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Abstract: In this paper we continue our investigations concerning arithmetic graphs associated
with integral domains and their applications to diophantine problems. We establish some general
quantitative theorems for these graphs considered over finitely generated integral domains and
prove some effective analogues over number fields and function fields. Further, we apply our re-
sults to resultant equations and discriminant equations. In a separate paper, further applications
will be given to decomposable form equations, algebraic numbers and irreducible polynomials.
Keywords: Arithmetic graphs, unit equations, polynomials, resultants, discriminants, diophan-
tine finiteness theorems.

1. Introduction

Unit equations and their various generalizations play a role of basic importance
in number theory. Many diophantine problems concerning classical diophantine
equations, algebraic numbers and irreducible polynomials can be reduced to com-
plicated systems of (generalized) unit equations, in which similar, specific linear
dependence relations arise among the equations. In the initial diophantine prob-
lems the unknowns are usually zeros of polynomials, conjugate algebraic elements
over a field or values of bounded norm of given linear forms at integral points. To
give a common, unified treatment and resolution of such diophantine problems, it
proved useful to introduce the following arithmetic graphs.

Let R be an integral domain of characteristic 0 which contains 1, and suppose
that the unit group R∗ of R is of finite rank. For a finite, non-empty subset M
of R \ {0}, we denote by G(R,M) the graph with vertex set R in which the pair
[α, β] is an edge if

α− β /∈ MR∗, α, β ∈ R .

This graph and its complement are Cayley graphs of the additive group of R.
In diophantine applications, the finite induced subgraphs G(A,M) of G(R,M)
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are utilized, where A, the vertex set of G(A,M), is an appropriate finite ordered
subset of R with cardinality |A| ≥ 3. Usually A is chosen to be the set of unknowns
mentioned above. If A′ is another ordered subset of R such that A′ = εA + β for
some ε ∈ R∗ and β ∈ R, then the graphs G(A,M) and G(A′,M) are isomorphic.
Then A and A′ are called equivalent.

The graphs G(A,M), in the special case when R is the ring of integers of
a number field, were introduced in 1972 by the author [24] for solving an irre-
ducibility problem. Later we extended the concept of these graphs G = G(A,M)
to the case when R is the ring of S-integers in a number field, a finitely generated
integral domain over Z or the ring of integers of a function field. It turned out
that the connectedness properties of G and its complement G, for example the
number of connected components of G, the completeness of G or the existence of
a large complete subgraph of G and the connectedness of G as well as of its trian-
gle or quadrangle hypergraph play an important role in the resolution of several
diophantine problems. In [27, 33] (number field case), [33] (function field case)
and [32, 35, 37] (finitely generated case) we described the structure of the graphs
G and G from the point of view of connectedness. In the number field and the
finitely generated cases we showed among others that apart from finitely many
equivalence classes of subsets A of given cardinality, the graph G(A,M) has at
most two connected components. Further, if |A| is sufficiently large, G(A,M)
always has a connected component of order at least |A| − 1.

The connectedness properties of the graphs G(A,M) have been used explicitly
or implicitly (sometimes as graph method) by many people in their work, includ-
ing Evertse, Gaál, Leutbecher, Nicklasch, Papp, Schinzel, Shlapentokh, Smart,
Stewart, Tijdeman, Wildanger, Yu and the author. By means of these con-
nectedness properties general (qualitative, quantitative and effective) results have
been obtained (with or without using graph terminology) on irreducible polyno-
mials (cf. [23, 24, 25, 31, 14, 36, 52]), on triangularly connected decomposable
form equations (cf. [41, 26, 28, 30, 32, 54, 55, 56, 22, 21]), on pairs of poly-
nomials of given resultant (cf. [35, 38]), on cliques of exceptional units and
Lenstra’s construction of Euclidean fields (cf. [27, 46, 45]) and on polynomi-
als and integral elements of given discriminant or on power integral bases (cf.
[25, 28, 29, 32, 33, 34, 58, 22, 59, 19, 40]). We note that using our graph method
we solved in [25], in effective and more general form, certain unsolved problems
proposed by Delone and Faddeev ([9], p. 412, Problem), Nagell ([49], p. 276)
and Narkiewicz ([50], p. 541, Problem 19) on polynomials, algebraic integers and
algebraic units, respectively, which have given discriminant.

In the present paper we considerably improve and make completely explicit
our earlier results on the arithmetic graphs under consideration. In Section 2
we obtain general quantitative theorems over finitely generated domains, while in
Section 4 effective results are established over number fields and function fields.
As applications, in Sections 3 and 5 we give significant improvements and explicit
versions of our earlier theorems on discriminant equations, resultant equations and
semi-resultant equations with polynomial unknowns. In Section 5, our theorems
concerning resultant equations and semi-resultant equations over function fields
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provide the first general effective results on equations of this type. In our proofs we
use some deep quantitative as well as effective results on generalized unit equations.

2. Quantitative results in the finitely generated case

Results

Let K be a finitely generated extension field of Q, R a subring of K containing
1, U a subgroup of finite rank � in the unit group R∗ of R with −1 ∈ U , and M
a finite non-empty subset of R \ {0}. For every pair of distinct positive integers i,
j we select an element of M, denoted by δij , such that δij = δji. For any finite
ordered subset A = {α1, . . . , αM} of R, we denote by G(A) = GR (A,U ,M) the
simple graph with vertex set A whose edges are the (unordered) pairs [αi, αj ] for
which

αi − αj /∈ δijU .

The ordered subsets A = {α1, . . . , αM} and A′ = {α′
1, . . . , α

′
M} of R are called

U-equivalent over R if

α′
i = εαi + β for some ε ∈ U and β ∈ R, i = 1, . . . ,M .

In this case the graphs G(A) and G(A′) are isomorphic. If R is finitely generated
over Z, then R∗ is also finitely generated (cf. [51]). Then, in the case U = R∗ way
say that A and A′ are R-equivalent.

Let G(A) denote the complement of G(A). Further, denote by G(A)
�

, resp. by

G(A)
�

, the triangle hypergraph, resp. the quadrangle hypergraph of G(A) whose
vertices are the edges of G(A) and whose edges are the cycles1 [αi1 , αi2 ] , . . . ,
[αik−1 , αik

], [αik
, αi1 ] in G(A) with k = 3, resp. with k ≤ 4, such that∑

j∈J

(
αij − αij+1

) �= 0 for each non-empty subset J of {1, . . . , k − 1} . (2.1)

We note that for k = 3, (2.1) automatically holds.

Theorem 2.1. Let M ≥ 3 be an integer. Then for all but at most(
(M + 1)4e18

9(3�+1)
)M−2

(2.2)

U-equivalence classes over R of ordered subsets A = {α1, . . . , αM} of R, one of
the following cases holds:

(i) G(A) is connected and at least one of G(A) and G(A)
�

is not connected;

1In other words, αi1 , . . . , αik
(k ≥ 3) are distinct elements of A such that [αi1 , αi2 ], . . . ,

[αik−1 , αik
], [αik

, αi1 ] are all edges in G(A).
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(ii) G(A) has two connected components, G1 and G2 say, such that2 |G1| = 1 and
G2 is not connected;
and, if M = 4,

(iii) G(A) has two connected components of order 2 and G(A)
�

is not connected.

This is an explicit version of Theorem 1 in Győry [37]. In [37] our proof did
not make it possible to compute the bound corresponding to (2.2). We note that
the proof of Theorem 2.1 does not provide any algorithm for determining those
U-equivalence classes which do not satisfy (i), (ii), (iii).

In some applications we shall get better results by using the following version
of Theorem 2.1.

Theorem 2.2. Let M ≥ 3 be an integer. Then for all but at most(
(M + 1)4216(�+1)

)M−2

(2.3)

U-equivalence classes over R of ordered subsets A = {α1, . . . , αM} of R, one of
the following cases holds:

(i) G(A) is connected and at least one of G(A) and G(A)
�

is not connected;
(ii) G(A) has two connected components, G1 and G2 say, such that |G1| = 1 and

G2 is not connected;
(iii) G(A) has two connected components of order ≥ 2.

This was earlier proved with (2.3) replaced by a weaker bound which depends,
however, on the choice of a transcendence basis of K over Q; see the remark on p.
367 in [37] and Theorem 6 in [35].

Except for certain trivial situations, each of the cases listed in Theorems 2.1
and 2.2 can occur.

In contrast with Theorem 2.1, the case (iii) in Theorem 2.2 cannot be excluded,
but the bound in (2.3) is smaller than that in (2.2). Finally we note that our
theorems do not remain valid if U is not of finite rank or if M is not finite (cf.
[32, 35]).

For large M , we obtain the following.

Theorem 2.3. Let A = {α1, . . . , αM} be a finite ordered subset of R. If

M > 3 · 216(�+1)|M|2, (2.4)

then G(A) has at most two connected components, and one of them is of order at
least M − 1.

This theorem can be compared with Theorem 11 of [14] and Theorem 2 of [35].
It should be remarked that in [35] the lower bound on M depends also on the
choice of a transcendence basis of K over Q.

2|G| denotes the order (number of vertices) of a graph G. Further, |A| will denote the cardi-
nality of a finite set A.
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It is clear that if A runs through the ordered subsets of cardinality M in R,
then among the graphs G(A) there can be only finitely many non-isomorphic ones.
However, our results show that apart from finitely many U-equivalence classes of
such subsets A, only certain, well-characterized types of possible graphs of order
M can be realized as G(A). From the point of view of connectedness our Theorems
2.1, 2.2 and 2.3 provide a well-utilizable description of the graphs G(A).

As will be seen, our above results depend among other things on some quan-
titative results concerning linear equations with unknowns from a multiplicative
subgroup of finite rank of K∗. We note that some function field analogues of our
theorems could also be established by means of some recent results of Evertse and
Zannier [16] obtained over function fields. We shall not work these out here.

In the following section we give some applications of Theorems 2.1 to 2.3 to
discriminant equations and resultant equations. Our theorems have other ap-
plications as well, for example to decomposable form equations and irreducible
polynomials. These will be the subject of a separate paper.

Proofs

We may and we shall assume in the remaining part of this section that the field
K is embedded in C.

Let q ≥ 2 be an integer, and (C∗)q the q-fold direct product of C∗ with co-
ordinatewise multiplication. We say that a subgroup Γ of (C∗)q has rank r if Γ
has a free subgroup Γ0 of rank r such that for every u ∈ Γ there is n ∈ Z>0 with
un ∈ Γ0.

To prove our theorems, we shall need the following deep results.

Theorem 2.A. Let a1, . . . , aq ∈ C∗, and let Γ be a subgroup of (C∗)q of rank r.
Then the equation

a1u1 + · · · + aquq = 1 in (u1, . . . , uq) ∈ Γ (2.5)

has at most e(6q)3q(r+1) solutions with∑
i∈I

aiui �= 0 for each non-empty subset I of {1, 2, . . . , q} . (2.6)

Proof. See Theorem 1.1 in [15]. Its proof depends on the Subspace Theorem and
hence is ineffective. �

Let M and U be as above.

Theorem 2.B. For q = 2, equation (2.5) has at most

216(�+1)|M|2 (2.7)

solutions in u1, u2 ∈ MU .
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Proof. For q = 2, every solution u1, u2 ∈ MU of (2.5) can be written in the form
δ1v1, δ2v2, where δ1, δ2 ∈ M, (v1, v2) ∈ U2 and

(a1δ1)v1 + (a2δ2)v2 = 1. (2.8)

The number of such equations is at most |M|2. Further, for fixed δ1, δ2, Theorem
1.1 of [3] implies that the number of solutions (v1, v2) ∈ U2 of (2.8) is at most
216(�+1). This completes the proof. �

Proof of Theorems 2.1 and 2.2. First consider the case when U is finitely gen-
erated. Denote by C(q,U) the number of solutions of (2.5) with (2.6) in u1, . . . , uq ∈
U . We proved with Evertse [11] that such a number C(q,U) which is independent
of the coefficients a1, . . . , aq exists. Then our Theorem 2.1 was proved in ([37],
Theorem 1) with C(3,U) instead of e18

9(3�+1). Further, as was pointed out in
Section 2 of [37], the statement of our Theorem 2.2 is true with C(2,U) in place
of 216(�+1). But our proofs in [37] remain valid for U of finite rank as well. Hence
Theorems 2.1 and 2.2 immediately follow from the results of [37], Remark 5 of [38]
and Theorems 2.A and 2.B above. �

Proof of Theorem 2.3. We combine the proof of Theorem 2 of [35] with Theo-
rem 2.B. Let A = {α1, . . . , αM} be a finite ordered subset of R, and let G1, . . . ,Gl

be the connected components of G(A) such that |G1| ≤ . . . ≤ |Gl|. Suppose that
l ≥ 3 or l = 2 and |G1| ≥ 2. For l = 3, let αi1 , αi2 be vertices of G1 and G2,
respectively, while for l = 2, let αi1 , αi2 be vertices of G1. Then we have

αi2 − αi1 = (αi2 − αj) + (αj − αi1)

for every vertex αj from G3, . . . ,Gl if l ≥ 3, and from G2 if l = 2. Further, αi2 −αj ,
αj − αi1 ∈ MU for each j. Hence, by Theorem 2.B, the number of αj under
consideration is at most 216(�+1)|M|2. On the other hand, the number of αj in
question is at least 1

3M . This implies that if (2.4) holds, then l = 1 or l = 2 and
|G1| = 1 which proves Theorem 2.3. �

3. Applications of Theorems 2.1, 2.2 and 2.3 to discriminant equations
and resultant equations

Results

Let K be a finitely generated extension field of Q, G a finite normal extension of
K, and A an integrally closed subring of K with 1 which has K as its quotient field
and which is finitely generated over Z. Then A∗, the unit group of A is finitely
generated.

Many diophantine problems can be reduced to discriminant equations of the
form

D(f) ∈ aA∗ in monic f ∈ A[x] having all their zeros in G, (3.1)
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and resultant equations of the shape

R(f, g) ∈ aA∗ in monic f, g ∈ A[x] having all their zeros in G. (3.2)

Here D( ) denotes discriminant, R( , ) resultant and a is a fixed non-zero element
of A.

In this section we deduce from Theorems 2.1, 2.2 and 2.3 some quantitative
finiteness results for (3.1) and (3.2). For this we shall need some notation and
definitions. Since A is integrally closed and finitely generated over Z, the integral
closure Â of A

[
a−1

]
in G and its unit group Â∗ are finitely generated (cf. [48, 44]).

Denote by � the rank of Â∗.
First consider equation (3.1). The monic polynomials f , f ′ in A[x] are called

A-equivalent if f ′(x) = εdeg(f)f (x/ε+ b) for some ε ∈ A∗ and b ∈ A. If f is
a solution of (3.1) then so is every f ′ which is A-equivalent to f . It was proved in
[32] that there are only finitely many A-equivalence classes of monic polynomials
f ∈ A[x] which satisfy (3.1). Later some quantitative versions and an effective
variant were established in [10], [38] and in [34], respectively. In the special case
when A is a ring of S-integers of a number field, see also [29] and the references
given there. Analogous results concerning binary forms with S-integer coefficients
are given in [4], [12], [1] and [40].

Theorem 3.1. Let m ≥ 2 be an integer. If f(x) is a solution of (3.1) with degree
m, then

m ≤ 3 · 216(�+1). (3.3)

Further, the number of A-equivalence classes of solutions f(x) of (3.1) with degree
m is at most (

(m+ 1)4217(�+1)
)m−1

. (3.4)

Theorem 3.1 can be compared with the corresponding results of [10] and [38].
In contrast with the bounds established in [10] and [38], our bounds in (3.3) and
(3.4) are independent of the choice of the transcendence basis of K over Q.

Similarly to the earlier versions, Theorem 3.1 has many applications in alge-
braic number theory (cf. [32], [34] and [10]). We present here an application to
the equation

DL/K(α) ∈ aA∗ in α ∈ B, (3.5)

where L is an extension of K of degree m ≥ 2, B denotes the integral closure of
A in L, and we assume that G is the normal closure of L over K.

Two elements α, α′ of B are said to be A-equivalent if α′ = εα + b for some
ε ∈ A∗ and b ∈ A. In this case, if α is a solution of (3.5) then so is α′ as well. It
was proved in [32] in a qualitative form and in [25, 34] in an effective form that
there are only finitely many A-equivalence classes of elements α ∈ B satisfying
(3.5). Applying Theorem 3.1 to the minimal polynomials over K of the solutions
α of (3.5) and following the proof of Theorem 5 of [32], we obtain at once the
following.
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Theorem 3.2. The number of A-equivalence classes of α ∈ B which satisfy (3.5)
can be estimated from above by an effectively computable constant depending only
on m and �.

This may be compared with Theorem 3 of [10] where the bound depends also
on the choice of a transcendence basis of K/Q.

From (3.4) it is easy to deduce an explicit version of Theorem 3.2. We note
that a slightly better bound can be obtained by applying Theorem 2.B in a direct
way to equation (3.5). Such an improvement will be given in a forthcoming work.

Consider now equation (3.2). We call the pairs (f, g) and (f ′, g′) of monic poly-
nomials inA[x] A-equivalent if f ′(x) = εdeg(f)f (x/ε+ b), g′(x) = εdeg(g)g (x/ε+ b)
for some ε ∈ A∗ and b ∈ A. If (f, g) is a solution of (3.2) then so is every (f ′, g′)
which is A-equivalent to (f, g). We proved in [38] (see also [35] and [13]) in a quan-
titative form that there are only finitely many A-equivalence classes of pairs (f, g)
with (3.2) for which deg(f) and deg(g) are fixed and

ω(f) ≥ 2, ω(g) ≥ 2 and ω(f) + ω(g) ≥ 5. (3.6)

Here ω(f) resp. ω(g) denote the number of distinct zeros of f resp. of g. We note
that the assumption (3.6) is necessary for the finiteness. In the special case when
A is a ring of S-integers of a number field, the quantitative results of [38] were
improved and extended in [2] to the case of binary forms.

The results of [35], [38] and [2] as well as the following Theorem 3.3 are inef-
fective. Some special but effective related results concerning (3.2) over Z can be
found in [20] and [43].

Theorem 3.3. If (f, g) is a solution of (3.2) with (3.6), then

ω(f) + ω(g) ≤ 3 · 217(�+1). (3.7)

Further, for given integers m ≥ 2, n ≥ 2 with m + n ≥ 5, the number of A-
equivalence classes of solutions (f, g) of (3.2) with (3.6) and with deg(f) = m,
deg(g) = n is at most (

(m+ n)4 e4·18
9(�+1)

)m+n−2

. (3.8)

This can be compared with the corresponding results of [35], [38] where the
upper bounds depend on the choice of a transcendence basis of K/Q. Further,
those bounds contain certain unspecified factors which, at that time, were not
effectively computable.

We consider now a common generalization of equations (3.1) and (3.2). For
monic polynomials f , g ∈ K[x] with zeros α1, . . . , αm and β1, . . . , βn, respectively,
the semi-resultant R∗(f, g) of f and g is defined by

R∗(f, g) =
∏̃

i,j
(αi − βj) ,
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where the product
∏̃

is over all pairs i, j such that αi − βj �= 0. Then (cf. e.g.
[38]) R∗(f, g) ∈ K \ {0} and, for f , g ∈ A[x], R∗(f, g) ∈ A \ {0}. If f and g
have no common zero then R∗(f, g) = R(f, g). Further, if f has no multiple zero
then R∗(f, f) = (−1)(

m
2 )D(f), where m = deg(f). Hence the semi-resultant is

a common generalization of the resultant and of the discriminant. Similarly, the
semi-resultant equation

R∗(f, g) ∈ aA∗ in monic f, g ∈ A[x] having all their zeros in G (3.9)

is a common generalization of (3.1) and (3.2). Semi-resultants have applications
not only in diophantine number theory but also in transcendental number theory;
see e.g. [8] and [5].

As was seen in [38], we can obtain finiteness results for the solutions of (3.9)
only if we restrict ourselves to those solutions (f, g) for which

ω(f) ≥ 2, ω(g) ≥ 2 and if f, g have no common zero then ω(f) + ω(g) ≥ 5.
(3.10)

Quantitative finiteness theorems on the solutions of (3.9) with (3.10) were
given in [38]. In the special case when A is a ring of S-integers of a number
field, qualitative versions were obtained in [39] for binary forms with S-integer
coefficients.

The following theorem is an explicit and improved version of the main results
(Theorems 1 and 2) of [38].

Theorem 3.4. If (f, g) is a solution of (3.9) with (3.10), then (3.7) holds. Fur-
ther, for given integers m ≥ 2, n ≥ 2, the number of A-equivalence classes of
solutions (f, g) of (3.9) with (3.10) and with deg(f) = m, deg(g) = n does not
exceed the bound occurring in (3.8).

Theorems 3.1 and 3.3 are immediate consequences of Theorem 3.4, except for
(3.4) which is better than that implied by (3.8). However, as we shall see, following
the proof of Theorem 3.4 in the special situation considered in Theorem 3.1 and
using Theorem 2.2 in place of Theorem 2.1, (3.4) follows in a straightforward way.

Remark 1. Of particular interest are Theorems 3.1 to 3.4 in the special case
when K is a number field and A is the ring of S-integers of K for some finite set
S of places of K containing all infinite places. If G is a finite normal extension
of K with degree δ ≥ 1, s denotes the cardinality of S and ωS(a) is the number
of distinct prime ideal divisors of a in A, then the parameter � occurring in our
theorems satisfies

� ≤ (s+ ωS(a) − 1) δ .

In this special situation our Theorems 3.1 to 3.4 can be compared with the corre-
sponding results of [10], [38], [1] and [2]. �
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Proofs

Proof of Theorem 3.4. We follow the proofs of Theorems 1 and 2 of [38]. Only
those steps will be detailed which differ from those in [38].

For a solution (f, g) of (3.9) with (3.10) we denote by α1, . . . , αk (k ≥ 0) the
distinct zeros of f which differ from the zeros of g, by β1, . . . , βl (l ≥ 0) the distinct
zeros of g which are not zeros of f , and by γ1, . . . , γp (p ≥ 0) the distinct zeros of
gcd(f, g). Let A = {α1, . . . , αk, β1, . . . , βl, γ1, . . . , γp}. Then each element of A is
contained in Â and, by (3.9),

R∗(f, g) ∈ Â∗. (3.11)

Consider the graph G(A) = GR(A,U ,M) with the choice R = Â, U = Â∗ and
M = {1}. Then (3.11) implies that the subgraphs of G(A) having vertex sets
{α1, . . . , αk}, {β1, . . . , βl}, {γ1} , . . . , {γp}, respectively, are disconnected. Put
M = k + l + p. If M > 3 · 216(�+1), then using (3.10) we infer that G(A) has
either at least three connected components or two connceted components of or-
der ≥ 2. However, this contradicts Theorem 2.3. Thus M ≤ 3 · 216(�+1). But
ω(f) + ω(g) ≤ 2M , hence (3.7) follows.

To derive the bound (3.8), fix the degrees deg(f) = m and deg(g) = n. As
in [38], it suffices to deal with the number of tuples A = {α1, . . . , αk, β1, . . . , βl,
γ1, . . . , γp} for fixed k, l, p and fixed multiplicities of the zeros. Then later, the
bound obtained for the number of tuples under consideration must be multiplied
by 2m+n−2.

For simplicity, denote by {x1, . . . , xM} the tuple A. Then (3.9) may be written
as ∏̃

(xi − xj)
aij ∈ aA∗ ⊂ Â∗ (3.12)

with fixed positive integers aij , where the xi are zeros of f and xj are zeros of g.
Since each factor xi − xj ∈ Â, this implies that xi − xj ∈ Â∗ for all pairs under
consideration.

If M ≥ 3, we can apply Theorem 2.1 with R = Â, U = Â∗, M = {1}. Then it
is easy to check that, by (3.10), none of the cases (i), (ii), (iii) of Theorem 2.1 can
hold for G (A). Hence Theorem 2.1 implies that

xi = τx′i + β for i = 1, . . . ,M, (3.13)

where τ ∈ Â∗, β ∈ Â, and where the number of possible tuples A′ = {x′1, . . . , x′M}
is at most

C1 :=
{

(M + 1)4e18
9(3�+1)

}M−2

.

Further, M ≤ m+ n. If M = 2, then (3.13) immediately follows from (3.12) with
C1 = 1.

It remains to show that any two Â-equivalent tuples (x1, . . . , xM ), (x′1, . . . , x
′
M )

satisfying (3.9) or (3.12) (with the same multiplicities) are in fact A-equivalent. So
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assume that (3.13) holds for these tuples. Then (xi −xj) = τ
(
x′i − x′j

)
for all i, j.

This determines τ uniquely. On the other hand by applying any σ from Gal(G/K)
and observing that (x1, . . . , xM ) and (x′1, . . . , x

′
M ) are permuted in the same way

by σ it follows that σ(τ) = τ . Hence τ ∈ K. In view of (3.12) we obtain τb ∈ A∗

where b =
∑

i,j aij . Since A is integrally closed this implies τ ∈ A∗. Again by
conjugation, it follows that β = xi − τx′i ∈ K for i = 1, . . . ,M and then β ∈ A
since β is integral over A and A is integrally closed. So the tuples in question are
A-equivalent, and after some computation (3.8) follows. �

Proof of Theorems 3.1 and 3.3. As was mentioned after the enunciation of
Theorem 3.4, Theorem 3.3 and (3.3) of Theorem 3.1 immediately follow from
Theorem 3.4. The bound in (3.4) can be easily derived by combining the proof of
Theorem 3.4 with Theorem 2.2. �

4. Effective results concerning the graphs G(A) in the number field and
function field cases

Results

Let K be an algebraic number field (number field case) or a function field of one
variable (function field case) over an algebraically closed field k of characteristic 0.
Then K is a finite extension of Q, resp. of the rational function field k(z). Denote
by d the degree of this extension.

In order to make effective computations in the function field case, it is necessary
to assume that k is explicitly presented in the sense of [17]. This means in our
situation that we can perform all the field operations with elements of k and that
there is an algorithm to determine the zeros of any polynomial with coefficients
in k.

In the number field case let MK denote the set of places on K, while in the
function field case the set of valuations of K/k with value group Z. In the number
field case

h(α) =
1
d

∑
v∈MK

log max (1, |α|v)

will denote the absolute logarithmic height of α ∈ K, where the absolute value
|α|v is normalized in the usual way. In the function field case we denote by

hK(α) =
∑

v∈MK

max (v(α), 0)

the height of α ∈ K \ {0}, and we put hK(0) = 0. In what follows, h( ) and hK( )
will be called simply (additive) heights. For their properties, see e.g. [57], [34],
[47].

Let S be a finite subset of MK which contains in the number field case the set
of infinite places of K, and in the function field case the infinite valuations v of K
for which v(z) < 0. The element α ∈ K is called S-integer if for every v ∈ MK \ S,
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|α|v ≤ 1 in the number field case, and v(α) ≥ 0 in the function field case. The
ring of S-integers and its unit group will be denoted by OS and O∗

S, respectively.
For α ∈ K \ {0}, the (additive) S-norm is defined by

NS(α) =

⎧⎪⎨⎪⎩
∑

v∈S log |α|v in the number field case,

−∑v∈S v(α) in the function field case.

We note that in both cases NS(α) ≥ 0 if α ∈ OS. Further, for α ∈ OS, NS(α) = 0
if and only if α ∈ O∗

S.
For a finite subset A = {α1, . . . , αM} of OS and for N ≥ 0, we denote by

G(A) = GK(A,S, N) the graph with vertex set A whose edges are the ( unordered)
pairs [αi, αj ] such that

NS(αi − αj) > N .

In the special case when K is a number field, R = OS, U = O∗
S and M is a max-

imal set of pairwise non-associate elements of OS with S-norm ≤ N , the graph
GR(A,U ,M) defined in Section 1 is just the graph GK(A,S, N). With the termi-
nology of Section 1 we say that the ordered subsets A, A′ of OS are OS-equivalent if
A′ = εA+β with some ε ∈ O∗

S and β ∈ OS. Then G(A) and G(A′) are isomorphic.
To state our results, we need some further notation. Let s denote the cardinal-

ity of S. Further, in the number field case let r, RK and hK denote the unit rank,
regulator and class number of K, RS the S-regulator of K (for its definition see
e.g. [7]), and P and Q the maximum and the product of the norms of the prime
ideals corresponding to the finite places in S (with the convention that P = Q = 1
if S consists only of infinite places). Put

E := 160rr+1RK +
hK

d
logQ+

1
d
N .

In the function field case we denote by g∗ the genus of K/k. We use the notation
log∗ a for max (1, log a).

Theorem 4.1. For given M ≥ 3, let A = {α1, . . . , αM} be a subset of OS. Then
at least one of the following cases holds:

(i) G(A) is connected and at least one of G(A) and G(A)
�

is not connected;
(ii) G(A) has two connected components, G1 and G2 say, such that |G1| = 1 and

G2 is not connected;
(iii) G(A) has two connected components of order ≥ 2;
(iv) there exists σ ∈ OS \ {0} such that in the number field case

max
1≤i,j≤M

h ((αi − αj)/σ) < 215M3(16ds)2(s+2)PRS (log∗RS)E, (4.1)

while in the function field case



On certain arithmetic graphs and their applications to diophantine problems 301

max
1≤i,j≤M

hK ((αi − αj)/σ) < M3 (s+ 3N + 2g∗ − 2) . (4.2)

Furthermore, σ can be chosen so that in the number field case σ ∈ O∗
S, and in the

function field case σ = αk − αl for some edge [αk, αl] of G(A) 3.

In the number field case this furnishes an effective version of our Theorem 2.2.
In this case Theorem 4.1 implies that for given M ≥ 3, there are only finitely many
OS-equivalence classes of subsets A = {α1, . . . , αM} in OS for which neither of (i),
(ii) and (iii) holds, and a representative in each class can be effectively determined.
We note that this finiteness result does not remain valid in the function field case
even for N = 0. Indeed, in this case fix an element ε of O∗

S/k such that 1−ε ∈ O∗
S,

and let η4, . . . , ηM−1 be distinct fixed elements of k which differ from 0 and 1. If
ηM runs through the elements of k, the subsets A = {0, 1, ε, η4, . . . , ηM−1, ηM} are
pairwise OS-inequivalent. Further, it is easy to see that our Theorem 2.3 has no
analogue in the function field case.

Our Theorem 4.1 and its complement Proposition 4.3 can be compared with
Theorem 1 of [27] (number field case) and Theorem 1.1 of [33] (number field and
function field cases). The bounds in Theorem 4.1 and Proposition 4.3 are much
better in terms of most parameters than the corresponding ones in [27, 33]. My
thesis [33] was written in Hungarian and is available in Hungary only. In the
function field case Theorem 4.1 and Propositions 4.2 and 4.3 below are the first
results on the graphs under consideration which are published in an international
periodical.

The following result which is of independent interest will be used in the proof
of Theorem 4.1. In the important special case when G(A) is complete, Proposition
4.2 gives much better bounds than (4.1) and (4.2).

Proposition 4.2. Under the notation and assumptions of Theorem 4.1, suppose
that both G(A) and G(A)

�
are connected. Then the case (iv) of Theorem 4.1 holds.

If in particular G(A) is complete then, in (4.1) and (4.2), M3 can be replaced by
5. Further, if N = 0, in the function field case either (αi − αj)/σ lies in k for
each i, j, or it has only finitely many possibilities in K for each i, j, which may
be determined effectively.

In terms of certain parameters this Proposition can be regarded as a significant
improvement of Lemma 3 of [27] and Lemma 1.9 of [33]. These weaker versions
were applied in [30] to decomposable form equations and in [29] to polynomials of
given discriminant.

The next proposition makes more precise the statement in (iii) of Theorem 4.1,
at the price of replacing the bounds in (4.1) and (4.2) by larger ones.

Proposition 4.3. Under the notation and assumptions of Theorem 4.1, suppose
that G(A) has two connected components of order ≥ 2. Then at least one of the
following cases holds:

3This implies that NS(σ) ≤ N .
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(i) both components of G(A) are complete, and in the function field case M = 4;
(ii) there exists σ ∈ OS \ {0} such that in the number field case

max
1≤i,j≤M

h ((αi − αj)/σ) < 231M6(16ds)4(s+2) (PRS (log∗RS))2E, (4.3)

and in the function field case

max
1≤i,j≤M

hK ((αi − αj)/σ) < 3M3 (s+ 4N + max(2g − 2, 0)) . (4.4)

Further, σ can be chosen as in Theorem 4.1.

As we shall see, the proofs of Theorem 4.1 and Propositions 4.2, 4.3 are based
on some profound effective results on S-unit equations.

Our results presented in this section have several applications, among other
things to discriminant equations, resultant equations, decomposable form equa-
tions and irreducible polynomials. Some applications will be given in the next
section. Other applications will be published in a separate paper.

Proofs

We keep the notation of the first part of this section. We shall deal simultaneously
with the number field and the function field cases.

For q ≥ 3, consider the equation

u1 + · · · + uq = 0 in ui ∈ OS \ {0} with NS(ui) ≤ N for i = 1, . . . , q. (4.5)

If N = 0, this is just an S-unit equation.
The following theorems will play a crucial role in our proofs. They are of

fundamental importance for many other applications. In the number field case,
the proof of Theorem 4.A involves the theory of logarithmic forms.

Theorem 4.A. In the number field case, let q = 3 and let u1, u2, u3 be a solution
of (4.5). Then there is a σ ∈ O∗

S such that

max
1≤i≤3

h (ui/σ) < 215 (16ds)2(s+2)
PRS (log∗RS)E. (4.6)

In the function field case, let q ≥ 3 and let u1, . . . , uq be a solution of (4.5) for
which u1 + u2 + · · · + uq has no proper vanishing subsum. Then with the choice
σ = uq we have

max
1≤i≤q

hK (ui/σ) <
1
2
(q − 1)(q − 2) (s+ qN + max(2g∗ − 2, 0)) . (4.7)

Remark 2. As will be apparent from the proof of the function field case, for q = 3
max(2g∗ − 2, 0) may be replaced by 2g∗ − 2 in (4.7). �
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Proof of Theorem 4.A. In the number field case, Theorem 4.A is an immediate
consequence of Corollary 1 of Győry and Yu [42]. In fact, in terms of n and
s a slightly better bound can be deduced from that result of [42] by a careful
computation.

Next consider equation (4.5) in the function field case. Let u1, . . . , uq be a so-
lution of (4.5) for which u1 + · · · + uq has no proper vanishing subsum. Then
v(ui) ≥ 0 for every i and every v ∈ MK \ S. Let S1 denote the smallest subset of
MK such that S1 ⊇ S and that u1, . . . , uq are already S1-units, i.e. v(ui) = 0 for
each i and for every v ∈MK \ S1. It follows from the sum formula that

N ≥ NS(ui) =
∑

v∈MK\S
v(ui), i = 1, . . . , q ,

whence ∑
v∈MK\S

(v(u1) + · · · + v(uq)) ≤ qN .

By the minimal choice of S1 we have

v(u1) + · · · + v(uq) ≥ 1 for every v ∈ S1 \ S ,

hence |S1 \ S| ≤ qN . This gives that

|S1| ≤ s+ qN. (4.8)

Since in (4.5) u1/uq, . . . , uq−1/uq are S1-units, Theorem B of Brownawell and
Masser [6] implies that

max
1≤i≤q

hK (ui/uq) <
1
2
(q − 1)(q − 2) (|S1| + max(2g∗ − 2, 0)) . (4.9)

Further, if q = 3 then by Theorem 4.B below, max(2g∗ − 2, 0) can be replaced by
2g∗ − 2. Together with (4.8), (4.9) implies (4.7) with the choice σ = uq. �

For q = 3, Theorem 4.A implies in the number field case that u1/σ, u2/σ and
u3/σ may be effectively determined. The same is true in the function field case if
N = 0.

Theorem 4.B. Consider equation (4.5) in the function field case with q = 3,
N = 0, and let u1, u2, u3 be a solution of this equation. Then we have

max
1≤i≤3

hK (ui/σ) ≤ s+ 2g∗ − 2 (4.10)

with the choice σ = u3. Further, u1/σ and u2/σ either lie in k, or they have only
finitely many possibilities in K, which may be determined effectively.

Proof. This is a special case of Lemma 2 and its Corollary of Mason [47], Chapter 1.
�
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Proof of Proposition 4.2. We use an idea which was applied several times in
our earlier papers; see e.g. Lemma 2 in [27] and the references given there.

We shall apply repeatedly Theorems 4.A and 4.B. Denote by C2 the upper
bound occurring in (4.6), resp. in (4.7) with q = 3, according as we are concerned
with the number field or function field case. Let A = {α1, . . . , αM} be a finite
subset of OS with M ≥ 3, and assume that both G(A) and G(A)

�
are connected.

We first prove (4.1) and (4.2) for those pairs αi, αj for which [αi, αj ] is an edge in
G(A). We may assume without loss of generality that α1, α2, α3 is a triangle in
G(A). Using the identity

(α1 − α2) + (α2 − α3) + (α3 − α1) = 0 ,

Theorem 4.A implies that there is a σ with the required properties such that the
heights of (α1 − α2)/σ, (α2 − α3)/σ and (α3 − α1)/σ are bounded above by C2.
By Remark 2, in the function field case we can take in C2 2g∗ − 2 in place of
max(2g∗ − 2, 0).

For M = 3 we are done. Suppose now that M ≥ 4, and let [αu, αv] be a further
edge in G(A) with u or v not contained in {1, 2, 3}. Starting from the edge [α2, α3]
of G(A) we can get the edge [αu, αv] through a sequence of triangles in G(A) such
that [α2, α3] is side of the first triangle, [αu, αv] is side of the last triangle, and
two consecutive triangles have a common side. Further, we may assume that the
number of triangles in question is at most

(
M
2

)
. Let

β1 = α1 − α2, β2 = βi1 = α2 − α3, βiw = αu − αv ,

and denote by βi2 , . . . , βiw−1 the sequence of the differences corresponding to com-
mon sides of the triangles under consideration. By the above assumption, we have
w ≤ (M2 ).

Applying Theorem 4.A as above, we infer that there are σ1 = σ, σ2, . . . , σw−1

in OS\{0} with the properties described in Theorem 4.A such that βit/σt, βit+1/σt

have heights at most C2 for t = 1, . . . , w − 1. In the number field case σ ∈ O∗
S,

while in the function field case we may choose σ = α1 −α2. The height of σt+1/σt

is at most 2C2. Then it follows that

βiw/σ = (αu − αv)/σ

is of height at most M2C2.
By the connectedness of G(A) there exists, for any distinct αi, αj ∈ A, a path

αi = αj1 , . . . , αjl
= αj of length at most M − 1 in G(A). Further, we have

αi − αj = (αj1 − αj2) + · · · + (αjl−1 − αjl

)
.

But the height of
(
αjk

− αjk+1

)
/σ is at most M2C2 for each k, hence the height

of (αi − αj)/σ does not exceed M3C2.
In what follows, we assume that G(A) is complete. Consider the edge [α1, α2],

[α2, α3], [α3, α1] and [αu, αv] as above. Applying the above argument to the tri-
angles α2, α3, αu and α3, αu, αv, we get in a similar way as above that for
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appropriate σ′, σ′′ having the properties specified in the Proposition, the heights
of (α2−α3)/σ, (α2−α3)/σ′, (α3−αu)/σ′, (α3−αv)/σ′′, (αu−αv)/σ′′ are bounded
above by C2. However this implies that the height of (αu −αv)/σ is at most 5C2.

Finally, consider the function field case with N = 0. First suppose that there
are three different indices, say 1, 2, 3 such that (α1 − α3)/(α1 − α2) /∈ k. Then
applying Theorem 4.B to the equation

(α1 − α2) + (α2 − α3) + (α3 − α1) = 0

we infer that both (α1 − α3)/(α1 − α2) and (α2 − α3)/(α1 − α2) may have only
finitely many possibilities in K, which may be determined effectively. For M = 3
we are done. Suppose that M > 3 and let i > 3 with i ≤M . We have

(α1 − αi) + (αi − α2) + (α2 − α1) = 0 (4.11)

and
(α1 − αi) + (αi − α3) + (α3 − α1) = 0. (4.12)

We apply now Theorem 4.B to (4.11) and (4.12). Then it follows from (4.11) that
either (α1 − αi)/(α1 − α2) ∈ k or it has only finitely many and effectively deter-
minable possibilities. The same assertion follows from (4.12) for (α1−αi)/(α1−α3).
But both quotients cannot be contained in k because their quotient (α1−α3)/(α1−
α2) /∈ k. If (α1 −αi)/(α1 −α3) may have only finitely many and effectively deter-
minable possibilities in K, the same is true for (α1 − αi)/(α1 − α2), since this is
the product of (α1 − αi)/(α1 − α3) and (α1 − α3)/(α1 − α2). Therefore in every
case (α1 −αi)/(α1 −α2) may have only finitely many and effectively determinable
possibilities in K. The same holds for (α1 − αj)/(α1 − α2) if j ≥ 2, j �= i, and
hence for every (αi − αj)/(α1 − α2) as well.

It remains the case when (α1 − αi)/(α1 − α2) ∈ k for each i. But then (αi −
αj)/(α1 − α2) ∈ k for each i and j. This completes the proof with the choice
σ = α1 − α2. �

Proof of Theorem 4.1. Denote by G1, . . . ,Gl the connected components of G(A)

with |G1| ≤ · · · ≤ |Gl|. First assume that l = 1. If at least one of G(A) and G(A)
�

is not connected, then the case (i) holds. On the other hand, if both G(A) and
G(A)

�
are connected, in view of Proposition 4.2 we arrive at the case (iv).

If l ≥ 3, then G(A) and G(A)
�

are again connected and the case (iv) follows
as above. Suppose now that l = 2. First consider the case when |G1| = 1. If G2 is
connected then both G(A) and G(A)

�
are connected, and Proposition 4.2 implies

again the case (iv). Otherwise, if G2 is not connected than we have the case (ii).
Finally, it remains the case (iii) and the proof is completed. �

In the next proof we shall use the fact that for α ∈ OS \ {0},

NS(α) ≤
{
dh(α) in the number field case,
hK(α) in the function field case. (4.13)
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Proof of Proposition 4.3. First consider the number field case. Let G1, G2 be
the connected components of G(A), and assume that at least one of them, say G2 is
not complete. Let [αu, αv] be an edge of G2, and A′ the union of the set {αu, αv}
and the set of vertices of G1. Consider the graph G(A′) = GK (A′,S, N). It is
easy to see that both G(A′) and G(A′)

�
are connected. Hence by Proposition 4.2

there is a σ′ ∈ O∗
S such that for any distinct vertices αi, αj of G(A′), the height of

(αi −αj)/σ′ is at most C3, where C3 denotes the bound occurring in (4.1). Then,
using (4.13), we infer that

NS(αi − αj) = NS ((αi − αj)/σ′) ≤ nh ((αi − αj)/σ′) ≤ nC3 =: C4 .

In view of the lower bound (25) of [42] concerning RS, we have C4 ≥ N . The graph
G′(A) = GK (A,S, C4) satisfies the assumptions of Proposition 4.2. Therefore,
using Proposition 4.2 with N replaced by C4 we infer that there is a σ ∈ O∗

S such
that (4.3) holds for each αi, αj ∈ A.

Next consider the function field case. Assume that G(A) is of order ≥ 5. Then
one can prove by using the same arguments as in the proof of Theorem 1 of [37] that

both G(A) and G(A)
�

are connected. We can now proceed as in the proof of Propo-

sition 4.2, but with G(A)
�

instead of G(A)
�

. If e.g. [α1, α2], [α2, α3], [α3, α4], [α4, α1]
is a quadrangle in G(A), then by Theorem 4.A there is a σ ∈ OS \ {0}, say
σ = α1 − α2, such that the heights of (α1 − α2)/σ, (α2 − α3)/σ, (α3 − α4)/σ,
(α4 − α1)/σ are at most C5, where C5 denotes the bound occurring in (4.7) with
the choice q = 4. Let now [αu, αv] be a further edge in G(A) such that at least one
of u and v is not contained in the set {1, 2, 3, 4}. Then working with quadrangles
in place of triangles, one can prove in the same way as in the proof of Proposition
4.2 that (αu − αv)/σ is of height at most M2C5. This implies as in the proof of
Proposition 4.2 that for each pair αi, αj ∈ A, the height of (αi −αj)/σ is bounded
above by M3C5. Since by assumption both G1 and G2 have order ≥ 2, it remains
the case M = 4, when both G1 and G2 must be complete. �

5. Applications of the results of Section 4 to resultant equations and
discriminant equations over function fields

Results

Keeping the notation of the preceding section, let K be a finite extension of the
rational function field k(z) over k, where k is an algebraically closed field of char-
acteristic 0. We assume as in Section 4 that k is explicitly presented. Let MK

denote the set of valuations of K/k with value group Z. Let S be a finite subset
of MK with cardinality s which contains the infinite valuations, OS the ring of
S-integers and O∗

S the group of S-units in K. Further, let G be a normal extension
of degree δ of K with genus g∗.

Using our Theorem 4.1 and Propositions 4.2 and 4.3 we shall give effective
function field analogues of some results of Section 3. For simplicity, we restrict
ourselves here to polynomials without multiple zeros.
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Let a be a non-zero element of OS, and consider the semi-resultant equation

R∗(f, g) ∈ aO∗
S in squarefree monic f, g ∈ OS having all their zeros in G.

(5.1a)
According to (3.10), we consider only those solutions (f, g) for which

deg(f) ≥ 2, deg(g) ≥ 2
and if f, g have no common zero then
deg(f) + deg(g) ≥ 5. (5.2)

As in Section 3, the pairs (f, g) and (f ′, g′) of monic polynomials in OS[x] are
called OS-equivalent if f ′(x) = εdeg(f)f (x/ε+ b) and g′(x) = εdeg(g)g (x/ε+ b) for
some ε ∈ O∗

S and b ∈ OS. If (f, g) is a solution of (5.1a) then so is (f ′, g′).
As is known (see e.g. [10]), O∗

S/k
∗ is finitely generated, and its rank, say r, is

at most s− 1. Let η1, . . . , ηr be a basis of O∗
S/k

∗ and denote by E the maximum
of their heights.

Apart from (3.7), the following theorem can be regarded as an effective function
field analogue of our Theorem 3.4.

Theorem 5.1a. If (f, g) is a solution of (5.1a) with (5.2) and with deg(f) = m,
deg(g) = n, then it is OS-equivalent to a solution (f ′, g′) such that the heights (in
G) of the zeros of f ′ and g′ do not exceed

6(m+ n)4 (δ(s+ hK(a) + (s− 1)mnE) + max(2g∗ − 2, 0)) . (5.3a)

Consider now the equation

R∗(f, g) = a in squarefree monic f, g ∈ OS[x] having all their zeros in G. (5.1b)

If (f, g) is a solution of (5.1b) then so is every pair (f ′, g′) for which f ′(x) = f(x+b),
g′(x) = g(x+ b) for some b ∈ OS. Such pairs will be called strongly OS-equivalent.

Apart from the form of the bounds, Theorem 5.1a and the following theorem
can be deduced from each other. It will be more convenient to deduce Theorem
5.1a from Theorem 5.1b.

Theorem 5.1b. If (f, g) is a solution of (5.1b) with (5.2) and with deg(f) = m,
deg(g) = n, then it is strongly OS-equivalent to a solution (f ′, g′) such that the
heights (in G) of the zeros of f ′ and g′ do not exceed

6(m+ n)4 (δ(s+ hK(a)) + max(2g∗ − 2, 0)) . (5.3b)

The above theorems can be applied to resultant equations and discriminant
equations as in Section 3.

Theorem 5.2. Let (f, g) be a solution of the resultant equation

R(f, g) ∈ aO∗
S in squarefree monic f, g ∈ OS[x] having all their zeros in G (5.4)
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such that

deg(f) = m ≥ 2, deg(g) = n ≥ 2 and m+ n ≥ 5 .

Then (f, g) is OS-equivalent to a solution (f ′, g′) such that the heights (in G) of
the zeros of f ′ and g′ do not exceed the bound occurring in (5.3a).

Theorem 5.1b has a similar consequence for the resultant equation R(f, g) = a.
From the bounds obtained in (5.3a) and (5.3b) it is easy to derive bounds for

the maximum height of the coefficients of f ′ and g′.
In contrast with Theorems 3.3 and 3.4, Theorems 5.1a, 5.1b and 5.2 do not

imply the finiteness of the (strong) OS-equivalence classes of solutions (f, g). For
example, let

f(x) = x(x− 1), g(x) = (x− ε)(x− η2) · · · (x− ηn−1)(x − ηn) ,

where n ≥ 3, ε ∈ O∗
S \ k∗ such that 1 − ε ∈ O∗

S, and η2, . . . , ηn−1 are distinct
elements of k, different from 0 and 1. If ηn runs through the elements of k, then
the pairs (f, g) satisfy both (5.1a) and (5.4) with m = 2, and they are pairwise
OS-inequivalent. Further, it is easy to show that in our above theorems m + n
cannot be bounded above.

Finally, consider the discriminant equations

D(f) ∈ aO∗
S in monic f ∈ OS[x] having all their zeros in G , (5.5a)

and

D(f) = a in monic f ∈ OS[x] having all their zeros in G . (5.5b)

The monic polynomials f , f ′ ∈ OS[x] are called OS-equivalent, resp. strongly OS-
equivalent, if f ′(x) = εdeg(f)f (x/ε+ b), resp. if f ′(x) = f(x+ b) for some ε ∈ O∗

S
and b ∈ OS. If f is a solution of (5.5a), resp. of (5.5b), then so is every f ′ which
is OS-equivalent, resp. strongly OS-equivalent to f .

If f(x) is an arbitrary monic polynomial in k[x] with degree n ≥ 3 and dis-
criminant D(f) �= 0, then every monic f ′ ∈ OS[x] which is strongly OS-equivalent
to σnf (x/σ) with some σ ∈ G∗ is called special. Notice that all polynomials
which are OS-equivalent to a special polynomial in OS[x] must be special in OS[x]
themselves.

It is easy to see that equations (5.5a) and (5.5b) may have infinitely many
(strong)OS-equivalence classes of special polynomial solutions. On the other hand,
it follows from Theorem 1 of [10] (which was established more generally, over
function fields of several variables4) that the numbers of (strong) OS-equivalence
classes of non-special polynomial solutions of equations (5.5a) and (5.5b) are finite
and can be estimated from above by explicit bounds depending only on n, δ, a and
the degree of K/k(z). We give now effective versions of these finiteness results.

Theorems 5.1a and 5.1b give as immediate consequences results for (5.5a) and
(5.5b) with the choice g = f . However, we can deduce better bounds and effective
finiteness results from Proposition 4.2.

4Further, in [10] it is only assumed that k is algebraically closed in K.



On certain arithmetic graphs and their applications to diophantine problems 309

Theorem 5.3a. If f ∈ OS[x] is a solution of (4.5a) with degree n ≥ 3, then it is
OS-equivalent to a monic polynomial f ′ ∈ OS[x] whose zeros have heights (in G)
not exceeding

5(2n− 1)
(
δ
(
s+ hK(a) + (s− 1)n2E

)
+ 2g∗ − 2

)
. (5.6a)

Further,

(i) f is special, or
(ii) f ′ belongs to a finite, effectively determinable subset of OS[x] depending only

on K, S, G, a, n and η1, . . . , ηr.

Theorem 5.3a will be deduced from the following.

Theorem 5.3b. If f ∈ OS[x] is a solution of (5.5b) with degree n ≥ 3, then it is
strongly OS-equivalent to a monic f ′ ∈ OS[x] whose zeros have heights (in G) not
exceeding

5(2n− 1) (δ (s+ hK(a)) + 2g∗ − 2) . (5.6b)

Further,

(i) f is special, or
(ii) f ′(x) belongs to a finite, effectively determinable subset of OS[x] depending

only on K, S, G, a and n.

From the bounds (5.6a) and (5.6b) one can easily derive bounds for the heights
of the coefficients of the polynomials f ′ under considerations.

The bound (5.6b) can be compared with the bound (2.17) of Theorem 2 in
[34], which was obtained over function fields of several variables. Theorem 2 of
[34] led in that paper to applications to integral elements of given discriminant
and power integral bases. Our Theorems 5.3a and 5.3b have similar applications.
In the special case when the polynomials f ∈ OS[x] are irreducible a result similar
to our Theorem 5.3b can be deduced from Theorem 1 of Gaál [18] concerning
integral elements of given discriminant. We note that in this special situation only
the cases (ii) can occur in our Theorems 5.3a and 5.3b.

Proofs
We first prove Theorem 5.1b.

Proof of Theorem 5.1b. We follow the proof of Theorem 3.4. Let (f, g) be
a solution of (5.1b) with (5.2) and with deg(f) = m, deg(g) = n. Further, let
α1, . . . , αk (k ≥ 0), β1, . . . , βl (l ≥ 0), γ1, . . . , γp (p ≥ 0) and A = {α1, . . . ,
αk, β1, . . . , βl, γ1, . . . , γp} = {x1, . . . , xM} be as in the proof of Theorem 3.4. Then
we can write (5.1b) in the form ∏̃

(xi − xj) = a, (5.7)

where the xi are zeros of f and xj are zeros of g.



310 Kálmán Győry

Let S1 denote the smallest subset of MK such that S ⊆ S1 and a ∈ OS
∗
1. Using

(4.13), we infer as in the proof of Theorem 4.A that |S1| ≤ s + hK(a). Let T be
the set of continuations to G of the valuations in S1, OT the ring of T -integers
and O∗

T the group of T -units in G. We have |T | ≤ δ|S1|. Since by assumption f ,
g ∈ OS[x], it follows that xi, xj ∈ OT , and hence (5.7) implies that xi − xj ∈ O∗

T .
Then, for N = 0, the graph G(A) = GG (A, T,N) has either at least 3 components
or 2 components of order ≥ 2. We can now apply in the first case Theorem 4.1
and in the second case Proposition 4.3 with N = 0 and with OS replaced by OT .
We observe that the bound in (4.4) is larger than that in (4.2). Thus it follows
that there is σ ∈ O∗

T such that for each pair of distinct xu, xv of f · g
hG ((xu − xv)/σ) ≤ 3(m+ n)3 (δ(s+ hK(a)) + max(2g∗ − 2, 0)) =: C1, (5.8)

where hG( ) denotes the height in G. Denote by w the number of factors on the
left hand side of (5.7). Using now (5.8) and multiplying (5.7) by σ−w, the height
in G of the right hand side so obtained can be estimated from above. We note
that hG(a) = δhK(a). So we infer that

hG(σ) ≤ δhK(a) + C1. (5.9)

Thus (5.8) and (5.9) imply that

hG(xu − xv) ≤ δhK(a) + 2C1 =: C2 .

Fix a zero xu of f ·g and add the differences xu −xv for each zero xv of f ·g. Since
the sum of the zeros of f · g is an element of OS, we obtain that

xu = τu − b

with some b ∈ OS and τu ∈ OT such that

hG(τu) ≤ (m+ n− 1)C2.

Finally, we set f ′(x) =
∏

(x − τu), resp. g′(x) =
∏

(x − τu), for each u for which
xu is a zero of f , resp. of g. Then f ′, g′ are monic polynomials with coefficients
in OS, and the pair (f, g) is strongly OS-equivalent to the pair (f ′, g′). �

Proof of Theorem 5.1a. Suppose that (f, g) is a solution of (5.1a). Then
R∗(f, g) = a� with some � ∈ O∗

S. Representing � in the basis η1, . . . , ηr of O∗
S/k

∗,
we can write � = εwη, where w is as above, ε, η ∈ O∗

S and hK(η) ≤ r(w − 1)E.
We have r ≤ s−1 and w ≤ mn. Putting f1(x) = ε−mf(εx) and g1(x) = ε−ng(εx),
these are monic polynomials with coefficients in OS and

R∗(f1, g1) = aη.

Now applying Theorem 5.1b to this equation in f1, g1, we get that f(x) =
εmf ′ (x/ε+ b), g(x) = εng′ (x/ε+ b) with monic f ′, g′ ∈ OS[x] whose zeros have
heights not exceeding the bound occurring in (5.3a). �
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Proof of Theorem 5.3b. Let f be a solution of (5.5b) with zeros α1, . . . , αn

in G, let A = {α1, . . . , αn}, and let S1, T , OT and O∗
T be as in the proof of

Theorem 5.1b. As was seen there, |T | ≤ δ(s + hK(a)). Equation (5.5b) implies
that αi − αj ∈ O∗

T for each distinct i, j with 1 ≤ i, j ≤ n. Then, for N = 0, the
graph G(A) = GG (A, T,N) has only isolated vertices. Applying Proposition 4.2
to this graph, it follows that for some σ ∈ O∗

T ,

hG ((αi − αj)/σ) ≤ 5 (δ(s+ hK(a)) + 2g∗ − 2) =: C3. (5.10)

Further, either

i) (αi − αj) /σ ∈ k for each i, j, or
ii) (αi − αj) /σ has only finitely many and effectively determinable possibilities

in G.

Using (5.10) and hG(a) = δhK(a), one can easily deduce from (5.5b) that

hG(σ) ≤ δhK(a)/(n(n− 1)) + C3 ,

and so

hG(αi − αj) ≤ δhK(a)/(n(n− 1)) + 2C3 .

Fix i, and add the differences αi−αj for each j. Then we infer that αi = α′
i−b

for some b ∈ OS and α′
i ∈ OT such that

hG(α′
i) ≤ δhK(a)/n+ 2(n− 1)C3 ≤ (2n− 1)C3 .

Further, the polynomial f ′(x) having zeros α′
1, . . . , α

′
n is strongly OS-equivalent to

f(x).
We now return to the cases i) and ii).

In the case i) we infer that α′
i = σγi with some γi ∈ k for i = 1, . . . , n. Putting

f ′′(x) =
∏n

i=1(x − γi), f ′(x) = σnf ′′ (x/σ) is strongly OS-equivalent to f(x).
Hence f is special in OS[x].

In case ii), it follows from (5.5b) that σ may have only finitely many and
effectively computable possibilities in G. Hence the same holds for the differences
αi − αj , and for the above α′

i as well. This implies (ii). �

Proof of Theorem 5.3a. Theorem 5.3a can be deduced from Theorem 5.3b in
the same way as Theorem 5.1a from Theorem 5.1b. �

Acknowledgements. The author would like to thank the referee for his/her
useful remarks and for the improvement proposed in the former bound occurring
in (3.8).
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