
Functiones et Approximatio
XXXV (2006), 209–218
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Abstract: In a recent paper A. Sankaranarayanan and the author using a novel method prove
a special case of a recent result of G. Bachmann on exponential sums with multiplicative coef-
ficients. Here we apply this method to the case in which the exponential sum is extended over
smooth numbers only.
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1. Introduction

Let F be the class of complex-valued multiplicative functions f with |f | 6 1. Let
e(t) denote the complex number e2πit throughout the paper. For any real numbers
x > 3, and α and for f ∈ F , we write the general exponential sum as

F (x, α) =
∑

n6x
f(n)e(nα). (1.1)

The problem of obtaining bounds for F (x, α) uniform in f ∈ F has been first
considered by H. Daboussi [2]. He showed that if

∣∣α− s
r

∣∣ 6 1
r2 and 3 6 r 6

( x
log x )

1
2 , for some coprime integers s and r , then uniformly for all f ∈ F , we have

F (x, α)� x

(log log r)
1
2
.

From this estimate, one observes that for every irrational α , we have

lim
x→∞

1
x
F (x, α) = 0

uniformly for all f ∈ F .

2001 Mathematics Subject Classification: 11L03 .



210 Helmut Maier

The question of characterizing those functions f such that for every irratio-
nal α having the property

1
x
F (x, α) = o


 1
x

∣∣∣∣∣∣
∑

n6x
f(n)

∣∣∣∣∣∣


 , (1.2)

was considered first by Dupain, Hall and Tenenbaum in [4]. An interesting special
case is when f is a characteristic function of integers free of prime factors greater
than y > 2. Fouvry and Tenenbaum (see [5]) obtained sharp estimates for the
corresponding exponential sum providing a quantitative version of (1.2) for a wide
range of parameters x and y . On the other hand, an important advance was esta-
blished by Montgomery and Vaughan (see [8]) who improved the original estimate
of Daboussi. If

∣∣α− s
r

∣∣ 6 1
r2 and 2 6 R 6 r 6 x

R , for some coprime integers s
and r , then uniformly for all f ∈ F , they proved that

F (x, α)� x

log x
+

x√
R

(logR)
3
2 . (1.3)

In addition, it was shown that apart from the logarithmic factor, the above estimate
is sharp. Indeed, they established that

(i) For any real x > 3 and any α , there is an f ∈ F such that |F (x, α)| � x
log x .

(ii) If r 6 x
1
2 and (s, r) = 1, then there is an f ∈ F such that

∣∣F (x, sr )
∣∣� x√

r
.

(iii) If x
(log x)3 6 T 6 x , then there exist coprime integers s and r and f ∈ F

such that T − 3x
T 6 r 6 T and

∣∣F (x, sr )
∣∣� (xT )

1
2 .

Recently, G. Bachman proved several interesting upper bounds (see [1]) for
|F (x, α)| at various contexts. In particular, one of his results (see Theorem 5,
page 46 of [1]) improves the factor (logR)

3
2 in (1.3) into (logR log logR)

1
2 . For

more information on the history of the problem see the introduction of the paper
[7] by A. Sankaranarayanan and the author. More recently progress on the problem
has been achieved by G. Bachmann [1].

In the paper [7], A. Sankaranarayanan and the author give a new proof

Theorem 1.2. Let x > 3 , 1 6 r 6 x(log x)−2(log log x)−1(log log log x)−1 . We
assume that r is a prime number and that (r, s) = 1 . Then uniformly for f ∈ F
we have

F (x,
s

r
) =

∑

n6x
f(n)e(n · s

r
) 6 x

log(x)
+

x√
r
. (1.4)

Crucial for their proof is an evaluation of exponential sums of the form
∑

a mod r
(a,r)=1

e(akα) ,

which is simplest under the assumption α = s
r , r prime. It certainly can be carried

out under more general assumptions on α . In this paper we apply the ideas of the
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paper [6] to investigate a new version of the problem. In (1.1) we restrict the range
of summation to y -smooth values of n , i. e. integers all of whose prime factors
are 6 y .
We set

S(x, y) =
{
n 6 x : P+(n) 6 y

}

where P+(n) denotes the largest prime factor of n . The case

f(n) = 1 , α = 0

has first been investigated by Dickman in 1930. We obtain the counting function
for smooth integers

ψ(x, y) =
∣∣{n 6 x : P+(n) 6 y

}∣∣ .

For wide ranges of y the asymptotics of ψ is determined by Dickman’s function
% via

ψ(x, y) ∼ x%

(
log x
log y

)
.

% is defined by the differential-difference equation

u%′(u) = −%(u− 1) (u > 1)

with the initial condition

%(u) = 1 (0 6 u 6 1) .

For an overview of the entire topic see [6]. In [5] (Theorem 10) the case f = 1 has
been considered for general α . The purpose of this paper is to prove

Theorem 1. Let f ∈ F . Let ε0 > 0 be arbitrarily small, A > 0 be arbitrarily
large, exp((log x)ε0) < y 6 x , r 6 (log x)A be a prime number, (s, r) = 1 . Then
we have ∣∣∣∣∣∣

∑

n∈S(x,y)

f(n)e(n · s
r

)

∣∣∣∣∣∣
�
ε0,A

ψ(x, y) · r− 1
2

uniformly for f ∈ F .

2. Notation and Preliminaries

1. We write logk(x) = log(logk−1(x)) for any integer k > 2.
2. We define α, β by ε0 = 2β = 4α .

The following consideration hold, if B = B(ε0) is chosen sufficiently large.
3. y(1) = exp((log x)α).
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4. We set
m+(n) =

∏

p6y(1)

pν‖n

pν .

5. We partition the set

S′(x, y) = {n 6 x : P+(n) 6 y , r 6 | n}
as follows:

m1 =
{
n ∈ S′(x, y) : m+(n) 6 exp

(
(log x)β

)}
and

m2 =
{
n ∈ S′(x, y) : m+(n) > exp

(
(log x)β

)}
.

6. Refinement of the partitions of m1 and m2 :
We partition the interval [y(1), y] as follows. We let

Il = [yl, yl+1] with
1
2
yl(log yl)−B < yl+1 − yl 6 yl(log yl)−B

so that
[y(1), y] =

⋃

l

Il .

7. The partition of the set m1 :
For fixed m0 6 exp((log(x))β) and an L-tuplet l = (l1, l2, . . . , lL) we set

m1,l,m0
=
{
n ∈ m1 : m+(n) = m0 , pj ∈ Ilj

}
.

Here n = m+(n)p1p2 · · · pL with y(1) < p1 < p2 < · · · < pL .
8. The approximation of m1 by a disjoint union of cartesian products:

Definition 2.1. For n ∈ m1 , we define

ω(n, l) =
∑

(p,ν),pν‖n
p∈Il

ν .

Definition 2.2. We call m1,l,m0
proper if

m1,l,m0
= {m0p1p2 · · · pL : p1 ∈ Il1 , . . . , pL ∈ IlL} ,

otherwise improper.

Remark 2.3. The point of the definition of proper m1,l,m0
is that for all possible

choices of pj ∈ Ilj we have m0p1p2 · · · pL 6 x .

We set m
(1)
1 = {n ∈ m1 : ω(n, l) > 1 for at least one l} .

Definition 2.4. The number n /∈ m
(1)
1 is called proper if n ∈ m1,l,m0

for a proper

m1,l,m0
, otherwise improper. We set m

(2)
1 = {n ∈ m1 : n /∈ m

(1)
1 , n is improper} .
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Definition 2.5. We define

m
(∗)
1 = m1 −

(
m

(1)
1 ∪m

(2)
1

)
.

9. The decomposition of n into partial products:

Definition 2.6. Let J = {1, 2, . . . , L} and J = J1∪J2 be a partition of J in two
disjoint subsets J1 and J2 and n = m+(n)p1p2 · · · pL with pj ∈ Ilj . Then we set

n1 = n1(n, J1) =
∏

j∈J1

pj , n2 = n2(n, J2) =
∏

j∈J2

pj .

This implies n = m+(n)n1n2 . We work with the following notation in the sequel:

(1)∑
=
∑
n∈m1

f(n)e(nα) ,

(2)∑
=
∑
n∈m2

f(n)e(nα) .

3. Some Lemmas

Lemma 3.1. For fixed ε > 0 we have

ψ(x, y) = x%(u)
{

1 +O

(
log(u+ 1)

log y

)}

uniformly in the range

y > 2 , 1 6 u 6 exp
(

(log y)
3
5−ε
)
.

Proof. This result is due to Hildebrand and is Theorem 1.1 in [6].

Lemma 3.2. We have

%(u) = exp
{
−u(log u+ log2(u+ 2)− 1 +O

(
log2(u+ 2)
log(u+ 2)

)}
.

Proof. This is Corollary 2.3 of [6].

Lemma 3.3. For any fixed ε > 0 , uniformly in the range

y > 2 , 1 6 u 6 exp
{

(log y)
3
5−ε
}
,

and for xy−
5
12 6 z 6 x , we have

ψ(x+ z, y) − ψ(x, y) = z%(u) ·
{

1 +O

(
log(u+ 1)

log y

)}
. (3.1)

Proof. This is Theorem 5.1 of [6].
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Lemma 3.4. For u > 2 and |v| 6 u
2 we have

%(u− v) � %(u)evξ(u) . (3.2)

Here ξ = ξ(u) is the unique positive solution of the equation eξ = 1 + uξ an
satisfies

ξ(u) = log u + log2(u+ 2) + O

(
log2(u+ 2)
log(u+ 2)

)
. (3.3)

Proof. (3.2) is Corollary 2.4 of [6] and (3.3) is Lemma 2.2 of [6].

Lemma 3.5. We have
∣∣∣m1 −m

(∗)
1

∣∣∣ � ψ(x, y) · (log y)−A .

Proof. Let p1, . . . , pµ 6 y . Then by lemma 3.3 and 3.4 we have:

|{n ∈ S(x, y) : n ≡ 0 mod (p1 · · · pµ)}| � 1
p1 · · · pµ · %

(
log x
log y

− log(p1 · · · pµ)
log y

)

� 1
p1 · · · pµ · ψ(x, y) · exp

(
µ ξ

(
log x
log y

))
� 1

p1 · · · pµ · ψ(x, y) · (log x)µ .

For any i with 2i+1 > y(1) we have
∣∣{l : 2i < yl 6 2i+1}∣∣ � (log 2i)B � iB since

by section 2(6) we have

yl+k > 1
2
k
(
yl(log yl)−B

)
.

We observe that

∑

p∈Il

1
p
� 1

yl
(π(yl+1)− π(yl)) � (log yl)−(B+1) .

Thus,

|m(1)
1 | � ψ(x, y)

∑
i

1
2 y

(1)62i62y

∑
l

2i6yl62i+1

∞∑
µ=2

(log y)µ


∑

p∈Il

1
p



µ

� ψ(x, y)
∑

1
2y

(1)62i62y

(log 2i)−B � ψ(x, y) · (log y)−A .

A nonempty set m1,l,m0
is proper if and only if

m0yl1 · · · ylL 6 x 6 m0yl1 · · · ylL+1 .
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Since ylj+1 − ylj 6 ylj (1 + (log ylj )
−B) we obtain

Q1 := m0yl1+1 · · · ylL+1 − m0yl1 · · · ylL
6 m0

(∏
ylj

)
·
{(

1 + (log y(1))−B
)(log x)1−ε0

− 1
}

6 x(log y)−A .

The result follows from lemma 3.3.

Definition 3.1. Let χ be a Dirichlet character, Λ the Mangoldt function. We set

ψ(x, χ) =
∑

n6x
χ(n)Λ(n) , ψ(x, r, a) =

∑
n6x

n≡a mod r

Λ(n) ,

ϑ(x, r, a) =
∑
p6x

p≡a mod r

log p , π(x, r, a) =
∑
p6x

p≡a mod r

1 .

The following is a simple consequence of the theorem of Siegel-Walfisz [3]:

Lemma 3.6. Let ε > 0 be arbitrarily small, r a prime number with r > r0(ε) ,
where r0(ε) is sufficiently large. If χ is not the principal character modulo r , we
have for x > r :

ψ(x, χ) � x1−r−ε .

Lemma 3.7. For x > r we have

π(x, r, a) =
lix
r − 1

+ O
(
x1−r−ε

)
.

Proof. We have
ψ(x, r, a) =

1
r − 1

∑

χ mod r

χ(a)ψ(x, χ) .

From lemma 3.6 we obtain

ψ(x, r, a) =
x

r − 1
+ O

(
x1−r−ε

)
andϑ(x, r, a) =

x

r − 1
+ O

(
x1−r−ε

)
.

From this lemma 3.7 follows by partial summation.

Lemma 3.8. Let α = r
s with (r, s) = 1 , r a prime number with r 6 (log x)A .

Then we have
(1)∑
� ψ(x, y)r−

1
2 .

Proof. Let

Si =



ni : ni =

∏

j∈Ji
pk , pj ∈ Ilj



 for i = 1, 2 .
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By Cauchy’s inequality we get

Q2 :=
∑

n∈m
1,l,m0

f(n)e(n
s

r
) = f(m0)

∑

n1∈S1

f(n1)
∑

n2∈S2

f(n2)e(n1n2
m0s

r
)

�
( ∑

n1∈S1

|f(n1)|2
)1

2

·




∑

n
(1)
2 ,n

(2)
2 ∈S2

f(n(1)
2 )f(n(2)

2 )
∑

n1∈S1

e((n(1)
2 − n(2)

2 )
m0s

r
n1)




1
2

.

We notice that (for i = 1, 2)

∑

ni∈Si
χ(ni) =

∏

j∈Ji


 ∑

pj∈Ilj
χ(pj)


 .

Let χ not be the principal character modulo r and let c > 0 be arbitrarily large.
From lemma 3.6 we obtain by partial summation

∑

pj∈Ilj
χ(pj) � y1−r−ε

lj−1

and thus by the inequalities for ylj and r

∑

pj∈Ilj
χ(pj) � |Ilj | · (log x)−c .

We obtain

∑
ni∈Si

ni≡a mod r

1 =
1

r − 1

∑

χ mod r

χ(a)
∑

ni∈Si
χ(ni) =

|Si|
r − 1

+ O
(|Si|(log x)−c

)

for i = 1, 2. Hence we obtain

Q3 :=
∑

n1∈S1

e
(

(n(1)
2 − n(2)

2 )
m0s

r
n1

)

=
∑

a mod r
(a,r)=1

e
(
a
(
n

(1)
2 − n(2)

2

) m0s

r

) ∑
n1∈S1

n1≡a mod r

1 .

The number of pairs (n(1)
2 , n

(2)
2 ) with n

(1)
2 ≡ n

(2)
2 mod r is � |S2|2r−1 . Thus we

have

Q2 � |S1| 12
((|S1|r(log x)−c + |S1|

) |S2|2r−1 +
(
|S1|r(log x)−c +

|S1|
r − 1

)
|S1|2

)1
2

.

Therefore Q2 � |m1,l,m0
|r− 1

2 , this proves the lemma.
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Lemma 3.9. We have
(2)∑
� ψ(x, y)r−

1
2 .

Proof. We set M0 = exp((log x)β) and obtain

|m2| 6
∑

M0<m06x
P+(m0)6y(1)

∑
n6x

m+(n)=m0
P+(n)6y

1

6
∑

M0<m06x
P+(m0)6y(1)

∑
l6 x
m0

P+(l)6y

1 =
∑

M0<m06x
P+(m0)6y(1)

ψ

(
x

m0
, y

)
.

By Lemmas 3.1 and 3.4 we have

ψ

(
x

m0
, y

)
� x

m0
%

(
log x− logm0

log y

)
6 x

m0
%

(
log x
log y

)
exp

(
logm0

log y
ξ

(
log x
log y

))
.

Thus

|m2| 6 x%

(
log x
log y

) ∞∑

j=0

∑

2jM0<m062j+1M0
P+(m0)6y(1)

m−1
0 exp

(
logm0

log y
ξ

(
log x
log y

))

� x%

(
log x
log y

)
M−1

0 ·
∞∑

j=0

2−j exp
(

logM0 + (j + 1) log 2
log y

log log x
)

· %
(

logM0 + (j + 1) log 2
log y(1)

)
.

The terms in the inner sum are exponentially decreasing in j by lemma 3.1. The
result follows.

4. Proof of Theorem 1

Lemma 3.4 shows that in Theorem 1 we may restrict the summation to integers
n with r 6 | n . Theorem 1 follows from Lemmas 3.8 and 3.9.
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