk(β,P),

since we are supposing r, s > 1. Observe that the number of the terms in the sum
(20) does not exceed 22|α|+|β|+2n and that k((2α),Q) = 2k(α,Q), k((2β),P) =
2k(β,P) an for (19) we conclude that for a new constant C < ∞ it is satisfied

‖xα∂βf(x)‖2L2 6 C2|α|+2|β|+2k(α,Q)2rk(α,Q)k(β,P)2sk(β,P).

To prove that v) implies vi) we use the Sobolev embedding theorem. Namely,
fixing an integer d > n

2 , we get for a C < ∞

|xα∂βf(x)| 6 C‖xα∂βf(x)‖Hd

= C
∑

|γ|6d

‖∂γ(xα∂βf(x))‖L2 , ∀x ∈ Rn, ∀α, β ∈ Nn. (21)

By Leibniz rule, we estimate the right hand side by

∑

|γ|6d

∑

δ6γ, δ6α

(
γ

δ

)(
α

δ

)
δ!‖xα−δ∂β+γ−δf(x)‖L2 . (22)

Note that
(
γ
δ

)(
α
δ

)
δ! 6 C2|α|, with C independent of α. Moreover, the number of

the terms in the sum (22) can be estimated by an integer independent of α. On
the other hand, using assumption v) and (19), we get for a new constant C ′ < ∞
‖xα−δ∂β+γ−δf(x)‖L2

6 C |α|+|β|−2|δ|+|γ|+1k((α− δ),Q)rk((α−δ),Q)k((β + γ − δ),P)sk((β+γ−δ),P)

6 C |α|+|β|+1k(α,Q)rk(α,Q)k((β + γ),P)sk((β+γ),P) (23)

6 C ′|α|+|β|+1k(α,Q)rk(α,Q)k(β,P)sk(β,P).

Combining (21), (22) and (23), we get

|xα∂βf(x)| 6 C ′|α|+|β|+1k(α,Q)rk(α,Q)k(β,P)sk(β,P), ∀x ∈ Rn, ∀α, β ∈ Nn.
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Finally, we prove that vi) implies ii). We first observe that vi) for β = 0 gives the
first estimate of ii).

By performing the Fourier transform we get

|ξβ f̂(ξ)| = |(∂βf)ˆ(ξ)| 6 ‖∂βf‖L1 , ∀ξ ∈ Rn. (24)

Fixing an integer M > n
2 , so that ‖(1 + |x|2)−M‖L1 < ∞, we obtain

‖∂βf(x)‖L1 6 C sup
x∈Rn

(1 + |x|2)M |∂βf(x)|. (25)

Condition vi) with α = 0 gives (since in this case M is fixed)

(1 + |x|2)M |∂βf(x)| 6 C |β|+1k(β,P)sk(β,P), ∀x ∈ Rn, ∀β ∈ Nn. (26)

Combining (24), (25) and (26) we get ii). ¥
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