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SEQUENCES OF JACOBIAN VARIETIES WITH TORSION
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Abstract: A fortuitous intersection of work on periodic continued fraction expansions in hy-
perelliptic function fields and the study of parametrized families of quadratic number fields with
high class number leads us to discover sequences of hyperelliptic curves whose Jacobians contain
torsion divisors of order g2. These sequences generalize those earlier constructed by Flynn and
by Leprévost.
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1. Introduction

Rather little is known about the rational torsion structure of abelian varieties of
dimension greater than one. This is in stark contrast to the dimension one case.
A theorem of Mazur completely classifies all possible torsion structures for elliptic
curves over Q, and Merel has established the uniform boundedness of torsion on
elliptic curves over number fields. In the genus two case, that of Jacobians of
hyperelliptic curves Y 2 = f(X), with f a polynomial over Q of degree 5 or 6
and with distinct zeros, there are results of Flynn [5], Leprévost [8, 9, 11] and of
Howe, Leprévost, Poonen [7] providing curves whose Jacobians have non-trivial
torsion subgroups; the paper [7] deals solely with split Jacobians. Using similar
techniques, Flynn [6], later extended by Leprévost [10, 12], noticed that there exist
sequences of hyperelliptic curves whose Jacobians possess rational torsion divisors
of order g2, where g is the genus of the curve. Our remarks here generalize these
sequences of curves and suggest there are no others.

Our main tool in this investigation is the continued fraction expansion over
function fields (and number fields) developed in [14] and [16]. In particular, we
examine certain hyperelliptic curves Cn given by

d2Y 2 = AX2n +BXn + C2 ,
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where d,A,B,C ∈ Fq[X ]. For carefully selected values of A,B,C, d we are able to
show that the period length of the continued fraction expansion of Y is linear in n.
Furthermore, the regulator R(Y ) grows quadratically in n, and since the genus g of
Cn is O(n), we see that for these examples the Jacobian of Cn has a rational torsion
divisor of order g2. Our many attempts to find families of curves (or families of
discriminants in the number field case), called jeepers in [15], for which the period
length can be given explicitly and grows at the rate of O(n1+ε) for a fixed ε > 0
have not yielded any examples. This suggests that there are no jeepers and this
means that there do not exist hyperelliptic curves whose Jacobians possess rational
torsion divisors of order g3; we conjecture that this is the case.

2. Sequences of Curves with Torsion Divisors

We study sequences of curves

Cg : Y 2 = (f1 + f2 − f3)2 + 4f1f3 (2.1)

where f1, f2, and f3 denote polynomials defined over Q and of degree at most g+1
in X , with X � f1, (X − 1) � f3 and such that Y 2 is squarefree of degree 2g + 1 or
2g + 2. Note that of course

Y 2 = (f1 − f2 + f3)2 + 4f1f2 = (f1 + f2 + f3)2 − 4f2f3 . (2.2)

Specificially, let r, l, and m denote pairwise relatively prime polynomials inde-
pendent of g, not vanishing at X = 0 nor X = 1, and each dividing Y 2. Because
Y 2 is squarefree, it follows that also rlm is squarefree. Now set

f1 = r(X − 1)q+1−R , f2 = m(X − 1)kXg+1−M , f3 = lXg+1−L ,

where k, and L, R, and M , are nonnegative integers bounded as g → ∞.
Now take the points P0 = (0, f1(0)) and P1 = (1, f3(1)), noting that both lie

on Cg. First, suppose that deg(Y 2) = 2g + 1, and consider the divisors D0 =
P0 − (∞), D1 = P1 − (∞). Further, let ϕ1 = Y − (f1 + f2 − f3). One sees that the
support of the divisor (ϕ1) is contained in D0, D1 and the zeros of rl. However,
rl has order 2, hence the support of (ϕ2

1) is contained in D0 and D1. Specifically,
(ϕ2

1) = 2(g + 1 − L)D0 + 2(g + 1 −R)D1.
Just so, let ϕ2 = Y − (f1 + f2 + f3). Since ml also has order 2, we similarly

find that (ϕ2
2) = 2 (2(g + 1) − (L +M))D0 + 2kD1. Hence we have(
ϕ2

1

ϕ2
2

)
=
(

g + 1 − L g + 1 −R
2(g + 1) − (L +M) k

)(
2D0

2D1

)
.

Taking determinants, we see that there exists a divisor whose order divides

4
(
2(g + 1)2 − (g + 1)(L+M + 2R− k) +R(L+M) + kL

)
.

While this may not be the divisor’s exact order, it is a straightforward matter to
detail sufficiently many of its multiples to confirm its order is at least g2.

Second, if deg(Y 2) = 2g + 2 we take D0 = P0 − (∞+), D1 = P1 − (∞+),
D∞ = (∞− −∞+). The calculations carry through mutatis mutandis.
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2.1. An example

In [6], Flynn gives an example of these sequences. In our notation,

f1 = t(X − 1)g , f2 = Xg−k(X − 1)k+1 , f3 = −Xg+1 .

The multiples of D1 are

i(0, 1) + j(1, 1) + s∞ for 0 ≤ i ≤ g, 0 ≤ j ≤ g − i ;
i(0,−1) + j(1,−1) + s∞ for 0 ≤ i ≤ g, 0 ≤ j ≤ i ;
i(0, 1) + j(1,−1) + s∞ for 1 ≤ i ≤ g, 1 ≤ j ≤ g − i− 1 ;

and

i(0,−1) + j(1,−1) + s∞ for 1 ≤ i ≤ g, 1 ≤ j ≤ i .

Here s = g − i− j.
It seems this argument works for r, l, m of any fixed order. However, the

only functions whose divisors are of fixed order for all g are of order 2, which
corresponds to r, l, and m indeed dividing Y 2.

3. Interlude on Continued Fraction Expansions

It turns out that saying more about the multiples of D1 seems best done by way
of continued fractions because certain multiples are, well, too complicated to give
explicitly. The continued fraction expansion allows us to bypass this difficulty.

3.1. Units and torsion

By definition of the notion unit, a unit–say u = a+b
√
f–of the field K(X)[

√
f(X)]

has trivial valuation at all finite places; that is, the support of the divisor (u) is
contained in the infinite places. When deg(f) is even and the leading coefficient
of f is a square, the infinite place | |∞ of K[X ] splits into two infinite places, say
∞+ and ∞−, of K[X,

√
f(X)]. Because (u) is the divisor of a function and thus

has degree zero, we must have

(u) = m(∞+ −∞−)

for some positive integer m. Thus, (∞+ − ∞−) is a divisor in the Jacobian of
Y 2 = f(X) whose order divides m. The unit u is a fundamental unit precisely if
the order of the divisor (∞+ −∞−) is exactly m.

Moreover, a quadratic function field K(X)[
√
f(X)] contains a nontrivial unit u

– thus, one with b �= 0 – if and only if the continued fraction expansion of
√
f(X)

is periodic. Each step of the continued fraction expansion adds some multiple
d(∞+ −∞−) of (∞+ −∞−), in fact where d is the degree of the partial quotient.
The precise correspondence between the continued fraction expansion of Y =

√
f
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and the addition of multiples of (∞+ −∞−) is detailed by Tom Berry [3], thereby
generalizing results of Adams and Razar [2]. Our remarks here imply that the
regulator of the domain K[X,Y ] is the degree of its fundamental unit, and this
equals the torsion order of the divisor (∞+ −∞−).

3.2. Continued fraction expansions

One best writes each line of the continued fraction expansion of Y as

Y + Ph

Qh
= ah − (Y + Ph+1)

Qh
(3.1)

where Y denotes the conjugate of Y . The terms (Y +Ph)/Qh on the left are called
complete quotients ; the ah are the partial quotients.

3.3. . . . and Mumford representations

Denote a typical zero of Qh by ϑh. Then each (ϑh,−Ph(ϑh)) is a point on the curve
Y 2 = D considered defined over the algebraic closure K of the base field. More, the
formal sum of the points (ϑh,−Ph(ϑh)) as ϑh runs through the zeros of Qh with
multiplicity fixes a divisor on the Jacobian of the curve over K. Our remarks above
amount to the assertion that for each h this divisor is the appropriate multiple of
the divisor at infinity. Incidentally, the pair (Qh,−Ph) is essentially the Mumford
representation of that divisor.

3.4. Exceptional curves

We add that if the base field K is finite then the box principle guarantees that Y
has a periodic continued fraction expansion, and thus that K[X,Y ] has nontrivial
units. If, however, K is infinite then periodicity is a rare happenstance and the
existence of a nontrivial unit – equivalently, that the divisor at infinity be torsion
– is exceptional.

3.5. Base fields of characteristic 2

Of course remarks about Y 2 = D make no sense in characteristic 2. That’s easily
dealt with. First set D = S2 + 4R with polynomials S and R and next, in place
of the curve Y 2 − D = 0 consider the curve Z2 − SZ − R = 0. Then Z is well
defined whenever D is, including in characteristic 2, and one may usefully study
a continued fraction expansion with complete quotients (Z + P ′

h)/Q′
h obtained in

effect by dividing the expansion of Y by 2, so that Ph = S+2P ′
h. The sequence of

Mumford representations of the appropriate multiples of the divisor at infinity on
(the Jacobian of) the curve Z2 −SZ−R = 0 is now given by the pairs (Q′

h,−P ′
h).
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Table 1.

h ah(X) Qh(X)
0 4X10 + 4X8 +X4 + 4X3 +X + 1 1
1 3X5 +X3 +X X3(X + 1)(X + 4)
2 2X + 3 Q2(X)
3 3X2 + 3X + 3 X5(X + 2)(X + 3)(X + 4)
4 3X4 + 3X2 X6

5 3X5 + 2X4 + 3X3 + 2X2 + 3X + 2 X2(X + 1)(X + 2)(X + 3)
6 2X2 + 2 4X8 +X2 + 1
7 3X6 + 3X5 + 3X4 + 3X3 + 3X2 + 3X X(X + 2)(X + 3)(X + 4)
8 2X + 3 Q8(X)
9 3X X7(X + 1)(X + 4)
10 2X + 2 Q10(X)
11 3X3 + 2X2 + 3X + 2 X4(X + 1)(X + 2)(X + 3)
12 3X6 + 3X4 + 2 X4

13 2X 4X9 + 4X7 +X3 +X + 1
14 3X7 +X5 +X3 + 3X + 3 X(X + 1)(X + 4)
15 3X8 + 3X6 + 2X2 + 3X X2

16 3X + 2 X6(X + 1)(X + 2)(X + 3)
17 2X + 2 Q17(X)
18 3X3 +X X5(X + 1)(X + 4)
19 2X + 3 Q19(X)
20 3X4 + 3X3 + 3X2 + 3X + 3 X3(X + 2)(X + 3)(X + 4)
21 3X2 + 3 X8

22 3X7 + 2X6 + 3X5 + 2X4 + 3X3 + 2X2 + 3 (X + 1)(X + 2)(X + 3)

3.6. A sequence of curves in characteristic 5

Here is an example of a sequence of curves where the divisor at infinity is torsion
of order O(g2) if the base field is F5. Consider the curves Cn defined by

Cn : Y 2 =
(
4(X2 + 1)Xn +X4 + 4X3 +X + 1

)2
+ (X2 + 4)X3 .

In this example the divisor at infinity is torsion of order g2; if the base field does
not contain F5 this will not be so.

The expansion for n = 8 over F5 is given in Table 1; Q2, Q8, Q10, Q17, and Q19

have been suppressed because they are too ugly to fit the table.
Line 22 is halfway in the expansion because of the symmetry under conjugation

entailed by (X + 1)(X + 2)(X + 3) dividing Y 2 over F5[X ]. The period lengths
and regulators satisfy the values in Table 2.
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Table 2.

n (mod 6) lp(Y ) R(Y )
0 2n− 2 1

3 (2n2 + 2n+ 3)
2, 4 6n− 4 2n2 + 2n+ 3

4. Main Result

Our comments on the connection between torsion divisors on Jacobians of hyper-
elliptic curves and continued fraction expansions now allow us to state our main
results; we do that in terms of the divisor at infinity rather than at 1. The relevant
transformation if effected by

X =
1

1 − x
and Y =

y

(1 − x)2g+2
, (4.1)

and it transforms the curves (2.1) into

y2 = (rxn +mxk − l)2 + 4rlxn .

The terms r, l, m are now rational fractions in x derived from the corresponding
functions on X .

Taking the inverse transformation will generically yield functions f1, f2, f3 of
degree g + 1. However, there are exceptions typified by the example

y2 =
(
(1 − x)xn − xk + 1

)2 − 4(x− 1)xn .

Here the term (1− x)xn transforms into (X − (X − 1))(X − 1)n. This is f1 in the
earlier notation. It has degree n+ k− 1, while the terms f2, f3 have degree n+ k.
Changing the term (1−x) to t(1−x), which does not affect divisibility, yields the
example on page 347.

We say that a sequence of positive integers (sn) is of quadratic order in n if
sn = an2 + bn+ c for some a, b, c ∈ Q.

Theorem 4.1 (Main Theorem). For n = 1, 2, . . . set

Cn : d2Y 2 =
(
qrfn + (mfk − l)/q

)2
+ 4lrfn (4.2)

where each term on the right is a nontrivial polynomial, specifically with f irre-
ducible, r, l, and m squarefree, and d chosen to ensure that Y 2 be squarefree, and
so that

(qr,ml) = 1 , (f, qrml) = 1 , (m, l) = 1 , and q | (mfk − l) .

Then the divisor at infinity on the Jacobian of Cn is torsion of quadratic order
in n.
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Proof. As a complete proof of this result, using only elementary methods, is
given for the rather more delicate number field case in pp. 205–212 of [16], we
will give a very brief sketch of the proof here. (We say ‘rather more delicate’
because incidental nonintegral coefficients that would not disturb the function-
theoretic expansion at all may dramatically alter the corresponding numerical
expansion.) In [16], it is show by a very lengthy and intricate induction argument
that in the continued fraction expansion of Y there exist certain complete quotients
(Y +Phi)/Qhi (for i = 1, 2, . . . ) satisfying some very technical conditions, the most
important of which from our perspective is that the values of the hi are essentially
independent of the value of n. It is then shown that for any integer t

h2nt−1 = atn+ bt ,

where at and bt are rational numbers whose values depend on t but are independent
of values of n in fixed congruence classes. Finally, it is established that there exists
some t such that if j = h2nt−1, then Qj = 1. For the curves under consideration
this means that the period of the continued fraction expansion of Y must be linear
in n. Furthermore, R(Y ) = O(n2) and therefore the divisor at infinity on the
Jacobian of Cn is torsion of quadratic order in n. �

One notices that as n → ∞ the curve Cn has genus n deg(f)+O(1). Our earlier
remarks presumed q = d = 1. The extra ‘frill’ q has little influence on the divisors.
The removal of square factors provided by d is essential in the present function
field case because a change of conductor, say replacing Y by dY , might radically
change the torsion group of the Jacobian of the curve.

4.1. Genesis of our results

Our result has several sources. One is a history of constructions of sequentially
increasing complexity (in effect, inclusion of more and more frills) of sequences of
quadratic number fields of discriminants (Dn) with explicitly computable funda-
mental unit, say (un), and regulator (thus the logarithm of un) of size at least
O((logDn)2). Another is a question of Schinzel [20, 21] who asks for polynomials
D say defined over Z so that the period length of the continued fraction expan-
sion of

√
D(n) is bounded for integers n. The answer nicely connects numerical

expansions with those in function fields.

(i) D must have square leading coefficient and be of even degree, say deg(D) =
2g + 2.

(ii) Set Y 2 = D(X), The domain Q[X ][Y ] must be exceptional in that it contains
a nontrivial unit; in effect, the numerical periods all come from “numberisa-
tion” of the function field period.

(iii) Some such unit must specialize (writing X = n) to a unit in the number
field.

Loosely speaking, our result derives from the numerical results detailed in
[16] in the spirit of Schinzel’s theorems. That this is so is all the more clear on
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constructing an exceptional unit in the function field by the argument sketched in
[15]; for a history of the numerical constructions see Chapter II of [14].

When D is quadratic, thus the g = 0 case, the second of Schinzel’s conditions is
always satisfied so only the third numerical condition is required. That gives rise
to additional families of quadratic discriminants (Dn) for which one may explicitly
compute the fundamental unit. However, their regulator is only of size O(logDn).
A simple transformation shows that the sequence

Y 2 +XgY + Y = X2g+1 +Xg+1

given by Flynn [6] is a function field analogue with torsion divisor of linear order
in the genus.

4.2. A stripped example

One can get the correct feel for the content of the Main Theorem by studying the
example

Y 2 = (Xg+1 +Xk − 1)2 + 4Xg+1 , (4.3)

where all the frills have been removed.
Set S1 = Xg+1 +Xk −1, S2 = Xg+1 −Xk +1, and S3 = Xg+1 +Xk +1. Then

the continued fraction expansion of Y is

Y = S3 − (Y + S3)
(Y + S3)/− 4Xk = 1

2 (Xg+1−k + 1) − (Y + S1)/− 4Xk

(Y + S1)/ −Xg+1−k = −2Xk − (Y + S2)/−Xg+1−k

(Y + S2)/− 4X2k = − 1
2X

g+1−2k − (Y + S1)/− 4X2k

(Y + S1)/−Xg+1−2k = −2X2k − (Y + S2)/−Xg+1−2k

...
(Y + S1)/−Xj = −2(Xn+j +Xk−j) − (Y + S3)/−Xj

(Y + S3)/4Xk−j = 1
2 (Xn−k+j +Xj) − (Y + S1)/4Xk−j

(Y + S1)/Xn+j−k = 2Xk−j − (Y + S2)/Xn+j−k

...

where j = n−  n/k!k. Hence the multiples of (∞+ −∞−) are simply i(0,±1) +
j(∞+ −∞−) for 0 ≤ i ≤ g, 0 ≤ j ≤ g + 1 − i.

Notice the similarity to Flynn’s example on page 347. Indeed, this curve is
that example other than that there r = t(1 −X). One sees that the effect of r is,
at best, to double the period length of the expansion of Y .

4.3. Redressing the example

Reintroducing nontrivial l and m has somewhat more drastic effects on the ex-
pansion. Each introduces a bounded number of partial quotients between pairs of
steps in the simplified expansion above; those partial quotients are fairly readily
expressed in terms of q, r, lm, and X .
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However it is the sum of the degrees of the partial quotients that gives us the
torsion order of the divisor at infinity. Fortunately it is plain that the degree
added by the extra steps is no more than O(g). That follows immediately from
there being only a bounded number of new steps introduced between each pair of
complete quotients above and from the period length of Y being linear in g.

Readers keen to see the nastiness of the extra intermediate divisors introduced
by the parameters l and m will choose to compute the Qh’s suppressed in the
example on page 349.

Our opening discussion back on page 347 suggested that D1 could be of torsion
order as great as 8g2 or so. Indeed, Leprévost has given an example where D1 has
order 4g2. However it is clear from the present example that the divisor at infinity
cannot have order noticeably greater than 2g2. Indeed, it has order 2g2 because,
as remarked, l, and m cannot introduce more than O(g) extra multiples. The
reason for this distinction is that the transformation (4.1) is a biregular morphism
of the Jacobian but that it is not a group homomorphism.

4.4. A converse to the main result

The investigations in [14] do suggest a converse to the Main Theorem. In brief,
consider Cn : F (X) = A2f2n + Bfn + C2 with f irreducible (simply thinking
f = X will do) and suppose that the divisor at infinity on the Jacobian of Cn is
torsion of quadratic order an2 + bn+ c in n. The question is whether the Cn must
be given by (4.2) as in the Main Theorem. In different words: do q, r, l and m
provide all the frills that can be added to the stripped example without destroying
its exceptional behavior? We know that, at the least, additional conditions are
required beyond those just now stated. Certainly, some multiple of the divisor
at infinity must be given by a power of f (for some positive j some Qh must be
of the shape f j). The numerical context from which our result arises means we
must insist that the period length is a priori linear in n (in any case, we know no
families of longer period for which we can in fact explicitly compute a fundamental
unit). Given those extra conditions, counting arguments do allow a proof [16], p.
204 that the Cn are those of the Main Theorem if the base field K = Fq is finite.

Of course over a finite base field we do not need the presumption that the
divisor at infinity is torsion of quadratic order. We recall that quadratic irrationals
over Fq(X) a priori have periodic continued fraction expansion because the box
principle eventually guarantees that the expansion produces some Qh in F∗

q ; then
the period length is sh for some appropriate divisor s of q − 1. However, if the
sequence (4.2) of the Main Theorem is periodic then it turns out that the first Qh

in F∗
q in fact is 1, so the period lengths are effectively independent of q. Given

that, it may well be that no more than just a mildly ingenious additional remark
is needed to establish the converse over infinite fields.
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4.5. Torsion subgroups and torsion divisors

We speak only of multiples of the one fixed divisor and thus say little about the
torsion subgroup. Indeed, it is easy to construct sequences of hyperelliptic curves
whose Jacobians contain subgroups of order at least g2. The sequence

Cg : Y 2 = (aXg+1 + b)2 + 4acXg+1 where b+ c �= 0 (4.4)

is one such example. Here we also have

Y 2 = (aXg+1 + b+ 2c)2 − 4c(b+ c) ,

so the divisor (∞+ − ∞−) is of order g + 1; from (4.4) we read that the divisor
(Y + aXg+1 + b) also has torsion order g + 1. Hence Zg+1 × Zg+1 is a factor of
the torsion subgroup of the Jacobian of Cg.

All the more, the Jacobian of

Y 2 = (X + 1)(X + 2) · · · (X + 2g + 1)

clearly has 2g + 1 independent Weierstrass points, hence 22g divides the order of
its torsion subgroup1.

Plainly, it is necessary firmly to distinguish the case of calculating the full
torsion subgroup from calculating the cyclic subgroup by some fixed divisor.

4.6. A bound on the torsion order?

As remarked at page 348, it is exceptional for the continued fraction expansion of
the square root of a polynomial defined over an infinite field to be periodic. Thus
the function fields of the curves comprising the sequences of the Main Theorem are
exceptional. Moreover, they are interesting in having relatively large regulators.
Indeed, it is not known if there exist sequences whose regulators are larger than
O(g2).

4.7. A diagonal generalization

One may choose to study a sequence of curves

Y 2 = a2g+2X
2g+2 + a2g+1X

2g+1 + · · · + a1X + a0

where each ai is a function which depends on g. It is known that one can construct
such sequences with non-trivial torsion divisors, and typically the ai turn out to
be linear recurrence sequences rather than polynomials. This is the point of view
established in Madden [13]. Taking a sequence of sequences each satisfying the
conditions of the Main Theorem and selecting an appropriate diagonal retrieves
those results.

1An analogue in the number field setting is the sequence of quadratic fields of discriminant
Dn =

Qn
i=1 pi where pi is the i-th prime. There 2n−1 divides the order of the ideal class group.
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5. Results in Genus 1 and 2

Consideration of the curves constructed by the Main Theorem in genus 1 and
2 shows that many of the known parametrized families of curves with torsion
divisors are instances of our sequences. This degeneralization is a converse of
Flynn’s construction [5] of infinite sequences from a particular curve.

The quartic model of an elliptic curve with a 5-torsion point is given by

Y 2 = (X2 + 2(t− 1)X + 4t)2 + 32tX .

This is C1 from (4.2) with the selections

r = X + 2t , m = −2 , l = 4t , k = q = 1 .

5.1. High torsion in genus 2

Many of the genus 2 curves with non-trivial torsion divisors given by Leprévost
[8, 9, 11] are special cases of curves from the Main Theorem; indeed Leprévost
finds his curves by specializing infinite families.

The simplest curves of genus 2 from the Main Theorem are

Y 2 = (rX3 + sXk − t)2 + 4rtX3 where k = 1, 2 and r, s, t ∈ Q (5.1)

and have torsion of order 9. This family seems to be a 3-parameter family, however
the transformation X �→ X/r, Y �→ Y/r2 transforms (r, l,m) into (1,mr, lr2); it
is thus just a 2-parameter family.

Another simple family is

Y 2 =
(
(X − t)X2 +X − t

)2
+ 4t(X − t)X2

with torsion 13.
We are fortunate to have Poonen’s algorithm [17] for determining the torsion

subgroup of the Jacobian, now implemented in MAMGA for hyperelliptic curves
of genus 2. This assists us in detailing two slightly more complicated examples,
namely

Y 2 =
(
(X + 1)X2 + (t− 1)X2 − (X + t)

)2
+ 4(X + t)(X + 1)X2 (5.2)

with a torsion subgroup of order 20 and

Y 2 =
(
(X − t2)X2 + (X + 1)X − t3(t+ 1)

)2
+ 4t3(t+ 1)(X − t2)X2

with order 22 – the extravagant equations emphasize the the connection with (4.2).
In some cases, one can find subsets of the stated curves with extra 2-torsion.

For example, the curve (5.2) with t = 4 is

Y 2 = (X3 + 4X2 +X − 2)2 + 12(X + 1)
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and has a torsion divisor of order 40. This is the extreme example given by
Elkies [4].

As further instance, the family

Y 2 =
(
t(X − 1)X2 +X2 + 1

)2 − 4X2

has a divisor of order 14. However, if we take the subfamily t = s(s+1) with s ≥ 1
we find that Z2 × Z14 is a factor of the torsion subgroup. The extra torsion is
easily explained. The function Y 2 has a factor tX2 +X−1; when t = s(s+1) this
factor splits as (sX + 1)((s + 1)X − 1). More, when s = 4 we find, via Poonen’s
algorithm, that the complete torsion subgroup is Z2 ×Z28.

These examples remind us that 2-torsion can be gained by finding specific
curves with extra linear factors. Finding curves with additional odd torsion is not
as straightforward. However, even for the simple curves in (5.1), taking r = l = 3
and m = 8 yields a curve with torsion order 27 instead of the expected order 9.

In theory, the Main Theorem should be able to yield curves which have larger
torsion subgroups than Leprévost’s examples. However, in practice finding func-
tions over Q simultaneously satisfying the various division requirements is difficult,
particularly in low genus. Unsurprisingly, over appropriate finite base fields, di-
visibility comes rather more easily.

5.2. Generalizing elliptic curves with 7-torsion

The Main Theorem deals with curves with points of fairly small torsion order. In
contrast, the family

Y 2 =
(
X2 + (t2 − t− 1)X + t2(t− 1)

)2
+ 4t2(t− 1)X (5.3)

contains an elliptic curve with a 7-torsion point; but (5.3) is not a curve included
in our result. Moreover, we can construct new more complicated sequences of
curves with torsion divisors – as in Victor Flynn’s approach. Indeed, to construct
the unit of Q[X,Y ], with Y given by (5.3), we notice that

Y 2 = (X2 + (t2 − t− 1)X + t2(t− 1))2 + 4t2(t− 1)X

= (X2 + (t2 − t− 1)X − t2(t− 1))2 + 4t2(t− 1)X(X + t(t− 1))

= (X2 + (t2 − 3t+ 1)X − t2(t− 1))2 + 4(t− 1)X(X + t(t− 1))2

and then form the unit by sequentially multiplying the ideals associated to each
of the lines above, equivalently by adding the relevant divisors.

Here, as throughout, we have Y 2 = S2 + 4R for several pairs of polynomials
(S,R). That gives us several K[X,Y ]-ideals 〈R, 1

2 (Y + S)〉K[X]
, presented as K[X ]-

modules. Note that, exactly because R divides the norm (Y + S)(Y + S) =
−Y 2 + S2, such a module indeed is a K[X,Y ]-ideal.

Set a = 〈R, 1
2 (Y + S)〉, and so on. One knows, in effect from formulas for

composing quadratic forms, that two such ideals a and a′ multiply nicely, thus
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yielding an ideal that is not less reduced than the given ideals, precisely when
gcd(R,R′, (S + S′)) is large; one’s preference is that gcd(R,R′) divides (S + S′).

Above we have R = t2(t − 1)X and R′ = t2(t − 1)X(X + t(t − 1)) = R(X +
t(t − 1)). Thus, recall that here t is just some suitable rational, gcd(R,R′) = X
whilst 1

2 (S + S′) = X2 + (t2 − t− 1)X obviously is divisible by X . Similarly the
multiplication aa′′ is a nice one. Just so, noting R′′ = (t− 1)X(X + t(t− 1))2, we
have

gcd(R′, R′′) = X(X + t(t− 1))

while

1
2
(S′ + S′′) = X2 + (t2 − 2t)X − t2(t− 1) = (X − t)(X + t(t− 1)) .

This provides a large enough common divisor, (X + t(t− 1)), to make a′a′′ a nice
multiplication.

This sort of thing makes clear that our ability to choose S, S′, and S′′ above
as we have is not just fortuitous but actually is an essential part of our ability
explicitly to obtain a nontrivial unit. Mind you, for the example (5.3) the discus-
sion above is overkill because the list of reduced ideals provided by the continued
fraction expansion is short enough not to warrant a diversion via the non-reduced
ideals a′ and a′′.

Suppose, however, we replace X by Xn+2 throughout and, having done that,
we set t to be some polynomial in X . Now, already so that the multiplication aa′

be nice, we will want that t2(t−1) andXn+2(Xn+2+(t2−t−1)) have a substantial
common factor. The conditions t | Xn+2 and t �= 1 turn out to be necessary and
sufficient for our needs and there then is no loss of generality in always taking
t = X as n varies through the nonnegative integers.

That leads to Y 2 having a square factor X4. After removing it we turn to
studying a straightforward generalization of the situation we considered above,
namely the sequence of curves

Y 2 =
(
X2n+2 + (X2 −X − 1)Xn + (X − 1)

)2
+ 4X2(X − 1)Xn

=
(
X2n+2 + (X2 −X − 1)Xn − (X − 1)

)2
+ 4(X − 1)Xn+1(Xn+1 +X − 1)

=
(
X2n+2 + (X2 − 3X + 1)Xn − (X − 1)

)2
+ 4(X − 1)Xn(Xn+1 +X − 1)2 .

(5.4)
Strategic multiplication of the corresponding three ideals bn, b′n, and b′′n eventually
produces a unit. One best commences by first computing bnb′n and b′nb′′n and
then multiplying those two products. The continued fraction expansion of Y has
period length 12n and, a more important quantity, regulator 7n2 + 9n + 3; thus
the corresponding Jacobian contains a divisor of order 7n2 + 9n + 3. For details
see [14], §28. But we remarked above that the sequences of curves of the Main
Theorem cannot have torsion greater than 2g2 or so at infinity. It follows that the
sequence of curves given by (5.4) is distinct from those of our result.
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In fact, each curve of the sequence (5.4) is distinct from any of the curves
of (4.2) of the Main Theorem. We know this from studying the multiples of the
divisor at infinity by way of the continued fraction expansion of Y . Specifically, one
notices that the continued fraction expansion supplies complete quotients whose
denominators are of the shape TXj where T contains primes which split, that
is which divide Y 2, whereas none of the curves of the Main Theorem supplies
a complete quotient of that kind.

6. Concluding Remarks

One may attempt to repeat the methods of the preceding section to construct
sequences of curves from other hyperelliptic curves with a torsion divisor. However,
it seems that not all such curves permit an extension. For instance, the Schinzel
conditions of page 351 seem to inhibit extension of elliptic curves with a torsion
point of order 10 or 12 to an infinite sequence of curves with torsion of quadratic
order in the genus.

We do not know any parametrized families of numerical quadratic discriminants
Dn with regulator of order greater than O((logDn)2) and a fortiori no families
of hyperelliptic curves Cg over an infinite field with torsion divisor greater than
O(g2) as their genus g goes to infinity. Patterson’s investigations [14] are such as
to recommend a wager on there in fact not being any such examples.

On the other hand higher degree analogues have barely been studied. Excep-
tions include the work cited and generalized by Brigitte Adam [1], suggesting that
sequence of curves Cn given by

Y 3 − qXnY 2 − (Xk − 1)Y − qXn = 0 ,

where the polynomial q divides Xk − 1, have Jacobians with torsion divisors of
quadratic order. There are also several known instances of linear torsion [18, 19].

References

[1] Brigitte Adam, Généralisation d’une famille de Shanks, Acta. Arith. 84
(1998), no. 1, 43–58. MR 1613298 (99d:11115)

[2] William W. Adams and Michael J. Razar, Multiples of points on elliptic curves
and continued fractions, Proc. London Math. Soc. (3) 41 (1980), no. 3, 481–
498. MR 591651 (82c:14031)

[3] T. G. Berry, Continued fractions in hyperelliptic function fields, Coding the-
ory, cryptography and related areas (Guanajuato, 1998), Springer, Berlin,
(2000), pp. 29–41. MR 1749446 (2001c:14050)

[4] N. D. Elkies, Simple genus 2 Jacobians with high order torsion points
http://www.math.harvard.edu/ elkies/g2_tors.html

[5] E. V. Flynn, Large rational torsion on abelian varieties, J. Number Theory
36 (1990), no. 3, 257–265. MR 1077707 (92b:11036)



Sequences of Jacobian varieties 359

[6] , Sequences of rational torsions on abelian varieties, Invent. Math. 106
(1991), no. 2, 433–442. MR 1128221 (93b:11075)

[7] Everett W. Howe and Franck Leprévost and Bjorn Poonen, Large torsion
subgroups of split Jacobians of curves of genus two or three, Forum Math. 12
(2000), no. 3, 315–364. MR 1748483 (2001e:11071)

[8] Franck Leprévost, Famille de courbes de genre 2 munies d’une classe de di-
viseurs rationnels d’ordre 13, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991),
no. 7, 451–454. MR 1127938 (93b:14053)

[9] , Familles de courbes de genre 2 mumies d’une classe de diviseurs
rationnels d’ordre 15, 17, 19 ou 21, C. R. Acad. Sci. Paris Sér. I Math. 313
(1991), no. 11, 771–774. MR 1139836 (92m:14036)

[10] , Famille de courbes hyperellipitques de genre g munies d’une class de
diviseurs rationnels d’ordre 2g2 + 4g + 1, Séminaire de Théorie des Nombres,
Paris, 1991–92. Progr. Math., vol. 116, Birkhäuser Boston, Boston, MA, 1993,
pp. 107–119. MR 1300885 (96a:11057)

[11] , Jacobiennes de certaines courbes de genre 2: torsion et simplic-
ité, J. Théor. Nombres Bordeaux 7 (1995), no. 1, 283–306. MR 1413580
(98a:11078)

[12] , Sur certains sous-groupes de torsion de Jacobiennes de courbes hy-
perelliptiques de genre g ≥ 1, Manuscripta Math. 92 (1997), no. 1, 47–63. MR
1427667 (98a:11079)

[13] Daniel J. Madden, Constructing families of long continued fractions Pacific
J. Math. 198 (2001), no. 1, 123–147. MR 1831975 (2002b:11014)

[14] Roger D. Patterson, Creepers: Real quadratic fields with large class number,
Ph.D. thesis, Macquarie University, Sydney, 2003, Manuscript available at
http://arxiv.org/abs/math/0703519

[15] Roger D. Patterson and Alfred J. van der Poorten, Jeepers, creepers, . . . ,
High primes and misdemeanours: lectures in honour of the 60th birthday
of Hugh Cowie Williams, Fields Inst. Commun., vol. 41, Amer. Math. Soc.,
Providence, RI 2004, pp. 305–316. MR 2076255 (2005g:11208)

[16] Roger D. Patterson and Alfred J. van der Poorten and Hugh C. Williams,
Characterization of a generalized Shanks sequence, Pacific J. Math. 230
(2007), no. 1, 185–215. MR 2318452

[17] Bjorn Poonen, Computing torsion points on curves, Experiment. Math. 10
(2001), no. 3, 449–465. MR 1917430 (2003k:11104)

[18] Renate Scheidler, Purely cubic complex function fields with short peri-
ods, Publ. Math. Debrecen 54 (1999), no. 3-4, 497–511. MR 1694527
(2000c:11190)

[19] , Purely cubic complex function fields with small units, Acta. Arith.
95 (2000), no. 4, 289–304. MR 1785197 (2001g:11178)

[20] A. Schinzel, On some problems of the arithmetical theory of continued frac-
tions, Acta. Arith. 6 (1960/1961), 393–413. MR 0125814 (23 #A3111)

[21] , On some problems of the arithmetical theory of continued fractions.
II, Acta. Arith. 7 (1961/1962), 287–298. MR 0139566 (25 #2998)



360 Roger D. Patterson, Alfred J. van der Poorten, Hugh C. Williams

Addresses: R.D. Patterson: Department of Mathematics and Statistics, University of Calgary,
Calgary, AB, Canada, T2N 1N4; A.J. van der Poorten: ceNTRe for Number Theory
Research, 1 Bimbil Pl., Killara, NSW 2071, Australia; H.C. Williams: Department of
Mathematics and Statistics, University of Calgary, Calgary, AB, Canada, T2N 1N4

E-mail: rogerp@math.ucalgary.ca, alf@maths.usyd.edu.au, williams@math.ucalgary.ca
Received: 31 December 2007; revised: 20 October 2008


