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EQUIDISTRIBUTION MODULO 1 AND SALEM NUMBERS

Christophe Doche, Michel Mendès France, Jean-Jacques Ruch
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de son 70e anniversaire

Abstract: Let θ be a Salem number. It is well-known that the sequence (θn) modulo 1 is
dense but not equidistributed. In this article we discuss equidistributed subsequences. Our
first approach is computational and consists in estimating the supremum of limn→∞ n/s(n) over
all equidistributed subsequences (θs(n)). As a result, we obtain an explicit upper bound on
the density of any equidistributed subsequence. Our second approach is probabilistic. Defining
a measure on the family of increasing integer sequences, we show that relatively to that measure,
almost no subsequence is equiditributed.
Keywords: Salem number, Equidistribution modulo 1, J0 Bessel function.

1. Subsequences

Let u =
(
u(n)

)
be an infinite sequence of real numbers. A subsequence u ◦ s =(

u(s(n))
)

is said to have density d � 1 if as n increases n/s(n) → d. Suppose the
sequence u is dense (mod 1). Answering a question of one of us in 1973, Y. Dupain
and J. Lesca [6] established that the set of densities d of equidistributed (mod 1)
subsequences of u is a closed interval [0, d0] where d0 � 1 depends on u. They also
showed how to compute d0. For 0 � x � 1, define the repartition function

f(x) = lim
N→∞

1
N

card
{
n < N | {u(n)} < x

}
where {u(n)} is the fractional part of u(n). We only consider those x where f(x)
and its derivative f ′(x) both exist, i.e. almost everywhere. Y. Dupain and J. Lesca
proved that d0 = infxf

′(x).
A particularly striking example of such an instance concerns the distribution

(mod 1) of the powers of Salem numbers θ > 1. A Salem number [10] (see also [3])
is a real algebraic integer whose algebraic conjugates other than θ all lie in the
unit disc |z| � 1 with one conjugate at least on the boundary |z| = 1. It is then
known that one and only one of these conjugates θ−1 is inside the disc while the
others are on the boundary. The degree 2t of θ is necessarily even and at least
equal to 4.
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Denote the different conjugates by θ, θ−1, exp(±2iπω1), . . . , exp(±2iπωt−1).
The sum of all conjugates of an algebraic integer is an integer and therefore for all
n ∈ N,

θn + θ−n + 2
t−1∑
j=1

cos 2πnωj ≡ 0 (mod 1)

so that the distribution of θn (mod 1) is essentially that of −2
∑t−1

j=1 cos 2πnωj .
Ch. Pisot and R. Salem [9] observed that 1, ω1, . . . , ωt−1 are Z-linearly independent
so that, according to Kronecker, the (t−1) dimensional sequence (ω1n, . . . , ωt−1n)
is equidistributed in

(
R/Z

)t−1
. As a consequence, the sequence (θn) is therefore

clearly dense (mod 1). Furthermore, for all k ∈ N \ {0}

lim
N→∞

1
N

∑
n<N

exp 2iπkθn = lim
N→∞

1
N

∑
n<N

t−1∏
j=1

exp(−2iπk.2 cos2πnωj)

=
(∫ 1

0

exp(−4iπk cos 2πx) dx
)t−1

= J0(4πk)t−1 �= 0 (1.1)

where J0(· ) is the Bessel function of the first kind of index 0.
Since |J0(α)| < 1 for all real α �= 0, the above limit tends to 0 as t → ∞. Y. Du-

pain and J. Lesca conclude that for large degrees t, the sequence
(
θn (mod 1)

)
is close to being equidistributed, a fact that S. Akiyama and Y. Tanigawa [1]
make very explicit in their article. This is quite remarkable since even though
for almost all real τ > 1, (τn) is equidistributed (mod 1), no explicit τ is known
(J. F. Koksma [8]).

We know the existence of d0 < 1 (and quite obviously d0 > 0) such that s(n) ∼
1
d0
n and

(
θs(n)

)
equidistributed (mod 1). We shall see later on that those sequences

are rare. But we can already guess why these sequences s(n) are exceptional. This
is a consequence of our first rather trivial theorem.

Theorem 1.1. If s(n) is an increasing sequence of integers such that
(
θs(n)

)
is

equidistributed (mod 1), then there exists an irrational x such that xs(n) is not
equidistributed (mod 1).

Proof. We note that

θs(n) ≡ −2
t−1∑
j=1

cos 2πωjs(n) − θ−s(n) (mod 1).

The (t− 1) dimensional sequence
(
ω1s(n), . . . , ωt−1s(n)

)
is not equidistributed in(

R/Z
)t−1 since if it were,

(
θs(n)

)
would not be equidistributed (mod 1). Therefore

there exist integers h1, . . . , ht−1 not all 0 such that

h1ω1s(n) + · · · + ht−1ωt−1s(n)
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is not equidistributed (mod 1). The theorem is established with

x =
t−1∑
j=1

hjωj . �

Next, we develop a method to approximate d0 for the sequence
(
θn(mod 1)

)
,

where θ is a Salem number of degree 2t. The results indicate that d0 tends to 1
very quickly as t tends to infinity. A key result in this approach is the study of
the minimum of a cosine series on ]0, 1[. Under certain conditions, we show that
the minimum is always attained at x = 1/2, cf. Theorem 2.1.

2. Explicit Computations of d0

The repartition function is explicitly determined for a Salem number of degree 4,
cf. [5]. Namely,

f(x) =
5
2
− 1
π

(
arccos

x− 2
2

+ arccos
x

2
+ arccos

x− 1
2

+ arccos
x+ 1

2

)
.

It follows that

f ′(x) =
1
2π

⎛⎝ 1√
1 − (x

2 − 1
)2 +

1√
1 − (x−1

2

)2 +
1√

1 − (x
2

)2 +
1√

1 − (x+1
2

)2
⎞⎠ .

A direct study of f ′(x) shows that it attains its minimum for x = 1
2 and gives the

exact value of d0, i.e.

1
π

(
4√
7

+
4√
15

)
= 0.809988350 . . . (2.1)

For a Salem number of degree 2t with t > 2, we want to estimate the corresponding
d0. First, let us show the following lemma.

Lemma 2.1. Let θ be a Salem number of degree 2t, then the repartition function
f(x) of the sequence (θn) modulo 1 satisfies

f ′(x) = 1 + 2
∞∑

k=1

J0(4kπ)t−1 cos 2πkx

on ]0, 1[, for all t � 2.

Proof. We have

lim
N→∞

1
N

∑
n<N

exp 2iπkθn =
∫ 1

0

exp 2iπkx dν
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where ν is the repartition function f(x). According to Y. Dupain [5] the measure
dν = f ′(x) dx is absolutely continuous. It follows from (1.1) that

J0(4πk)t−1 =
∫ 1

0

exp 2iπkx f ′(x) dx .

We can associate with f ′(x) its Fourier series

∑
k∈Z

J0(4πk)t−1 exp(−2iπkx) = 1 + 2
∞∑

k=1

J0(4πk)t−1 cos 2πkx. (2.2)

If this series converges uniformly, then its sum is continuous and equals f ′(x). The
lemma is clear for t > 3, since J0(x) = O

(
x−

1
2
)

and we even have equality on [0, 1].
For t = 2 and 3, we need the following result.

Lemma 2.2. The sequence
(
J0(4πk)

)
is positive for all k > 0 and strictly de-

creasing.

Proof. In [1, Lemma 2], it is shown that

J0(2πk) =
1

π
√
k

(
1√
2
− 1

16
√

2πk
+R

)
, with |R| � 9

512π2k2
·

It is straightforward to deduce that

0 � 1
2π

√
k

− J0(4πk) � 1
61π2k

3
2
· (2.3)

This proves the first part of the lemma. Now

1
2π

(
1√
k

− 1√
k + 1

)
� 1

8πk
3
2
>

2
61π2k

3
2
·

This shows that

1
2π

√
k

− 1
61π2k

3
2
>

1
2π

√
k + 1

− 1
61π2(k + 1)

3
2

which implies that J0(4πk) > J0

(
4π(k + 1)

)
, for k > 0. �

We deduce that the series (2.2) is uniformly convergent on the compact [ε, 1−ε],
for any ε > 0 and therefore f ′(x) is equal to this series on ]0, 1[. �

A consequence of Lemma 3.2 is that d0 only depends on t and satisfies

d0 = infx∈]0,1[

(
1 + 2

∞∑
k=1

J0(4kπ)t−1 cos 2πkx

)
.

Next let us recall a definition we shall use later.
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Definition 2.1. Let (bk) be a sequence of real numbers and let Δ0bk = bk and
Δnbk = Δn−1bk −Δn−1bk+1, for all n > 0. The sequence (bk) is said to be totally
monotone if Δnbk � 0 for all k, and n = 0, 1, 2, . . .

By a famous result of Hausdorff [7], the total monotonicity of (bk) is equivalent
to the existence of a nonnegative measure μ on [0, 1] such that the bk’s are the
moments of μ, i.e.

bk =
∫ 1

0

uk dμ .

Example 2.1. Let s be a real positive number. The sequence (bk) defined by

bk =
1

(k + 1)s

for all k � 0 is totally monotone.

Theorem 2.1. Let (ak) be a sequence of nonnegative real numbers (except maybe
for a0). Assume that (ak+1), k � 0 is totally monotone, then the function

g(x) =
∞∑

k=0

ak cos 2πkx

is well-defined and decreasing on the interval ]0, 1/2]. As a corollary, g(x) attains
its minimum for x = 1

2 ·
Proof. Let us introduce

h(x) =
∞∑

k=1

ak cos 2πkx =
∞∑

k=0

bk cos 2π(k + 1)x .

Since, g and h only differ by a0, it is enough to study h to prove the theorem on
g. Since (bk) = (ak+1), Δbk � 0, for all k. So the sequence (bk) is decreasing and
this shows that the series h(x) is convergent for all x ∈ ]ε, 1 − ε[, for all ε > 0.
Since h(x) = h(1 − x), it is enough to study h on ]0, 1/2] .

Since the bk’s are the moments of a certain nonnegative measure μ, we obtain

h(x) =
∞∑

k=0

bk cos 2π(k + 1)x

=
∞∑

k=0

∫ 1

0

uk cos 2π(k + 1)xdμ

= �
∫ 1

0

e2iπx

1 − e2iπxu
dμ.
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The last equality being justified by the nonnegativity of μ. It follows that

h(x) =
∫ 1

0

cos 2πx− u

1 + u2 − 2u cos 2πx
dμ .

To show that h(x) is decreasing on ]0, 1/2], evaluate h(x) − h(y) for 0 < x � y �
1/2. Let

jx(u) =
cos 2πx− u

1 + u2 − 2u cos 2πx
·

Then reducing to the same (positive) denominator, we see that the numerator of
jx(u) − jy(u) is (cos 2πx− cos 2πy)(1 − u2) which is nonnegative for all u ∈ [0, 1].

Since μ is a nonnegative measure, we deduce that h(x) � h(y) whenever x �
y � 1/2 and that h(x) � h(1/2) for all x ∈ ]0, 1/2]. These results apply trivially
to the function g. �

Corollary 2.1. Let s > 0. Then the series

g(x) = a0 +
∞∑

k=1

cos 2πkx
ks

is decreasing on ]0, 1/2] and satisfies

g(x) � a0 +
∞∑

k=1

(−1)k

ks
·

Remark. It is possible to compute g(1/2) very efficiently following the method
explained in [4]. For instance, for the sequence (ak) defined by a given a0 and
ak = 1/

√
k, for k � 1, we have that

g(x) � g(1/2) = a0 − 0.6048986434216303702472659142359554997597625451 . . .

All the digits in the last equality are correct as can be established knowing the
first 60 ak’s.

Unfortunately, we are not able to show that the sequence
(
J0(4πk)t−1

)
, k > 0

is totally monotone, though the extensive numerical computations of its first n-
th forward differences seem to indicate that this is the case. Based on the case
t = 2 and also on direct computations of f ′(x) for various x, we conjecture that
infxf

′(x) = f ′(1/2) for t � 2. However, to be totally rigorous, we cannot directly
apply Theorem 2.1 to obtain the value of d0. Nevertheless, this result will give an
approximation of d0, for t > 2.

The idea is to apply (2.3) to deduce that∣∣∣∣J0(4πk)t−1 − 1
(2π

√
k)t−1

∣∣∣∣ � 1
61π2k

3
2

(t− 1)
(2π

√
k)t−2

·
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It follows that∣∣∣∣∣f ′(x) − 1 − 2
inf∑
k=1

cos 2πkx
(2π

√
k)t−1

∣∣∣∣∣ �
inf∑

k=1

2
61π2k

3
2

(t− 1)
(2π

√
k)t−2

,

which, combined with Theorem 2.1, implies that for all x ∈ ]0, 1[

f ′(x) � 1 + 2
∞∑

k=1

(−1)k

(2π
√
k)t−1︸ ︷︷ ︸

S1

−
∞∑

k=1

2
61π2k

3
2

(t− 1)
(2π

√
k)t−2︸ ︷︷ ︸

S2

·

The main contribution, i.e. S1, can be obtained using the acceleration convergence
method explained in [4], whereas the second series S2 is simply (up to a constant)
an evaluation of the ζ function at the point (t + 1)/2. This gives a lower bound
for d0. An upper bound is given by d0 � f ′(1/2), where f ′(1/2) is bounded, for
any K even, by the truncated alternating series

1 + 2
K∑

k=1

(−1)kJ0(4πk)t−1 .

The convergence is quite slow for t = 3 so that we fixed K = 2.106 to obtain
a relevant upper bound. Much less terms are necessary for larger t. A conjectured
value d∗0 is also given relying on the assumption that d0 = f ′(1/2) and on the
computation of f ′(1/2) using [4]. The method seems to converge and at most the
first 10 terms are sufficient to give a result with an error less than 10−10. Also,
we checked for t = 2 that the value given in (2.1) is, up to several hundred digits,
equal to the one computed with this approach.

Note that if the sequence
(
J0(4πk)t−1

)
, defined for k > 0 is totally monotone,

then both assumptions are valid, and therefore d0 = d∗0. All the figures are given
in Table 1.

Table 1: Lower bound, upper bound, and conjectured value of d0

t S1 S2 S1 − S2 f ′(1/2) d∗0
3 0.964884753 0.000869699 0.964015054 0.965745539 0.965745543
4 0.993830708 0.000112882 0.993717825 0.994046008 0.994046007
5 0.998944571 0.000016098 0.998928472 0.998991788 0.998991787
6 0.999822887 0.000002401 0.999820485 0.999832498 0.999832497
7 0.999970695 0.000000367 0.999970328 0.999972560 0.999972559
8 0.999995201 0.000000056 0.999995144 0.999995551 0.999995550
9 0.999999220 0.000000008 0.999999211 0.999999285 0.999999284
10 0.999999874 0.000000001 0.999999872 0.999999886 0.999999885

In the next section we shall define the notion of "almost all" increasing se-
quences of integers

(
s(n)

)
. For almost all sequences

(
s(n)

)
and for all irrational
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numbers x,
(
xs(n)

)
is equidistributed. This already shows how exceptional those

sequences
(
s(n)

)
are for which

(
θs(n)

)
is equidistributed.

Furthermore R. Salem [11] demonstrated that if
(
s(n)

)
is any increasing se-

quence such that s(n) = O(n), then the Hausdorff dimension of the set of x for
which

(
xs(n)

)
is not equidistributed (mod 1), vanishes. The x’s in Theorem 1.1

are therefore "rare" if indeed s(n) ∼ 1
d0
n.

3. Metrical Results

Let S be the family of finite or infinite strictly increasing sequences of positive
integers. To each s =

(
s(n)

) ∈ S corresponds a unique sequence χ ∈ D = {0, 1}N

(characteristic sequence) and conversely:

χ(n) =

{
1 if n ∈ s,

0 if not.

Any measure on D lifts to a measure on S.
Let 0 < d < 1. Put m{1} = d and m{0} = 1 − d. Then μ =

∏
m is

a probability measure on D to which corresponds a probability measure on S
which we still denote by μ or μd if we wish to emphasize the parameter d.

Theorem 3.1. Consider the polynomial P (X) =
∑ν

�=0 a�X
� where at least one of

the coefficients a�, 1 � � � ν is irrational. Then for μ-almost all sequences s ∈ S,
P (s) =

(
P (s(n))

)
is equidistributed (mod 1).

Theorem 3.2. If θ is a Salem number then μ-almost no sequence
(
θs(n)

)
is

equidistributed (mod 1). More generally, if P is any positive integer valued poly-
nomial, θP (s) =

(
θP (s(n))

)
is μ-almost never equidistributed (mod 1).

We have seen in Section 1 that there exists a d0 ∈ ]0, 1[ for which no sequence
s =

(
s(n)

)
exists such that s(n) ∼ 1

dn (d > d0) and
(
θs(n)

)
equidistributed

(mod 1). For d � d0 there do exist d-density equidistributed subsequences
(
θs(n)

)
but they are μd-rare.

Remark. For d ∈ [0, 1] let T (d) be the family of increasing sequences
(
s(n)

)
of

density d such that
(
θs(n)

)
is equidistributed (mod 1). We know that T (d) = ∅ as

long as d > d0. Could it be true that as d decreases to 0 the family T (d) "increases
in size"? Could one devise a way to show that this is so, e.g. by defining a fractal
dimension adapted to the question?

4. Proof of Theorem 3.1

A sequence χ ∈ {0, 1}N is said to be d-normal if all finite words w = w1 . . . w� ∈
{0, 1}� occur in χ with the frequency dk(1− d)�−k where k is the number of 1’s in
w. It is well known that μd-almost all χ are d-normal. For such a sequence

lim
N→∞

1
N

∑
n<N

(
χ(n) − d

)
= 0
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and more generally, for all k � 1 and all integers h1 � · · · � hk where at least one
couple hi < hi+1

lim
N→∞

1
N

∑
n<N

k∏
i=1

(
χ(n+ hi) − d

)
= 0 .

A sequence Y is said to be uncorrelated if for all k � 1 and all integers h1 � · · · �
hk where at least one couple hi < hi+1

lim
N→∞

1
N

∑
n<N

k∏
i=1

Y (n+ hi) = 0 .

If χ ∈ {0, 1}N is d-normal, then as remarked above, χ− d is uncorrelated.

Lemma 4.1. For all real polynomials P and all uncorrelated sequences Y

lim
N→∞

1
N

∑
n<N

Y (n) exp 2iπP (n) = 0 .

Proof. The result is obviously true if degP = 0. We now argue by induction
and assume the truth of the lemma for all P with degP = ν − 1 � 0. Let
Q be any polynomial of degree ν and let h � 1 be an arbitrary integer. Put
f(n) = Y (n) exp 2iπQ(n) and consider the correlation

= lim
N→∞

1
N

∑
n<N

f(n)f(n+ h)

= lim
N→∞

1
N

∑
n<N

Y (n)Y (n+ h) exp 2iπ
(
Q(n+ h) −Q(n)

)
.

The product Z(n) = Y (n)Y (n + h) is again uncorrelated and the polynomial
P (n) = Q(n+ h) −Q(n) is of degree ν − 1. Therefore

lim
N→∞

1
N

∑
n<N

f(n)f(n+ h) = 0

for all h � 1. A classical result (see J. Bass [2]) then implies

lim
N→∞

1
N

∑
n<N

f(n) = 0 . �

We now prove Theorem 3.1. Suppose P (X) =
∑ν

�=0 a�X
� where at least one

of the coefficients a1, . . . , aν is irrational. Consider the exponential mean

= lim
N→∞

1
N

∑
n<N

exp 2iπhP
(
s(n)

)
= lim

N→∞
1
N

∑
�<s(N)

χ(�) exp 2iπhP (�)

where h � 1 is an integer, and where χ is the characteristic function of s.



270 Christophe Doche, Michel Mendès France, Jean-Jacques Ruch

For μ = μd-almost all s, s(N) ∼ 1
dN = L. The theorem will be established if

for L → ∞
1
L

∑
�<L

χ(�) exp 2iπhP (�) → 0 .

The above average can be decomposed into two parts

1
L

∑
�<L

(
χ(�) − d

)
exp 2iπhP (�) +

d

L

∑
�<L

exp 2iπhP (�) .

For μd-almost all s, χ− d is uncorrelated and therefore the first average converges
to 0. As for the second average, it converges to 0 because the sequence is well
known to be equidistributed (mod 1) [12].

5. Proof of Theorem 3.2

Let P (X) =
∑ν

�=0 a�X
�, aν > 0, be a polynomial which takes integer values when

X runs through N. If s ∈ S,

θP
(
s(n)
)
≡ −2

t−1∑
j=1

cos 2πωjP
(
s(n)

)
+ o(1)

if P is nonconstant (if P is constant the theorem is trivial). The (t− 1) polynomi-
als ω1P, . . . , ωt−1P all have irrational coefficients. According to Theorem 3.1, the
sequences

(
ωjP

(
s(n)

))
are μd-almost surely equidistributed (mod 1) and more to

the point, for all h = (h1, . . . , ht−1) ∈ Zt−1\{0} the sequences hωP (s) are equidis-
tributed (mod 1). Here hωP (s) is the scalar product of h and ω = (ω1, . . . , ωt−1).
Therefore the (t − 1) dimensional sequence

(
ω1P (s), . . . , ωt−1P (S)

)
is equidis-

tributed in
(
R/Z

)t−1 and as in the first section, we conclude that

1
N

∑
n<N

exp 2iπkP
(
s(n)

) −→
N→∞

J0(4kπ)t−1 �= 0 .

6. A Final Remark

All our arguments are based on the fact that θn is essentially a finite sum of
cos 2πωjn. We could probably extend some of our results to the study of sequences
u =

(
u(n)

)
of the type

u(n) =
t∑

j=1

F (nωj) .
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