ON SOME ARITHMETICAL MULTIPLICATIVE FUNCTIONS

Jean-Loup Mauclaire
Dedicated to Professor Eduard Wirsing on the occasion of his 75 th birthday

Abstract

We characterize some non-negative multiplicative functions $f(n)$ such that $\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{1 \leqslant n \leqslant x} f(n)$ exists and is positive, but there exists a subset $A(f)$ of N of density 1 such that $\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{\substack{1 \leqslant n \leqslant x \\ n \in A(f)}} f(n)=0$. An application to the case of the Ramanujan τ-function is provided. Keywords: mean-value, multiplicative functions.

1. Introduction

Denoting the set of positive integers by N, we recall that a complex-valued multiplicative arithmetical function is a function $f: N \rightarrow C$, such that $f(1)=1$ and $f(m n)=f(m) f(n)$ whenever $\operatorname{gcd}(m, n)=1$. Moreover, we denote by P the set of prime numbers.
1.1. A result of Wirsing. We recall the following result of Wirsing:

Theorem 1. Let $f(n)$ be a non-negative multiplicative function such that for some constant $\tau>0$,

$$
\begin{aligned}
\sum_{p \leqslant x} f(p) \log p & =x(\tau+o(1)), \quad x \rightarrow+\infty \\
\sum_{p \in P} \sum_{2 \leqslant k} f\left(p^{k}\right) p^{-k} & =o\left((\log x)^{-1}\right), \\
f(p) & =O\left(p^{1-\delta}\right) \quad \text { for some } \delta<1 .
\end{aligned}
$$

Then, as $x \rightarrow+\infty$, the asymptotic formula

$$
\sum_{1 \leqslant n \leqslant x} f(n)=x \frac{(1+o(1))}{\Gamma(\tau)} \prod_{p \leqslant x}\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right) p^{-k}
$$

holds, where Γ is the gamma-function.

This result ([7] p. 65 Theorem 4.1 and same page Remark 1) leads to closer consideration of the relationship between a property of the arithmetical meanvalue of a non-negative multiplicative function $f(n)$,

$$
M(f)=\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{1 \leqslant n \leqslant x} f(n)
$$

and a specificity of the product

$$
\prod_{p \leqslant x}\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right) p^{-k}, \quad x \rightarrow+\infty
$$

considered as associated to an underlying probability space.
1.2. Main result. We shall prove the following result:

Theorem 2. Let \mathcal{H} be the set of non-negative multiplicative functions $f(n)$ satisfying the following conditions: for any d in $N, \lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{\substack{1 \leq n \leqslant x \\ d \text { divides } n}} f(n)$ exists; $\sum_{p \in P} \sum_{2 \leqslant k} f\left(p^{k}\right) p^{-k}$ is finite.
Let us assume now that f is an element of \mathcal{H} and $\sum_{p \in P}\left(1-f(p)^{1 / 2}\right)^{2} / p$ is not finite. Then, there exists a subset A of N of density 1 such that $\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{\substack{1 \leqslant n \leqslant x \\ n \in A}} f(n)=0$.
Remark. Since f is non-negative, the existence of $\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{1 \leqslant n \leqslant x} f(n)$ implies that $f(n)=O(n)$, and with the condition that $\sum_{p \in P} \sum_{2 \leqslant k} f\left(p^{k}\right) p^{-k}$ is finite, this proves that there exists a positive number C such that for all p in P, the inequality $\sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k} \leqslant C$ holds.
1.3. Application. As an application of this result, we can consider the special case of the Ramanujan τ-function. We recall the following classical notation:
$n \mid m$ means n divides m,
$n \nmid m$ means n does not divide m,
and $p^{k} \| m$ means $p^{k} \mid m$, but $p^{k+1} \nmid m$.
Now, we show that in fact, the function $\left(\tau(n) n^{-11 / 2}\right)^{2}$ satisfies the hypothesis of the above theorem. We shall get some information on the properties of the function $\left(\tau(n) n^{-11 / 2}\right)^{2}$ essentially from [5] p. 234 et seq., [6] p. 357 et seq.

Let $\tau_{0}(n)$ be defined by $\tau_{0}(n)=\tau(n) n^{-11 / 2}$. By Deligne's theorem [1], we know that $\tau_{0}(p)=\varsigma_{p}+\varsigma_{p}^{-1}$, with $\left|\varsigma_{p}\right|=1$. For $s=\sigma+i t, \sigma>1$, we have

$$
\sum_{1 \leqslant n} \tau_{0}(n)^{2} n^{-s}=\prod_{p \in P}\left(\left(1+p^{-s}\right)\left(\left(1-\varsigma_{p}^{2} p^{-s}\right)\left(1-\varsigma_{p}^{-2} p^{-s}\right)\left(1-p^{-s}\right)\right)^{-1}\right)
$$

and it is not difficult to prove that there exists some positive number C such that for all p in P, the inequality $\sum_{k \geqslant 0} \tau_{0}\left(p^{k}\right)^{2} p^{-k} \leqslant C$ holds, and that $\sum_{p \in P} \sum_{2 \leqslant k} \tau_{0}\left(p^{k}\right)^{2} p^{-k}$ is finite.

Now, we remark that

$$
\begin{aligned}
\sum_{\substack{1 \leqslant n \\
m \mid n}} \tau_{0}(n)^{2} n^{-s}= & \left(\prod_{p^{\alpha}} \| \sum_{m \geqslant 0} \tau_{0}\left(p^{\alpha+k}\right)^{2} p^{-(\alpha+k) s}\right) \\
& \times\left(\prod_{\substack{p \in P \\
p \nmid m}}\left(\left(1+p^{-s}\right)\left(\left(1-\varsigma_{p}^{2} p^{-s}\right)\left(1-\varsigma_{p}^{-2} p^{-s}\right)\left(1-p^{-s}\right)\right)^{-1}\right)\right)
\end{aligned}
$$

and we write it as

$$
\begin{aligned}
& \left(\prod _ { p ^ { \alpha } \| m } \left(\left(\sum_{k \geqslant 0} \tau_{0}\left(p^{\alpha+k}\right)^{2} p^{-(\alpha+k) s}\right)\right.\right. \\
& \left.\left.\quad \times\left(\left(1+p^{-s}\right)^{-1}\left(1-\varsigma_{p}^{2} p^{-s}\right)\left(1-\varsigma_{p}^{-2} p^{-s}\right)\left(1-p^{-s}\right)\right)\right)\right) \\
& \quad \times\left(\prod_{p \in P}\left(\left(1+p^{-s}\right)\left(\left(1-\varsigma_{p}^{2} p^{-s}\right)\left(1-\varsigma_{p}^{-2} p^{-s}\right)\left(1-p^{-s}\right)\right)^{-1}\right)\right)
\end{aligned}
$$

i.e.

$$
\begin{aligned}
\sum_{\substack{1 \leqslant n \\
m \mid n}} \tau_{0}(n)^{2} n^{-s}= & \left(\prod _ { p ^ { \alpha } \| m } \left(\left(\sum_{k \geqslant 0} \tau_{0}\left(p^{\alpha+k}\right)^{2} p^{-(\alpha+k) s}\right)\right.\right. \\
& \left.\left.\times\left(\left(1+p^{-s}\right)^{-1}\left(1-\varsigma_{p}^{2} p^{-s}\right)\left(1-\varsigma_{p}^{-2} p^{-s}\right)\left(1-p^{-s}\right)\right)\right)\right) \\
& \times \sum_{1 \leqslant n} \tau_{0}(n)^{2} n^{-s}
\end{aligned}
$$

The first term of this product is analytic in a neighborhood of $\sigma \geqslant 1$. As a consequence of the famous result of Rankin on the analytic properties of the series $\sum_{1 \leqslant n} \tau_{0}(n)^{2} n^{-s}$ ([6] p.360, Th.3), we can use the Ikehara's theorem [7, p.322, Theorem A.4.3] and get that the limit $\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{\substack{1 \leqslant n \leqslant x \\ m \mid n}} \tau_{0}(n)^{2}$ exists.

Now, the fact that $\sum_{p \in P}\left(1-\tau_{0}(p)\right)^{2} / p$ is not finite is a simple consequence of the analytic properties of the Dirichlet series with coefficients $\tau_{0}(n)^{2}$ and $\tau_{0}(n)^{4}$, and this has been already considered elsewhere ([4] p.146).

This allows us to formulate the following result:
Proposition 3. There exists a subset A of N of density 1 such that

$$
\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{\substack{1 \leqslant n \leqslant x \\ n \in A}}\left(\tau(n) n^{-11 / 2}\right)^{2}=0 .
$$

2. Proof of the main result

2.1. Notation. If d is in N, the arithmetical function $I_{d}^{\prime}(n)$ is defined by $I_{d}^{\prime}(n)=$ 1 if $d \mid n$, and 0 otherwise.
E_{p} is the discrete set $\left(1, p, p^{2}, \ldots\right)$ and $\overline{E_{p}}=E_{p} \cup\left\{p^{\infty}\right\}$ is the Alexandroff one-point compactification of the infinite discrete, hence locally compact but not compact space $E_{p}[7, \mathrm{p} .145]$

$$
\begin{aligned}
\bar{E} & =\prod_{p \in P} \overline{E_{p}}, & E=\prod_{p \in P} E_{p}, & E_{y-}
\end{aligned}=\prod_{\substack{p \in P \\
p \leqslant y-1}} E_{p}, ~\left(\bar{E}_{y-}=\prod_{\substack{p \in P \\
p \leqslant y-1}} \bar{E}_{p}, \quad \bar{E}_{y+}=\prod_{\substack{p \in P \\
y \leqslant p}} \bar{E}_{p} .\right.
$$

An element t of \bar{E} can be viewed as a sequence $\left(p^{v_{p}(t)}\right)_{p \in P}$, where $v_{p}(t)$ is either a non-negative integer, or ∞.

If t is in \bar{E}, we denote the finite sequence $t_{y-}=\left\{p^{v_{p}(t)}\right\}_{p \leqslant y-1}$ by t_{y-}.
The product space $\bar{E}=\prod_{p \in P} \bar{E}_{p}$, equipped with the product topology, is a compact space.

We say that a subset of \bar{E} is elementary (resp. almost elementary) if it can be written as $\left\{\theta_{y-}\right\} \times \bar{E}_{y+}$, where θ_{y-} is in E_{y-} (resp. $\theta_{y_{-}}$is in \bar{E}_{y-}). An elementary set is open.
2.2. Some lemmas. First, we have the following result:

Lemma 4. Let ν be a probability Borel measure on \bar{E} such that for any p in P, $\nu\left(\left\{p^{\infty}\right\} \prod_{q \in P} \bar{E}_{q}\right)=0$. Then, given any open set O of \bar{E}, there exists an open subset $O^{*} \stackrel{q \neq p}{\text { of }} O$ such that $\nu(O)=\nu\left(O^{*}\right)$ and O^{*} can be written as a disjoint and at most countable union of elementary subsets of \bar{E}.

Proof. Let t be in O. We remark that the sequence of almost elementary subsets $O_{t, k}=\left(\prod_{p \leqslant k-1}\left\{p^{v_{p}(t)}\right\}\right) \times \bar{E}_{k+}$ is ordered by inclusion, since we have $O_{t, k+1} \subset O_{t, k}$ for any $k \geqslant 1$. Now, due to the topology of \bar{E}, O contains an almost elementary subset $O_{t, y}=\left(\prod_{p \leqslant y-1}\left\{p^{v_{p}(t)}\right\}\right) \times \bar{E}_{y+}$. We define $y(t)$ by $y(t)=\min \left\{y \geqslant 3 ; t_{y-} \bar{E}_{y+} \subseteq O\right\}$ and denote by O_{t} the almost elementary subset $O_{t, y(t)}=\left(\prod_{p \leqslant y(t)-1}\left\{p^{v_{p}(t)}\right\}\right) \times \bar{E}_{y(t)+}$, which is the maximal element of the
decreasing sequence $O_{t, k}, k \geqslant 3$. (We require the index $y(t)$ to be greater than 2 only to avoid the trivial case $\left.O=\bar{E}=\prod_{p \in P} \bar{E}_{p}\right)$. If for some $p \leqslant y(t)-1$, $v_{p}(t)=\infty$, then t is in $\left\{p^{\infty}\right\} \prod_{\substack{q \in P \\ q \neq p}} \overline{E_{q}}$. Otherwise, O_{t} is an elementary set $t_{y(t)-} \bar{E}_{y(t)+}$, and we define O^{*} as the union of these sets. O^{*} is an open subset of O, and $O-O^{*}$ is contained in $\bigcup_{p \in P}\left\{p^{\infty}\right\} \prod_{\substack{q \in P \\ q \neq p}} \overline{E_{q}}$, which is of ν-measure 0 , since it is a countable union of sets of ν-measure 0 . Now, we remark that if the intersection of two elementary sets is not empty, then one of them is contained in the other. Hence we get that the set O^{*} can be written as $O^{*}=\bigcup_{t_{y-} \in A(O)} t_{y-} \bar{E}_{y+}$, where $A(O)$ is at most countable, and the union is disjoint.
Lemma 5. Let ν be a probability Borel measure on \bar{E} such that for any p in $P, \nu\left(\left\{p^{\infty}\right\} \prod_{\substack{q \in P \\ q \neq p}} \overline{E_{q}}\right)=0$. Then, given any open set O of \bar{E}, and any positive ε, there exists an open subset O^{\prime} of O such that $\nu(O)-\nu\left(O^{\prime}\right) \leqslant \varepsilon$, and O^{\prime} can be written as a finite union of disjoint elementary subsets.
Proof. Using Lemma 4, we replace O with O^{*}, where $O^{*}=\bigcup_{t_{y-} \in A(O)} t_{y-} \bar{E}_{y+}$, and $A(O)$ is at most countable, the union being disjoint. We remark that an elementary set $t_{y-} \bar{E}_{y+}$ is characterized by the integer $N\left(t_{y-}\right)=\prod_{p \leqslant y-1} p^{v_{p}\left(t_{y-}\right)+1}$. For given such an integer, we know its greatest prime divisor will give the value of y, and t_{y-} will be given by $v_{p}\left(t_{y-}\right)=v_{p}\left(N\left(t_{y-}\right) / \prod_{p \leqslant y-1} p\right)$.

Now, we remark that

$$
\nu\left(O^{*}\right)=\lim _{k \rightarrow+\infty} \sum_{t_{y_{-}} \in A(O), N\left(t_{y-}\right) \leqslant k} \nu\left(t_{y-} \bar{E}_{y+}\right) .
$$

Since all the terms of this sum are non-negative, there exists an index $K(\varepsilon)$ such that

$$
\nu\left(O^{*}\right)-\left(\sum_{t_{y-} \in A(O), N\left(t_{y-}\right) \leqslant K(\varepsilon)} \nu\left(t_{y-} \bar{E}_{y+}\right)\right) \leqslant \varepsilon
$$

and so, we define O^{\prime} by its characteristic function

$$
I_{O^{\prime}}=\sum_{t_{y-} \in A(O), N\left(t_{y-}\right) \leqslant K(\varepsilon)} I_{t_{y-}}
$$

Lemma 6. Let O_{1} and O_{2} be two open sets, both being finite disjoint unions of elementary subsets of \bar{E}. Then, $O_{1} \cup O_{2}$ can be written as a finite disjoint union of elementary subsets of \bar{E}.
Proof. This is a simple consequence of the fact that if the intersection of two elementary sets is not empty, then one of them is contained in the other one.
Lemma 7. Let $f(n)$ be a non-negative multiplicative function such that for any d in $N, \lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{1 \leqslant n \leqslant x} I_{d}^{\prime}(n) f(n)$ exists. Then, for any subset $t_{y-} \bar{E}_{y+}$ with characteristic function $I_{t_{y-}}$,

$$
\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{1 \leqslant n \leqslant x} I_{t_{y-}}(n) f(n)
$$

exists and is equal to

$$
\frac{f\left(t_{y-}\right)}{t_{y-}}\left(\prod_{p \leqslant y-1} \sum_{0 \leqslant k} f\left(p^{k}\right) p^{-k}\right)^{-1} M(f)
$$

where $M(f)=\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{1 \leqslant n \leqslant x} f(n)$.
Proof. Since $I_{t_{y-}}(n)=\prod_{p \leqslant y-1} J_{p^{p_{p}\left(t_{y-}\right)}}(n)$, with $J_{p^{\alpha}}(n)=I_{p^{\alpha}}^{\prime}(n)-I_{p^{\alpha+1}}^{\prime}(n)$, due to our hypothesis, $M\left(I_{t_{y-}} f\right)=\lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{1 \leqslant n \leqslant x} I_{t_{y-}}(n) f(n)$ exists. Hence, by partial summation [7, p.54, lines $8-12$], we have

$$
\sum_{1 \leqslant n} I_{t_{y-}}(n) f(n) n^{-\sigma} \backsim M\left(I_{t_{y-}-} f\right)(\sigma-1)^{-1}
$$

as $\sigma \rightarrow 1+$, and so,

$$
\begin{aligned}
& M\left(I_{t_{y-}} f\right) \\
& =\lim _{\sigma \rightarrow 1^{+}}(\sigma-1) \sum_{1 \leqslant n} I_{t_{y-}-}(n) f(n) n^{-\sigma} \\
& =\lim _{\sigma \rightarrow 1^{+}}(\sigma-1) f\left(t_{y-}\right) t_{y-}^{-\sigma} \sum_{\operatorname{gcd}\left(n, \prod_{p \leqslant y-1} p\right)=1} f(n) n^{-\sigma} \\
& =\lim _{\sigma \rightarrow 1^{+}}(\sigma-1) f\left(t_{y-}\right) t_{y-}^{-\sigma}\left(\prod_{p \leqslant y-1} \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k \sigma}\right)^{-1}\left(\prod_{p \in P} \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k \sigma}\right) \\
& =f\left(t_{y-}\right) t_{y-}^{-1}\left(\prod_{p \leqslant y-1} \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k 1}\right)^{-1}\left(\lim _{\sigma \rightarrow 1^{+}}(\sigma-1)\left(\prod_{p \in P} \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k \sigma}\right)\right) \\
& =f\left(t_{y-}\right) t_{y-}^{-1}\left(\prod_{p \leqslant y-1} \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k}\right)^{-1} M(f) .
\end{aligned}
$$

Lemma 8. Let $f(n)$ be a non-negative multiplicative function such that for any d in $N, \lim _{x \rightarrow+\infty} \frac{1}{x} \sum_{1 \leqslant n \leqslant x} I_{d}^{\prime}(n) f(n)=M\left(I_{d}^{\prime} f\right)$ exists. Then, there exists a unique probability Borel measure ν_{f} on \bar{E} such that for any elementary subset $t_{y-} \bar{E}_{y+}$ of \bar{E}, the equality $\nu_{f}\left(t_{y-} \bar{E}_{y+}\right)=f\left(t_{y-}\right) t_{y-}^{-1}\left(\prod_{p \leqslant y-1} \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k}\right)^{-1}$ holds.
Proof. The set A of arithmetical functions which can be written as $h(n)=$ $\sum l_{d} I_{d}^{\prime}(n)$, where the sum is finite and the l_{d} are real numbers, is the restriction to
N of an algebra of continuous functions defined on \bar{E}. By the Stone-Weierstrass Theorem ([2], p. 101, note 1.a), it is dense in the set of the real-valued functions continuous on \bar{E}, equipped with the uniform topology. Now, by Lemma 7, the linear form $\langle f, h\rangle=M(f h) / M(f)$ is well defined, and it satisfies the relation $|\langle f, h\rangle| \leqslant \max (|h(n)|, n \in N)$. As a consequence, this linear continuous form can be extended to the whole set of real-valued functions continuous on \bar{E}. The Riesz representation Theorem ([2], p. 129, (11.37)) shows that $\langle f, \cdot\rangle$ defines a Borel measure ν_{f} on \bar{E}. It is clearly of mass 1 . The equality $\nu_{f}\left(t_{y-} \bar{E}_{y+}\right)=$ $f\left(t_{y-}\right) t_{y-}^{-1}\left(\prod_{p \leqslant y-1} \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k}\right)^{-1}$ is the immediate consequence of Lemma 7 .

Until this point, we remained in a rather general setting. From now on, we shall specialize to the set \mathcal{H}.

We begin by remarking that the multiplicative function $1(n)$ defined by $1(n)=1$ for all n is an element of \mathcal{H}. So, the measure ν_{1} is well-defined. Now, we prove the following lemma:
Lemma 9. Given f, an element of \mathcal{H}, the measure ν_{f} is orthogonal to ν_{1} if and only if $\sum_{p \in P}\left(1-f(p)^{1 / 2}\right)^{2} / p$ is not finite.
Proof. 1) First, we prove that the measure ν_{f} is orthogonal to ν_{1} if and only if

$$
\lim _{y \rightarrow+\infty} \sum_{p \leqslant y-1}\left(\left(\left(1-p^{-1}\right) \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k}\right)-\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)^{2}\right)=+\infty
$$

Proof. Since the multiplicative function $1(n)$ defined by $1(n)=1$ for all n is an element of \mathcal{H}, the measure ν_{1} is well-defined and by Lemma 9 , we have

$$
\nu_{1}\left(t_{y-} \bar{E}_{y+}\right)=t_{y-}^{-1}\left(\prod_{p \leqslant y-1} \sum_{0 \leqslant k} p^{-k}\right)^{-1}
$$

Since $\nu_{1}\left(\left\{p^{k}\right\}\right)=p^{-k}\left(\sum_{0 \leqslant r} p^{-r}\right)^{-1}=p^{-k}\left(1-p^{-1}\right)$, we can write $\nu_{f}\left(\left\{p^{k}\right\}\right)$ as $\nu_{f}\left(\left\{p^{k}\right\}\right)=\nu_{1}\left(\left\{p^{k}\right\}\right) \omega_{p}\left(\left\{p^{k}\right\}\right)$, where $\omega_{p}\left(\left\{p^{k}\right\}\right)=f\left(p^{k}\right)\left(\left(1-p^{-1}\right) \sum_{r \geqslant 0} f\left(p^{r}\right) p^{-r}\right)^{-1}$.

The Kakutani Theorem ([8], p. 109) shows that the measure ν_{f} is orthogonal to ν_{1} if and only if

$$
\lim _{y \rightarrow+\infty} \prod_{p \leqslant y-1} \int_{\bar{E}_{p}} \omega_{p}^{1 / 2} d \nu_{1}=0
$$

i.e.

$$
\lim _{y \rightarrow+\infty} \prod_{p \leqslant y-1}\left(\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right) /\left(\left(1-p^{-1}\right) \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k}\right)^{1 / 2}\right)=0
$$

since by a direct computation, we obtain

$$
\int_{\bar{E}_{p}} \omega_{p}^{1 / 2} d \nu_{1}=\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)\left(\left(1-p^{-1}\right) \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k}\right)^{-1 / 2}
$$

This is equivalent to
$\lim _{y \rightarrow+\infty} \prod_{p \leqslant y-1}\left(\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right) /\left(\left(1-p^{-1}\right) \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k}\right)^{1 / 2}\right)^{2}=0$,
i.e.

$$
\lim _{y \rightarrow+\infty} \prod_{p \leqslant y-1}\left(\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)^{2} /\left(\left(1-p^{-1}\right) \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k}\right)\right)=0
$$

and again, since

$$
\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right) /\left(\left(1-p^{-1}\right) \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k}\right)^{1 / 2} \leqslant 1
$$

this is equivalent to

$$
\lim _{y \rightarrow+\infty} \sum_{p \leqslant y-1}\left(1-\left(\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)^{2} /\left(\left(1-p^{-1}\right) \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k}\right)\right)\right)=+\infty
$$

Since $f(1)=1$ and $p \geqslant 2$, we have

$$
\frac{1}{2} \leqslant\left(1-p^{-1}\right) \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k} \leqslant C
$$

and so, the above condition can be written as

$$
\lim _{y \rightarrow+\infty} \sum_{p \leqslant y-1}\left(\left(\left(1-p^{-1}\right) \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k}\right)-\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)^{2}\right)=+\infty
$$

all the terms being non-negative.
2) The second step is to prove that
$\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)^{2}-\left(1-p^{-1}\right)\left(1+f(p)^{1 / 2} p^{-1}\right)^{2}=O\left(p^{-2}+\sum_{2 \leqslant k} f\left(p^{k}\right) p^{-k}\right)$,
with a uniform $O()$.

Proof. Since
$\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)-\left(1-p^{-1}\right)\left(1+f(p)^{1 / 2} p^{-1}\right)=\left(1-p^{-1}\right) \sum_{2 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}$,
we have

$$
\begin{aligned}
& \left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)^{2}-\left(\left(1-p^{-1}\right)\left(1+f(p)^{1 / 2} p^{-1}\right)\right)^{2} \\
& =\left(\left(1-p^{-1}\right) \sum_{2 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right) \\
& \quad \times\left(\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)+\left(1-p^{-1}\right)\left(1+f(p)^{1 / 2} p^{-1}\right)\right)
\end{aligned}
$$

We have
$f\left(p^{k}\right)^{1 / 2} p^{-k}=\left(f\left(p^{k}\right)^{1 / 2} p^{-k / 2}\right) \times\left(p^{-k / 2}\right) \leqslant(1 / 2)\left(\left(f\left(p^{k}\right)^{1 / 2} p^{-k / 2}\right)^{2}+\left(p^{-k / 2}\right)^{2}\right)$,
and so, we get that

$$
f\left(p^{k}\right)^{1 / 2} p^{-k} \leqslant(1 / 2)\left(f\left(p^{k}\right) p^{-k}+p^{-k}\right),
$$

which implies that

$$
\begin{aligned}
\left(1-p^{-1}\right) \sum_{2 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k} & \leqslant(1 / 2)\left(1-p^{-1}\right)\left(\sum_{2 \leqslant k} f\left(p^{k}\right) p^{-k}+\sum_{2 \leqslant k} p^{-k}\right) \\
& \leqslant \sum_{2 \leqslant k} f\left(p^{k}\right) p^{-k}+p^{-2}
\end{aligned}
$$

since $\sum_{2 \leqslant k} p^{-k} \leqslant 2 p^{-2}$.
Now, we remark that
$\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)+\left(1-p^{-1}\right)\left(1+f(p)^{1 / 2} p^{-1}\right) \leqslant 2\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)$,
and using Cauchy inequality, we have

$$
\begin{aligned}
& 2\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k} \leqslant 2\left(1-p^{-1}\right) \sqrt{\left(\sum_{0 \leqslant k} f\left(p^{k}\right) p^{-k}\right)\left(\sum_{0 \leqslant k} p^{-k}\right)} \\
& =2\left(1-p^{-1}\right) \sqrt{\left(\sum_{0 \leqslant k} f\left(p^{k}\right) p^{-k}\right)\left(1-p^{-1}\right)^{-1}} \\
& =2 \sqrt{\left(\sum_{0 \leqslant k} f\left(p^{k}\right) p^{-k}\right)\left(1-p^{-1}\right) \leqslant 2 \sqrt{C} .}
\end{aligned}
$$

As a consequence, we obtain that

$$
\begin{aligned}
& \left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)^{2}-\left(\left(1-p^{-1}\right)\left(1+f(p)^{1 / 2} p^{-1}\right)\right)^{2} \\
& \leqslant(2 \sqrt{C})\left(\sum_{2 \leqslant k} f\left(p^{k}\right) p^{-k}+p^{-2}\right)
\end{aligned}
$$

3) We end the proof of the Lemma.

Proof. From 1), we know that the measure ν_{f} is orthogonal to ν_{1} if and only if $\lim _{y \rightarrow+\infty} \sum_{p \leqslant y-1}\left(\left(\left(1-p^{-1}\right) \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k}\right)-\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)^{2}\right)=+\infty$.

Now, by 2), we have

$$
\begin{aligned}
\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)^{2}= & \left(\left(1-p^{-1}\right)\left(1+f(p)^{1 / 2} p^{-1}\right)\right)^{2} \\
& +O\left(\sum_{2 \leqslant k} f\left(p^{k}\right) p^{-k}+p^{-2}\right)
\end{aligned}
$$

and as a consequence, we obtain

$$
\begin{aligned}
& \left(\left(\left(1-p^{-1}\right) \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k}\right)-\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)^{2}\right) \\
& =\left(\left(1-p^{-1}\right)\left(1+f(p) p^{-1}\right)-\left(\left(1-p^{-1}\right)\left(1+f(p)^{1 / 2} p^{-1}\right)\right)^{2}\right)+\left(\sum_{2 \leqslant k} f\left(p^{k}\right) p^{-k}\right) \\
& +O\left(\sum_{2 \leqslant k} f\left(p^{k}\right) p^{-k}+p^{-2}\right) \\
& =\left(\left(1-p^{-1}\right)\left(1+f(p) p^{-1}\right)-\left(\left(1-p^{-1}\right)\left(1+f(p)^{1 / 2} p^{-1}\right)\right)^{2}\right) \\
& +O\left(\sum_{2 \leqslant k} f\left(p^{k}\right) p^{-k}+p^{-2}\right) .
\end{aligned}
$$

Recalling that $\sum_{p \in P} \sum_{k \geqslant 2} f\left(p^{k}\right) p^{-k}$ and $\sum_{p \in P} p^{-2}$ are finite, we get
$\lim _{y \rightarrow+\infty} \sum_{p \leqslant y-1}\left(\left(\left(1-p^{-1}\right) \sum_{k \geqslant 0} f\left(p^{k}\right) p^{-k}\right)-\left(\left(1-p^{-1}\right) \sum_{0 \leqslant k} f\left(p^{k}\right)^{1 / 2} p^{-k}\right)^{2}\right)=+\infty$
if and only if

$$
\lim _{y \rightarrow+\infty} \sum_{p \leqslant y-1}\left|\left(1-p^{-1}\right)\left(1+f(p) p^{-1}\right)-\left(\left(1-p^{-1}\right)\left(1+f(p)^{1 / 2} p^{-1}\right)\right)^{2}\right|=+\infty
$$

i.e.

$$
\lim _{y \rightarrow+\infty} \sum_{p \leqslant y-1}\left|\left(1+f(p) p^{-1}\right)-\left(1-p^{-1}\right)\left(1+f(p)^{1 / 2} p^{-1}\right)^{2}\right|=+\infty
$$

Now, we have

$$
\begin{aligned}
& \left|\left(1+f(p) p^{-1}\right)-\left(1-p^{-1}\right)\left(1+f(p)^{1 / 2} p^{-1}\right)^{2}\right| \\
& =\left|\left(1+f(p) p^{-1}\right)-\left(1-p^{-1}\right)\left(1+2 f(p)^{1 / 2} p^{-1}+f(p) p^{-2}\right)\right| \\
& =\left|\left(1+f(p) p^{-1}\right)-\left(1+2 f(p)^{1 / 2} p^{-1}+f(p) p^{-2}\right)+\left(1+2 f(p)^{1 / 2} p^{-1}+f(p) p^{-2}\right) p^{-1}\right| \\
& =\left|1+f(p) p^{-1}-1-2 f(p)^{1 / 2} p^{-1}-f(p) p^{-2}+p^{-1}+2 f(p)^{1 / 2} p^{-2}+f(p) p^{-3}\right| \\
& =\left|f(p) p^{-1}-2 f(p)^{1 / 2} p^{-1}+p^{-1}-f(p) p^{-2}+2 f(p)^{1 / 2} p^{-2}+f(p) p^{-3}\right| \\
& =\left|\left(1-f(p)^{1 / 2}\right)^{2} p^{-1}+2 f(p)^{1 / 2} p^{-2}-f(p) p^{-2}+f(p) p^{-3}\right| \\
& =\left|\left(1-f(p)^{1 / 2}\right)^{2} p^{-1}+\left(-p^{-2}+2 f(p)^{1 / 2} p^{-2}-f(p) p^{-2}\right)+\left(p^{-2}+f(p) p^{-3}\right)\right| \\
& =\left|\left(1-f(p)^{1 / 2}\right)^{2} p^{-1}-\left(1-f(p)^{1 / 2}\right)^{2} p^{-2}+\left(p^{-2}+f(p) p^{-3}\right)\right| \\
& =\left(1-f(p)^{1 / 2}\right)^{2} p^{-1}\left(1-p^{-1}\right)+O\left(p^{-2}+f(p) p^{-3}\right) .
\end{aligned}
$$

$$
\sum_{p \in P} p^{-2} \text { is finite, and since } f(p)=O(p), \sum_{p \in P} f(p) p^{-3} \text { also is finite. }
$$

As a consequence, we get that

$$
\lim _{y \rightarrow+\infty} \sum_{p \leqslant y-1} \mid\left(\left(1+f(p) p^{-1}\right)-\left(1-p^{-1}\right)\left(1+f(p)^{1 / 2} p^{-1}\right)^{2} \mid=+\infty\right.
$$

if and only if

$$
\lim _{y \rightarrow+\infty} \sum_{p \leqslant y-1}\left(1-f(p)^{1 / 2}\right)^{2} p^{-1}=+\infty
$$

This ends the proof of the Lemma.

Proposition 10. Let A be a Borel set, f in \mathcal{H}. Then, there exists a subset C of N of density $\nu_{1}(A)$ such that

$$
\nu_{f}(A) M(f)=\lim _{x \rightarrow+\infty} x^{-1} \sum_{\substack{1 \leqslant n \leqslant x \\ n \in C}} f(n)
$$

Proof. 1) First of all, we prove shall that there exists a sequence X_{k} of elements of N and a sequence of subsets O_{k} of $N, k \in N$, such that if $X \geqslant X_{k}$, the inequalities

$$
\left|X^{-1} \sum_{n \leqslant X} I_{O_{k}}(n)-\nu_{1}(A)\right| \leqslant(2 k)^{-2}
$$

and

$$
\left.\left|X^{-1} \sum_{n \leqslant X} f(n) I_{O_{k}}(n)-M(f) \nu_{f}(A)\right| \leqslant(2 k)^{-2}\right)
$$

hold. We begin with the simple remark that for any p in $P, \nu_{1}\left(\left\{p^{\infty}\right\} \prod_{\substack{q \in P \\ q \neq p}} \bar{E}_{q}\right)$ and $\nu_{f}\left(\left\{p^{\infty}\right\} \prod_{\substack{q \in P \\ q \neq p}} \bar{E}_{q}\right)$ are equal to zero.

Now, since A is a Borel set, by Lusin criterion ([3], p. 68, (vii)), there exists a sequence $A_{k, 1}\left(\right.$ resp. $\left.A_{k, f}\right)$ of open sets of \bar{E} such that $A \subseteq A_{k, 1}$ (resp. $A \subseteq A_{k, f}$) and $0 \leqslant \nu_{1}\left(A_{k, 1}\right)-\nu_{1}(A) \leqslant(4 k)^{-2}$ (resp. $0 \leqslant M(f)\left(\nu_{f}\left(A_{k, f}\right)-\nu_{f}(A)\right) \leqslant$ $(4 k)^{-2}$, for $\left.0 \leqslant M(f)<+\infty\right)$. Since $A \subseteq A_{k, 1}$ and $A \subseteq A_{k, f}$, we know that $A \subseteq A_{k}$, where A_{k} is defined as $A_{k}=A_{k, 1} \cap A_{k, f}$ and moreover, that $0 \leqslant \nu_{1}\left(A_{k}\right)-\nu_{1}(A) \leqslant(4 k)^{-2}\left(\right.$ resp. $\left.0 \leqslant M(f)\left(\nu_{f}\left(A_{k}\right)-\nu_{f}(A)\right) \leqslant(4 k)^{-2}\right)$. Now, by Lemma 5 , there exists A_{k}^{\prime} (resp. $A_{k}^{\prime \prime}$) a finite union of elementary subsets of \bar{E} such that $A_{k}^{\prime} \subseteq A_{k}$ (resp. $A_{k}^{\prime \prime} \subseteq A_{k}$) and $0 \leqslant \nu_{1}\left(A_{k}\right)-\nu_{1}\left(A_{k}^{\prime}\right) \leqslant$ $(4 k)^{-2}$ (resp. $\left.0 \leqslant M(f)\left(\nu_{f}\left(A_{k}\right)-\nu_{f}\left(A_{k}^{\prime \prime}\right)\right) \leqslant(4 k)^{-2}\right)$. Let O_{k} be defined by $O_{k}=A_{k}^{\prime} \cup A_{k}^{\prime \prime}$. By Lemma 6 , we know that O_{k} is a finite disjoint union of elementary subsets of \bar{E}, and that $A_{k}^{\prime} \subseteq O_{k} \subseteq A_{k}$, which implies that $0 \leqslant$ $\nu_{1}\left(A_{k}\right)-\nu_{1}\left(O_{k}\right) \leqslant(4 k)^{-2}$, and similarly, $0 \leqslant M(f)\left(\nu_{f}\left(A_{k}\right)-\nu_{f}\left(O_{k}\right)\right) \leqslant(4 k)^{-2}$. Since $0 \leqslant \nu_{1}\left(A_{k}\right)-\nu_{1}(A) \leqslant(4 k)^{-2}$ and $0 \leqslant M(f)\left(\nu_{f}\left(A_{k}\right)-\nu_{f}(A)\right) \leqslant(4 k)^{-2}$, we deduce that $\left|\nu_{1}\left(O_{k}\right)-\nu_{1}(A)\right| \leqslant 2^{-3} k^{-2}$ and $M(f)\left|\nu_{f}\left(O_{k}\right)-\nu_{f}(A)\right| \leqslant 2^{-3} k^{-2}$.

Now, since O_{k} is a finite disjoint union of elementary subsets of \bar{E}, by Lemma $7, I_{O_{k}}(n)$ and $f(n) I_{O_{k}}(n)$ have a meanvalue, respectively $\nu_{1}\left(O_{k}\right)$ and $M(f) \nu_{f}\left(O_{k}\right)$, and moreover, there exists an integer $X_{k}(1)$ (resp. $\left.X_{k}(f)\right)$ such that for any $X \geqslant X_{k}(1)$ (resp. $\left.X \geqslant X_{k}(f)\right)$, the inequalities

$$
\begin{aligned}
\left|X^{-1} \sum_{n \leqslant X} I_{O_{k}}(n)-\nu_{1}\left(O_{k}\right)\right| & \leqslant(4 k)^{-2} \\
\left|X^{-1} \sum_{n \leqslant X} f(n) I_{O_{k}}(n)-M(f) \nu_{f}\left(O_{k}\right)\right| & \leqslant(4 k)^{-2}
\end{aligned}
$$

hold. Now, since $0 \leqslant\left|\nu_{1}(A)-\nu_{1}\left(O_{k}\right)\right| \leqslant 2^{-1}(2 k)^{-2}$ and $0 \leqslant M(f) \mid \nu_{f}\left(O_{k}\right)-$ $\nu_{f}(A) \mid \leqslant 2^{-1}(2 k)^{-2}$, we get that

$$
\left|X^{-1} \sum_{n \leqslant X} I_{O_{k}}(n)-\nu_{1}(A)\right| \leqslant(2 k)^{-2}
$$

and

$$
\left|X^{-1} \sum_{n \leqslant X} f(n) I_{O_{k}}(n)-M(f) \nu_{f}(A)\right| \leqslant(2 k)^{-2}
$$

These inequalities hold a fortiori if $X \geqslant X_{k}$, where X_{k} is defined as $X_{k}=$ $\operatorname{Max}\left(X_{k}(1), X_{k}(f)\right)$.
2) End of the proof of the Proposition.

Let $Y_{k}, k \geqslant 1$, be defined by $Y_{k}=\sum_{1 \leqslant r \leqslant k+1} X_{k}$, and C be a subset of N with characteristic function $I(n)$ defined by

$$
\begin{aligned}
& I(n)=I_{O_{k}}(n) \quad \text { if } Y_{k-1}+1 \leqslant n \leqslant Y_{k}, k \geqslant 2, \\
& I(n)=1 \quad \text { if } 1 \leqslant n \leqslant Y_{1} .
\end{aligned}
$$

We shall prove that $M(I)=\nu_{1}(A)$ and $M(I f)=\nu_{f}(A) M(f)$.
Let x be a positive integer, and let $k(x)=\max \left\{k \geqslant 0 ; Y_{k}+1 \leqslant x \leqslant Y_{k+1}\right\}$. We denote by $g(n)$ any of the functions $f(n)$ or 1 . We have

$$
\begin{aligned}
& \sum_{n \leqslant x} I(n) g(n)=\sum_{0 \leqslant k \leqslant k(x)-1} \sum_{Y_{k}+1 \leqslant n \leqslant Y_{k+1}} I(n) g(n)+\sum_{Y_{k(x)}+1 \leqslant n \leqslant x} I(n) g(n) \\
& =\sum_{0 \leqslant k \leqslant k(x)-1} \sum_{Y_{k}+1 \leqslant n \leqslant Y_{k+1}} I_{O_{k}}(n) g(n)+\sum_{Y_{k(x)}+1 \leqslant n \leqslant x} I_{O_{k(x)}}(n) g(n) .
\end{aligned}
$$

Since $Y_{k} \geqslant X_{k}$, we obtain using 1),

$$
\begin{aligned}
& \left|\sum_{1 \leqslant n \leqslant Y_{k+1}} I(n) g(n)-Y_{k+1} M(g) \nu_{g}(A)\right| \leqslant Y_{k+1}(2 k)^{-2}, \\
& \left|\sum_{1 \leqslant n \leqslant Y_{k}} I(n) g(n)-Y_{k} M(g) \nu_{g}(A)\right| \leqslant Y_{k}(2 k)^{-2},
\end{aligned}
$$

and as a consequence, since

$$
\sum_{Y_{k}+1 \leqslant n \leqslant Y_{k+1}} I(n) g(n)=\sum_{1 \leqslant n \leqslant Y_{k+1}} I(n) g(n)-\sum_{1 \leqslant n \leqslant Y_{k}} I(n) g(n),
$$

we get

$$
\begin{aligned}
\left|\sum_{Y_{k}+1 \leqslant n \leqslant Y_{k+1}} I(n) g(n)-\left(Y_{k+1}-Y_{k}\right) M(g) \nu_{g}(A)\right| & \leqslant\left(Y_{k+1}+Y_{k}\right)(2 k)^{-2} \leqslant 2 Y_{k+1}(2 k)^{-2} \\
& \leqslant Y_{k+1}(k)^{-2}
\end{aligned}
$$

And similarly,

$$
\begin{aligned}
\left|\sum_{Y_{k(x)}+1 \leqslant n \leqslant x} I(n) g(n)-\left(x-Y_{k(x)}\right) M(g) \nu_{g}(A)\right| & \leqslant\left(x+Y_{k(x)}\right)(2 k(x))^{-2} \leqslant 2 x(2 k(x))^{-2} \\
& \leqslant x k(x)^{-2}
\end{aligned}
$$

Hence, we get that

$$
\begin{aligned}
& \left|\sum_{n \leqslant x} I(n) g(n)-\left(\sum_{0 \leqslant k \leqslant k(x)-1}\left(Y_{k+1}-Y_{k}\right) M(g) \nu_{g}(A)+\left(x-Y_{k(x)}\right) M(g) \nu_{g}(A)\right)\right| \\
& \leqslant \sum_{1 \leqslant k \leqslant k(x)-1} Y_{k+1} k^{-2}+x k(x)^{-2},
\end{aligned}
$$

i.e.

$$
\left.\mid \sum_{n \leqslant x} I(n) g(n)-x M(g) \nu_{g}(A)\right) \mid \leqslant \sum_{1 \leqslant k \leqslant k(x)-1} Y_{k+1} k^{-2}+x k(x)^{-2}
$$

We remark that the right hand side of this inequality can be written as

$$
\begin{aligned}
& \sum_{1 \leqslant k \leqslant k(x)-1} Y_{k+1} k^{-2}+x k(x)^{-2} \\
= & \sum_{1 \leqslant k \leqslant k(\sqrt{x})-1} Y_{k+1} k^{-2}+\sum_{k(\sqrt{x}) \leqslant k \leqslant k(x)-1} Y_{k+1} k^{-2}+x k(x)^{-2} .
\end{aligned}
$$

Since for $k \leqslant k(\sqrt{x})-1$, we have $Y_{k+1} \leqslant \sqrt{x}$, we get

$$
\sum_{1 \leqslant k \leqslant k(\sqrt{x})-1} Y_{k+1} k^{-2} \leqslant \sum_{1 \leqslant k \leqslant k(\sqrt{x})-1} \sqrt{x} k^{-2} \leqslant \sqrt{x} \sum_{1 \leqslant k} k^{-2}
$$

and since $Y_{k+1} \leqslant x$, we have

$$
\begin{aligned}
\sum_{k(\sqrt{x}) \leqslant k \leqslant k(x)-1} Y_{k+1} k^{-2}+x k(x)^{-2} & \leqslant \sum_{k(\sqrt{x}) \leqslant k \leqslant k(x)-1} x k^{-2}+x k(x)^{-2} \\
& \leqslant x \sum_{k(\sqrt{x}) \leqslant k \leqslant k(x)} k^{-2} .
\end{aligned}
$$

Hence, we get that

$$
\begin{aligned}
\left.\mid \sum_{n \leqslant x} I(n) g(n)-x M(g) \nu_{g}(A)\right) \mid & \leqslant \sqrt{x} \sum_{1 \leqslant k} k^{-2}+x \sum_{k(\sqrt{x}) \leqslant k \leqslant k(x)} k^{-2} \\
& =O(\sqrt{x})+x o(1), \quad x \rightarrow+\infty
\end{aligned}
$$

and so, we obtain

$$
\left.\sum_{n \leqslant x} I(n) g(n)-x M(g) \nu_{g}(A)\right)=o(x), x \rightarrow+\infty
$$

Substituting $g(n)$ with 1 and then with $f(n)$, we see that the set C with characteristic function $I(n)$ as defined above, fulfils the conditions of the Proposition.
2.3. Conclusion of the proof of the main result. By Lemma 9, the measure ν_{f} is orthogonal to ν_{1}. So, there exists a Borel set A such that $\nu_{f}(A)=1$ and $\nu_{1}(A)=0$. Proposition10 gives the conclusion.

References

[1] P. Deligne, La conjecture de Weil, I, Pub. Math. I.H.E.S. 43 (1974), 273-307.
[2] E. Hewitt and K. Ross, Abstract harmonic analysis I, Springer Verlag, 1963.
[3] P. Malliavin, Intégration et probabilité, Analyse de Fourier et Analyse spectrale. Masson, Paris, 1982.
[4] J.-L. Mauclaire, Intégration et Théorie des Nombres, Travaux en cours, Hermann, Paris, 1986.
[5] C.J. Moreno, F. Shahidi, The fourth moment of Ramanujan τ-function, Math. Ann., 266 (1983), 233-239.
[6] R.A. Rankin, Contribution to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions, Math. Proc. Cambridge Phil. Soc. 35 (1939), 357-372.
[7] W. Schwarz, J. Spilker, Arithmetical functions, London Mathematical Society lecture Notes Series 184 Cambridge University Press (1994).
[8] A. Tortrat, Calcul des probabilités. Masson, Paris 1971.

Address: THEORIE DES NOMBRES, Institut de mathématiques, (UMR 75867 du CNRS), Université Pierre et Marie Curie, 175 rue du chevaleret, Plateau 7D, F-75013 Paris, France
E-mail: mauclai@ccr.jussieu.fr
Received: 28 October 2005; revised: 26 April 2006

