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Abstract: We characterize some non-negative multiplicative functions f(n) such that

limx→+∞ 1
x

∑
16n6x

n∈A

f(n) exists and is positive, but there exists a subset A(f) of N of den-

sity 1 such that limx→+∞ 1
x

∑
16n6x
n∈A(f)

f(n) = 0. An application to the case of the Ramanujan

τ -function is provided.
Keywords: mean-value, multiplicative functions.

1. Introduction

Denoting the set of positive integers by N , we recall that a complex-valued mul-
tiplicative arithmetical function is a function f : N → C , such that f(1) = 1 and
f(mn) = f(m)f(n) whenever gcd(m,n) = 1. Moreover, we denote by P the set
of prime numbers.
1.1. A result of Wirsing. We recall the following result of Wirsing:

Theorem 1. Let f(n) be a non-negative multiplicative function such that for
some constant τ > 0 ,

∑

p6x
f(p) log p = x(τ + o(1)), x→ +∞,

∑

p∈P

∑

26k
f(pk)p−k = o((log x)−1),

f(p) = O(p1−δ) for some δ < 1.

Then, as x→ +∞ , the asymptotic formula
∑

16n6x
f(n) = x

(1 + o(1))
Γ(τ)

∏

p6x
(1− p−1)

∑

06k
f(pk)p−k

holds, where Γ is the gamma-function.
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This result ([7] p.65 Theorem 4.1 and same page Remark 1) leads to closer
consideration of the relationship between a property of the arithmetical meanvalue
of a non-negative multiplicative function f(n),

M(f) = lim
x→+∞

1
x

∑

16n6x
f(n)

and a specificity of the product
∏

p6x
(1− p−1)

∑

06k
f(pk)p−k, x→ +∞

considered as associated to an underlying probability space.

1.2. Main result. We shall prove the following result:

Theorem 2. Let H be the set of non-negative multiplicative functions f(n) sa-
tisfying the following conditions: for any d in N , lim

x→+∞
1
x

∑
16n6x

d divides n

f(n) exists;

∑
p∈P

∑
26k

f(pk)p−k is finite.

Let us assume now that f is an element of H and
∑
p∈P

(1−f(p)1/2)2/p is not finite.

Then, there exists a subset A of N of density 1 such that lim
x→+∞

1
x

∑
16n6x
n∈A

f(n) = 0 .

Remark. Since f is non-negative, the existence of lim
x→+∞

1
x

∑
16n6x

f(n) implies

that f(n) = O(n), and with the condition that
∑
p∈P

∑
26k

f(pk)p−k is finite, this

proves that there exists a positive number C such that for all p in P , the inequality∑
k>0

f(pk)p−k 6 C holds.

1.3. Application. As an application of this result, we can consider the special
case of the Ramanujan τ -function. We recall the following classical notation:

n | m means n divides m ,
n - m means n does not divide m ,

and pk ‖ m means pk | m , but pk+1 - m .
Now, we show that in fact, the function

(
τ(n)n−11/2

)2
satisfies the hypothesis

of the above theorem. We shall get some information on the properties of the
function

(
τ(n)n−11/2

)2
essentially from [5] p.234 et seq., [6] p.357 et seq.

Let τ0(n) be defined by τ0(n) = τ(n)n−11/2 . By Deligne’s theorem [1], we
know that τ0(p)=ςp + ς−1

p , with |ςp| = 1. For s = σ + it, σ > 1, we have

∑

16n
τ0(n)2n−s =

∏

p∈P

((
1 + p−s

) (
(1− ς2pp−s)(1− ς−2

p p−s)(1− p−s))−1
)
,
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and it is not difficult to prove that there exists some positive number C such that
for all p in P , the inequality

∑
k>0

τ0(pk)2p−k 6 C holds, and that
∑
p∈P

∑
26k

τ0(pk)2p−k

is finite.
Now, we remark that

∑

16n
m|n

τ0(n)2n−s =


 ∏

pα ‖ m

∑

k>0

τ0(pα+k)2p−(α+k)s




×



∏

p∈P
p-m

((
1 + p−s

) (
(1− ς2pp−s)(1− ς−2

p p−s)(1− p−s))−1
)



and we write it as
( ∏

pα‖m

((∑

k>0

τ0(pα+k)2p−(α+k)s
)

×
((

1 + p−s
)−1

(1− ς2pp−s)(1− ς−2
p p−s)(1− p−s)

)))

×
(∏

p∈P

((
1 + p−s

) (
(1− ς2pp−s)(1− ς−2

p p−s)(1− p−s))−1
))

,

i.e.

∑

16n
m|n

τ0(n)2n−s =
( ∏

pα‖m

((∑

k>0

τ0(pα+k)2p−(α+k)s
)

×
((

1 + p−s
)−1

(1− ς2pp−s)(1− ς−2
p p−s)(1− p−s)

)))

×
∑

16n
τ0(n)2n−s.

The first term of this product is analytic in a neighborhood of σ > 1. As
a consequence of the famous result of Rankin on the analytic properties of the
series

∑
16n

τ0(n)2n−s ([6] p.360, Th.3), we can use the Ikehara’s theorem [7, p.322,

Theorem A.4.3] and get that the limit lim
x→+∞

1
x

∑
16n6x
m|n

τ0(n)2 exists.

Now, the fact that
∑
p∈P

(1− τ0(p))2/p is not finite is a simple consequence of

the analytic properties of the Dirichlet series with coefficients τ0(n)2 and τ0(n)4 ,
and this has been already considered elsewhere ([4] p.146).
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This allows us to formulate the following result:

Proposition 3. There exists a subset A of N of density 1 such that

lim
x→+∞

1
x

∑

16n6x
n∈A

(
τ(n)n−11/2

)2
= 0.

2. Proof of the main result

2.1. Notation. If d is in N , the arithmetical function I ′d(n) is defined by I ′d(n) =
1 if d | n , and 0 otherwise.

Ep is the discrete set (1, p, p2, ...) and Ep = Ep ∪ {p∞} is the Alexandroff
one-point compactification of the infinite discrete, hence locally compact but not
compact space Ep [7, p. 145]

E =
∏

p∈P
Ep, E =

∏

p∈P
Ep, Ey− =

∏

p∈P
p6y−1

Ep,

Ey+ =
∏

p∈P
y6p

Ep, Ey− =
∏

p∈P
p6y−1

Ep, Ey+ =
∏

p∈P
y6p

Ep.

An element t of E can be viewed as a sequence
(
pvp(t)

)
p∈P , where vp(t) is

either a non-negative integer, or ∞ .
If t is in E , we denote the finite sequence ty− =

{
pvp(t)

}
p6y−1 by ty− .

The product space E =
∏
p∈P Ep , equipped with the product topology, is a

compact space.
We say that a subset of E is elementary (resp. almost elementary) if it can

be written as {θy−} × Ey+ , where θy− is in Ey− (resp. θy− is in Ey−). An
elementary set is open.

2.2. Some lemmas. First,we have the following result:

Lemma 4. Let ν be a probability Borel measure on E such that for any p in P ,
ν({p∞}∏ q∈P

q 6=p
Eq) = 0 . Then, given any open set O of E , there exists an open

subset O∗ of O such that ν(O) = ν(O∗) and O∗ can be written as a disjoint and
at most countable union of elementary subsets of E .

Proof. Let t be in O . We remark that the sequence of almost elementary sub-
sets Ot,k =

(∏
p6k−1

{
pvp(t)

}) × Ek+ is ordered by inclusion, since we have

Ot,k+1 ⊂ Ot,k for any k > 1. Now, due to the topology of E , O contains an

almost elementary subset Ot,y =
(∏

p6y−1

{
pvp(t)

}) × Ey+ . We define y(t) by

y(t) = min
{
y > 3; ty−Ey+ ⊆ O

}
and denote by Ot the almost elementary sub-

set Ot,y(t) =
(∏

p6y(t)−1

{
pvp(t)

})×Ey(t)+ , which is the maximal element of the
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decreasing sequence Ot,k , k > 3 . (We require the index y(t) to be greater than
2 only to avoid the trivial case O = E =

∏
p∈P Ep ). If for some p 6 y(t) − 1,

vp(t) = ∞ , then t is in {p∞}∏ q∈P
q 6=p

Eq . Otherwise, Ot is an elementary set

ty(t)−Ey(t)+ , and we define O∗ as the union of these sets. O∗ is an open subset of
O , and O − O∗ is contained in

⋃
p∈P {p∞}

∏
q∈P
q 6=p

Eq , which is of ν -measure 0,

since it is a countable union of sets of ν -measure 0. Now, we remark that if the in-
tersection of two elementary sets is not empty, then one of them is contained in the
other. Hence we get that the set O∗ can be written as O∗ =

⋃
ty−∈A(O) ty−Ey+ ,

where A(O) is at most countable, and the union is disjoint.

Lemma 5. Let ν be a probability Borel measure on E such that for any p in
P , ν({p∞}∏ q∈P

q 6=p
Eq) = 0 . Then, given any open set O of E , and any positive ε ,

there exists an open subset O′ of O such that ν(O)− ν(O′) 6 ε , and O′ can be
written as a finite union of disjoint elementary subsets.

Proof. Using Lemma 4, we replace O with O∗,where O∗ =
⋃
ty−∈A(O) ty−Ey+,

and A(O) is at most countable, the union being disjoint. We remark that an ele-
mentary set ty−Ey+ is characterized by the integer N(ty−) =

∏
p6y−1 p

vp(ty−)+1 .
For given such an integer, we know its greatest prime divisor will give the value of
y , and ty− will be given by vp(ty−) = vp(N(ty−)/

∏
p6y−1 p).

Now, we remark that

ν(O∗) = lim
k→+∞

∑

ty−∈A(O),N(ty−)6k
ν(ty−Ey+).

Since all the terms of this sum are non-negative, there exists an index K(ε)
such that

ν(O∗)−
( ∑

ty−∈A(O),N(ty−)6K(ε)

ν(ty−Ey+)
)

6 ε

and so, we define O′ by its characteristic function

IO′ =
∑

ty−∈A(O),N(ty−)6K(ε)

Ity− .

Lemma 6. Let O1 and O2 be two open sets, both being finite disjoint unions of
elementary subsets of E . Then, O1∪ O2 can be written as a finite disjoint union
of elementary subsets of E.

Proof. This is a simple consequence of the fact that if the intersection of two
elementary sets is not empty, then one of them is contained in the other one.

Lemma 7. Let f(n) be a non-negative multiplicative function such that for any
d in N , lim

x→+∞
1
x

∑
16n6x

I ′d(n)f(n) exists. Then, for any subset ty−Ey+ with cha-

racteristic function Ity− ,

lim
x→+∞

1
x

∑

16n6x
Ity−(n)f(n)
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exists and is equal to

f(ty−)
ty−


 ∏

p6y−1

∑

06k
f(pk)p−k



−1

M(f),

where M(f) = lim
x→+∞

1
x

∑
16n6x

f(n) .

Proof. Since Ity−(n) =
∏
p6y−1 Jpvp(ty−)(n) , with Jpα(n) = I ′pα(n) − I ′pα+1(n),

due to our hypothesis , M(Ity−f) = lim
x→+∞

1
x

∑
16n6x

Ity−(n)f(n) exists. Hence, by

partial summation [7, p.54, lines 8-12], we have

∑

16n
Ity−(n)f(n)n−σ v M(Ity−f)(σ − 1)−1,

as σ → 1+, and so,

M(Ity−f)

= lim
σ→1+

(σ − 1)
∑

16n
Ity−(n)f(n)n−σ

= lim
σ→1+

(σ − 1)f(ty−)t−σy−
∑

gcd(n,
∏

p6y−1
p)=1

f(n)n−σ

= lim
σ→1+

(σ − 1)f(ty−)t−σy−


 ∏

p6y−1

∑

k>0

f(pk)p−kσ



−1
∏

p∈P

∑

k>0

f(pk)p−kσ




= f(ty−)t−1
y−


 ∏

p6y−1

∑

k>0

f(pk)p−k1



−1
 lim
σ→1+

(σ − 1)


∏

p∈P

∑

k>0

f(pk)p−kσ






= f(ty−)t−1
y−


 ∏

p6y−1

∑

k>0

f(pk)p−k



−1

M(f).

Lemma 8. Let f(n) be a non-negative multiplicative function such that for any
d in N , lim

x→+∞
1
x

∑
16n6x

I ′d(n)f(n) = M(I ′df) exists. Then, there exists a unique

probability Borel measure νf on E such that for any elementary subset ty−Ey+

of E , the equality νf (ty−Ey+) = f(ty−)t−1
y−

(
∏
p6y−1

∑
k>0

f(pk)p−k
)−1

holds.

Proof. The set A of arithmetical functions which can be written as h(n) =∑
ldI
′
d(n), where the sum is finite and the ld are real numbers, is the restriction to
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N of an algebra of continuous functions defined on E . By the Stone-Weierstrass
Theorem ([2], p. 101, note 1.a), it is dense in the set of the real-valued func-
tions continuous on E , equipped with the uniform topology. Now, by Lemma 7,
the linear form 〈f, h〉 = M(fh)/M(f) is well defined, and it satisfies the re-
lation |〈f, h〉| 6 max (|h(n)| , n ∈ N). As a consequence, this linear continuous
form can be extended to the whole set of real-valued functions continuous on E .
The Riesz representation Theorem ([2], p. 129, (11.37)) shows that 〈f, ·〉 defines
a Borel measure νf on E . It is clearly of mass 1. The equality νf (ty−Ey+) =

f(ty−)t−1
y−

(
∏
p6y−1

∑
k>0

f(pk)p−k
)−1

is the immediate consequence of Lemma 7.

Until this point, we remained in a rather general setting. From now on, we
shall specialize to the set H .

We begin by remarking that the multiplicative function 1(n) defined by
1(n) = 1 for all n is an element of H . So, the measure ν1 is well-defined. Now,
we prove the following lemma:

Lemma 9. Given f , an element of H , the measure νf is orthogonal to ν1 if and
only if

∑
p∈P

(1− f(p)1/2)2/p is not finite.

Proof. 1) First, we prove that the measure νf is orthogonal to ν1 if and only if

lim
y→+∞

∑

p6y−1




(1− p−1)

∑

k>0

f(pk)p−k


−


(1− p−1)

∑

06k
f(pk)1/2p−k




2

= +∞.

Proof. Since the multiplicative function 1(n) defined by 1(n) = 1 for all n is an
element of H , the measure ν1 is well-defined and by Lemma 9, we have

ν1(ty−Ey+) = t−1
y−


 ∏

p6y−1

∑

06k
p−k



−1

.

Since ν1(
{
pk
}

) = p−k(
∑
06r

p−r)−1 = p−k(1−p−1), we can write νf (
{
pk
}

) as

νf (
{
pk
}

) = ν1(
{
pk
}

)ωp(
{
pk
}

), where ωp(
{
pk
}

) = f(pk)

(
(1− p−1)

∑
r>0

f(pr)p−r
)−1

.

The Kakutani Theorem ([8], p. 109) shows that the measure νf is orthogonal
to ν1 if and only if

lim
y→+∞

∏

p6y−1

∫

Ep

ω1/2
p dν1 = 0,

i.e.

lim
y→+∞

∏

p6y−1




(1− p−1)

∑

06k
f(pk)1/2p−k


 /


(1− p−1)

∑

k>0

f(pk)p−k




1/2

 = 0
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since by a direct computation, we obtain

∫

Ep

ω1/2
p dν1 =


(1− p−1)

∑

06k
f(pk)1/2p−k




(1− p−1)

∑

k>0

f(pk)p−k



−1/2

.

This is equivalent to

lim
y→+∞

∏

p6y−1




(1− p−1)

∑

06k
f(pk)1/2p−k


 /


(1− p−1)

∑

k>0

f(pk)p−k




1/2



2

= 0,

i.e.

lim
y→+∞

∏

p6y−1




(1− p−1)

∑

06k
f(pk)1/2p−k




2

/


(1− p−1)

∑

k>0

f(pk)p−k




 = 0,

and again, since

(1− p−1)

∑

06k
f(pk)1/2p−k


 /


(1− p−1)

∑

k>0

f(pk)p−k




1/2

6 1,

this is equivalent to

lim
y→+∞

∑

p6y−1


1−




(1− p−1)

∑

06k
f(pk)1/2p−k




2

/


(1− p−1)

∑

k>0

f(pk)p−k







= +∞.

Since f(1) = 1 and p > 2, we have

1
2

6 (1− p−1)
∑

k>0

f(pk)p−k 6 C,

and so, the above condition can be written as

lim
y→+∞

∑

p6y−1




(1− p−1)

∑

k>0

f(pk)p−k


−


(1− p−1)

∑

06k
f(pk)1/2p−k




2

= +∞,

all the terms being non-negative.

2) The second step is to prove that

((1−p−1)
∑

06k
f(pk)1/2p−k)2−(1−p−1)(1+f(p)1/2p−1)2 = O(p−2 +

∑

26k
f(pk)p−k),

with a uniform O().
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Proof. Since

((1−p−1)
∑

06k
f(pk)1/2p−k)−(1−p−1)(1+f(p)1/2p−1) = (1−p−1)

∑

26k
f(pk)1/2p−k,

we have
(1− p−1)

∑

06k
f(pk)1/2p−k




2

−
(

(1− p−1)(1 + f(p)1/2p−1)
)2

=


(1− p−1)

∑

26k
f(pk)1/2p−k




×

((1− p−1)

∑

06k
f(pk)1/2p−k) + (1− p−1)(1 + f(p)1/2p−1)


 .

We have

f(pk)1/2p−k =
(
f(pk)1/2p−k/2

)
×
(
p−k/2

)
6 (1/2)

((
f(pk)1/2p−k/2

)2
+
(
p−k/2

)2)
,

and so, we get that

f(pk)1/2p−k 6 (1/2)
(
f(pk)p−k + p−k

)
,

which implies that

(1− p−1)
∑

26k
f(pk)1/2p−k 6 (1/2) (1− p−1)(

∑

26k
f(pk)p−k +

∑

26k
p−k)

6
∑

26k
f(pk)p−k + p−2

since
∑
26k

p−k 6 2p−2 .

Now, we remark that

((1−p−1)
∑

06k
f(pk)1/2p−k)+(1−p−1)(1+f(p)1/2p−1) 6 2((1−p−1)

∑

06k
f(pk)1/2p−k),

and using Cauchy inequality, we have

2(1− p−1)
∑

06k
f(pk)1/2p−k 6 2(1− p−1)

√√√√√

∑

06k
f(pk)p−k




∑

06k
p−k




= 2(1− p−1)

√√√√√

∑

06k
f(pk)p−k


 (1− p−1)−1

= 2

√√√√√

∑

06k
f(pk)p−k


 (1− p−1) 6 2

√
C.
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As a consequence, we obtain that


(1− p−1)

∑

06k
f(pk)1/2p−k




2

−
(

(1− p−1)(1 + f(p)1/2p−1)
)2

6
(

2
√
C
)

∑

26k
f(pk)p−k + p−2


 .

3) We end the proof of the Lemma.

Proof. From 1), we know that the measure νf is orthogonal to ν1 if and only if

lim
y→+∞

∑

p6y−1




(1− p−1)

∑

k>0

f(pk)p−k


−


(1− p−1)

∑

06k
f(pk)1/2p−k




2

 = +∞.

Now, by 2), we have


(1− p−1)

∑

06k
f(pk)1/2p−k




2

=
(

(1− p−1)(1 + f(p)1/2p−1)
)2

+O


∑

26k
f(pk)p−k + p−2


 ,

and as a consequence, we obtain




(1− p−1)

∑

k>0

f(pk)p−k


−


(1− p−1)

∑

06k
f(pk)1/2p−k




2



=
(

(1− p−1)(1 + f(p)p−1)− ((1− p−1)(1 + f(p)1/2p−1))2
)

+


∑

26k
f(pk)p−k




+O


∑

26k
f(pk)p−k + p−2




=
(

(1− p−1)(1 + f(p)p−1)− ((1− p−1)(1 + f(p)1/2p−1))2
)

+O


∑

26k
f(pk)p−k + p−2


 .
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Recalling that
∑
p∈P

∑
k>2

f(pk)p−k and
∑
p∈P

p−2 are finite, we get

lim
y→+∞

∑

p6y−1




(1− p−1)

∑

k>0

f(pk)p−k


−


(1− p−1)

∑

06k
f(pk)1/2p−k




2

 = +∞

if and only if

lim
y→+∞

∑

p6y−1

∣∣∣∣(1− p−1)(1 + f(p)p−1)−
(

(1− p−1)(1 + f(p)1/2p−1)
)2
∣∣∣∣ = +∞,

i.e.
lim

y→+∞

∑

p6y−1

∣∣∣(1 + f(p)p−1)− (1− p−1)(1 + f(p)1/2p−1)2
∣∣∣ = +∞.

Now, we have
∣∣∣(1 + f(p)p−1)− (1− p−1)(1 + f(p)1/2p−1)2

∣∣∣

=
∣∣∣(1 + f(p)p−1)− (1− p−1)(1 + 2f(p)1/2p−1 + f(p)p−2)

∣∣∣

=
∣∣∣(1 + f(p)p−1)− (1 + 2f(p)1/2p−1 + f(p)p−2) + (1 + 2f(p)1/2p−1 + f(p)p−2)p−1

∣∣∣

=
∣∣∣1 + f(p)p−1 − 1− 2f(p)1/2p−1 − f(p)p−2 + p−1 + 2f(p)1/2p−2 + f(p)p−3

∣∣∣

=
∣∣∣f(p)p−1 − 2f(p)1/2p−1 + p−1 − f(p)p−2 + 2f(p)1/2p−2 + f(p)p−3

∣∣∣

=
∣∣∣(1− f(p)1/2)2p−1 + 2f(p)1/2p−2 − f(p)p−2 + f(p)p−3

∣∣∣

=
∣∣∣(1− f(p)1/2)2p−1 + (−p−2 + 2f(p)1/2p−2 − f(p)p−2) + (p−2 + f(p)p−3)

∣∣∣

=
∣∣∣(1− f(p)1/2)2p−1 − (1− f(p)1/2)2p−2 + (p−2 + f(p)p−3)

∣∣∣
= (1− f(p)1/2)2p−1(1− p−1) +O(p−2 + f(p)p−3).

∑
p∈P

p−2 is finite, and since f(p) = O(p),
∑
p∈P

f(p)p−3 also is finite.

As a consequence, we get that

lim
y→+∞

∑

p6y−1

∣∣∣((1 + f(p)p−1)− (1− p−1)(1 + f(p)1/2p−1)2
∣∣∣ = +∞

if and only if
lim

y→+∞

∑

p6y−1

(1− f(p)1/2)2p−1 = +∞.

This ends the proof of the Lemma.
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Proposition 10. Let A be a Borel set, f in H . Then, there exists a subset C of
N of density ν1(A) such that

νf (A)M(f) = lim
x→+∞

x−1
∑

16n6x
n∈C

f(n).

Proof. 1) First of all, we prove shall that there exists a sequence Xk of elements
of N and a sequence of subsets Ok of N , k ∈ N , such that if X > Xk , the
inequalities ∣∣∣∣∣∣

X−1
∑

n6X
IOk(n)− ν1(A)

∣∣∣∣∣∣
6 (2k)−2

and ∣∣∣∣∣∣
X−1

∑

n6X
f(n)IOk(n)−M(f)νf (A)

∣∣∣∣∣∣
6 (2k)−2)

hold. We begin with the simple remark that for any p in P , ν1({p∞}∏ q∈P
q 6=p

Eq)

and νf ({p∞}∏ q∈P
q 6=p

Eq) are equal to zero.

Now, since A is a Borel set, by Lusin criterion ([3], p. 68, (vii)), there exists a
sequence Ak,1 (resp. Ak,f ) of open sets of Ē such that A ⊆ Ak,1 (resp. A ⊆ Ak,f )
and 0 6 ν1(Ak,1) − ν1(A) 6 (4k)−2 (resp. 0 6 M(f) (νf (Ak,f )− νf (A)) 6
(4k)−2 , for 0 6 M(f) < +∞). Since A ⊆ Ak,1 and A ⊆ Ak,f , we know
that A ⊆ Ak , where Ak is defined as Ak = Ak,1 ∩ Ak, f and moreover, that
0 6 ν1(Ak) − ν1(A) 6 (4k)−2 (resp. 0 6 M(f) (νf (Ak)− νf (A)) 6 (4k)−2 ).
Now, by Lemma 5 , there exists A′k (resp. A′′k ) a finite union of elementary sub-
sets of E such that A′k ⊆ Ak (resp. A′′k ⊆ Ak ) and 0 6 ν1(Ak) − ν1(A′k) 6
(4k)−2 (resp. 0 6 M(f) (νf (Ak)− νf (A′′k)) 6 (4k)−2 ). Let Ok be defined by
Ok = A′k ∪ A′′k . By Lemma 6, we know that Ok is a finite disjoint union of
elementary subsets of E , and that A′k ⊆ Ok ⊆ Ak , which implies that 0 6
ν1(Ak)− ν1(Ok) 6 (4k)−2 , and similarly, 0 6 M(f) (νf (Ak)− νf (Ok)) 6 (4k)−2 .
Since 0 6 ν1(Ak)−ν1(A) 6 (4k)−2 and 0 6 M(f) (νf (Ak)− νf (A)) 6 (4k)−2 , we
deduce that |ν1(Ok)− ν1(A)| 6 2−3k−2 and M(f) |νf (Ok)− νf (A)| 6 2−3k−2 .

Now, since Ok is a finite disjoint union of elementary subsets of E , by
Lemma 7, IOk(n) and f(n)IOk(n) have a meanvalue, respectively ν1(Ok) and
M(f)νf (Ok), and moreover, there exists an integer Xk(1) (resp. Xk(f)) such
that for any X > Xk(1) (resp. X > Xk(f)), the inequalities

∣∣∣∣∣∣
X−1

∑

n6X
IOk(n)− ν1(Ok)

∣∣∣∣∣∣
6 (4k)−2

∣∣∣∣∣∣
X−1

∑

n6X
f(n)IOk(n)−M(f)νf (Ok)

∣∣∣∣∣∣
6 (4k)−2
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hold. Now, since 0 6 |ν1(A)− ν1(Ok)| 6 2−1(2k)−2 and 0 6 M(f) |νf (Ok)−
νf (A)| 6 2−1(2k)−2 , we get that

∣∣∣∣∣∣
X−1

∑

n6X
IOk(n)− ν1(A)

∣∣∣∣∣∣
6 (2k)−2

and ∣∣∣∣∣∣
X−1

∑

n6X
f(n)IOk(n)−M(f)νf (A)

∣∣∣∣∣∣
6 (2k)−2.

These inequalities hold a fortiori if X > Xk , where Xk is defined as Xk =
Max(Xk(1), Xk(f)).

2) End of the proof of the Proposition.
Let Yk , k > 1, be defined by Yk =

∑
16r6k+1

Xk , and C be a subset of N

with characteristic function I(n) defined by

I(n) = IOk(n) if Yk−1 + 1 6 n 6 Yk, k > 2,

I(n) = 1 if 1 6 n 6 Y1.

We shall prove that M(I) = ν1(A) and M(If) = νf (A)M(f).
Let x be a positive integer, and let k(x) = max {k > 0;Yk + 1 6 x 6 Yk+1} .

We denote by g(n) any of the functions f(n) or 1. We have

∑

n6x
I(n)g(n) =

∑

06k6k(x)−1

∑

Yk+16n6Yk+1

I(n)g(n) +
∑

Yk(x)+16n6x
I(n)g(n)

=
∑

06k6k(x)−1

∑

Yk+16n6Yk+1

IOk(n)g(n) +
∑

Yk(x)+16n6x
IOk(x)(n)g(n).

Since Yk > Xk , we obtain using 1),

∣∣∣∣∣∣
∑

16n6Yk+1

I(n)g(n)− Yk+1M(g)νg(A)

∣∣∣∣∣∣
6 Yk+1(2k)−2,

∣∣∣∣∣∣
∑

16n6Yk
I(n)g(n)− YkM(g)νg(A)

∣∣∣∣∣∣
6 Yk(2k)−2,

and as a consequence, since

∑

Yk+16n6Yk+1

I(n)g(n) =
∑

16n6Yk+1

I(n)g(n)−
∑

16n6Yk
I(n)g(n),
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we get
∣∣∣∣∣∣

∑

Yk+16n6Yk+1

I(n)g(n)− (Yk+1 − Yk)M(g)νg(A)

∣∣∣∣∣∣
6 (Yk+1 + Yk)(2k)−2 6 2Yk+1(2k)−2

6 Yk+1(k)−2.

And similarly,
∣∣∣∣∣∣

∑

Yk(x)+16n6x
I(n)g(n)− (x− Yk(x))M(g)νg(A)

∣∣∣∣∣∣
6 (x+ Yk(x))(2k(x))−2 6 2x(2k(x))−2

6 xk(x)−2.

Hence, we get that
∣∣∣∣∣∣
∑

n6x
I(n)g(n)− (

∑

06k6k(x)−1

(Yk+1 − Yk)M(g)νg(A) + (x− Yk(x))M(g)νg(A))

∣∣∣∣∣∣
6

∑

16k6k(x)−1

Yk+1k
−2 + xk(x)−2,

i.e. ∣∣∣∣∣∣
∑

n6x
I(n)g(n)− xM(g)νg(A))

∣∣∣∣∣∣
6

∑

16k6k(x)−1

Yk+1k
−2 + xk(x)−2.

We remark that the right hand side of this inequality can be written as
∑

16k6k(x)−1

Yk+1k
−2 + xk(x)−2

=
∑

16k6k(
√
x)−1

Yk+1k
−2 +

∑

k(
√
x)6k6k(x)−1

Yk+1k
−2 + xk(x)−2.

Since for k 6 k(
√
x)− 1, we have Yk+1 6 √x , we get

∑

16k6k(
√
x)−1

Yk+1k
−2 6

∑

16k6k(
√
x)−1

√
xk−2 6

√
x
∑

16k
k−2,

and since Yk+1 6 x , we have

∑

k(
√
x)6k6k(x)−1

Yk+1k
−2 + xk(x)−2 6

∑

k(
√
x)6k6k(x)−1

xk−2 + xk(x)−2

6 x
∑

k(
√
x)6k6k(x)

k−2.
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Hence, we get that

∣∣∣∣∣∣
∑

n6x
I(n)g(n)− xM(g)νg(A))

∣∣∣∣∣∣
6
√
x
∑

16k
k−2 + x

∑

k(
√
x)6k6k(x)

k−2

= O(
√
x) + xo(1), x→ +∞,

and so, we obtain

∑

n6x
I(n)g(n)− xM(g)νg(A)) = o(x), x→ +∞.

Substituting g(n) with 1 and then with f(n), we see that the set C with
characteristic function I(n) as defined above, fulfils the conditions of the Propo-
sition.

2.3. Conclusion of the proof of the main result. By Lemma 9, the measure
νf is orthogonal to ν1 . So, there exists a Borel set A such that νf (A) = 1 and
ν1(A) = 0. Proposition10 gives the conclusion.
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