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THE DILATATION FUNCTION OF A HOLOMORPHIC ISOTOPY
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Abstract: Every nonvanishing univalent function f(z) in the disk ∆∗ = Ĉ \∆, ∆ = {|z| < 1},
for example, with hydrodynamical normalization, generates a complex isotopy ft(z) = tf(t−1z) :

∆∗ × ∆ → Ĉ, which is a special case of holomorphic motions and plays an important role in
many topics. Let qf denote the minimal dilatation among quasiconformal extensions of f to Ĉ.

In 1995, R. Kühnau raised the questions whether the dilatation function qf (r) = qfr is real
analytic and whether the function f can be reconstructed if qf (r) is given. The analyticity of qf

was known only for ellipses and for the Cassini ovals.
Our main theorem provides a wide class of maps with analytic dilatations and implies also

a negative answer to the second question.

Keywords: Univalent function, quasiconformal map, dilatation, subharmonic function, univer-
sal Teichmüller space, hyperbolic metrics, pluricomplex Green function

1. Dilatation function generated by univalent function

1.1. We consider the nonvanishing univalent functions in the disk

∆∗ = {z ∈ Ĉ = C ∪ {∞} : |z| > 1}

with hydrodynamical normalization, i.e., of the form

f(z) = z + b0 + b1z
−1 + b2z

−2 + . . . (f(z) 6= 0).

The collection of such functions is denoted by Σ. Let Σ(k) be its subset containing
the function with k-quasiconformal extensions to the unit disk ∆ = {z : |z| < 1},
and Σ0 =

⋃
k Σ(k). This subset is closed in Σ in the topology of locally uniform

convergence in ∆∗.
For f ∈ Σ0, we denote by µf̂ the Beltrami coefficient (or the complex dilatation)

µf̂ = ∂z f̂/∂z f̂
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of a quasiconformal extension f̂ of f to Ĉ and consider the minimal dilatation

qf = inf{‖µf̂‖∞ : f̂ |∆∗ = f},

which is the Teichmüller norm of f .
Each function f ∈ Σ admits a complex isotopy

ft(z) = tf
(z

t

)
= z + b0t + b1t

2z−1 + b2t
3z−2 + ... : ∆∗ ×∆ → Ĉ (1.1)

which connects f with the identity map id and is Ĉ-holomorphic in ∆∗ ×∆. This
isotopy is a special case of holomorphic motions and plays an important role in
many subjects areas. It generates the dilatation function

qf (t) = qft
,

which is continuous and circularly symmetric, i.e., qf (t) = qf (|t|). Other important
properties of qf will be given below.

Note that this function is closely connected, for example, with Fredholm eigen-
values of Jordan curves.

1.2. Let us first mention the quantitative properties of the dilatation function,
which are given by

Theorem A.

(a) If a function f(z) = z + b0 + b1z
−1 + . . . belongs to Σ(k), then for any t ∈ ∆

the map ft(z) = tf
(
t−1z

)
belongs to Σ(k|t|2). This bound qft 6 k|t|2 is

sharp.
(b) If

f(z) = z +
∞∑

n=p

bnz−n, bp 6= 0, (1.2)

for some integer p > 1, then qft 6 k|t|p+1. This bound is also sharp.
(c) If the equality qft = k|t|2 occurs for some t0 6= 0, then it holds for all t ∈ ∆.

This occurs only for the maps

J(z) = z + b0 + b1z
−1 with |b1| = k, (1.3)

for which Jt(z) = z + b0t+ b1t
2/z and the extremal extensions onto ∆ are of

the form Jt(z) = z + b0t + kt2z.
The equality qft = k|t|p+1 is attained on the functions

Jp(z) =
[
J(z(p+1)/2)− b0]2/(p+1) + c = z + c +

2b1

p + 1
1
zp

+ . . . ,

where |b1| = k, c = const.
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The proof of this theorem for k = 1 is given in [Kr1] in the line of the Gardiner-
Royden theorem on equality of the Kobayashi and Teichmüller metrics on Teich-
müller spaces (see [GL], [Ro]). The case k < 1 requires different arguments and
relies on the plurisubharmonicity of the Teichmüller metric of the universal Teich-
müller space T (cf. [Kr2], [Kr3]).

This theorem is rich in applications. The related problems were considered,
for example, in [KK], [Ku2].

For small |t|, there is the asymptotic estimate

qft = |b1||t|2 + O(|t|3), t → 0, (1.4)

which is sharp when b1 6= 0; it was obtained by Kühnau (see [KK, p. 102]). The
proof relies on the bound |b1| 6 k on Σ(k) which holds for all k 6 1. The ar-
guments break down in getting a sharp estimate for the functions having in ∆∗

expansions of the form (2).

1.3. The dilatation function is connected by

τT([ft],0) = tanh−1 qf (t) =
1
2

log
1 + qf (t)
1− qf (t)

with the Teichmüller distance between the equivalence class [ft] of ft (the collection
of maps equal f on S1) and the origin in the space T.

Note also that every class [ft] is a Strebel point which means that it contains
an extremal Teichmüller map whose Beltrami coefficient on the disk ∆ is of the
form

µft = qf (t)|ψt|/ψt, (1.5)

where ψt is an integrable holomorphic function (or equivalently, a holomorphic
quadratic differential ψtdz2) on ∆. This is important in many applications.

Such differentials play a crucial role in the theory of extremal quasiconformal
maps of the unit disk. We denote the space of holomorphic differentials in ∆ with
L1 norm by A1(∆). We distinguish its subset

A2
1 = {ψ ∈ A1(∆) : ψ = ω2, ω holomorphic},

which consists of differentials having only zeros of even order in D. Such differen-
tials naturally appear in many problems. We have also a natural pairing

〈µ, ψ〉∆ =
∫∫

∆

µ(z)ψ(z) dxdy (z = x + iy)

for every µ ∈ L∞(∆) and ψ ∈ L1(∆).

2. Two questions of Kühnau. Main results

2.1. In 1995, R. Kühnau raised the following questions which reveal rather sur-
prising features of the dilatation function (see [KK, §4]).
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Question 1. Is the function qf (r) real analytic?

Question 2. Is it possible to reconstruct f(z) if qf (r) is given?

These intriguing problems still remain open. Both of them were arose from an
important example constructed in [Ku2]. It is concerned with the Cassini ovals
and shows that a conformal map f of the disk ∆∗ onto the exterior of any loop of
oval

Lc = {w : |w2 − c2| = 1} with 0 < c < 1

has the extremal quasiconformal dilatation

qf = 1/ cosh
[
π

2
K ′(c2)
K(c2)

]
,

where K(k) is the complete elliptic integral of the first kind.
Nothing further related to solving these problems has been obtained. There is

a conjecture that the analyticity must happen for most of the dilatation functions
and depends on distribution of zeros of the corresponding quadratic differentials
ψt.

Note that the general results on the smoothness of Teichmüller distance, es-
tablished in [Ea], [Ga], [Re], [Ro], provide that this distance at generic points of
the universal Teichmüller space is at most C2 smooth.

2.2. Our goal is to prove the following

Theorem 2.1. For every function

f∗(z) = z + b∗0 + b∗1z1 + · · · ∈ Σ0,

whose extremal Beltrami coefficient µf∗ on the disk ∆ is defined (via (1.5)) by a
holomorphic quadratic differential ψ∗ having only zeros of even order, the dilatation
function qf∗(r) is analytic on the interval {0 < r < 1}.

This theorem has two important consequences. First, it establishes the exis-
tence of a wide class of univalent functions (which contains the above conformal
maps of the Cassini ovals), whose dilatation functions are analytic.

Second, the proof of the theorem, provides a representation of qf (r) as the
Grunsky norm of fr, interesting by itself, and implies a negative answer to the
second question.

The proof involves the Grunsky coefficients of univalent functions and certain
deep results of complex geometry of the universal Teichmüller space. It reduces to
the construction and comparison of metrics with appropriate curvature properties.
We precede the proof by a brief exposition of the needed auxiliary results.
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3. The Grunsky inequalities

The classical Grunsky theorem states that a holomorphic function f(z) = z +
const+ O(z−1) in a neighborhood of the point at infinity z = ∞ is extended to a
univalent holomorphic function on the disk

∆∗ = {z ∈ Ĉ = C ∪ {∞} : |z| > 1}
if and only if its Grunsky coefficients αmn satisfy the inequalities

∣∣∣∣∣
∞∑

m,n=1

√
mnαmnxmxn

∣∣∣∣∣ 6 1. (3.1)

These coefficients are generated by

log
f(z)− f(ζ)

z − ζ
= −

∞∑
m,n=1

αmnz−mζ−n, (z, ζ) ∈ (∆∗)2,

and x = (xn) runs over the unit sphere S(l2) of the Hilbert space l2 with ‖x‖ =(∞∑
1
|xn|2

)1/2

, and the principal branch of logarithmic function is chosen (cf. [Gr]).

In particular, this assumes that f(z) 6= 0 on ∆∗. The quantity

κf := sup
{∣∣∣

∞∑
m,n=1

√
mnαmnxmxn

∣∣∣ : x = (xn) ∈ S(l2)
}

(3.2)

is called the Grunsky norm of f .
Grunsky’s theorem has been essentially strengthened for the functions with

quasiconformal extensions, for which we have instead of (3.1) a stronger inequality
(see [Ku1]) ∣∣∣∣∣

∞∑
m,n=1

√
mnαmnxmxn

∣∣∣∣∣ 6 qf , (3.3)

which implies that the Grunsky and Teichmüller norms of f ∈ Σ are related as
follows:

κf 6 qf . (3.4)

Moreover, it was established recently in [Kr6] that a stronger sharp relation

κf 6 qf 6 3
2
√

2
κf

holds, but we do not need the right inequality here.
We shall deal with f ∈ Σ0 satisfying κf = qf . Such functions fill a rather

sparse set in Σ0, but they play a crucial role in many applications of the Grunsky
inequalities. The following theorem proved in [Kr1], [Kr5] describes these functions
completely and relates to our main Theorem 2.1.
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Theorem B. The equality κf = qf holds if and only if the function f is the
restriction to ∆∗ of a quasiconformal self-map wµ0 of Ĉ with Beltrami coefficient
µ0 satisfying the condition

sup |〈µ0, ϕ〉∆| = ‖µ0‖∞, (3.5)

where the supremum is taken over holomorphic functions ϕ ∈ A2
1(∆) such that

‖ϕ‖A1(∆) = 1.
If, in addition, the equivalence class of f (the collection of maps equal f on S1)

is a Strebel point, then µ0 is necessarily of the form

µ0(z) = ‖µ0‖∞|ψ0(z)|/ψ0(z) with ψ0 ∈ A2
1 (z ∈ ∆). (3.6)

Using Parseval’s equality, one obtains that the elements of A2
1 are represented

in the form

ψ(z) =
1
π

∞∑
m+n=2

√
mnxmxnzm+n−2 (3.7)

with x = (xn) ∈ S(l2) (see [Kr1]).
The condition (3.5) has a geometric nature. The equality (3.6) holds, for

example, for all f ∈ Σ0 which are asymptotically conformal on the unit circle S1

(in particular, for f with C1+ smooth images f(S1)).
For analytic curves f(S1) the equality (3.6) was obtained by a different method

in [Ku3].

4. Universal Teichmüller space

4.1. The universal Teichmüller space T is the deformation space of conformal
structures on the disk obtained by factorization of the space of quasisymmetric
homeomorphisms of the unit circle S1 = ∂∆ by Möbius maps. This space is a
complex Banach manifold with rich complex geometry and pluripotential features.

The canonical complex Banach structure on T is defined by factorization of
the ball of Beltrami coefficients

Belt(∆)1 = {µ ∈ L∞(C) : µ|∆∗ = 0, ‖µ‖ < 1},

letting µ, ν ∈ Belt(∆)1 be equivalent if the corresponding maps wµ, wν ∈ Σ0

coincide on S1 (hence, on ∆∗) and passing to the Schwarzian derivatives

Sf (z) =
(

f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

, f = wµ|∆∗.

These derivatives are the points of complex Banach space B of hyperbolically
bounded holomorphic functions in ∆∗ with the norm

‖ϕ‖B = sup
∆∗

(|z|2 − 1)2|ϕ(z)|, (4.1)
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and the space T is biholomorphically equivalent to a bounded domain in B. The
points of this domain are those Schwarzian derivatives Sf which correspond to
univalent functions in ∆∗ with quasiconformal extensions. The defining projection
φT : µ → Swµ is a holomorphic map from L∞(∆) to B.

The basic intrinsic complete metric on the space T is the Teichmüller metric
defined by

τT(φT(µ), φT(ν)) =
1
2

inf
{
log K

(
wµ∗ ◦ (

wν∗
)−1) :

φT(µ∗) = φT(µ), φT(ν∗) = φT(ν)
}
.

(4.2)

It is generated by the Finsler structure on the tangent bundle T (T) = T ×B of
T defined by

FT(φT(µ), φ′T(µ)ν) = inf
{∥∥ν∗(1− |µ|2)−1

∥∥
∞ :

φ′T(µ)ν∗ = φ′T(µ)ν; µ ∈ Belt(∆)1; ν, ν∗ ∈ L∞(C)
}
.

(4.3)

The main invariant metric on the space T is the Kobayashi metric dT which
is defined as the largest pseudometric d on T contracted by holomorphic maps
h : ∆ → T so that for any two points ψ1, ψ2 ∈ T, we have

dT(ψ1, ψ2) 6 inf{d∆(0, t) : h(0) = ψ1, h(t) = ψ2}.
Here d∆ denotes the hyperbolic Poincaré metric on the unit disk ∆ of Gaussian
curvature −4, with the differential form

ds = λhyp(z)|dz| := |dz|
1− |z|2 . (4.4)

Its differential (infinitesimal) form is defined for the points (ψ, v) of T (T) by

KT(ψ, v) = inf{1/r : r > 0, h ∈ Hol(∆r,T), h(0) = ψ, dh(0) = v},
where Hol((∆r,T) denotes the set of holomorphic maps of the disk ∆r = {|z| < r}
into T and ψ = φT(µ), v = φ′T(ν).

4.2. Due to the fundamental Gardiner-Royden theorem, the Kobayashi and Te-
ichmüller metrics on Teichmüller spaces are equal (see [EKK, EM, GL, Ro]).

An essential strengthening of this theorem for the space T was established in
[Kr3] by applying the technique of Grunsky coefficient inequalities (see also [Kr4]).
It states that the differential Kobayashi metric KT(ϕ, v) on the tangent bundle
T (T) of T, which coincides with the Finsler structure (4.3), is logarithmically
plurisubharmonic in ϕ ∈ T and has constant holomorphic sectional curvature
κK(ϕ, v) = −4 on T (T).

As an important corollary, one obtains that the Teichmüller distance τT(ϕ,ψ)
is logarithmically plurisubharmonic in each of its variables (moreover,

gT(ϕ,ψ) = log tanh τT(ϕ,ψ) = log k(ϕ,ψ),
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where gT denotes the pluricomplex Green function of the space T and k(ϕ,ψ) is
the extremal dilatation of quasiconformal maps determining the distance between
the points ϕ and ψ in T). This implies that the dilatation function qf (t) of each
f ∈ Σ is a circularly symmetric (that means qf (t) = qf (|t|)) logarithmically sub-
harmonic function on the disk ∆.

Recall that the (generalized) Gaussian curvature κλ of a upper semicontinuos
Finsler metric ds = λ(t)|dt| in a domain Ω ⊂ C is defined by

κλ(t) = −∆ log λ(t)
λ(t)2

, (4.5)

where ∆ is the generalized Laplacian

∆λ(t) = 4 lim inf
r→0

1
r2

{ 1
2π

∫ 2π

0

λ(t + reiθ) dθ − λ(t)
}

(4.6)

(provided that −∞ 6 λ(t) < ∞). For C2 metrics we have the usual curvature.
The holomorphic curvature mentioned above is the supremum of curvatures

(4.5) at t = 0 of metrics KT(g(t), g′(t)) induced by appropriate holomorphic maps
g : ∆ → T; it will not be used here.

Similar to C2 functions, for which ∆ coincides with the usual Laplacian

∂2u

∂x2
+

∂2u

∂y2
= 4

∂2

∂z∂z
(z = x + iy),

one obtains that λ is subharmonic on Ω if and only if ∆λ(t) > 0; hence, at the
points t0 of local maximuma of λ with λ(t0) > −∞, we have ∆λ(t0) 6 0.

4.3. It follows from Theorem B and part (b) of Theorem A that for f ∈ Σ with
b1 = · · · = bp−1 = 0, bp 6= 0, the function

u(z) =
qf (r)
rp+1

with u(0) = lim sup
r→0

v(r) =: ap

is logarithmically subharmonic on the disk ∆. This implies a weaker extension of
(1.4) to p > 1 in the form

qf (t) = ap|t|p+1 + o(|t|p+1), t → 0. (4.7)

The asymptotic equalities (1.4) and (4.7) estimate sharply the behavior of dilata-
tion near the origin. Theorem 2.1 does not concern this point.

5. Proof of Theorem 2.1

The proof of this Theorem will be established in several stages. The underlying
features are the same as in [Kr6].
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Step 1: Metric generated by Grunsky coefficients. A fundamental property of
the Grunsky coefficients αmn(f) = αmn(Sf ) is that these coefficients are holo-
morphic functions of the Schwarzians Sf on the universal Teichmüller space T.
Therefore, for every f ∈ Σ0 and each x = (xn) ∈ S(l2), the series

hx(ϕ) =
∞∑

m,n=1

√
mnαmn(ϕ)xmxn (5.1)

defines a holomorphic map of the space T into the unit disk ∆.
Applying Theorem B, one concludes that the given function f∗ must satisfy

the equality κf∗ = qf∗ , and hence, by (3.7), its defining holomorphic quadratic
differential ψ∗ has the form

ψ∗(z) =
1
π

∞∑
m,n=1

√
mnαmn(f∗)x∗mx∗n, z ∈ ∆, (5.2)

where x∗ = (x∗n) ∈ S(l2).
The isotopy (1.1) for f1 determines in the space T the holomorphic disk

∆(Sf1) = γf1(∆) = {Sf1,t : t ∈ ∆}, (5.3)

where γf1 denotes a holomorphic map ∆ → T induced by holomorphic point-wise
map

t 7→ Sf1,t(z) =
1
t2

Sf1

(z

t

)
: ∆ → C

(see [Kr1]). This disk has only a singulary at the origin of T.
The restrictions of the maps (5.1) to the disk (5.3) are, in terms of of parameter

t ∈ ∆, of the form

h̃x(t) := hx ◦ γf1(t) =
∞∑

m,n=1

√
mnαmn(f1)xmxntm+n. (5.4)

Using this map, we pull back the hyperbolic metric (4.4) to the disk (5.3) and define
on this disk (and on the unit disk {|t| < 1}) the conformal metric ds = λh̃x

(t)|dt|
with

λh̃x
(t) =

|h̃′x(t)||dt|
1− |h̃x(t)|2

. (5.5)

Its Gaussian curvature equals −4 at noncritical points.
Take the upper envelope of these metrics

λκ(t) = sup{λh̃x
(t) : x ∈ S(l2)} (5.6)

and its upper semicontinuous regularization

λκ(t) = lim sup
t′→t

λκ(t′).

Then similar to [Kr6], we have
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Lemma 5.1. The metric λκ is logarithmically subharmonic on the punctured
disk ∆∗ = ∆ \ {0} and its generalized Gaussian curvature satisfies kλκ 6 −4.

The last inequality is equivalent to the following one

∆ log λκ > 4λ2
κ,

or ∆uκ > 4e2uκ , where uκ = log λκ . Here ∆ again means the generalized Lapla-
cian.

Let us compare λκ with the infinitesimal Kobayashi metric λK of T, restricted
to the same disk ∆(Sf1). It is also logarithmically subharmonic and has generalized
Gaussian curvature −4. This is done in the same way as in [Kr6], but we present
the main details, because these will be used also for other metrics.

Using the Grunsky coefficients of the functions f ∈ Σ0 and their generalization
to arbitrary simply connected domains due to Milin, one can define on the tangent
bundle T (T) a new Finsler structure Fκ(ϕ, v), which is dominated by the canonical
Finsler structure (4.3) (for details see [Kr6]). This structure allows us to construct
in a standard way on embedded holomorphic disks γ(∆) ⊂ T the Finsler metrics
λγ(t) = Fκ(γ(t), γ′(t)) and the corresponding distances

dγ(ϕ1, ϕ2) = inf
∫

γ

Fκ(γ(t), γ′(t))dst,

taking the infimum over C1 smooth curves γ : [0, 1] → T joining the points ϕ1

and ϕ2.
The following lemma on reconstruction of the Grunsky norm is crucial.

Lemma 5.2 ([Kr6]). On any extremal Teichmüller disk ∆(µ0) = {φT(tµ0) :
t ∈ ∆} (and its isometric images in T), we have the equality

tanh−1[κ(frµ0)] =

r∫

0

λκ(t)dt. (5.7)

Step 2: Comparison with differential Kobayashi metric. Let us now assume
(in this and in the next steps) that our function f∗ is holomorphic on the closed
disk ∆∗, i.e., that the curve f∗(S1) is analytic. Then f∗|∆∗ extends across the
unit circle S1 to a holomorphic univalent function on a larger disk ∆∗

a = {z ∈ Ĉ :
|z| > a}, (0 < a < 1). Let us take the minimal possible value of such a. Then

f∗(z) = af1

(z

a

)
=: fa(z), |z| > 1, (5.8)

where

f1(z) = a−1f∗(az) = z +
∞∑
0

b1
nz−n ∈ Σ.

Note that
αmn(fa) = αmn(f1)am+n. (5.9)
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Taking into account that the disk ∆(Sf1) touches at the point ϕ = Sfa the
Teichmüller disk centered at the origin of T and passing through this point and
that the metric λκ does not depend on the tangent unit vectors whose initial
points are the points of ∆(Sf1), one obtains from Lemma 5.2 and (3.3) that at the
corresponding point a ∈ ∆, we have the equality

λκ(a) = λK(a) (5.10)

which means that λκ is a supporting metric for λK|∆(Sf1) at this point.
A more subtle comparison of these metrics is obtained by applying Minda’s

maximum principle:

Lemma 5.3 ([Mi]). If a function u : D → [−∞,+∞) is upper semicontinuous
in a domain Ω ⊂ C and its generalized Laplacian satisfies the inequality ∆u(z) >
Ku(z) with some positive constant K at any point z ∈ D, where u(z) > −∞, and
if

lim sup
z→ζ

u(z) 6 0 for all ζ ∈ ∂D,

then either u(z) < 0 for all z ∈ D or else u(z) = 0 for all z ∈ Ω.

For a sufficiently small neighborhood U0 of the point t = a, we put

M = {sup λK(t) : t ∈ U0};

then in this neighborhood, λK(t) + λκ(t) 6 2M . Consider the function

u = log
λκ
λK

.

Then (cf. [Mi], [Di]) for t ∈ U0,

∆u(t) = ∆ log λκ(t)−∆ log λK(t) = 4(λ2
κ − λ2

K) > 8M(λκ − λK).

The elementary estimate

M log(t/s) > t− s for 0 < s 6 t < M

(with equality only for t = s) implies that

M log
λg0(t)
λd(t)

> λg0(t)− λd(t),

and hence,
∆u(t) > 4M2u(t).

Applying Lemma 5.3, one obtains that, in view of (5.10), both metrics λκ and
λK must be equal in the entire disk ∆(Sf1), which implies, by Lemma 5.2, the
equality

κft = qf (t) for all t ∈ ∆∗.
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Consequently, for all r ∈ (0, 1), we have the equality

qf (r) =
∣∣∣∣

∞∑
m,n=1

√
mnαmn(f1)rm+nxr

mxr
n

∣∣∣∣. (5.11)

The last equality implies, by Theorem B, that every map f1,t also has the
extremal Beltrami coefficient in ∆ of the form

µft
= qf (t)|ψt|/ψt with ψt = ω2

t ∈ A2
1

and, hence, also satisfies the assumptions of Theorem 2.1.

Step 3. Analyticity of qf (r). Using the relations between the Grunsky coeffi-
cients of ft and f1, similar to (5.9), one can construct for each fixed r = b ∈ (0, 1)
a holomorphic map

h̃b(t) := hxb(t) =
∞∑

m,n=1

√
mnαmn(fb)xb

mxb
n

( t

b

)m+n

: ∆ → ∆. (5.12)

Here xb = (xb
n) is a point of S(l2) maximizing the right-hand side of (3.2) for

f = fb on this sphere. Accordingly, the value of the metric λκ(r) via (5.6) is also
attained on the map (5.12) with r = b.

On the other hand, this map generates, by pulling back, the conformal metric

λh̃b
(t) =

|h̃′b(t)||dt|
1− |h̃b(t)|2

(5.13)

whose Gaussian curvature is equal to −4 at noncritical points of h̃b (and every-
where on ∆ in the generalized sense). Equivalently, λh̃b

is a real analytic solution
to the differential equation

∆ log v = 4v2,

on the domain

Db := ∆ \ Crit(h̃b),

where Crit(h̃b) denotes the set of critical points of the map h̃b in the unit disk.
This metric is a supporting metric to λκ at the point t = b (which means that
λh̃b

(b) = λκ(b) and λh̃b
(t) 6 λκ(t) in a neighborhood of b).

Comparison of λh̃b
with λκ(t), similar to Step 1, implies

λh̃b
(t) = λκ(t) for all t ∈ Db. (5.14)

It follows from (5.14) that for every two points b1, b2 ∈ (0, 1), the metrics λh̃b1
and

λh̃b1
are equal in the region D12 = Db1 ∩Db2 .
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Equalizing the corresponding expressions (5.13), one derives from (5.12) that
the coordinates xb2

m are real analytic functions of xb1
n , and vice versa. In particular,

for 0 < b < 1, the coordinates xb
m are analytic functions of r and xa

n. Then the
equality (5.11) implies the analyticity of the distortion function, and thereby, the
theorem is proved for all f ∈ Σ0 mapping the unit circle onto the analytic curves.

Step 4: Approximation. Let now f∗ be an arbitrary function from Σ0 whose
extremal Beltrami coefficient µf∗ = qf∗ |ψ∗|/ψ∗ on ∆ is determined by a quadratic
differential

ψ∗(z) =
1
π

∞∑
m+n=2

√
mnx∗mx∗nzm+n−2 ∈ A2

1

with x∗ = (x∗n) ∈ S(l2) having only zeros of even order.
Now select in [0, 1] a sequence {τn} approaching 1 and put

ψn(z) = cnψ∗(τnz),

choosing cn > 0 so that ‖ψn‖A1 = 1. The Beltrami coefficients µn = qf∗ |ψn|/ψn,
extended by zero to ∆∗, determine quasiconformal automorphisms fn := fµn of Ĉ
with analytic images fn(S1). Every ψn has in ∆ also only zeros of even order. By
the previous steps, we have for all r ∈ [0, 1] the equality

κfn(r) = qfn(r). (5.15)

Since lim
n→∞

µn(z) = µ∗(z) for all z ∈ Ĉ, the maps fn are convergent to fµ0

in the spherical metric on Ĉ. For a fixed t ∈ ∆, the family {ft : f ∈ Σ} is
compact in the spherical metric on Ĉ. Applying this to the maps fn,t generated
by fn, n = 0, 1, 2, . . . , one concludes that for every |t| < 1 the homotopy maps fn,t

are convergent to f∗,t uniformly on the closed disk D∗.
Now fix two values r0 and r1 close to 1 so that r0 < r1. Then, for any fixed

integer m > 1, the derivatives of fn,r1 of orders up to m are convergent to the
corresponding derivatives of f0,r1 uniformly on the closed disk D∗, and therefore,

lim
n→∞

‖Sfn,r0
− Sf0,r0

‖B = 0, (5.16)

and by (5.16),
κfn,r0

(r) = kfn,r0
(r). (5.17)

Since the Teichmüller and Grunsky norms qf and κf are both continuous with
respect to convergence of Sf ∈ T in the norm (4.1) (see [Sh]), one obtains from
(5.11), (5.16) and (5.17), letting n →∞, the limit equalities

qf∗,r0
(r) = κf∗,r0

(r) =
∣∣∣∣

∞∑
m,n=1

√
mnαmn(f∗,r0)r

m+nxr
mxr

n

∣∣∣∣.
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One can apply to f0,r0 the arguments from the previous steps and derive, in
view of the relation [f∗,r0 ]r = [f∗]r0r, that both dilatations qf∗,r0

and qf (r) are
analytic functions of r ∈ (0, 1). This completes the proof of the theorem.

6. On reconstruction of univalent function by dilatation

Consider again the functions f∗ ∈ Σ0 with analytic images f∗(S1). In the proof of
Theorem 2.1, we have obtained the equalities

qf (r) =
∣∣∣∣

∞∑
m,n=1

√
mn αmn(f1)rm+nxr

mxr
n

∣∣∣∣

=
∣∣∣∣

∞∑
m,n=1

√
mnαmn(fa)

( r

a

)m+n

xr
mxr

n

∣∣∣∣,
(6.1)

where f1 = f∗ denotes the initial function and xr
n are coordinates of a sequence

from S(l2), which defines the quadratic differential ψr by (3.7) as well as the
corresponding Beltrami coefficient µfr |∆ = qf (r)|ψr|/ψr. These xr

m are analytic
functions of r, provided that the point a ∈ (0, 1) is fixed.

Each of the representations (3.2), (3.7) and (6.1) contains only the products
Xr

mn = xr
mxr

n, and the coordinates xr
m are not separated there. Substituting the

series
Xr

mn = Xa
mn +

(
Xa

mn

)′(a)(r − a) + . . . (6.2)

into (6.1) and recollecting the terms, one obtains

qf (r) =
∑

m,n>1

Amn

(
a, αa

mnXa
mn

)
rm+n, (6.3)

where Amn depend only on a and on products αa
mnXa

mn.
The radii of convergence of the series (6.2) can approach zero; in this case,

(6.3) must be regarded as a formal power series. However, if ψa is, for example,
a polynomial, then the series (6.3) is convergent absolutely and uniformly in a
neighborhood of r = a.

Now, given a dilatation function qf1(r), we expand it near the point r = a and,
comparing the series

qf (r) = qf (a) + q′f (a)(z − a) +
q′′f (a)

2
(r − a)2 + . . .

with (6.3), obtain an infinite system of nonlinear equations for defining the prod-
ucts

αmn(fa)Xa
mn, m, n = 1, 2, . . . .

Any function fa is uniquely restored by each of collections {αmn(fa)} or {Xa
mn},

but the function qf (r) = qfa(r/a) itself, in the generic case, does not separate
these factors. This yields a negative answer to Question 2.
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