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FORMAL SOLUTIONS OF BURGERS TYPE EQUATIONS

Grzegorz Łysik

To Bogdan Bojarski, teacher, mentor
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Abstract: We study formal power series solutions to the initial value problem for the Burgers
type equation ∂tu − ∆u = X

(
f(u)

)
with polynomial nonlinearity f and a vector field X, and

prove that they belong to the formal Gevrey class G2. Next we give counterexamples showing
that the solution, in general, is not analytic in time at t = 0. We also prove the existence of
non-constant globally analytic solutions.
Keywords: Burgers type equation, formal solutions, combinatorial estimates, Gevrey estimates,
non-analyticity

1. Introduction

We consider the initial value problem for a Burgers type equation
{

∂tu−∆u = X
(
f(u)

)
,

u|t=0 = u0,
(1)

where ∆ is the Laplace operator on Rd, d ∈ N, X is a vector field on Rd and f is a
polynomial of degree r > 1. A number of papers were written about this problem,
mainly in the one dimensional case and f(u) = uk+1, k ∈ N. In particular, in that
case when k = 1 D. B. Dix established in [2] local existence and uniqueness the
initial value problem in the class C([0, T ), Hs) for s > −1/2, and in the general
case k ∈ N, D. Bekiranov in [1] done the work in the class of weighted Lp based
Sobolev spaces.

Here we assume that the initial data are analytic on a domain Ω ⊂ Rd and we
are interested in formal power series solutions of (1),

û(t, x) =
∞∑

n=0

ϕn(x)tn. (2)
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Usually the growth properties of formal power series are controlled by Gevrey
estimates.

Definition 1. Let Ω ⊆ Rd and s > 1. A formal power series (2) is said to belong
to the Gevrey class Gs(Ω) in time if for any compact set K b Ω one can find
L < ∞ such that

sup
n∈N0

sup
x∈K

|ϕn(x)|
Ln(n!)s−1

< ∞. (3)

Remark that for s = 1 we get the convergence i.e. G1(Ω) = A(Ω).

Let us mention here that formal power series solutions to nonlinear partial
differential equations were studied by H. Chen and Z. Luo in [3], H. Chen, Z.
Luo and H. Tahara in [4], H. Chen, Z. Luo and C. Zhang in [5], H. Chen and Z.
Zhang in [6], R. Gérard and H. Tahara in [7], and by S. Ōuchi in [13], [14] and
[15]. In particular, S. Ōuchi obtained in [13] Gevrey estimates of formal solutions
for a quite general class of nonlinear PDEs. From his results one can infer the
estimation for the equation (1).

We construct the power series solution (2) of (1) and prove that if u0 is analytic
on a domain Ω ⊂ Rd, then the solution (2) belongs to the formal Gevrey class
G2(Ω) in time. Our main result reads as follows.

Theorem 1. Let Ω be a domain in Rd, f a polynomial of degree r ∈ N vanishing
at zero, X a constant vector field on Ω and let u0 ∈ A(Ω). Then the formal power
series solution (2) of (1) belongs to G2(Ω) in time.

In fact, Theorem 1 follows from Theorem 1.8 in [13]. However its proof pre-
sented here in Section 3 is done by another and elementary method. It is based
on some combinatorial identities and estimates obtained in Section 2, which may
be of independent interest. Next, in Section 4 we prove that solutions to (1), in
general, can not be analytic in time at t = 0. Finally, in Section 5 we show that
(1) has always non-constant solutions which are analytic on Rt × Rd

x.

2. Formal solutions and combinatorial estimates

In this section we shall construct the formal power series solutions of (1) and prove
a combinatorial lemma useful in the proof of the Theorem 1.

Clearly one can easily construct a formal power series solution (2) of (1).
Namely, if f(u) =

∑r
l=1 alu

l, the functions ϕn are given by the recurrence re-
lations {

ϕ0 = u0,

ϕn+1 = 1
n+1

(
∆ϕn + ψn

)
, n ∈ N0,

(4)

with

ψn =
r∑

l=1

al

∑

κ∈Nl
0, |κ|=n

X
(
ϕκ1 · · ·ϕκl

)
, n ∈ N0. (5)
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Indeed

∂tû(t, x) =
∞∑

n=0

(n + 1)ϕn+1(x)tn, ∆xû(t, x) =
∞∑

n=0

∆ϕn(x)tn

and

X
(
f(û)

)
=

r∑

l=1

alX
(( ∞∑

n=0

ϕn(x)tn
)l

)

=
∞∑

n=0

( r∑

l=1

al

∑

κ∈Nl
0, |κ|=n

X
(
ϕκ1 ...ϕκl

))
tn.

Hence we get (4). It is easy to note that (4) implies

ϕn+1 =
1

(n + 1)!

(
∆n+1u0 +

n∑

k=0

k!∆n−kψk

)
, n ∈ N0. (6)

In the proof of Theorem 1 we use Lemma 1 stated below and the combinatorial
identity

∑ (|β1|+ κ1)!
β1!κ1!

· · · (|β
j |+ κj)!
βj !κj !

=
(|α|+ |κ|+ j − 1)!

α!(|κ|+ j − 1)!
, j ∈ N, κ ∈ Nj

0, α ∈ Nd
0, (7)

where the sum is over β1, ..., βj ∈ Nd
0 with β1 + · · · + βj = α. The formula (7)

can be proved by the combinatorial interpretation of both sides (if j = 2 see [16],
Form. 4.2.5.36). To formulate Lemma 1 for ` = (l1, ..., lj) ∈ Nj

0 with j > 2 and
|`| = l1 + · · ·+ lj = l ∈ N0 define

(
l

`

)
=

(
l

l1, ..., lj

)
=

l!
l1! · · · lj ! .

Lemma 1. Let γ, l ∈ N. For n ∈ N0 set

Al(n) =
∑

κ∈Nl
0, |κ|=n

(
n

κ

)γ−1/(
γn

γκ

)
. (8)

Then there exists a constant L = L(l) < ∞ (independent of γ) such that

Al(n) 6 L for n ∈ N0. (9)

Proof. Clearly Al(0) = 1 and A1(n) = 1 for n ∈ N0. Next for n > 1 note that

Al(n) =
l∑

b=1

(
l

b

)
Ab

l (n),
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where

Ab
l (n) =

∑

κ∈Nb, |κ|=n

(
n

κ

)γ−1/(
γn

γκ,0l−b

)
. (10)

Hence it is sufficient to show that there exists a constant L = L(b, l) < ∞ such
that

Ab
l (n) 6 L for n ∈ N0. (11)

To this end note that for n < b the sum in (10) is empty and so Ab
l (n) = 0. Next

setting κ′ = (κ1, ..., κb−1), we note that for n > b a term in the sum (10) is equal
to

(
n

κ

)γ−1/(
γn

γκ,0l−b

)
=

(
n!
κ!

)γ−1

· (γκ)!
(γn)!

=
(γκ′)!

(κ′!)γ−1
·
( n!

κb!

)γ−1

· (γκb)!
(γn)!

=
(γκ′)!

(κ′!)γ−1
·
(
(κb + 1)(κb + 2) · · ·n)γ−1

(γκb + 1)(γκb + 2) · · · (γn)
.

Clearly the numerator of the last factor is bounded by (n + 1)(γ−1)(n−κb). Next
assuming 1 6 κ1 6 ... 6 κb, we get n− |κ′| = κb > n

b . Hence γκb + k > γn
b + k >

min
(

γ
b , k

)
· (n + 1) for k = 1, 2, ..., γn− γκb and n > 0. So the nominator of the

last factor is not less then

c0

/
(n + 1)γn−γκb with some c0 > 0.

Hence a term in the sum (10) is bounded by

L
/
(n + 1)n−κb 6 L

/
(n + 1)b−1

with some L < ∞ (since n−κb = |κ′| > b−1). Finally since the sum (10) contains
no more then (n + 1)b−1 terms we get (11). ¥

3. Proof of the Main Theorem.

Let f(u) =
∑r

l=1 alu
l with r > 1. Put γ = max{2, r}. We shall prove inductively

that for any compact set K b Ω one can find 1 6 C < ∞ such that for any
n,m ∈ N0 and α ∈ Nd

0 with |α| = m,

sup
x∈K

|∂αϕn(x)| 6 bn Cm+nγ+1 (m + nγ)!
(n!)γ−1

, (12)

sup
x∈K

|∂mψn(x)| 6 cn Cm+(n+1)γ+1 (m + (n + 1)γ)!
(n!)γ−1

, (13)

where

bn = b0d
n +

n−1∑

k=0

ck(k + 1)γ−2dn−k−1, (14)
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cn =
r∑

l=1

|al| (m + nγ + l)!
(nγ + l − 1)!

· (nγ)!
(m + nγ + γ)!

·

·
∑

κ∈Nl
0, |κ|=n

bκ1 . . . bκl

(
n

κ

)γ−1/(
γn

γκ

)
. (15)

Clearly, since u0 = ϕ0 ∈ A(Ω), (12) holds for n = 0 with b0 = 1 and some
1 6 C < ∞. Now assume that (12) holds for n ∈ N0. Since ∆ is rotationally
invariant we can assume that X = ∂

∂x1
. Set 0′ = (0, ..., 0) ∈ Nd−1

0 Then by (5),
the Leibniz rule, the inductive assumption and (7) we estimate for α ∈ Nd

0 with
|α| = m and x ∈ K,

|∂αψn(x)| 6
r∑

l=1

|al|
∑

κ∈Nl
0, |κ|=n

∣∣∂(α+(1,0′))(ϕκ1(x) · · ·ϕκl
(x)

)∣∣

6
r∑

l=1

|al|
∑

κ∈Nl
0

|κ|=n

∑

β1,...,βl∈Nd
0

β1+···+βl=α+(1,0′)

(α + (1, 0′))!
β1! · · ·βl!

|∂β1ϕκ1(x)| · · · |∂βlϕκl
(x)|

6
r∑

l=1

|al|
∑

κ∈Nl
0

|κ|=n

∑

β1,...,βl∈Nd
0

β1+···+βl=α+(1,0′)

(α + (1, 0′))!
β1! · · ·βl!

bκ1C
|β1|+ κ1γ + 1

× (|β1|+ κ1γ)!
κ1!γ−1

· · · bκl
C|βl|+ κlγ + 1 (|βl|+ κlγ)!

κl!γ−1

6 Cm+γn+γ+1
r∑

l=1

|al|
∑

κ∈Nl
0

|κ|=n

bκ1 · · · bκl

κ1!γ−1 · · ·κl!γ−1
(α + (1, 0′))!

×
∑

β1,...,βl∈Nd
0

β1+···+βl=α+(1,0′)

(|β1|+ κ1γ)!
β1!

· · · (|β
l|+ κlγ)!

βl!

= Cm+γn+γ+1
r∑

l=1

|al| (m + γn + l)!
(γn + l − 1)!

·
∑

κ∈Nl
0

|κ|=n

bκ1 · · · bκl

(κ1γ)! · · · (κlγ)!
κ1!γ−1 · · ·κl!γ−1

= Cm+γn+γ+1
r∑

l=1

|al| (m + γn + l)!
(γn + l − 1)!

· (γn)!
n!γ−1

×
∑

κ∈Nl
0

|κ|=n

bκ1 · · · bκl

(
n

κ

)γ−1/(
γn

γκ

)

6 cn · Cm+γ(n+1)+1 (m + γ(n + 1))!
n!γ−1

,

where cn is given by (15). Hence (13) and (15) hold for n.
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Next, in order to prove (12) and (14) for n + 1, observe that ∆k is a sum of dk

operators of the form ∂2k
l1l1...lklk

with some li ∈ {1, ..., d} for i = 1, ..., k, k ∈ N. So
by (6) we estimate for x ∈ K and α ∈ Nd

0 with |α| = m,

|∂αϕn+1(x)| 6 1
(n + 1)!

[
b0C

m+2n+3(m + 2n + 2)!dn+1

+
n∑

k=0

k!ckCm+2n−2k+(k+1)γ+1 (m + 2n− 2k + (k + 1)γ)!
k!γ−1

dn−k
]

=
1

(n + 1)!

[
b0C

m+2n+3(m + 2n + 2)!dn+1

+
n∑

k=0

ckCm+2n+k(γ−2)+γ+1 (m + 2n + k(γ − 2) + γ)!
k!γ−2

dn−k
]

6 Cm+γn+γ+1 (m + (n + 1)γ))!
(n + 1)!γ−1

·
[
b0

(m + 2n + 2)! · (n + 1)!γ−2

(m + (n + 1)γ)!
dn+1

+
n∑

k=0

ck · (m + 2n + k(γ − 2) + γ)!
k!γ−2

· (n + 1)!γ−2

(m + (n + 1)γ)!
dn−k

]

6 Cm+(n+1)γ+1 (m + (n + 1)γ))!
(n + 1)!γ−1

×
(
b0d

n+1 +
n∑

k=0

ck · (k + 1)γ−2dn−k
)

since C > 1, γ > 2,

(m + 2n + 2)! · (n + 1)!γ−2

(m + (n + 1)γ)!
= 1

/(
m + (n + 1)γ

m + 2n + 2, n + 1, . . . , n + 1

)
6 1

and

(m + 2n + k(γ − 2) + γ)!
(k + 1)!γ−2

· (n + 1)!γ−2

(m + (n + 1)γ)!

=
(

m + 2n + 2 + (k + 1)(γ − 2)
m + 2n + 2, k + 1, . . . , k + 1

)/(
m + γ(n + 1)

m + 2n + 2, n + 1, . . . , n + 1

)
6 1

for k = 0, 1, . . . , n. Hence (12) and (14) hold for n + 1.
Now we shall prove that relations (14) and (15) imply for n ∈ N0,

bn 6 (M + d)n and ck 6 M(M + d)k
/
(k + 1)γ−1 for k < n, (16)

where M = L ·∑r
l=1 |al| and L is the constant in (13).

Clearly since b0 = 1, (16) holds for n = 0. Next assuming (16) for n ∈ N0 we
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get by (15) and Lemma 1

cn 6
r∑

l=1

|al| (m + γn + l)!
(γn + l − 1)!

(γn)!
(m + γn + γ)!

· (M + d)n ·Al(n)

6
r∑

l=1

|al| (γn + l)!
(γn + l − 1)!

(γn)!
(γn + γ)!

· (M + d)n · L

6 L

r∑

l=1

|al| (γn + l)
(γn + 1) · · · (γn + γ)

· (M + d)n

6 M
(M + d)n

(n + 1)γ−1
,

since for any m ∈ N0 and l = 1, ..., r

(m + γn + l)!
(m + γn + γ)!

6 (γn + l)!
(γn + γ)!

.

Hence by (14)

bn+1 6 dn+1 +
n∑

k=0

ck(k + 1)γ−2dn−k

6 dn+1 +
n∑

k=0

M
(M + d)k

(k + 1)γ−1
(k + 1)γ−2dn−k

6 dn+1 + M

n∑

k=0

(M + d)kdn−k = (M + d)n+1.

So (16) holds for n + 1.
Now to end the proof of Theorem 1 note that (12) and (16) imply

sup
x∈K

|ϕn(x)| 6 (M + d)nCnγ+1 (nγ)!
(n!)γ−1

, n ∈ N0.

Hence we get (3) with s = 2 and L = (M + d)(Cγ)γ . ¥

4. Nonanalytic solutions

In this section we shall give a few examples of initial value problems (1), which do
not admit solutions analytic in time at t = 0.

Firstly, we shall apply the method of J. Gorsky and A. Himonas [8] to the
Burgers type equation

∂tu− ∂2
xu = ∂x(ur), r > 2. (17)
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Following [8], for a solution u of (17) we define the homogeneity degree of the
term

(∂α1
x u) · · · (∂αm

x u), α ∈ Nm
0 ,m ∈ N

to be (
α1 +

1
r − 1

)
+ · · ·+

(
αm +

1
r − 1

)
= |α|+ m

r − 1
.

Lemma 2. Let u satisfy (17). Then for every k ∈ N

∂k
t u = ∂2k

x u +
k∑

l=1

∑

α∈Nm
0 ,

|α|=2k−l
m=1+l(r−1)

Cl
α(∂α1

x u) . . . (∂αm
x u) with some Cl

α > 0. (18)

Observe that the homogeneity degree of every summand on the right-hand
side of (18) is equal to 2k + 1

r−1 . A similar lemma for the case of generalized KdV
equation was obtained by H. Hannah, A. Himonas and G. Petronilho [9], Lemma
2.2, see also [12], Lemma 2. So we omit its proof.

Repeating the computations of Examples 4 and 6 from [12] we get

Example 1. Let r > 2, b ∈ C \ R and δ = 1/(r − 1). Then the formal solution
of (17) with the Cauchy data u(0, x) = (b − x)−δ does not belong to the Gevrey
class Gs(Ω) in time for any s < 2 and for any neighborhood Ω of the origin. In
particular, it is not analytic in time at t = 0.

For the periodic Cauchy data we have

Example 2. Let r > 2, δ = 1/(r − 1) and M > 1. Then the formal solution of
(17) with the Cauchy data u(0, x) = iδ eix

M−eix does not belong to the Gevrey class
Gs(Ω) in time for any s < 2 and for any neighborhood Ω of the origin. Thus, it is
not analytic in time at t = 0.

It appears that the above method can not be easily adapted to the real-valued
data. So to give examples of non-analytic solutions with real-valued Cauchy data
we follow the method presented in [10]. Namely, put

u0(x) =
cx

1 + x2
. (19)

Then, if r is even the coefficients ϕn of the formal power solutions to (2) are given
by

ϕn(x) =
1
n!

∞∑

k=0

(−1)n+kA(n, 2k + 1)x2k+1, n ∈ N0, (20)
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where the coefficients A(n, 2k + 1) satisfy

A(0, 2k + 1) = c,

A(n + 1, 2k + 1) =





(2k + 2)(2k + 3)A(n, 2k + 3), if k 6 r
2 − 2,

(2k + 2)(2k + 3)A(n, 2k + 3) + (−1)r/2 (2k + 2)
· ∑

η∈Nr
0

|η|=n

(
n
η

) ∑
κ∈Nr

0
|κ|=k+1−r/2

A(η1, 2κ1 + 1) · · ·A(ηr, 2κr + 1),

if k > r
2 − 1.

Hence

A(n, 2k + 1) 6 (2k + 2) · · · (2k + 2n + 1)c if r mod 4 = 2 and c < 0,

A(n, 2k + 1) > (2k + 2) · · · (2k + 2n + 1)c if r mod 4 = 0 and c > 0.

In both cases |ϕn(x)|
x

∣∣x=0
> (2n+1)!

n! |c| which implies that the formal solution does

not belong to Gs in time for any 1 6 s < 2.
If r is odd the power series expansions of ϕn contains both odd and even powers

of x. In that case the analysis is more laborious, but still can be done.

5. Analytic solutions

In this section we shall show that one can always find a non-constant initial data
for which (1) has a solution analytic in time and space variables. Let us start with
the Burgers equation

∂tu = ∂2
xu + a∂x(u2), a 6= 0. (21)

Looking for a solution to (21) in the form u(t, x) = v(x− bt) we obtain the ODE
for the function v(y), y = x− bt,

−bv′ = v′′ + (av2)′.

Hence
v′ = −av2 − bv − c with some c ∈ R. (22)

Put ∆ = b2 − 4ac. If ∆ < 0 the solution of (22) is

v(y) =
−b

2a
+
√−∆

2a
tan

(√−∆
2

(C − y)
)
, C ∈ R.

If ∆ = 0 we have a stationary solution v(y) = −b
2a and

v(y) =
−b

2a
+

1
ay − C

, C ∈ R.
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Finally, if ∆ > 0 we have two stationary solutions v(y) = −b±√∆
2a and

v(y) =
−b−√∆

2a
+

√
∆

a
(
1 + C exp{−√∆y}) , C ∈ R.

Observe that in the case ∆ > 0 any solution of (22) extends to a holomorphic
function in a strip along R if C > 0. Hence in that case we obtain solutions of (21)
which are analytic on Rt × Rx. Note also that in all cases the function v has at
most simple poles with residue equal to 1/a. Let us mention here that a complete
characterization of convergent solutions of the Burgers equation (21) will be done
in a forthcoming paper [11].

Now let us return to the general equation (1) and look for its solution in the
form u(t, x) = v(x1 − bt), b ∈ R. Then for the function v(y), y = x1 − bt, we get
an analog of (22),

v′ = −f(v)− bv − c (23)

with some c ∈ R. Clearly, in general, this equation can not be solved explicitly.
However one can always find b 6= 0 and c ∈ R such that the equation f(v) + bv +
c = 0 has two real roots v1 < v2. Then if v0 is not a root of f(v) + bv + c = 0
and v1 < v0 < v2, the solution to (23) with v(0) = v0 is a non-constant analytic
function on R. Hence we get a non-constant solution to (1) which is analytic on
Rt × Rd

x.
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