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Abstract: In a recent paper A. Sankaranarayanan and the author using a novel method prove
a special case of a recent result of G. Bachmann on exponential sums with multiplicative coef-
ficients. Here we apply this method to the case in which the exponential sum is extended over
smooth numbers only.
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1. Introduction

Let § be the class of complex-valued multiplicative functions f with |f] < 1. Let
e(t) denote the complex number 2™ throughout the paper. For any real numbers
x> 3, and « and for f € §, we write the general exponential sum as

F(z,a) = Z f(n)e(na). (1.1)

n<x

The problem of obtaining bounds for F(x,«) uniform in f € § has been first
considered by H. Daboussi [2]. He showed that if ’a— §| < %2 and 3 < r <

(bf”?)% , for some coprime integers s and r, then uniformly for all f € §, we have

x
Flr,o) < ————.
() (loglog )=

From this estimate, one observes that for every irrational «, we have

1
lim — F(z,a) =0

r—00 I
uniformly for all f € §.
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The question of characterizing those functions f such that for every irratio-
nal « having the property

%F(x’a)zo éZf(n) , (1.2)

n<x

was considered first by Dupain, Hall and Tenenbaum in [4]. An interesting special
case is when f is a characteristic function of integers free of prime factors greater
than y > 2. Fouvry and Tenenbaum (see [5]) obtained sharp estimates for the
corresponding exponential sum providing a quantitative version of (1.2) for a wide
range of parameters « and y. On the other hand, an important advance was esta-
blished by Montgomery and Vaughan (see [8]) who improved the original estimate
of Daboussi. If |a — f| < %2 and 2 < R<r < %, for some coprime integers s
and 7, then uniformly for all f € §, they proved that
3

F(z,a) < é—k%(logfl)?. (1.3)
In addition, it was shown that apart from the logarithmic factor, the above estimate
is sharp. Indeed, they established that

(i) For any real # > 3 and any «, there is an f € § such that [F(z, a)| > 2.

(i) If » < 22 and (s,7) = 1, then there is an f € § such that |F(x,2)] > T
(iii) If (log%ﬁ < T < x, then there exist coprime integers s and r and f € §

such that T — 2% <7 < T and |F(z,2)| > (2T)2 .
Recently, G. Bachman proved several interesting upper bounds (see [1]) for
|F(z,a)| at various contexts. In particular, one of his results (see Theorem 5,
page 46 of [1]) improves the factor (log R)2 in (1.3) into (log R loglog R)z . For
more information on the history of the problem see the introduction of the paper
[7] by A. Sankaranarayanan and the author. More recently progress on the problem
has been achieved by G. Bachmann [1].

In the paper [7], A. Sankaranarayanan and the author give a new proof

Theorem 1.2. Let z > 3, 1 < r < z(logz)~?(loglogz)~!(logloglogz)~!. We
assume that r is a prime number and that (r,s) = 1. Then uniformly for f € §
x x

we have s s
Flz,~) = > f(n)e(n- -) < oe@ T Vi (1.4)

Crucial for their proof is an evaluation of exponential sums of the form

Z e(aka) ,

a mod 7
(a,r)=1

n<e

which is simplest under the assumption o = 2, r prime. It certainly can be carried

out under more general assumptions on «. In this paper we apply the ideas of the
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paper [6] to investigate a new version of the problem. In (1.1) we restrict the range
of summation to y-smooth values of n, i. e. integers all of whose prime factors
are < vy.
We set

S(z,y) = {n<a: PT(n) <y}

where PT(n) denotes the largest prime factor of n. The case
fn) =1, a=0

has first been investigated by Dickman in 1930. We obtain the counting function
for smooth integers

Y(x,y) = Hnéx : P*(n) gy}’ )

For wide ranges of y the asymptotics of 9 is determined by Dickman’s function

o via
log
vlea) ~ a0 (1E2)

o is defined by the differential-difference equation

ug'(u) = —o(u—1) (u>1)

with the initial condition

For an overview of the entire topic see [6]. In [5] (Theorem 10) the case f =1 has
been considered for general «. The purpose of this paper is to prove

Theorem 1. Let f € §. Let ¢g > 0 be arbitrarily small, A > 0 be arbitrarily
large, exp((logz)%°) < y < z, r < (logx)? be a prime number, (s,r) = 1. Then
we have

[SE

> Jmjeln: 7)) < wlay) v

neS(xz,y)

uniformly for f € §.

2. Notation and Preliminaries

1. We write log;,(z) = log(log;,_;(x)) for any integer k > 2.
2. We define a, 8 by g9 = 23 = 4a.

The following consideration hold, if B = B(gg) is chosen sufficiently large.
3.y = exp((log )%).
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4. We set
my(n) = H .

p<y(D)
p¥ In

5. We partition the set
S'(y) = {n<z: P(n)<y, rfn}
as follows:
my = {ne S (z,y) : me(n) < exp((logz)?)} and
my = {n € S (z,y) : my(n) > exp ((logz)’)}
6. Refinement of the partitions of m; and ms:
We partition the interval [y("),y] as follows. We let
I = [y, yi41] with

1 _ _
51/1(10%91) B <y —u < yi(logy) P

so that

"y =Un -
l

7. The partition of the set my: B
For fixed mg < exp((log(x))?) and an L-tuplet [ = (I1,ls,...,l1) we set

m :{n€m1:m+(n):mo,pjellj}.

1,l,mo

Here n = m (n)pips - --pr with y) < py <py <--- <pp.
8. The approximation of m; by a disjoint union of cartesian products:

Definition 2.1. For n € m;, we define

w(n,l) = Z v.

(p,v),p" |In
pel;

Definition 2.2. We call m, g, Droper if

w50 = {mopwp2-pp ipi €0y, oo, pL €LY
otherwise improper.

Remark 2.3. The point of the definition of proper m, ; m, 18 that for all possible
choices of p; € I, we have mop1p2---pr < .

We set mgl) = {ne€m; : w(n,l) > lforatleastonel}.

Definition 2.4. The number n ¢ mgl) is called properif n € m, - . for a proper

1,l,m
. 2 1 ..
M 7o otherwise improper. We set mg ) = {nemy :n¢ mg ) , nisimproper}.
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Definition 2.5. We define
mg*) =m — (mgl) Umf)) )

9. The decomposition of n into partial products:

Definition 2.6. Let J ={1,2,...,L} and J = J; UJy be a partition of J in two
disjoint subsets .J; and Jy and n = my(n)pip2---pr with p; € I;;. Then we set

ni = ni(n, 1) = H pj , n2 = na(n, o) = H Dj -

JEJ1 JEJ2

This implies n = my (n)niny. We work with the following notation in the sequel:

1)

Y = Y fe(na),

nemy
(2)

Z = Z fn)e(na) .

nemso

3. Some Lemmas

Lemma 3.1. For fixed € > 0 we have

Y(z,y) = wo(u) {1 +0 (log(“m)}

logy
uniformly in the range
y > 2,1 < u < exp ((logy)%_e) .
Proof. This result is due to Hildebrand and is Theorem 1.1 in [6]. ]
Lemma 3.2. We have

o(u) = exp {—u(logu +logy(u+2)— 140 (M)} .

Proof. This is Corollary 2.3 of [6]. [ |
Lemma 3.3. For any fixed € > 0, uniformly in the range

y > 2,1 < u< exp{(logy)%*g},

_5
and for xzy~1z <z < x, we have

Y(r+z,y) — Y(x,y) = zg(u)-{l—i—O(bgwm)} . (3.1)

logy
Proof. This is Theorem 5.1 of [6]. [ |
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Lemma 3.4. For v > 2 and |v| < § we have

ot~ v) < o(u)e"s® . (3.2)
Here ¢ = ¢(u) is the unique positive solution of the equation ¢ = 1 + ué an
satisfies Lo, 2)
0go(u +
=1 1 2 — .
&(u) ogu + logy(u+2) + O(log(u+2)> (3.3)
Proof. (3.2) is Corollary 2.4 of [6] and (3.3) is Lemma 2.2 of [6]. [ |

Lemma 3.5. We have
‘ml —mg*)‘ < Pla,y) - (logy) ™.
Proof. Let pi,...,p, < y. Then by lemma 3.3 and 3.4 we have:

1 . (logm log(ps - - -p,))
Pu

[{n € S(e,y) : n=0med (pr--p)}l < 41 logy logy

< ;-w(%y)-eXp (uﬁ(iogx» < ;-w(%y)-(logw)“-
PPy 0gY PPy

For any i with 2! > 3 we have
{128 <y <277} < (log2")? < i since
by section 2(6) we have
Yirk = %k(yz(logyz)’B) .

We observe that

Zl < i(ﬂ(ylﬂ) —7(y)) < (logy)~ B+ .

pel; p
Thus,
“w
> 1
1
LIRS D DD DD I 0 D)
%y(l);2i<2y 2"<yzlgzi+1 #=2 pel
< Yxy) D (log2) P < Y(a,y) - (logy) .
3yV<2K2y
A nonempty set LS. is proper if and only if

moYi, - Yiy, ST < moYi, - Ylpya -
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Since yi,+1 — yi, <y, (1+ (logy,)~?) we obtain

Q1 = Moy 41" Yi+1 — Moy, Y,

(log 2)* =<0
< mo (Hyzj) : {(H (10gy(1))’3) - 1} < z(logy) ™.

The result follows from lemma 3.3. [ |

Definition 3.1. Let x be a Dirichlet character, A the Mangoldt function. We set

¢(5E»X) = ZX(H)A(R) ’ 1/’(55,73 a) = Z A(n)a

n<x n<e
n=a mod r
Hz,r,a) = lo m(xz,r,a) = 1.
b b) b ) b
p<a p<a

p=a mod r p=a mod r

The following is a simple consequence of the theorem of Siegel-Walfisz [3]:

Lemma 3.6. Let € > 0 be arbitrarily small, r a prime number with r > ro(g),
where ro(e) is sufficiently large. If x is not the principal character modulo r, we

have for x > r: -
b, x) < 7"

Lemma 3.7. For x > r we have

m(x,r,a) = liz + O(a:lf’ﬁs) .

r—1
Proof. We have 1
Yera) = — 3 @)
x mod r
From lemma 3.6 we obtain
P(x,ra) = T +o0 (zl:lfr_s) and¥(z,r,a) = T L0 (mlfr_s) .

) ) r— 1 ) ) r— 1

From this lemma 3.7 follows by partial summation. [ |

Lemma 3.8. Let a = © with (r,s) = 1, r a prime number with r < (logz)4.

Then we have
(1)

S < Wl
Proof. Let

S; = <4n; :n; = Hpk,pjellj fori =1,2.
JEJ:
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By Cauchy’s inequality we get

Qri= Y. fe(>) = fimo) D f(m) Y. f(na)e(mns =)
nemlj)mo ni1€Sq no €Sy
< ( > lf(n1)|2> A ) ra?) Y ey — a8 %)
n1 €Sy n;1>,n;2>€52 ny1 €Sy r

We notice that (for ¢ =1,2)
S oxtm) =TT | D xtey)
n;€S; JjeJ; ijIlj

Let x not be the principal character modulo r and let ¢ > 0 be arbitrarily large.
From lemma 3.6 we obtain by partial summation

> X)) <yt

p]'EIlj

and thus by the inequalities for y;; and r

> x(pi) < || - (log )~ .

pic€ly
We obtain
1= 1 ) — ISl‘ 0 (18:1(1 —c
> =1 > X(G)ZX(nz)—rile (15:](log z)~°)
n; €54 x mod 7 n;ES;

n;=a mod r

for i = 1,2. Hence we obtain

Qs = Y e —nf)™m)

n1€S1

— Z e (a (nél) — n(22)) @) Z 1.

a mod 7 ny1€Sy
(a,r)=1 ni=a mod r

The number of pairs (nS”, n{?) with n{" = n{® mod r is < |Sa|?r—1. Thus we

have
1 —c 2, —1 —c |51 2 :
Q2 < [S1]2 [ (|S1]r(logz)=¢ +|S1]) |S2[*r~" + ( |S1|r(logz)~¢ + o |S1]7 ] -

Therefore Q2 < |m, ; |r*% , this proves the lemma. ]

1,[,7)7,0
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Lemma 3.9. We have @
2

Y < Yy
Proof. We set My = exp((logx)”) and obtain

PR

My <mqg<az n<a
P+(m0)gy(1) m+t(n)=mg
P (n)<y

IO B

Mgp<mg<x
Pt (mg)<y®)

[ma|

<
P+(1)<y

By Lemmas 3.1 and 3.4 we have

w(azﬂ) < ig <logx—logm0> <
mo mo logy

Thus

Imal < Ig(logy)z Z

1
<L 0 ( ng)

7=0 29 My<mg<2it1l Mg
P+<m0)<y(1>

22]

<logM0 +(j+ 1)10g2>

log y(1)

>

Mgp<mg<x
Pt (mp)<yD)

w(xy> .
mg

x log x logmyg . (logx
—0 exp £
mg - \logy logy logy

_1 <10g mg <10gx>)
exp 13
logy logy

loglog x)

log Mo + (j + 1) log 2
logy

217

))

The terms in the inner sum are exponentially decreasing in j by lemma 3.1. The

result follows.

4. Proof of Theorem 1

Lemma 3.4 shows that in Theorem 1 we may restrict the summation to integers
n with 7/ n. Theorem 1 follows from Lemmas 3.8 and 3.9.
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