EQUIDISTRIBUTION MODULO 1 AND SALEM NUMBERS

Christophe Doche, Michel Mendès France, Jean-Jacques Ruch

À Władysław Narkiewicz à l'occasion de son 70^{e} anniversaire

Abstract

Let θ be a Salem number. It is well-known that the sequence $\left(\theta^{n}\right)$ modulo 1 is dense but not equidistributed. In this article we discuss equidistributed subsequences. Our first approach is computational and consists in estimating the supremum of $\lim _{n \rightarrow \infty} n / s(n)$ over all equidistributed subsequences $\left(\theta^{s(n)}\right)$. As a result, we obtain an explicit upper bound on the density of any equidistributed subsequence. Our second approach is probabilistic. Defining a measure on the family of increasing integer sequences, we show that relatively to that measure, almost no subsequence is equiditributed. Keywords: Salem number, Equidistribution modulo 1, J_{0} Bessel function.

1. Subsequences

Let $u=(u(n))$ be an infinite sequence of real numbers. A subsequence $u \circ s=$ $(u(s(n)))$ is said to have density $d \leqslant 1$ if as n increases $n / s(n) \rightarrow d$. Suppose the sequence u is dense $(\bmod 1)$. Answering a question of one of us in 1973, Y. Dupain and J. Lesca $[6]$ established that the set of densities d of equidistributed $(\bmod 1)$ subsequences of u is a closed interval $\left[0, d_{0}\right]$ where $d_{0} \leqslant 1$ depends on u. They also showed how to compute d_{0}. For $0 \leqslant x \leqslant 1$, define the repartition function

$$
f(x)=\lim _{N \rightarrow \infty} \frac{1}{N} \operatorname{card}\{n<N \mid\{u(n)\}<x\}
$$

where $\{u(n)\}$ is the fractional part of $u(n)$. We only consider those x where $f(x)$ and its derivative $f^{\prime}(x)$ both exist, i.e. almost everywhere. Y. Dupain and J. Lesca proved that $d_{0}=\inf _{x} f^{\prime}(x)$.

A particularly striking example of such an instance concerns the distribution $(\bmod 1)$ of the powers of Salem numbers $\theta>1$. A Salem number [10] (see also [3]) is a real algebraic integer whose algebraic conjugates other than θ all lie in the unit disc $|z| \leqslant 1$ with one conjugate at least on the boundary $|z|=1$. It is then known that one and only one of these conjugates θ^{-1} is inside the disc while the others are on the boundary. The degree $2 t$ of θ is necessarily even and at least equal to 4 .

[^0]Denote the different conjugates by $\theta, \theta^{-1}, \exp \left(\pm 2 i \pi \omega_{1}\right), \ldots, \exp \left(\pm 2 i \pi \omega_{t-1}\right)$. The sum of all conjugates of an algebraic integer is an integer and therefore for all $n \in \mathbb{N}$,

$$
\theta^{n}+\theta^{-n}+2 \sum_{j=1}^{t-1} \cos 2 \pi n \omega_{j} \equiv 0 \quad(\bmod 1)
$$

so that the distribution of $\theta^{n}(\bmod 1)$ is essentially that of $-2 \sum_{j=1}^{t-1} \cos 2 \pi n \omega_{j}$. Ch. Pisot and R. Salem [9] observed that $1, \omega_{1}, \ldots, \omega_{t-1}$ are \mathbb{Z}-linearly independent so that, according to Kronecker, the $(t-1)$ dimensional sequence $\left(\omega_{1} n, \ldots, \omega_{t-1} n\right)$ is equidistributed in $(\mathbb{R} / \mathbb{Z})^{t-1}$. As a consequence, the sequence $\left(\theta^{n}\right)$ is therefore clearly dense $(\bmod 1)$. Furthermore, for all $k \in \mathbb{N} \backslash\{0\}$

$$
\begin{align*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n<N} \exp 2 i \pi k \theta^{n} & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n<N} \prod_{j=1}^{t-1} \exp \left(-2 i \pi k .2 \cos 2 \pi n \omega_{j}\right) \\
& =\left(\int_{0}^{1} \exp (-4 i \pi k \cos 2 \pi x) d x\right)^{t-1} \\
& =J_{0}(4 \pi k)^{t-1} \neq 0 \tag{1.1}
\end{align*}
$$

where $J_{0}(\cdot)$ is the Bessel function of the first kind of index 0 .
Since $\left|J_{0}(\alpha)\right|<1$ for all real $\alpha \neq 0$, the above limit tends to 0 as $t \rightarrow \infty$. Y. Dupain and J. Lesca conclude that for large degrees t, the sequence $\left(\theta^{n}(\bmod 1)\right)$ is close to being equidistributed, a fact that S. Akiyama and Y. Tanigawa [1] make very explicit in their article. This is quite remarkable since even though for almost all real $\tau>1,\left(\tau^{n}\right)$ is equidistributed $(\bmod 1)$, no explicit τ is known (J. F. Koksma [8]).

We know the existence of $d_{0}<1$ (and quite obviously $d_{0}>0$) such that $s(n) \sim$ $\frac{1}{d_{0}} n$ and $\left(\theta^{s(n)}\right)$ equidistributed $(\bmod 1)$. We shall see later on that those sequences are rare. But we can already guess why these sequences $s(n)$ are exceptional. This is a consequence of our first rather trivial theorem.
Theorem 1.1. If $s(n)$ is an increasing sequence of integers such that $\left(\theta^{s(n)}\right)$ is equidistributed $(\bmod 1)$, then there exists an irrational x such that $x s(n)$ is not equidistributed $(\bmod 1)$.
Proof. We note that

$$
\theta^{s(n)} \equiv-2 \sum_{j=1}^{t-1} \cos 2 \pi \omega_{j} s(n)-\theta^{-s(n)} \quad(\bmod 1)
$$

The $(t-1)$ dimensional sequence $\left(\omega_{1} s(n), \ldots, \omega_{t-1} s(n)\right)$ is not equidistributed in $(\mathbb{R} / \mathbb{Z})^{t-1}$ since if it were, $\left(\theta^{s(n)}\right)$ would not be equidistributed $(\bmod 1)$. Therefore there exist integers h_{1}, \ldots, h_{t-1} not all 0 such that

$$
h_{1} \omega_{1} s(n)+\cdots+h_{t-1} \omega_{t-1} s(n)
$$

is not equidistributed $(\bmod 1)$. The theorem is established with

$$
x=\sum_{j=1}^{t-1} h_{j} \omega_{j}
$$

Next, we develop a method to approximate d_{0} for the sequence $\left(\theta^{n}(\bmod 1)\right)$, where θ is a Salem number of degree $2 t$. The results indicate that d_{0} tends to 1 very quickly as t tends to infinity. A key result in this approach is the study of the minimum of a cosine series on $] 0,1[$. Under certain conditions, we show that the minimum is always attained at $x=1 / 2$, cf. Theorem 2.1.

2. Explicit Computations of d_{0}

The repartition function is explicitly determined for a Salem number of degree 4, cf. [5]. Namely,

$$
f(x)=\frac{5}{2}-\frac{1}{\pi}\left(\arccos \frac{x-2}{2}+\arccos \frac{x}{2}+\arccos \frac{x-1}{2}+\arccos \frac{x+1}{2}\right) .
$$

It follows that

$$
f^{\prime}(x)=\frac{1}{2 \pi}\left(\frac{1}{\sqrt{1-\left(\frac{x}{2}-1\right)^{2}}}+\frac{1}{\sqrt{1-\left(\frac{x-1}{2}\right)^{2}}}+\frac{1}{\sqrt{1-\left(\frac{x}{2}\right)^{2}}}+\frac{1}{\sqrt{1-\left(\frac{x+1}{2}\right)^{2}}}\right) .
$$

A direct study of $f^{\prime}(x)$ shows that it attains its minimum for $x=\frac{1}{2}$ and gives the exact value of d_{0}, i.e.

$$
\begin{equation*}
\frac{1}{\pi}\left(\frac{4}{\sqrt{7}}+\frac{4}{\sqrt{15}}\right)=0.809988350 \ldots \tag{2.1}
\end{equation*}
$$

For a Salem number of degree $2 t$ with $t>2$, we want to estimate the corresponding d_{0}. First, let us show the following lemma.

Lemma 2.1. Let θ be a Salem number of degree $2 t$, then the repartition function $f(x)$ of the sequence $\left(\theta^{n}\right)$ modulo 1 satisfies

$$
f^{\prime}(x)=1+2 \sum_{k=1}^{\infty} J_{0}(4 k \pi)^{t-1} \cos 2 \pi k x
$$

on $] 0,1[$, for all $t \geqslant 2$.
Proof. We have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n<N} \exp 2 i \pi k \theta^{n}=\int_{0}^{1} \exp 2 i \pi k x d \nu
$$

where ν is the repartition function $f(x)$. According to Y. Dupain [5] the measure $d \nu=f^{\prime}(x) d x$ is absolutely continuous. It follows from (1.1) that

$$
J_{0}(4 \pi k)^{t-1}=\int_{0}^{1} \exp 2 i \pi k x f^{\prime}(x) d x
$$

We can associate with $f^{\prime}(x)$ its Fourier series

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}} J_{0}(4 \pi k)^{t-1} \exp (-2 i \pi k x)=1+2 \sum_{k=1}^{\infty} J_{0}(4 \pi k)^{t-1} \cos 2 \pi k x . \tag{2.2}
\end{equation*}
$$

If this series converges uniformly, then its sum is continuous and equals $f^{\prime}(x)$. The lemma is clear for $t>3$, since $J_{0}(x)=O\left(x^{-\frac{1}{2}}\right)$ and we even have equality on $[0,1]$. For $t=2$ and 3 , we need the following result.
Lemma 2.2. The sequence $\left(J_{0}(4 \pi k)\right)$ is positive for all $k>0$ and strictly decreasing.

Proof. In [1, Lemma 2], it is shown that

$$
J_{0}(2 \pi k)=\frac{1}{\pi \sqrt{k}}\left(\frac{1}{\sqrt{2}}-\frac{1}{16 \sqrt{2} \pi k}+R\right), \text { with }|R| \leqslant \frac{9}{512 \pi^{2} k^{2}}
$$

It is straightforward to deduce that

$$
\begin{equation*}
0 \leqslant \frac{1}{2 \pi \sqrt{k}}-J_{0}(4 \pi k) \leqslant \frac{1}{61 \pi^{2} k^{\frac{3}{2}}} \tag{2.3}
\end{equation*}
$$

This proves the first part of the lemma. Now

$$
\frac{1}{2 \pi}\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right) \geqslant \frac{1}{8 \pi k^{\frac{3}{2}}}>\frac{2}{61 \pi^{2} k^{\frac{3}{2}}} .
$$

This shows that

$$
\frac{1}{2 \pi \sqrt{k}}-\frac{1}{61 \pi^{2} k^{\frac{3}{2}}}>\frac{1}{2 \pi \sqrt{k+1}}-\frac{1}{61 \pi^{2}(k+1)^{\frac{3}{2}}}
$$

which implies that $J_{0}(4 \pi k)>J_{0}(4 \pi(k+1))$, for $k>0$.
We deduce that the series (2.2) is uniformly convergent on the compact $[\varepsilon, 1-\varepsilon]$, for any $\varepsilon>0$ and therefore $f^{\prime}(x)$ is equal to this series on $] 0,1[$.

A consequence of Lemma 3.2 is that d_{0} only depends on t and satisfies

$$
d_{0}=\inf _{x \in] 0,1[}\left(1+2 \sum_{k=1}^{\infty} J_{0}(4 k \pi)^{t-1} \cos 2 \pi k x\right)
$$

Next let us recall a definition we shall use later.

Definition 2.1. Let $\left(b_{k}\right)$ be a sequence of real numbers and let $\Delta^{0} b_{k}=b_{k}$ and $\Delta^{n} b_{k}=\Delta^{n-1} b_{k}-\Delta^{n-1} b_{k+1}$, for all $n>0$. The sequence $\left(b_{k}\right)$ is said to be totally monotone if $\Delta^{n} b_{k} \geqslant 0$ for all k, and $n=0,1,2, \ldots$

By a famous result of Hausdorff [7], the total monotonicity of $\left(b_{k}\right)$ is equivalent to the existence of a nonnegative measure μ on $[0,1]$ such that the b_{k} 's are the moments of μ, i.e.

$$
b_{k}=\int_{0}^{1} u^{k} d \mu
$$

Example 2.1. Let s be a real positive number. The sequence $\left(b_{k}\right)$ defined by

$$
b_{k}=\frac{1}{(k+1)^{s}}
$$

for all $k \geqslant 0$ is totally monotone.
Theorem 2.1. Let (a_{k}) be a sequence of nonnegative real numbers (except maybe for a_{0}). Assume that $\left(a_{k+1}\right), k \geqslant 0$ is totally monotone, then the function

$$
g(x)=\sum_{k=0}^{\infty} a_{k} \cos 2 \pi k x
$$

is well-defined and decreasing on the interval]0,1/2]. As a corollary, $g(x)$ attains its minimum for $x=\frac{1}{2}$.

Proof. Let us introduce

$$
h(x)=\sum_{k=1}^{\infty} a_{k} \cos 2 \pi k x=\sum_{k=0}^{\infty} b_{k} \cos 2 \pi(k+1) x .
$$

Since, g and h only differ by a_{0}, it is enough to study h to prove the theorem on g. Since $\left(b_{k}\right)=\left(a_{k+1}\right), \Delta b_{k} \geqslant 0$, for all k. So the sequence $\left(b_{k}\right)$ is decreasing and this shows that the series $h(x)$ is convergent for all $x \in] \varepsilon, 1-\varepsilon[$, for all $\varepsilon>0$. Since $h(x)=h(1-x)$, it is enough to study h on $] 0,1 / 2]$.

Since the b_{k} 's are the moments of a certain nonnegative measure μ, we obtain

$$
\begin{aligned}
h(x) & =\sum_{k=0}^{\infty} b_{k} \cos 2 \pi(k+1) x \\
& =\sum_{k=0}^{\infty} \int_{0}^{1} u^{k} \cos 2 \pi(k+1) x d \mu \\
& =\Re \int_{0}^{1} \frac{e^{2 i \pi x}}{1-e^{2 i \pi x} u} d \mu .
\end{aligned}
$$

The last equality being justified by the nonnegativity of μ. It follows that

$$
h(x)=\int_{0}^{1} \frac{\cos 2 \pi x-u}{1+u^{2}-2 u \cos 2 \pi x} d \mu .
$$

To show that $h(x)$ is decreasing on $] 0,1 / 2]$, evaluate $h(x)-h(y)$ for $0<x \leqslant y \leqslant$ $1 / 2$. Let

$$
j_{x}(u)=\frac{\cos 2 \pi x-u}{1+u^{2}-2 u \cos 2 \pi x}
$$

Then reducing to the same (positive) denominator, we see that the numerator of $j_{x}(u)-j_{y}(u)$ is $(\cos 2 \pi x-\cos 2 \pi y)\left(1-u^{2}\right)$ which is nonnegative for all $u \in[0,1]$.

Since μ is a nonnegative measure, we deduce that $h(x) \geqslant h(y)$ whenever $x \leqslant$ $y \leqslant 1 / 2$ and that $h(x) \geqslant h(1 / 2)$ for all $x \in] 0,1 / 2]$. These results apply trivially to the function g.

Corollary 2.1. Let $s>0$. Then the series

$$
g(x)=a_{0}+\sum_{k=1}^{\infty} \frac{\cos 2 \pi k x}{k^{s}}
$$

is decreasing on $] 0,1 / 2]$ and satisfies

$$
g(x) \geqslant a_{0}+\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{s}}
$$

Remark. It is possible to compute $g(1 / 2)$ very efficiently following the method explained in [4]. For instance, for the sequence $\left(a_{k}\right)$ defined by a given a_{0} and $a_{k}=1 / \sqrt{k}$, for $k \geqslant 1$, we have that

$$
g(x) \geqslant g(1 / 2)=a_{0}-0.6048986434216303702472659142359554997597625451 \ldots
$$

All the digits in the last equality are correct as can be established knowing the first $60 a_{k}$'s.

Unfortunately, we are not able to show that the sequence $\left(J_{0}(4 \pi k)^{t-1}\right), k>0$ is totally monotone, though the extensive numerical computations of its first n th forward differences seem to indicate that this is the case. Based on the case $t=2$ and also on direct computations of $f^{\prime}(x)$ for various x, we conjecture that $\inf _{x} f^{\prime}(x)=f^{\prime}(1 / 2)$ for $t \geqslant 2$. However, to be totally rigorous, we cannot directly apply Theorem 2.1 to obtain the value of d_{0}. Nevertheless, this result will give an approximation of d_{0}, for $t>2$.

The idea is to apply (2.3) to deduce that

$$
\left|J_{0}(4 \pi k)^{t-1}-\frac{1}{(2 \pi \sqrt{k})^{t-1}}\right| \leqslant \frac{1}{61 \pi^{2} k^{\frac{3}{2}}} \frac{(t-1)}{(2 \pi \sqrt{k})^{t-2}} .
$$

It follows that

$$
\left|f^{\prime}(x)-1-2 \sum_{k=1}^{\inf } \frac{\cos 2 \pi k x}{(2 \pi \sqrt{k})^{t-1}}\right| \leqslant \sum_{k=1}^{\inf } \frac{2}{61 \pi^{2} k^{\frac{3}{2}}} \frac{(t-1)}{(2 \pi \sqrt{k})^{t-2}}
$$

which, combined with Theorem 2.1, implies that for all $x \in] 0,1[$

$$
f^{\prime}(x) \geqslant \underbrace{1+2 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 \pi \sqrt{k})^{t-1}}}_{S_{1}}-\underbrace{\sum_{k=1}^{\infty} \frac{2}{61 \pi^{2} k^{\frac{3}{2}}} \frac{(t-1)}{(2 \pi \sqrt{k})^{t-2}}}_{S_{2}}
$$

The main contribution, i.e. S_{1}, can be obtained using the acceleration convergence method explained in [4], whereas the second series S_{2} is simply (up to a constant) an evaluation of the ζ function at the point $(t+1) / 2$. This gives a lower bound for d_{0}. An upper bound is given by $d_{0} \leqslant f^{\prime}(1 / 2)$, where $f^{\prime}(1 / 2)$ is bounded, for any K even, by the truncated alternating series

$$
1+2 \sum_{k=1}^{K}(-1)^{k} J_{0}(4 \pi k)^{t-1}
$$

The convergence is quite slow for $t=3$ so that we fixed $K=2.10^{6}$ to obtain a relevant upper bound. Much less terms are necessary for larger t. A conjectured value d_{0}^{*} is also given relying on the assumption that $d_{0}=f^{\prime}(1 / 2)$ and on the computation of $f^{\prime}(1 / 2)$ using [4]. The method seems to converge and at most the first 10 terms are sufficient to give a result with an error less than 10^{-10}. Also, we checked for $t=2$ that the value given in (2.1) is, up to several hundred digits, equal to the one computed with this approach.

Note that if the sequence $\left(J_{0}(4 \pi k)^{t-1}\right)$, defined for $k>0$ is totally monotone, then both assumptions are valid, and therefore $d_{0}=d_{0}^{*}$. All the figures are given in Table 1.

Table 1: Lower bound, upper bound, and conjectured value of d_{0}

t	S_{1}	S_{2}	$S_{1}-S_{2}$	$f^{\prime}(1 / 2)$	d_{0}^{*}
3	0.964884753	0.000869699	0.964015054	0.965745539	0.965745543
4	0.993830708	0.000112882	0.993717825	0.994046008	0.994046007
5	0.998944571	0.000016098	0.998928472	0.998991788	0.998991787
6	0.999822887	0.000002401	0.999820485	0.999832498	0.999832497
7	0.999970695	0.000000367	0.999970328	0.999972560	0.999972559
8	0.999995201	0.000000056	0.999995144	0.999995551	0.999995550
9	0.999999220	0.000000008	0.999999211	0.999999285	0.999999284
10	0.999999874	0.000000001	0.999999872	0.999999886	0.999999885

In the next section we shall define the notion of "almost all" increasing sequences of integers $(s(n))$. For almost all sequences $(s(n))$ and for all irrational
numbers $x,(x s(n))$ is equidistributed. This already shows how exceptional those sequences $(s(n))$ are for which $\left(\theta^{s(n)}\right)$ is equidistributed.

Furthermore R. Salem [11] demonstrated that if $(s(n))$ is any increasing sequence such that $s(n)=O(n)$, then the Hausdorff dimension of the set of x for which $(x s(n))$ is not equidistributed $(\bmod 1)$, vanishes. The x 's in Theorem 1.1 are therefore "rare" if indeed $s(n) \sim \frac{1}{d_{0}} n$.

3. Metrical Results

Let S be the family of finite or infinite strictly increasing sequences of positive integers. To each $s=(s(n)) \in S$ corresponds a unique sequence $\chi \in D=\{0,1\}^{\mathbb{N}}$ (characteristic sequence) and conversely:

$$
\chi(n)= \begin{cases}1 & \text { if } n \in s \\ 0 & \text { if not }\end{cases}
$$

Any measure on D lifts to a measure on S.
Let $0<d<1$. Put $m\{1\}=d$ and $m\{0\}=1-d$. Then $\mu=\prod m$ is a probability measure on D to which corresponds a probability measure on S which we still denote by μ or μ_{d} if we wish to emphasize the parameter d.
Theorem 3.1. Consider the polynomial $P(X)=\sum_{\ell=0}^{\nu} a_{\ell} X^{\ell}$ where at least one of the coefficients $a_{\ell}, 1 \leqslant \ell \leqslant \nu$ is irrational. Then for μ-almost all sequences $s \in S$, $P(s)=(P(s(n)))$ is equidistributed $(\bmod 1)$.
Theorem 3.2. If θ is a Salem number then μ-almost no sequence $\left(\theta^{s(n)}\right)$ is equidistributed $(\bmod 1)$. More generally, if P is any positive integer valued polynomial, $\theta^{P(s)}=\left(\theta^{P(s(n))}\right)$ is μ-almost never equidistributed $(\bmod 1)$.

We have seen in Section 1 that there exists a $\left.d_{0} \in\right] 0,1$ [for which no sequence $s=(s(n))$ exists such that $s(n) \sim \frac{1}{d} n\left(d>d_{0}\right)$ and $\left(\theta^{s(n)}\right)$ equidistributed $(\bmod 1)$. For $d \leqslant d_{0}$ there do exist d-density equidistributed subsequences $\left(\theta^{s(n)}\right)$ but they are μ_{d}-rare.
Remark. For $d \in[0,1]$ let $T(d)$ be the family of increasing sequences $(s(n))$ of density d such that $\left(\theta^{s(n)}\right)$ is equidistributed $(\bmod 1)$. We know that $T(d)=\emptyset$ as long as $d>d_{0}$. Could it be true that as d decreases to 0 the family $T(d)$ "increases in size"? Could one devise a way to show that this is so, e.g. by defining a fractal dimension adapted to the question?

4. Proof of Theorem 3.1

A sequence $\chi \in\{0,1\}^{\mathbb{N}}$ is said to be d-normal if all finite words $w=w_{1} \ldots w_{\ell} \in$ $\{0,1\}^{\ell}$ occur in χ with the frequency $d^{k}(1-d)^{\ell-k}$ where k is the number of 1 's in w. It is well known that μ_{d}-almost all χ are d-normal. For such a sequence

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n<N}(\chi(n)-d)=0
$$

and more generally, for all $k \geqslant 1$ and all integers $h_{1} \leqslant \cdots \leqslant h_{k}$ where at least one couple $h_{i}<h_{i+1}$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n<N} \prod_{i=1}^{k}\left(\chi\left(n+h_{i}\right)-d\right)=0 .
$$

A sequence Y is said to be uncorrelated if for all $k \geqslant 1$ and all integers $h_{1} \leqslant \cdots \leqslant$ h_{k} where at least one couple $h_{i}<h_{i+1}$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n<N} \prod_{i=1}^{k} Y\left(n+h_{i}\right)=0
$$

If $\chi \in\{0,1\}^{\mathbb{N}}$ is d-normal, then as remarked above, $\chi-d$ is uncorrelated.
Lemma 4.1. For all real polynomials P and all uncorrelated sequences Y

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n<N} Y(n) \exp 2 i \pi P(n)=0
$$

Proof. The result is obviously true if $\operatorname{deg} P=0$. We now argue by induction and assume the truth of the lemma for all P with $\operatorname{deg} P=\nu-1 \geqslant 0$. Let Q be any polynomial of degree ν and let $h \geqslant 1$ be an arbitrary integer. Put $f(n)=Y(n) \exp 2 i \pi Q(n)$ and consider the correlation

$$
\begin{aligned}
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n<N} \overline{f(n)} f(n+h) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n<N} Y(n) Y(n+h) \exp 2 i \pi(Q(n+h)-Q(n)) .
\end{aligned}
$$

The product $Z(n)=Y(n) Y(n+h)$ is again uncorrelated and the polynomial $P(n)=Q(n+h)-Q(n)$ is of degree $\nu-1$. Therefore

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n<N} \overline{f(n)} f(n+h)=0
$$

for all $h \geqslant 1$. A classical result (see J. Bass [2]) then implies

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n<N} f(n)=0 .
$$

We now prove Theorem 3.1. Suppose $P(X)=\sum_{\ell=0}^{\nu} a_{\ell} X^{\ell}$ where at least one of the coefficients a_{1}, \ldots, a_{ν} is irrational. Consider the exponential mean

$$
\begin{aligned}
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n<N} \exp 2 i \pi h P(s(n)) \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{\ell<s(N)} \chi(\ell) \exp 2 i \pi h P(\ell)
\end{aligned}
$$

where $h \geqslant 1$ is an integer, and where χ is the characteristic function of s.

For $\mu=\mu_{d}$-almost all $s, s(N) \sim \frac{1}{d} N=L$. The theorem will be established if for $L \rightarrow \infty$

$$
\frac{1}{L} \sum_{\ell<L} \chi(\ell) \exp 2 i \pi h P(\ell) \rightarrow 0
$$

The above average can be decomposed into two parts

$$
\frac{1}{L} \sum_{\ell<L}(\chi(\ell)-d) \exp 2 i \pi h P(\ell)+\frac{d}{L} \sum_{\ell<L} \exp 2 i \pi h P(\ell) .
$$

For μ_{d}-almost all $s, \chi-d$ is uncorrelated and therefore the first average converges to 0 . As for the second average, it converges to 0 because the sequence is well known to be equidistributed $(\bmod 1)[12]$.

5. Proof of Theorem 3.2

Let $P(X)=\sum_{\ell=0}^{\nu} a_{\ell} X^{\ell}, a_{\nu}>0$, be a polynomial which takes integer values when X runs through \mathbb{N}. If $s \in S$,

$$
\theta^{P(s(n))} \equiv-2 \sum_{j=1}^{t-1} \cos 2 \pi \omega_{j} P(s(n))+o(1)
$$

if P is nonconstant (if P is constant the theorem is trivial). The $(t-1)$ polynomials $\omega_{1} P, \ldots, \omega_{t-1} P$ all have irrational coefficients. According to Theorem 3.1, the sequences $\left(\omega_{j} P(s(n))\right)$ are μ_{d}-almost surely equidistributed $(\bmod 1)$ and more to the point, for all $\underline{h}=\left(h_{1}, \ldots, h_{t-1}\right) \in \mathbb{Z}^{t-1} \backslash\{0\}$ the sequences $\underline{h} \underline{\omega} P(s)$ are equidistributed $(\bmod 1)$. Here $\underline{h} \underline{\omega} P(s)$ is the scalar product of \underline{h} and $\underline{\omega}=\left(\omega_{1}, \ldots, \omega_{t-1}\right)$. Therefore the $\left(t_{-1}{ }^{t-1}\right)$ dimensional sequence $\left(\omega_{1} P(s), \ldots, \omega_{t-1} P(S)\right)$ is equidistributed in $(\mathbb{R} / \mathbb{Z})^{t-1}$ and as in the first section, we conclude that

$$
\frac{1}{N} \sum_{n<N} \exp 2 i \pi k P(s(n)) \underset{N \rightarrow \infty}{\longrightarrow} J_{0}(4 k \pi)^{t-1} \neq 0
$$

6. A Final Remark

All our arguments are based on the fact that θ^{n} is essentially a finite sum of $\cos 2 \pi \omega_{j} n$. We could probably extend some of our results to the study of sequences $u=(u(n))$ of the type

$$
u(n)=\sum_{j=1}^{t} F\left(n \omega_{j}\right) .
$$

Acknowledgement. The authors had long discussions with Vitaly Bergelson and with Bahman Saffari whom we would very much like to thank warmheartedly.

References

[1] S. Akiyama and Y. Tanigawa, Salem numbers and uniform distribution modulo 1, Publ. Math. Debrecen 64(3-4) (2004), 329-341.
[2] J. Bass, Suites uniformément denses, moyennes trigonométriques, fonctions pseudo-aléatoires, Bull. Soc. Math. France 87 (1959), 1-64.
[3] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. PathiauxDelefosse, and J.-P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel 1992. With a preface by David W. Boyd.
[4] H. Cohen, F. Rodriguez-Villegas, and D. Zagier, Convergence acceleration of alternating series, Experiment. Math. 9(1) (2000), 3-12.
[5] Y. Dupain, Répartition et discrépance. PhD thesis, Université Bordeaux I, 1978.
[6] Y. Dupain and J. Lesca, Répartition des sous-suites d'une suite donnée. Acta Arith., 23 (1973), 307-314.
[7] F. Hausdorff, Momentprobleme für ein endliches Intervall, Math. Z. 16(1) (1923), 220-248.
[8] J. F. Koksma, Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins, Compositio Math. 2 (1935), 250-258.
[9] Ch. Pisot and R. Salem, Distribution modulo 1 of the powers of real numbers larger than 1, Compositio Math. 16 (1964), 164-168.
[10] R. Salem, Power series with integral coefficients, Duke Math. J. 12 (1945), 153-172.
[11] R. Salem, Uniform distribution and capacity of sets, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] (Tome Supplémentaire) (1952), 193195.
[12] Hermann Weyl, Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77(3) (1916), 313-352.

Addresses: Christophe Doche: Division of ICS, Building E6A Room 360, Macquarie University, NSW 2109 Australia, Michel Mendès France, Jean-Jacques Ruch: Laboratoire A2X, Université Bordeaux I, 351, cours de la Libération, F-33405 Talence Cedex France
E-mail: doche@ics.mq.edu.au, michel.mendes-france@math.u-bordeaux1.fr, jean-jacques.ruch@ math.u-bordeaux1.fr, mmf@math.u-bordeaux.fr, ruch@math.u-bordeaux.fr
Received: 18 December 2007; revised: 16 July 2008

[^0]: Mathematics Subject Classification: 11K06, 11J71.

